
7+8+9: Functional
Dependencies and
Normalization

8
how “good”
is our data
model
design?

what do we
know about
the quality
of the
logical
schema?

how do we know the
database design won’t
cause any problems?

grouping of
attributes so far has
been intuitive - how
do we validate the
design?

issue of quality of design
an illustration - figure 7.1b

STOCK (Store, Product, Price, Quantity, Location, Discount, Sq_ft, Manager)

are there data redundancies?

for price? location? quantity? discount?

what is data
redundancy?

repeated appearances of a
data value ≠ data redundancy

unneeded repetition that does
not add new meaning = data

redundancy

data redundancy →
modification anomalies

are there data redundancies?

yes - for price, location, and discount

insertion anomaly - adding a washing machine with a price

deletion anomaly - store 17 is closed

update anomaly - store 11 moves to Cincinnati
(cannot add without store number)

(requires updating multiple rows)

(pricing data about vacuum cleaner is lost)

decomposition of the STOCK instance

no data
redundancies/
modification

anomalies in STORE
or PRODUCT

data redundancies/
modification

anomalies persist in
INVENTORY

normalized
free from data redundancies/modification anomalies

relational schema reverse-engineered
from tables

design-specific ER diagram reverse-engineered
from relational schema

how do we systematically identify data
redundancies?

how do we know how to decompose
the base relation schema under
investigation?

how we know that the data
decomposition is correct and
complete?

the seeds of data redundancy are
undesirable functional dependencies.

functional dependencies

FD
relationship between
attributes that if we are
given the value of one
of the attributes we
can look up the value
of the other

the building block of normalization principles

functional dependencies

an attribute A (atomic or composite) in a relation schema R
functionally determines another attribute B (atomic or
composite) in R if:
!

for a given value a1 of A there is a single, specific value b1 of
B in every relation state ri of R.

A → B

determinant dependent

examples of functional dependency

Store → Location
Store → Sq_ft
Store → Manager
Product → Price
{Store, Product} → Quantity
Quantity → Discount

!

Store → Location
Store → Sq_ft
Store → Manager

!

Product → Price
{Store, Product} → Quantity
Quantity → Discount

all tuples have the same price value for any given
product value (not necessarily the other way around)

a FD in R is undesirable when the
determinant is not a candidate key of R.

a candidate key is a superkey with no
proper subset that uniquely identifies a
tuple of a relation.
{uniqueness property + irreducibility}

normalization
systematic validation of participation of attributes in a
relation schema from a data redundancy perspective

normal forms (NFs)
stepwise progression towards attaining the goal of a
fully normalized relation schema

first normal form

1NF
no multi-valued attributes or
composite attributes

ensuring that if the base
relation were stored as a file
it does not contain records
with a variable number of
fields

first normal form

1NF by definition, a
relation schema is in
1NF

normal forms associated with functional dependencies are
second normal form (2NF), third normal form (3NF), and

boyce-codd normal form (BCNF)

1NF violation
page 348

1NF
page 348

does the below relation satisfy 1NF?

Name Age Sex Emp#
Anderson 21 F 010110
Decker 22 M 010100
Glover 22 M 101000
Jackson 21 F 201100
Moore 19 M 111100
Nakata 20 F 111101

EMPLOYEE

full functional dependency defined

a functional dependency of the form Z → A is a ‘full functional
dependency’ if and only if no proper subset of Z functionally

determines A.

if Z → A and X → A, and X is a proper subset of Z, then Z does
not fully functionally determine A, i.e., Z → A is not a full

functional dependency; it is a partial dependency.

second normal form

2NF
at least one of the following
conditions applies:

• primary key consists of a single
attribute

• no non-key attributes
• every non-key attribute depends

on all of the primary key (fully
functionally dependent)

2NF violation
page 349

candidate key: {Album_no, Artist_nm}
Album_no → Price Album_no → Stock

modification anomalies

change the value of price or stock of Album_no
BTL007 in NEW_ALBUM
multiple tuples require update and failure to update some can cause an
update anomaly

add a new tuple (Album_no: XY11, Price: 17.95
and Stock:100) to NEW_ALBUM
cannot insert without artist name, which is an insertion anomaly

delete Album_no BTL007 from NEW_ALBUM
requires deletion of multiple tuples and failure to delete some can cause a
deletion anomaly

resolution of 2NF violation

2NF
1. pull out the undesirable FD(s)

from the target relation schema
as a separate relation
schema(s)
!

2. keep the determinant (left side
of the FD equation) of the
pulled-out relation schema as an
attribute(s) in the leftover target
relation schema

getting to

facilitates reconstruction
of the original target
relation schema

resolution of 2NF violation

does the below relation satisfy 2NF?

Name Age Sex Emp#
Anderson 21 F 010110
Decker 22 M 010100
Glover 22 M 101000
Jackson 21 F 201100
Moore 19 M 111100
Nakata 20 F 111101

EMPLOYEE

yes, because the primary key is one attribute

choosing a
primary key

somewhat arbitrary

least number of attributes may
be a good choice

numeric attributes and/or of
small sizes may be easy to
work with for a developer

MAJOR(SNUM, MAJOR-DEPT, DEPT-HEAD)

SNUM MAJOR-DEPT DEPT-HEAD
1000 ANTHRO KHALIFA
2000 STAT WAYNE
3000 MUSIC DRAKE
4000 STAT WAYNE
5000 STAT WAYNE
6000 MUSIC DRAKE

what information is lost if student number 1000 is deleted?

if the dept. head of MUSIC changes, what is required to update the relation?

what happens if we want to insert DRE as the department head of
ZOOLOGY? what is required to accomplish this update?

transitive dependency: existence of
a functional dependence between
two non-key attributes

MAJOR-DEPT → DEPT-HEAD
DEPT-HEAD → MAJOR-DEPT

Attribute XPrimary
Key

Transitive dependency (Violation of 3NF in R2)

Attribute ZAttribute Y

R2

transitive dependency illustrated

transitive dependency illustrated

Transitive dependency (Violation of 3NF in R3)

Attribute YAttribute A Attribute ZPrimary
Key

Attribute X

R3

third normal form

3NF
a relation is in third normal
form if:

• it is in second normal form
• it has no transitive dependencies

MAJOR(SNUM, MAJOR-DEPT, DEPT-HEAD)

SNUM MAJOR-DEPT DEPT-HEAD
1000 ANTHRO KHALIFA
2000 STAT WAYNE
3000 MUSIC DRAKE
4000 STAT WAYNE
5000 STAT WAYNE
6000 MUSIC DRAKE

!

SNUM → MAJOR-DEPT
SNUM → DEPT-HEAD
MAJOR-DEPT → DEPT-HEAD

!

DEPT-HEAD → MAJOR-DEPT
MAJOR-DEPT -/-> SNUM
DEPT-HEAD -/-> SNUM

key attribute non-key attribute

X

X

SNUM MAJOR-DEPT
1000 ANTHRO
2000 STAT
3000 MUSIC
4000 STAT
5000 STAT
6000 MUSIC

MAJOR-DEPT DEPT-HEAD
ANTHRO KHALIFA
STAT WAYNE
MUSIC DRAKE

STU-MAJOR (SNUM, MAJOR-DEPT)
HEAD (MAJOR-DEPT, DEPT-HEAD)

resolution: move
transitive dependency to
new relation

3NF violation

!

Flight # → Origin
Flight # → Destination
{Origin, Destination} → Mileage

FLIGHT (Flight #, Origin, Destination, Mileage)

3NF violation

add a flight between Cincinnati to Houston that is 1100 miles
(need flight number)

remove flight # DL507
(lost mileage and origin/destination information)

FLIGHT (Flight #, Origin, Destination, Mileage)

resolution of 3NF violation

Normal Form Requirements Decomposition Rules

First No multi-valued attributes Form new relations for each
multivalued attribute or repeating
group

Second Satisfy at least one of the following
three conditions:
•Primary key consists of a single
attribute
•No non-key attributes
•No non-key attribute should be
functionally dependent on part of
the primary key (every non-key
attribute should be fully functionally
dependent on the primary key)

Decompose and setup a new
relation for each partial key with its
dependent attribute(s). Make sure to
keep a relation with the original
primary key and any attributes that
are fully functionally dependent on it

Third No transitive dependencies.
Relation should be in second normal
form and should not have a non-key
attribute functionally determined by
another non-key attribute (or a set
of non-key attributes)

Decompose and set up a new
relation that includes the nonkey
attribute(s) that functionally
determine(s) the other nonkey
attributes

“The data depends on the key [1NF],
the whole key [2NF] and nothing but
the key [3NF] (so help me Codd1).”

1 Source: http://en.wikipedia.org/wiki/Ted%5FCodd
The examples in the next four slides are from:
http://stackoverflow.com/questions/723998/

Course ID Semester # Places Course Name
IT101 2009-1 100 Programming
IT101 2009-2 120 Programming
IT102 2009-1 200 Databases
IT102 2010-1 150 Databases
IT103 2009-2 120 Web Design

Course ID → Course NameX

Course ID Course Name
IT101 Programming
IT102 Databases
IT103 Web Design

Course ID Semester # Places
IT101 2009-1 100
IT101 2009-2 120
IT102 2009-1 200
IT102 2010-1 150
IT103 2009-2 120

COURSE-DESC (Course ID, Course Name)

CLASS (Course ID, Semester, #Places)

Course ID Semester # Places Teacher ID Teacher
Name

IT101 2009-1 100 332 Mr. Jones
IT101 2009-2 120 332 Mr. Jones
IT102 2009-1 200 495 Mr. Bentley
IT102 2010-1 150 332 Mr. Jones
IT103 2009-2 120 242 Mrs. Smith

Teacher ID → Teacher NameX

Course ID Semester # Places Teacher ID

IT101 2009-1 100 332
IT101 2009-2 120 332
IT102 2009-1 200 495
IT102 2010-1 150 332
IT103 2009-2 120 242

Teacher ID Teacher Name

332 Mr. Jones
495 Mr. Bentley
242 Mrs. Smith

TEACHER (Teacher ID, Teacher Name)

COURSE (Course ID, Semester, # Places, Teacher ID)

SID Activity Fee
100 Basketball 100
120 Jousting 75
150 Racquetball 75
180 Jousting 75

Activity → FeeX
SID → Fee
SID → Activity

SID Activity

100 Basketball

120 Jousting

150 Racquetball

180 Jousting

Activity Fee

Basketball 100
Jousting 75

Racquetball 75

ACTIVITY-FEE (Activity, Fee)

STU-ACT (SID, Activity)

page 407
STU-CLASS (Snum, Sname, Major, Cname, Time Room)

what if the time for a class has to be updated?
what if we need to add a new student to the database?
what happens if we delete the student STEDRY?

page 407

identify the 6 undesirable functional dependencies

STU-CLASS (Snum, Sname, Major, Cname, Time Room)

page 407

Snum → Sname
Snum → Major
Cname → Room

Cname → Time
Time → Cname
Time → Room

STU-CLASS (Snum, Sname, Major, Cname, Time Room)

decomposing relations - getting to 3NF

some basic rules:

if at 1NF and a non-key attribute is functionally
dependent on part of the primary key, those
attributes should appear together in a smaller

relation

if at 2NF and there is a functional dependence
between two non-key attributes, those

attributes should appear together in a smaller
relation

SNUM SNAME MAJOR
0110 KHUMAWALA ACCOUNTING
1000 STEDRY ANTHROPOLOGY
2000 KHUMAWALA STATISTICS
3000 GAMBLE ACCOUNTING

CNAME TIME ROOM
BA482 MW3 C-150
BD445 TR2 C-213
BA491 TR3 C-141
BP490 MW4 C-150
AP150 MWF9 D-412

SNUM CNAME
0110 BA482
0110 BD445
0110 BA491
1000 AP150
1000 BD445
2000 BA491
2000 BD445
3000 BA482
3000 BP490

ENROLL (SNUM, CNAME)

CLASS (CNAME, TIME, ROOM)

STUDENT (SNUM, SNAME, MAJOR)

page 408
CAR (Model, # Cylinders, Origin, Tax, Fee)

Origin → Tax # Cylinders → FeeX X

Model #
Cylind

Origin
Camry 4 Japan
Mustang 6 USA
Fiat 4 Italy
Accord 4 Japan
Century 8 USA
Mustang 4 Canada
Monte
Carlo

6 Canada
Civic 4 Japan
Mustang 4 Mexico
Mustang 6 Mexico
Civic 4 Korea

Origin Tax
Japan 15
USA 0
Italy 18
Canada 0
Mexico 15
Korea 15

Cylinders Fee
4 30
6 45
8 45

CAR_FEE (# Cylinders, Fee)

CAR_TAX (Origin, Tax)CAR_DESC (Model, # Cylinders, Origin)

page 408

Stu# Sport Coach
125 Football Register
140 Basketball Lambert
220 Baseball Register
246 Basketball Lambert

SPORT (Stu #, Sport, Coach)

Stu # → Sport Sport → CoachX

Sport Coach
Football Register
Basketball Lambert
Baseball Register

Stu# Sport
125 Football
140 Basketball
220 Baseball
246 Basketball

STUDENT-SPORT (Stu #, Sport)

SPORT-COACH (Sport, Coach)

boyce-codd normal form

BCNF
a relation is in BCNF if every
determinant is a candidate key

BCNF violation

{Stu #, Subject} → Teacher
{Stu #, Subject} → Ap_score
Teacher → SubjectX

Candidate keys:
{Stu #, Subject},
{Stu #, Teacher}

resolution of BCNF violation

Teacher → Subject {Stu #, Teacher} → Ap_Score

BCNF violation - page 410

Patient Hospital Doctor

Smith Methodist D. Cooley

Lee St. Luke’s Z. Zhang

Marks Methodist D. Cooley

Marks St. Luke’s W. Lowe

Lou Hermann R. Duke

Candidate keys:
{Patient , Hospital},
{Patient, Doctor}

{Patient, Hospital} → Doctor
Doctor → HospitalX

resolution of BCNF violation

Patient Doctor
Smith D. Cooley
Lee Z. Zhang
Marks D. Cooley
Marks W. Lowe
Lou R. Duke

Doctor Hospital

D. Cooley Methodist
Z. Zhang St. Luke’s
W. Lowe St. Luke’s
R. Duke Hermann

DOC-HOS (Doctor, Hospital)

PAT-DOC (Patient, Doctor)

Normal Form Requirements Decomposition Rules

First No multi-valued attributes Form new relations for each multivalued
attribute or repeating group

Second Satisfy at least one of the following three
conditions:
•Primary key consists of a single
attribute
•No non-key attributes
•No non-key attribute should be
functionally dependent on part of the
primary key (every non-key attribute
should be fully functionally dependent
on the primary key)

Decompose and setup a new relation for
each partial key with its dependent
attribute(s). Make sure to keep a relation
with the original primary key and any
attributes that are fully functionally
dependent on it

Third No transitive dependencies. Relation
should be in second normal form and
should not have a non-key attribute
functionally determined by another non-
key attribute (or a set of non-key
attributes)

Decompose and set up a new relation
that includes the nonkey attribute(s) that
functionally determine(s) the other
nonkey attributes

BCNF Every determinant is a candidate key Decompose and set up a new relation
that includes the non-candidate key
attribute(s) that functionally determine(s)
the other nonkey attributes.

