PAGE  
1

This final draft was published in International Journal of Research in Marketing, 33 (2016), 172-182. It is fully accessible to all users at libraries and institutions that have purchased a license. If you do not have access, please send an email to jhess@uh.edu and we will gladly provide a copy of the published version.

Diagnosing Harmful Collinearity in Moderated Regressions: A Roadmap
Pavan Chennamaneni

Department of Marketing

University of Wisconsin-Whitewater

Whitewater, WI, 53190-1790

e-mail: chennamp@uww.edu
Phone: 262-472-5473

Raj Echambadi*
Department of Business Administration
University of Illinois at Urbana-Champaign
Champaign, IL61820.
Email: rechamba@illinois.edu
Phone: 217-244-4189
James D. Hess

Department of Marketing and Entrepreneurship

University of Houston

Houston, TX 77204

Email: jhess@uh.edu
Phone: 713-743-4175

Niladri Syam

Department of Marketing and Entrepreneurship

University of Houston

Houston, TX 77204

Email: nbsyam@uh.edu
Phone: 713-743-4568

* Corresponding Author

March 2015
The names of the authors are listed alphabetically. This is a fully collaborative work. 

Diagnosing Harmful Collinearity in Moderated Regressions

ABSTRACT
Collinearity is inevitable in moderated regression models. Marketing scholars use a variety of collinearity diagnostics including variance inflation factors (VIFs) and condition indices in order to diagnose the extent of collinearity in moderated models. In this paper, we show that VIF values are likely to misdiagnose the extent of collinearity problems while condition numbers do not accurately identify when collinearity is actually harmful to statistical inferences. We propose a new measure, C2, which diagnoses the extent of collinearity in moderated regression models. More importantly, this C2 measure, in conjunction with the t-statistic of the non-significant coefficient, can indicate the adverse effects of collinearity in terms of distorting statistical inferences and how much collinearity would have to disappear to generate significant results. The efficacy of C2 over VIFs and condition indices is demonstrated using simulated data and its usefulness in moderated regressions is illustrated in an empirical study of brand extensions. 
Keywords:  Collinearity diagnostics, Variance inflation factors, Condition indices, Moderated models, Multiplicative interactions

1. INTRODUCTION

Moderated regressions appear regularly in marketing. Consider a study of brand extensions where the buyer’s attitude towards the newer brand extensions (Attitude) are determined by quality perceptions of the parent brand (Quality), the perceived transferability of the skills and resources of the parent brand to the extension product (Transfer), and the interaction between Quality and Transfer (c.f. Aaker and Keller 1990). In order to test whether these relationships are significantly different from zero, the researcher fits the following moderated regression model: 

                     Attitude = 0 + 1 Quality + 2 Transfer + 3 Quality×Transfer +                      (1)
Owing to the potential for strong linear dependencies among the regressors, Quality and Transfer, and the multiplicative interaction term Quality×Transfer, there is always a fear that the presence of high levels of collinearity may lead to flawed statistical inferences. So the first question that confronts the researcher is whether the data are indeed plagued by collinearity and if so, the nature and severity of the collinearity. The researcher surveys the extant marketing literature and finds that that two rules of thumb -- values of variance inflation factors (VIFs), which are based upon correlations between the independent variables, in excess of 10, and values of condition indices in excess of 30 -- are predominantly used to judge the existence and strength of collinearity. 

Low correlations or low values of VIFs (less than 10) are considered to be indicative that collinearity problems are negligible or non-existent (c.f. Marquardt 1970).  However, VIF is constructed from squared correlations, VIF(1/ (1-R2), and since correlations are not faithful indicators of collinearity, VIF can lead to misdiagnosis of collinearity problems.
 Unlike VIFs, a high condition index (> 30) does indicate the presence of collinearity. However, the condition index by itself does not shed light on the root causes, i.e. the offending variables, of the underlying linear dependencies. In such cases wherein collinearity is diagnosed by the condition index, it is always good practice to examine the variance decomposition proportions (values greater than 0.50 in any row corresponding to a condition index greater than 30 indicates linear dependencies) to identify the specific variables that contributed to the collinearity present in the data (Belsley, Kuh and Welsh 1980). 
Reverting back to the brand extension example, let us suppose that the t-statistic for the estimate of the interaction coefficient 3 is found to be 1.60, considerably below the critical value 1.96. In such a situation, the researcher faces the second critical question: did collinearity adversely affect the interaction coefficient in terms of statistical significance? While variance decomposition metrics do help identify the specific variables underlying the potential near-linear dependencies, they do not offer insight into whether collinearity adversely affects the significances of the variables. In other words, none of the current collinearity metrics including VIFs, condition indices, and variance decomposition proportions shed any light into whether collinearity is the culprit that caused the non-significance of the interaction coefficient. 
If there was indeed a way to confirm collinearity as the culprit behind the interaction variable’s non-significance, the researcher is confronted with a third question: if the collinearity associated with the non-significant effect could be reduced in some meaningful way through collection of additional data, would the measured t-statistic increase enough to be statistically significant? Alternatively, suppose that the data on Quality and Transfer were constructed from a well-balanced experimental design, rather than from a survey, would this experiment lead to a reduction of collinearity sufficient enough to move the interaction effect to statistical significance? An answer to this question would enable the researcher to truly ascertain whether new data collection is needed or whether the researcher needs to focus her efforts elsewhere to identify the reasons for insignificant results. Unfortunately, existing collinearity diagnosis metrics including correlations, VIF, CI, or variance decomposition proportions do not provide any insight into this issue. 
In this paper, we propose a new measure of collinearity, C2 that reflects the quality of data to remedy the above mentioned problems. C2 not only diagnoses collinearity accurately but also indicate whether collinearity was the reason behind non-significant effects. More importantly, C2 can also indicate whether a non-significant effect would become significant if the collinearity in the data could be reduced, and if so, how much collinearity must be reduced to achieve this significant result.  
2.  COLLINEARITY IN MODERATED REGRESSION
Consider a moderated variable regression 

Y= 01+1U+2V+3UV+,



(2)

where U and V are ratio scaled explanatory variables in N-dimensional data vectors.
  Because 
the interaction term U(V shares information with both U and V, there may be correlations and/or collinearity between these variables. Correlations refer to linear co-variability of two variables around their means.  Computationally, correlation is built from the inner product of mean-centered variables. Collinearity, on the other hand, refers to the presence of linear dependencies between raw, uncentered values (Silvey 1969). Figure 1 illustrates two data sets with low and high correlation and collinearity.
Figure 1. Two Data Sets: ( and (
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In Figure 1, the scatter plot with dots ( exhibits no correlation between U and U(V because their values form a symmetric ball around mean values.  On the other hand, the raw values of the ( variables are entirely contained within the narrow dashed cone emanating from the origin, thus exhibiting substantial collinearity. The other data set with values indicated with crosses ( clearly exhibits correlation between U and U(V because the scatter plot forms an ellipse around the mean values. However, these ( variables are not very collinear because their raw values point in almost every direction; the solid cone nearly fills the entire first quadrant.  If the correlation of the × data approached 1.0 (perfect correlation) the solid cone would collapse to a vector (perfect collinearity). Perhaps this is why many scholars view “correlated” as a synonym for “collinear,” but properly, data may be collinear but not very correlated or very correlated and very collinear.  Of these two distinct constructs, we focus on collinearity.


By construction, the term UV carries some of the same information as U and V and could create a collinearity problem, so let us look at how unique the values of the interaction term UV are compared to 1, V and V.  The source of collinearity is clear but to measure its magnitude, one could regress UV on the three other independent variables in the auxiliary model,
UV=1+U+V+,



    
(3)

and compute the ordinary least squares projection, 
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= b01+b1U+b2V, from the OLS coefficients b0, b1, b2.  How similar is the actual UV to the projection 
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  The more similar they are, the higher the degree of collinearity, and if they are identical, then collinearity is perfect. 
A measure of the similarity of UV to 
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 is the angular deviation  of UV from its ordinary least squares projection 
[image: image5.wmf]OLS

V

U

´

 found on the plane defined by [1, U, V]. If this angle  is zero then the actual and predicted vectors point precisely in the same direction: there is perfect collinearity. Trigonometry tells us that the square of the cosine of this angle is the “non-centered” coefficient of determination, 
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     (4)

where e is the least squares residual vector of the auxiliary regression from (3). For this reason, the non-centered RN2 is a proper measure of collinearity.


RN2 is related to the traditional coefficient of determination that contrasts the residual error to the mean-centered values of the dependent variable, 
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. Of course, R2 is the square of the correlation between the projection of the dependent variable and the raw dependent variable, and may be expressed as
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(5)

Notice that R2 increases with RN2 and equals 1.0 when RN2=1.0.  However, the value of R2 is also a decreasing function of the mean 
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 and an increasing function of the variance 
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 of the dependent variable in the auxiliary regression.  Collinearity could be quite substantial but masked by a combination of large mean or small variance of U×V, so that small R2 falsely signals low collinearity. 
This means that the variance inflation factor, computed from the traditional R2 of the auxiliary regression as VIF ( 1/ (1-R2), is a confounded measure of collinearity despite its great popularity. Specifically, weakness of the explanatory data U×V comes from three basic factors: a) lack of variability of regressors (small variance of UV), b) lack of magnitude of regressors data (small mean,
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), and c) collinearity of the regressor with other explanatory variables (large RN2 or non-centered variance inflation factor, defined as VIFN ( 1/ (1-RN2)).  VIF is a combination of all of these data weakness factors: 
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(6)
Because of this, one dataset may have larger collinearity than another dataset although it has a smaller VIF value depending upon the mean (
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) of the variables in the data.  
3. DEVELOPING A NEW COLLINEARITY METRIC: C2
We propose a new collinearity metric for moderated regression models that is derived from the non-centered coefficient of determination and satisfies five major criteria:  a) the measure is based upon raw data rather than mean-centered data to avoid the problems that affect correlation and VIF, b) it distinguishes collinearity from other sources of data weaknesses such as lack of variability of the exogenous variables and lack of magnitude, c) it is easily computed, d) it is easily interpreted, e) it helps distinguish collinearity that causes parameter insignificance from collinearity that  has no effect on parameter significance.  Specifically, RN2 will be linearly transformed so that the rescaled score equals 0 when the collinearity is equivalent to a popular benchmark: a balanced experimental design.

A balanced design is used because collinearity in field studies occurs due to the uncontrollability of the data-generating mechanism (Belsley 1991, p. 8).  Experiments, on the other hand, are appropriately controlled with spurious influences eliminated and hence collinearity must be less of a problem. The relative superiority of experimental designs for detecting interactions has been demonstrated elsewhere (see McClelland and Judd 1993).  A balanced experimental design makes the causal variables U and V independent of one another, but because the moderator term U×V shares commonality with them, some degree of collinearity is present. As such, a well-balanced design makes an ideal benchmark against which the collinearity in the data can be compared.  For pedagogical reasons, we will use a 2×2, two factor by two level experiment, but this will be generalized to a K×…×K, M factor by K level design and a continuous M factor design.
3.1 What is the level of collinearity in a well-balanced 2x2 experimental design?
In the case of experimental design with a sample of size N, the balanced design produces a design matrix [1, U, V, UV] where U and V take on values of 0 and 1 divided into blocks with N/4 subjects (there are four pairs of values of U and V in a 2(2 design). One such block is
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Does this experimental design exhibit any collinearity amongst its variables? First, because collinearity refers to the degree that vectors point in the same direction relative to the origin, if there was no natural zero value in the experiment, collinearity cannot be uniquely specified.  The vectors U and V above are slightly collinear because U’V=1 differs from zero, but if V could be effect-coded to equal V0= (1, -1,1,-1)’ then U and V0 are orthogonal, U’V0=0.  Therefore, we assume that in this benchmark experiment U and V have natural zeroes.  As an illustration, suppose that U is the number of advertisements that subjects are shown with the experimental condition, the control condition being no advertisements, a natural zero. 
Second, it is straightforward to show that the collinearity angle, θ, between UV and the plane defined by [1, U, V] in the above experimental design is given by =
[image: image16.wmf])
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=30. That is, the non-centered coefficient of determination in this experiment is RN2(experiment) = ¾. This collinearity in a balanced experimental design will be used as a baseline.

3.2 Development of the C2 metric 

Consider a linear transformation of the non-centered coefficient of determination computed from the data ARN2(data)+B, whose parameters are chosen for easy interpretation.  Specifically, suppose that A and B are scaled so that this score equals 0 when the collinearity is equal that of 2(2 balanced design experiment as seen above and equals 1 when RN2(data) = 1.  Solving A¾+B=0 and A+B=1 gives 
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. We therefore define a collinearity score C2 for a 2×2 baseline experiment as follows.

Definition of C2: In the moderated variable regression (1), a collinearity score for UV that equals 0 if the data came from a well-balanced experimental design and equals 1.0 if there is perfect collinearity within [1, U, V, UV] is given by
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(7)
where VIFN(data) is the non-centered variance inflation factor from regressing the actual data UV on 1, U and V as in (3).

The C2 measure for a two variable moderated regression can also be generalized for M variates U1,…,UM and all their two-way interactions such as Ui(Uj. All one needs to do is replace RN2(experiment) in equation (7) by the generalized non-centered RN2.  In addition, instead of an experiment with 2 levels, 0 and 1, the experiment could have K levels, 0, 1,…,K-1.  Finally, the independent variables might be continuous on the unit interval [0, 1].  If the experimental design is well designed, the non-centered RN2, VIFN and C2 are given in Table 1. For example, if the data are continuous and there are M=4 variables, the appropriate C2 is 1-16/VIFN(data) for interaction terms and 1-40/VIFN(data) for the linear terms.
Table 1.  RN2, VIFN and C2 for Well-Designed Experiments

	Data Type
	Range
	Number of Variables
	Non-Centered RN2 of Well-Designed Balanced Experiment
	Non-Centered VIFN of Well-Designed Balanced Experiment
	C2 based upon this Well-Designed Balanced Experiment
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	Discrete
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	Continuous
	[0, 1]
	M in
[0,1]×[0,1]… ×[0,1] design
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	Ui linear terms
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…×K design
	
[image: image25.wmf]2

)

1

K

)(

2

M

3

(

)

K

/(

)

1

K

(

4

1

2

1

2

1

+

-

-

-

+

-


	
[image: image26.wmf](

)

2

2

1

)

1

K

(

K

2

)

1

K

)(

2

M

3

(

4

+

-

´

+

-

-


	
[image: image27.wmf]2

2

1

)

1

K

(

K

N

)

data

(

VIF

2

)

1

K

)(

2

M

3

(

4

1

+

-

´

+

-

-

-



	Continuous
	[0, 1]
	M in
[0,1]×[0,1]… ×[0,1] design
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The collinearity score C2 is derived from the non-centered RN2 and therefore is not based upon correlations. Notice that C2=1 if and only if VIFN(data) =( (or equivalently RN2=1).   On the other hand, C2=0 does not say that all collinearity has been eliminated, only that it has been reduced to the same level as that found in a well-balanced experimental design.  Using equation (5), one can express the collinearity score C2 in relation to the traditional (centered) variance inflation factor:
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      (8)

As we have seen earlier, VIF is a measure that confounds three data weaknesses, collinearity, variability, and magnitude, but the term in denominator of equation (8) strips out the variability and magnitude, leaving C2 as a pure measure of collinearity.  If the traditional VIF approaches 1, C2 may still be large.  


Of course, while collinearity inflates standard errors in a moderated regression analysis, this does not mean that it is a serious problem.  Collinearity is harmful only when coefficients that may otherwise be significant could lose statistical significance.  The next section provides guidelines using the measure C2 to diagnose whether there is truly harmful collinearity.
4. WHEN IS COLLINEARITY HARMFUL? 

The statistical significance of the estimator of coefficient 3 of the variable UV in the moderated regression (1) is typically evaluated by its t-statistic, which can be expressed in terms of the proposed collinearity score C2:
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(9)

(See Theil 1971, p. 166, for a comparable derivation). Although the t-statistic is determined by five other factors, numerosity (N), effect sizes (a3), residual errors (s), data magnitude (
[image: image32.wmf]V

U

´

), and data variability (
[image: image33.wmf])

V

U

var(

´

), equation (9) shows that one can tease apart the unique contribution of collinearity, as measured by C2, to the statistical significance of the estimator while holding the other factors constant. The condition index is a perfectly appropriate measure of collinearity, but there is no simple way to relate the condition index to the t-statistic of the interaction term, the way one can with the C2 measure of collinearity.  

Recall that for a well-designed balanced experiment C2 equals zero.  If there was a way to reduce the collinearity from its measured level C2 to that of a well-balanced experiment, then the t-statistic t3 would become
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    (10)

If the t-statistic satisfies inequality (10), then the collinearity is “harmful but salvageable” because if one could reduce the collinearity to that of a well-balanced experiment, then the estimator of the interaction coefficient a3 would be significant.   What is the proportion of the collinearity would have to disappear to make the given t-statistic significant? We address this question next. 
4.1 How much collinearity must be reduced to achieve a significant result?

If collinearity is reduced by a proportionality factor 1-, then the resulting t-statistic would grow to equal 
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(11)
Based on the threshold derived in inequality (11), we have developed a simple-to-use guide for researchers to assess the level of harmful collinearity in their model (see Figure 2). 
Figure 2. A Guide to Assessing Levels of Collinearity
 SHAPE  \* MERGEFORMAT 



If the t-statistic for the interaction term is below
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, then significance cannot be achieved even by complete elimination of all traces of collinearity and researchers would have look elsewhere to pinpoint the cause of the insignificance and hence we label this region as “irrelevant” collinearity. Between the “harmful but salvageable” and “irrelevant” regions of Figure 1 is “harmful but hard-to-salvage collinearity” because significance would require collinearity below that of a well-balanced experiment.
4.2 Comparison of C2 to VIF and condition indices in a simulation study
We conducted a Monte Carlo simulation to verify the usefulness of the C2 measure of collinearity in a moderated variable regression. As shown by Mason and Perreault (1991) and Grewal, Cote and Baumgartner (2004), collinearity interacts with other factors to affect estimation accuracy and statistical inferences, and hence it makes sense to study the joint impact of collinearity with other key factors such as the model R2, coefficient size, and standard deviation of the variable. As in prior studies (c.f. Grewal, Cote and Baumgartner 2004; Mason and Perreault 1991), the attributes of the factors were manipulated to reflect conditions typically encountered by marketing researchers. 
We created simulated data sets of [Y 1 U V U(V] for the model in equation (2). The level of collinearity was varied from very low (level = 1) to very high (level = 9). 
 Apart from controlling the collinearity, the R2 of the model was varied using four levels from low to high and the standard deviation of the variable U was controlled at three separate levels. Finally, we also considered two cases for the interaction parameter: 1) a population (null) effect of 3 = 0 and 2) a population effect of 3 = 0.3. Each combination of parameters noted above was simulated 400 times and the means of relevant statistics were recorded.

 The technical appendix, available from the authors, describes the simulation in detail and the results are presented in Tables TA1-TA6.  In summary, results from the technical appendix indicate that both C2 and condition index seem to correctly track increases in collinearity.  VIF, on the other hand, is highly inconsistent in the ability to properly diagnose and interpret the level of collinearity. Detailed results are provided in the technical appendix. Table 2 presents an illustrative sample of the results for a model with medium levels of R2 wherein the true value of the interaction coefficient U(V is set at 0.3.
As can be seen from Table 2, for both low and medium levels of collinearity, VIF indicates that a sizeable percentage of insignificant results are due to the presence of severe collinearity. However, at high levels of collinearity, VIF mistakenly indicates only a small percentage of insignificant results as resulting from severe collinearity. On the other hand, condition index accurately diagnoses the extent of collinearity for all levels of collinearity. But it remains silent on whether the insignificant results can be salvaged with additional data collection that reduces collinearity. C2 addresses this limitation of condition index. Table 2 indicates that C2 correctly classifies a majority of the insignificant results as harmful but salvageable for all levels of collinearity implying that reduction in collinearity can actually result in significant effects. Apart from the accurate diagnosis of collinearity, C2 also indicates whether collinearity is the culprit behind the insignificant results thereby providing a nuanced interpretation. 
Table 2 – Representative Results from the Simulation Study 

to Illustrate the Diagnosticity of C2
	Collinearity

Level
	S.E of  3
	Powera
	C2b
	VIFb
	CIb
	Harmful but Salvageable Collinearity via C2 c


	Harmful but hard-to-salvage Collinearity via C2 c
	Irrelevant Collinearity via C2 c
	Harmful Collinearity via VIFd
	Harmful Collinearity via CIe

	Low
	0.05
	99%
	-0.30
	9.7
	14.44
	100%
	0%
	0%
	100%
	0%

	Medium
	0.08
	93%
	0.30
	8.9
	20.3
	75%
	25%
	0%
	83%
	7%

	High
	0.15
	57%
	0.73
	6.7
	31.4
	72%
	20%
	8%
	12%
	72%


Legend

a Power is the percentage of  results where 3 was found to be significant. 


b VIF, CI and C2  are the average values over 400 replications.

c Harmful but salvageable, Harmful but hard-to-salvage and irrelevant collinearity, as classified by C2 values from Figure 2, represent the percentage of insignificant results classified under each category. 

d Harmful collinearity (VIF) is the percentage of insignificant results where VIF >10 was satisfied.
e Harmful collinearity (CI) is the percentage of insignificant results where CI>30 was satisfied.
5. EMPIRICAL APPLICATION
Brand extensions, wherein firms use established brand names to enter into completely different product classes (for example, Honda submersible pumps), is a popular strategy to mitigate the risks of introducing completely new products (Aaker and Keller 1990). We use the brand extension domain as the empirical context and use Aaker and Keller’s data to illustrate the impact of collinearity diagnostics.
 Extant studies posit that attitude toward the brand extension (Attitude) are determined by the quality perceptions of the parent brand (Quality), three separate dimensions of fit between the parent and extension brands, and the interactions between Quality and the fit dimensions (see Aaker and Keller, 1990). 
The regression equation exploring the brand extensions is as follows: 
Attitude = 0 + 1Quality + 2Transfer + 3Complement + 4Substitute


 (12)

     + 5Quality(Transfer + 6Quality(Complement + 7Quality(Substitute+8Difficulty+(,
where Attitude toward the brand extension is operationalized by a composite two-item measure 
of perceived overall quality of the brand extension and the likelihood of trying the extension; Quality refers to the perceived quality of the parent brand; Transfer refers to the perceived transferability of the skills and resources of the parent brand to the extension product class, Complement refers to the perceived complementarity of the skills and resources of the parent brand to the extension product class, and Substitute refers to the perceived substitutability of the skills and resources of the parent brand to the extension product class (all measurements on a 7-point scale). Coefficients 1, 2, 3, and 4 are the simple effects of Quality and the three fit dimensions, while 5, 6, and 7 are the interaction effects of Quality with the fit dimensions. Finally, 8 reflects the effect of Difficulty of manufacturing the extension, a control variable. 
5.1 Correlation matrices and OLS results
Table 3 presents the inter-correlations for all measures including the control variable. The inter-correlations between Quality and the fit dimensions are low. However, the correlations between the individual dimensions and their constituent interaction terms are extremely high (for example, the correlation between Transfer and Quality×Transfer is 0.86, and the correlation between Substitute and Quality×Substitute is 0.91 ).
Table 3: Correlations Among Variables: Aaker and Keller (1990) Data
	
	Attitude
	Quality
	Transfer
	Complement
	Substitute
	Q × T
	Q × C
	Q × S
	Difficulty

	Attitude
	1.00
	
	
	
	
	
	
	
	

	Quality (Q)
	0.28
	1.00
	
	
	
	
	
	
	

	Transfer (T)
	0.34
	0.08
	1.00
	
	
	
	
	
	

	Complement (C)
	0.31
	0.19
	0.27
	1.00
	
	
	
	
	

	Substitute (S)
	0.25
	0.14
	0.44
	0.21
	1.00
	
	
	
	

	Q × T
	0.43
	0.50
	0.86
	0.29
	0.43
	1.00
	
	
	

	Q × C
	0.39
	0.62
	0.23
	0.85
	0.22
	0.46
	1.00
	
	

	Q × S
	0.33
	0.47
	0.40
	0.24
	0.91
	0.57
	0.41
	1.00
	

	Difficulty
	0.13
	0.0
	-0.06
	0.16
	-0.10
	-0.01
	0.15
	-0.06
	1.00


Reassuringly, as shown in the first column, all the correlations of the independent variables with the dependent variable, Attitude, are reasonably high providing some hope that all proposed effects are likely to be significant. 
Ordinary least squares (OLS) results in Table 4 show that the simple effects of Quality, Complement, and Substitute are insignificant.  Among the interaction terms, Quality×Transfer is insignificant while the other two interactions, Quality×Complement and Quality×Substitute are significant. Did the high collinearity between for Quality and Transfer with the constituent interaction terms cause lack of significance? Now we turn to examining collinearity diagnostics to ascertain whether collinearity was the reason behind the non-significance.
TABLE 4: Parameter Estimates and Collinearity Diagnostics from Aaker and Keller’s  

                   (1990) Data
Dependent Variable: Attitude toward Brand Extension
	Variables
	
	

	Intercept
	Parameter Estimate
	1.76**

	
	t-statistic
	6.14

	Quality (Q)
	Parameter Estimate
	-0.01

	
	t-statistic
	-.20

	
	VIF
	6.85

	
	C2
	0.69  Irrelevant collinearity

	Transfer (T)
	Parameter  Estimate
	0.13*

	
	t-statistic
	2.21

	
	VIF
	11.73

	
	C2
	0.60

	Complement (C)
	Parameter  Estimate
	-0.01

	
	t-statistic
	-0.30

	
	VIF
	16.41

	
	C2
	0.54  Harmful but hard-to-salvage collinearity

	Substitute (S)
	Parameter  Estimate
	-0.07

	
	t-statistic
	-1.17

	
	VIF
	15.10

	
	C2
	0.61 Harmful but hard-to-salvage collinearity

	Q ( T 
	Parameter  Estimate
	0.02

	
	t-statistic
	1.43

	
	VIF
	19.40

	
	C2
	0.84 Harmful but salvageable collinearity

	Q ( C
	Parameter  Estimate
	0.03**

	
	t-statistic
	3.07

	
	VIF
	17.97

	
	C2
	0.84

	Q ( S
	Parameter  Estimate
	0.03*

	
	t-statistic
	2.22

	
	VIF
	20.50

	
	C2
	0.81

	Difficulty
	Parameter  Estimate
	0.01

	
	t-statistic
	5.40

	
	VIF
	1.10

	
	C2
	-3.37

	
	Regression Standard Error 
	2.05

	
	Condition Number
	42.61

	
	R2
	0.25

	
	Adj. R2
	0.25

	
	Sample Size
	2101


*  p < 0.05  
**  p < 0.01
5.2 Variance inflation factors 

Table 4 shows the traditional variance inflation factors (VIF) for each variable. Using traditional criteria employed by marketing scholars wherein VIFs greater than 10 are considered problematic (Mason and Perreault, 1991), the VIFs for all of the variables (except for Quality) are high and may provide cause for concern. The VIF for Quality is lower than 10 and hence may indicate that Quality is not troubled by severe collinearity problems. Interestingly, although VIF indicates severe collinearity problems for Transfer, the coefficient for Transfer is significant. 
5.3 Condition indices and variance decomposition proportions

The condition index for the moderated model is over 30 implying that the data is afflicted by severe collinearity problems (Belsley 1991).  Belsley, Kuh, and Welsch (1980) proposed the use of eigenvalues and eigenvectors to form variance-decomposition proportions (see Table 5) to assist in identifying the specific linear dependencies.  The spread of the eigenvalues of [1 U V U(V]’[1 U V U(V] may be used to assess the condition of the data (Khuri 1986).  
Table 5: Variance Decomposition Proportions to Diagnose Linear Dependencies  
	Dimensiona
	Eigenvalueb
	Condition Indexc
	Parameter Proportions of Varianced 

	
	
	
	Intercept
	Quality
	Transfer
	Complement
	Substitute
	Q×T
	Q×C
	Q×S
	Difficulty

	1
	7.744
	1.000
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00
	.00

	2
	.488
	3.984
	.00
	.00
	.00
	.00
	.01
	.00
	.00
	.01
	.08

	3
	.274
	5.319
	.00
	.00
	.02
	.00
	.01
	.02
	.00
	.01
	.02

	4
	.248
	5.592
	.00
	.00
	.00
	.01
	.00
	.00
	.02
	.00
	.18

	5
	.127
	7.807
	.00
	.05
	.01
	.03
	.01
	.00
	.00
	.00
	.07

	6
	.100
	8.788
	.04
	.00
	.00
	.01
	.01
	.02
	.01
	.01
	.57

	7
	.010
	28.438
	.05
	.04
	.05
	.33
	.46
	.05
	.31
	.46
	.01

	8
	.006
	36.637
	.04
	.03
	.90
	.04
	.42
	.90
	.03
	.42
	.02

	9
	.004
	42.610
	.87
	.88
	.01
	.58
	.09
	.01
	.63
	.09
	.04

	a The number of dimensions equals the number of predictors in the model.
b Large variance-decomposition proportions correspond to small eigenvalues.
c Condition index for dimension j is given by [image: image42.png]Kl



 where E is the eigenvalue. 

d Variance decomposition proportions for each dimension.


The eigenvalue column in Table 5 consists of the eigenvalues of the correlation matrix of the set of independent variables. Relatively large variance decomposition proportions, i.e. over 0.50 in any row corresponding to a small eigenvalue, may help identify specific variables involved in that linear dependency (see Freund and Littell 1991). From Table 5, it appears that 90% of the variance in Transfer and 90% of the variance in the interaction term, Quality×Transfer, are associated with eigenvalue 8 and hence are associated with potential near-linear dependencies. However, the simple effect of Transfer in the regression is significant while the interaction effect of Quality×Transfer is insignificant. Similarly, the eigenvalue for dimension 9 reveal potential near-linear dependencies with Quality, Complement and Quality×Complement.  However, the Quality×Complement interaction effect is significant while the simple effects of Quality and Complement are not. 
In summary, collinearity diagnostics do not always tell the same story. Some diagnostics (for example, condition numbers, eigenvalue decomposition, and correlations in our case) indicate major collinearity problems in the data whereas other diagnostics (VIF for Quality, for example) reveal no such severity. It appears that indication of collinearity (for example, the simple effect of Transfer or the interaction effect of Quality×Complement) does not always lead to parameter insignificance. More importantly, would the insignificant regression estimates have become significant in a dataset without appreciable collinearity?  This crucial question is not easily answered by VIF, condition indices or variance decomposition metrics. Apart from accurately assessing collinearity, our proposed metric, C2, attempts to answer this question that has vexed most applied researchers at some point or the other.  
5.4 Did collinearity degrade the significance of the estimates of Quality and Quality×Transfer?


In order to help researchers to calculate and use the C2 metric for appropriate collinearity diagnosis, we developed a roadmap (Table 6). The first step of Table 6 entails computation of C2 for all insignificant effects. Table 4 provides the C2 scores and t-statistics for the non-significant effects.  As discussed in the previous section, a C2 score of zero indicates that the design matrix is akin to a balanced experimental design.  An examination of the C2 values for Quality (0.69), Complement (0.54), Substitute (0.61) and Q×T (0.84) indicate high levels of collinearity. 
Table 6: A Roadmap for Using the C2 Measure of Collinearity

	Step
	Description
	Details
	Conclusion

	Step 1
	Compute C2 values for all non-significant effects. 
	The formula for C2 varies depending on the nature of the variable and the type of model. The appropriate formula must be chosen from Table 1.
	C2  values range from 0 to 1; 1 implies perfect collinearity whereas 0 indicates that collinearity has been reduced to that a perfectly balanced experimental design.

	Step 2
	Categorize C2 values into collinearity groupings of Harmful but salvageable, Harmful but hard-to-salvage and Irrelevant collinearity.
 
	a. Identify the critical value of the t-statistic tcrit.

b. Compute the non-centered VIFN of well-designed balanced experiment i.e. VIFN (experiment) using the formulae noted in column 5 of Table 1. The formula to be used varies depending on the nature of the variable and the type of model under consideration.
c. Using the three computed values, C2, tcrit and VIFN (experiment), categorize collinearity as harmful but salvageable, harmful but hard-to-salvage, and irrelevant collinearity using the continuum on Figure 1.
	a. If collinearity is assessed to be irrelevant, collinearity can be eliminated as the reason for the non-significance.

b. If collinearity is diagnosed as harmful but hard-to-salvage, although the effect exists in the population, designing a well-balanced experiment will not help achieve significance.  

c. If collinearity is diagnosed as harmful but salvageable, then it implies that collinearity may have caused the non-significance; hence this line of theoretical inquiry should not be abandoned. 

	Step 3
	If harmful but salvageable collinearity is found in step 2, assess proportion of collinearity reduction needed to make the t-statistic significant.
	The proportion of collinearity reduction needed to make the t-statistic significant can be computed using the formula in equation (11).
	The computed proportion indicates the ease of achieving collinearity reduction. Small proportions may indicate that collecting additional data may help. Large proportions may need data collection through a well-balanced experiment. 



In step 2 of Table 6, we classify collinearity into various groupings. The interaction effect, Q×T, has a C2 score of 0.84 and an obtained t-statistic of 1.43. Inequality (10) as represented by 
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, is satisfied for a two-tailed critical t-statistic tcrit=1.96, so collinearity is harmful but salvageable.   Specifically, a reduction in collinearity to that of a well-balanced experiment would have enabled the interaction effect Q×T to become statistically significant. 

For the simple effect of Quality, C2 is 0.69 and the t-statistic obtained is 0.20. Because the t-statistic of 0.20 is less than 
[image: image44.wmf]55

.

0

4

69

.

1

96

.

1

t)

(experimen

VIF

C

1

t

N

2

crit

=

-

=

-

, we can term the collinearity as irrelevant collinearity. In other words, this result indicates the simple effect of Quality would not have become statistically significant even by eliminating collinearity (reducing non-centered R2 to zero). 

It is interesting to note this result from C2 because Aaker and Keller’s (1990) insignificant result for the simple effect of Quality has been attributed to collinearity problems (c.f. Bottomley and Holden 2001). Our approach shows that no amount of collinearity reduction in the data could have salvaged the significance for Quality. In other words, Aaker and Keller (1990) were correct in that there is no direct link between Quality and brand extension evaluations, at zero levels of the other variables, in their data.


Turning to other terms, the simple effects of Complement and Substitute are afflicted by “harmful but hard-to-salvage” collinearity implying that collinearity reduction beyond that of a well-balanced experiment would be required to achieve significance. 

5.5 How much collinearity must be reduced for Quality×Transfer to become significant?

Now that we have established that collinearity did possibly cause adverse effects for Quality×Transfer interaction effect, we turn to quantifying the reduction in collinearity required to make this effect significant (step 3 in the roadmap). At =0.05, for a two-tailed test, the critical t-statistic is 1.96. Substituting the values of C2 =0.84 and the realized t-statistic of 1.43 into equation (11), we get =0.17. This implies that eliminating 17% of the existing collinearity in the model could have provided a significant result for the Q×T interaction. This modest improvement may be accomplished by gathering more data, i.e. experimental data from a well-balanced design or additional data that expand the variability of the covariates that may hopefully make the data less collinear.
6. CONCLUSIONS
Grewal, Cote, and Baumgartner (2004) suggest that the literature on collinearity can be organized in three major areas: (i) conditions under which collinearity will occur, (ii) how collinearity can be diagnosed, and (iii) how collinearity should be managed so as to avoid its deleterious effects. To the first area, we note that the occurrence of collinearity is inevitable in moderated regression models because the interaction term naturally contains information similar to the linear terms. Most marketing scholars use bivariate correlations or VIFs, drawn from mean-centered data, to diagnose collinearity. Because there is no one-to-one correspondence between correlation and collinearity, low values of correlations may actually mask high levels of collinearity in the data (Belsley 1984). Hence correlation-based metrics including VIFs may misdiagnose the presence of collinearity. More importantly, VIF is a measure of collinearity that confounds variability and data length, and hence it may not always be accurate about the presence or absence of collinearity. 
In order to make the measurement of collinearity simple, accurate, and easily interpretable, this paper proposes a new parsimonious metric, C2 that measures the presence of collinearity in moderated variable regression relative to a benchmark of a 2×2 well-balanced experimental design. The measure, C2, is based upon raw data rather than mean-centered data, and hence avoids the problem that affects both bivariate correlation and variance inflation factor. Moreover, the proposed metric distinguishes collinearity from other sources of data weaknesses such as lack of variability of the exogenous variables, or lack of length. Owing to the fact that C2 is computed from common statistics: VIF, variance, and sum of squares, as seen in equations (5) and (6), it is relatively easy to construct. More importantly, it is relatively easy to interpret, because it equals 1 when there is perfect collinearity but equals zero when the 
collinearity is equivalent to a well-designed 2(2 experiment.  
Mere presence of collinearity by itself is not a problem; it becomes a problem only when the significance of the parameter estimates is affected.  Neither the condition index greater than 30 benchmark nor the VIF greater than 10 benchmark help us identify when collinearity has truly harmed statistical testing of main or interaction effects in a moderated regression. C2, in conjunction with the t-statistic of a coefficient, can do just that.  It makes it easy to distinguish harmful collinearity from mere nuisance collinearity.  If a variable is non-significant but
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, then collinearity is severe enough to have caused the lack of significance.  This aspect of C2 that accurately reflects the adverse effects of collinearity on statistical significances is a key contribution of the paper. 
Beyond identifying the adverse effects of collinearity on statistical inferences, i.e. harmful collinearity, our paper also offers a nuanced view of precisely distinguishing between whether collinearity was really the reason behind the non-significance or not. We accomplish these objectives by classifying the levels of collinearity based on the computed C2 values into three different groupings – harmful but salvageable, harmful but hard-to-salvage and irrelevant collinearity. For example, the significance of the Quality×Transfer estimate above was significantly degraded due to collinearity problems. In cases of harmful but salvageable collinearity, researchers could design a well-balanced experiment to confirm these select effects.  Alternatively, one could collect more (and better) non-experimental data (Judge et al. 1988) that specifically expands the variability of the covariates to alleviate collinearity problems. In essence, this procedure creates a pool of different data sources of varying power studying essentially the same phenomenon (Podsakoff et al. 2003) and enables researchers to generate robust findings about interaction effects. 
In the case of harmful but hard-to-salvage collinearity, it would take collinearity reduction to levels beyond possible from a well-balanced design to make the effects significant. Presence of harmful but hard-to-salvage collinearity implies the presence of an effect in the population, however, researchers need to devise different studies to uncover the effect. 
Classifying collinearity as irrelevant collinearity would imply that no amount of collinearity reduction may make the effect significant. Too often, collinearity ends up as a catch-all term to blame for all insignificant effects. Therefore, researchers could eliminate collinearity as an explanation for the non-significance and can focus elsewhere and concentrate their efforts on other data weakness factors that could have caused this insignificance including lack of variability or length, measurement issues, poor reliabilities, low effect sizes, low sample sizes, poor procedures employed, or maybe even poor theory.  Meta-analytic studies and studies attempting to derive empirical generalizations can use the C2 metric to ascertain whether insignificant estimates were really caused by collinearity, and if not, offer guidance for future theory building efforts. This is a more nuanced examination of insignificant results. 
Our work on C2 is restricted to multiple regression models. Although we expect the underlying logic to generalize to linear models as well as other estimation procedures, future research should generalize the C2 diagnostic to linear models as well as other popular estimation procedures in marketing such as multi-level models, structural equation models (SEM), and partial least squares (PLS). Also, our work focuses on two-way interactions. Future research should focus on generalizing C2 to higher order interactions as well. 
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� While high correlations indicate high collinearity, low correlations do not necessarily imply low collinearity. It is easily possible to have zero correlation between variables but have severe collinearity (Belsley 1991; Ofir and Khuri 1986).  


� Bold 1 = (1,1,…,1)’. This illustrative moderated regression model is generalized to more than two variables in Table 1, where it will be confirmed that  as the number of variables increases, the number of ways in which collinearity can occur increases (Belsley 1991).


� While other designs can have considerably less collinearity than a balanced experimental design, we use a balanced design as the benchmark owing to the popularity of such designs in the marketing literature.


�  The average C2 ranged from -.91 (very low) to .95 (very high). 


� We thank Stephen Holden for providing us with data set from the Aaker and Keller’s (1990) study. 
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