Classical Multiple Regression
y is a random scalar that is partially explained by x but partial explained by unobserved things that together are denoted by the random variable .  Since  is unobserved, we scale it so that its mean is zero, but it has a variance 2 that must be measured
y=x’+  population theory
Typically x includes the variable 1 as the first variable along with p other variables so it is a p+1-vector.  We will use k=p+1.  If we have n observations of (y,x), we lay them in a row and stack them:
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X is called the design matrix as though the research chose the values of x exogenously.  The critical assumption is actually that x is uncorrelated with the error .
Classical Linear Regression Assumptions

1. Y=X+  Linearity

2. E[Y|X]=X or E[|X]=0 explanatory variables are exogenous, independent of errors

3. Var(Y|X)=I  errors are iid  ( independent and identically distributed)

4. X is fixed

5. X has full column rank: n≥k and columns of X are not dependent

6.  is normally distributed

Problems that might arise with these assumptions

1. wrong regressors, nonlinearity in the parameters, changing parameters

2. biased intercept

3. autocorrelation and heteroskedasticity

4. errors in variables, lagged values, simultaneous equation bias

5. multicollinearity

6. inappropriate tests

Least Squares Estimator


We want to know the latent values of the parameters  and  so we have to use the data Y,X to create estimators.  Start with .  Let the guess of what  might be denoted by the letter b.  If Y=Xb+e, then this is really a definition of the resulting residual errors from a guess b.  We want to make these small in a summed squared sense:

min b SSE (e’e=(Y-Xb)’(Y-Xb)=Y’Y-2b’X’Y+b’X’Xb.
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b=(X’X)-1X’Y  
Slightly different derivation:  Y=Xb+e  multiply by X’ to get X’Y=X’Xb+X’e.  Since X and e are independent, the average value of X’e that we might see is approximately zero.  Thus X’Y=X’Xb which also gives the OLS estimator of .

Interpretation: 
[image: image4.wmf]X

Y

1

s

s

)

X

var(

)

Y

var(

)

Y

var(

)

X

var(

)

Y

,

X

cov(

)

X

var(

)

Y

,

X

cov(

Y

'

X

)

X

'

X

(

b

r

=

=

=

=

-


Hence, b is like a correlation between x and y when we do not standardize the scales of the variables.
The residual vector e is by definition e=Y-Xb or
e=Y-X(X’X)-1X’Y=(I-X(X’X)-1X’)Y =MY,
where M=I- X(X’X)-1X’.  This matrix M is the centering matrix around the regression line and is very much like the mean centering matrix H=I-1 1’/n=I-1 (1’1)-11’.  

Theorem:  M is symmetric and idempotent (MM=M),  tr(M)=n-k, MX=0.

Given the regression centering matrix M, the sum of squared errors is SSE=e’e= (MY)’(MY)=Y’MY.

Theorem: E[b]=  OLS is unbiased.


proof: E[b]=E[(X’X)-1X’Y]= E[(X’X)-1X’(X+)]= E[(X’X)-1X’X+(X’X)-1X’)] = +(X’X)-1X’E[]=.

Theorem: var[b]=2(X’X)-1.


proof: E[(b-)(b-)’]=+(X’X)-1X’-)+(X’X)-1X’-)’]=



=(X’X)-1X’’X(X’X)-1]=(X’X)-1X’E[’]X(X’X)-1


=(X’X)-1X’2IX(X’X)-1=2(X’X)-1X’X(X’X)-1=2(X’X)-1.

Theorem: X’e=0,  estimated errors are orthogonal to the data generating them.


Proof:  X’MY=(X’-X’X(X’X)-1X’)Y=(X’-X’)Y=0Y=0.
Now consider estimating .     SSE=e’e=Y’MY=(X+)’M(X+)= ’XMX+2’MX+’M.  The first two terms are zero because MX=0.  Hence
e’e=’M=tr(’M) (note: the trace of a scalar is trivial)=tr(M’).  Given this, the expected value of e’e is just tr(ME[’])=tr(M=2tr(M)=2(n-k).

Theorem: s2(e’e/(n-k)=Y’MY/(n-k) is an unbiased estimator of 2 and s2(X’X)-1 is an unbiased estimator of var[b].  s is called the standard error of the estimate
Gauss-Markov Theorem:  The OLS estimator b=(X’X)-1X’Y is BLUE (the Best Linear Unbiased Estimator) of .
proof:  Let a be another estimator of .  For linearity a=AY. For unbiased, E[AY]=E[AX+A]=AX =, so AX=I.  That is a=+A.

var(a)=E[(AY-)(AY-)’]=E[A’A’]=2AA’.

Define D=A-(X’X)-1X’, then 

var(a)=2((X’X)-1X’+D)((X’X)-1X’+D)’=2{(X’X)-1+DD’+(X’X)-1X’D’+DX(X’X)-1}.

But DX=AX-(X’X)-1X’X=I-I=0.  Hence var(a)= 2(X’X)-1+2DD’.  The first term is the variance of b and the second term is a positive definite matrix so var[a]>var[b].

Note:  apply this with just an intercept and it implies that 
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 is the BLUE of 
How good is the fit?  Y’HY is a measure of the spread in values of y and is called the sum of squares Total.  The regression can reduce the unknown elements to just the sum of squared Errors, e’e.  The amount of sum of squares that the regression explains is the difference:  SST-SSE=SSR.  R2 is a common measure of performance (also called the coefficient of determination:
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Note:  since b minimizes e’e, it also maximizes R2.
R2 always goes up if you add a new variable (since we could always set the coefficient of that variable to zero, using it optimally always reduces error).  But it can reduce the variance matrix (X’X) and hence increase the variance of the estimators.  Adjusted R2 corrects for the number of independent variables:
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Adding a variable with a t-stat >1.0 will increase adjusted R2.  Notice: not t-stat>1.96.
Normal Distribution in Regression
Suppose Y|X ~ N(X, 2I).  Note: up to now the only statistical assumption that we made is  is iid and independent of X. Now we layer on normality.  The likelihood of observing Y is just the pdf for multivariate normal:
L(Y|X,2I)=(22)-n/2 exp[-½(Y-X)’(Y-X)/2].
Maximum Likelihood Estimation (MLE): 
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Note: MLE=b from OLS.
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Note: divide by n not n-k.  Hence MLE of 2 is biased.

Theorem:  Y|X ~ N(X, 2I) then b~N(,2(X’X)-1), 
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Confidence Intervals

Joint: 

(b-)’(X’X)(b-) ≤ ks2Fk,n-k()
One at a time: 

bi ( SE(bi) tn-k(/2)

Simultaneous:

bi ( SE(bi) 
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Hypothesis Testing

Ho: R=r,  where R q(k and r q(1 for linear restrictions on  k(1.

Let a be the OLS estimators of  using the above q restrictions: a min e’e  s.t. Ra=r.  Let b be the unconstrained OLS estimators of .  Likelihood ratio LR = La/Lb.  Define 

LR = -2ln(LR)=2ln(Lb)-2ln(La)=
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.  If we replace 2 with s2=e’e/(n-k), then
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Hence we can test the restrictions R=r by running the regression with the constraints and unconstrained and computing 
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and compare to critical value 

Fq,n-k().

There are two other tests that are sometimes done: Lagrange Multiplier test and Wald test.  See graph below.  The Wald test is a 2 test of whether Runcontr-r is different from zero.  The Lagrange multiplier test is a 2 test of whether the slope of the likelihood is zero at the constrained value contr.  It has the advantage over the LR test of not requiring unconstr from being estimated.
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