7+8+9: Functional Dependencies and Normalization

how "good" is our data model design?

what do we know about the quality of the logical schema?

how do we know the database design won't cause any problems?

> grouping of attributes so far has been intuitive - how do we validate the design?

issue of quality of design an illustration - figure 7.1b

STOCK (Store, Product, Price, Quantity, Location, Discount, Sq_ft, Manager)

are there data redundancies?

for price? location? quantity? discount?

STOCK

Store	Product	Price	Quantity	Location	Discount	Sq_ft	Manager
15	Refrigerator	1850	120	Houston	5%	2300	Metzger
15	Dishwasher	600	150	Houston	5%	2300	Metzger
13	Dishwasher	600	180	Tulsa	10%	1700	Metzger
14	Refrigerator	1850	150	Tulsa	5%	1900	Schott
14	Television	1400	280	Tulsa	10%	1900	Schott
14	Humidifier	55	30	Tulsa		1900	Schott
17	Television	1400	10	Memphis		2300	Creech
17	Vacuum Cleaner	300	150	Memphis	5%	2300	Creech
17	Dishwasher	600	150	Memphis	5%	2300	Creech
11	Computer		180	Houston	10%	2300	Creech
11	Refrigerator	1850	120	Houston	5%	2300	Creech
11	Lawn Mower	300		Houston		2300	Creech

Figure 7.1c An instance of the relation schema, STOCK

repeated appearances of a data value ≠ data redundancy

what is data redundancy?

unneeded repetition that does not add new meaning = data redundancy

> data redundancy → modification anomalies

are there data redundancies?

yes - for price, location, and discount

STOCK

Store	Product	Price	Quantity	Location	Discount	Sq_ft	Manager
15	Refrigerator	1850	120	Houston	5%	2300	Metzger
15	Dishwasher	600	150	Houston	5%	2300	Metzger
13	Dishwasher	600	180	Tulsa	10%	1700	Metzger
14	Refrigerator	1850	150	Tulsa	5%	1900	Schott
14	Television	1400	280	Tulsa	10%	1900	Schott
14	Humidifier	55	30	Tulsa		1900	Schott
17	Television	1400	10	Memphis		2300	Creech
17	Vacuum Cleaner	300	150	Memphis	5%	2300	Creech
17	Dishwasher	600	150	Memphis	5%	2300	Creech
11	Computer		180	Houston	10%	2300	Creech
11	Refrigerator	1850	120	Houston	5%	2300	Creech
11	Lawn Mower	300		Houston		2300	Creech

Figure 7.1c An instance of the relation schema, STOCK

insertion anomaly - adding a washing machine with a price

(cannot add without store number)

update anomaly - store 11 moves to Cincinnati

(requires updating multiple rows)

deletion anomaly - store 17 is closed

(pricing data about vacuum cleaner is lost)

STOCK

Store	Product	Price	Quantity	Location	Discount	Sq_ft	Manager
15	Refrigerator	1850	120	Houston	5%	2300	Metzger
15	Dishwasher	600	150	Houston	5%	2300	Metzger
13	Dishwasher	600	180	Tulsa	10%	1700	Metzger
14	Refrigerator	1850	150	Tulsa	5%	1900	Schott
14	Television	1400	280	Tulsa	10%	1900	Schott
14	Humidifier	55	30	Tulsa		1900	Schott
17	Television	1400	10	Memphis		2300	Creech
17	Vacuum Cleaner	300	150	Memphis	5%	2300	Creech
17	Dishwasher	600	150	Memphis	5%	2300	Creech
11	Computer		180	Houston	10%	2300	Creech
11	Refrigerator	1850	120	Houston	5%	2300	Creech
11	Lawn Mower	300		Houston		2300	Creech

Figure 7.1c An instance of the relation schema, STOCK

decomposition of the STOCK instance

C1	ΓN	D١	_
21	U	N	_

Store	Location	Sq_ft	Manager
15	Houston	2300	Metzger
13	Tulsa	1700	Metzger
14	Tulsa	1900	Schott
17	Memphis	2300	Creech
11	Houston	2300	Creech

Product	Price
Refrigerator	1850
Dishwasher	600
Television	1400
Humidifier	55
Vacuum Cleaner	300
Computer	
Lawn Mower	300
Washing Machine	750

INVENTORY

Store	Product	Quantity	Discount
15	Refrigerator	120	5%
15	Dishwasher	150	5%
13	Dishwasher	180	10%
14	Refrigerator	150	5%
14	Television	280	10%
14	Humidifier	30	
17	Television	10	
17	Vacuum Cleaner	150	5%
17	Dishwasher	150	5%
11	Computer	180	10%
11	Refrigerator	120	5%
11	Lawn Mower		

no data redundancies/ modification anomalies in STORE or PRODUCT

data redundancies/ modification anomalies persist in INVENTORY

Figure 7.2 A decomposition of the STOCK instance in Figure 7.1c

normalized

free from data redundancies/modification anomalies

STORE	ST	ORE	
-------	----	-----	--

JIOKE			
Store	Location	Sq_ft	Manager
15	Houston	2300	Metzger
13	Tulsa	1700	Metzger
14	Tulsa	1900	Schott
17	Memphis	2300	Creech
11	Houston	2300	Creech

PRO	DU	CT
		-

Product	Price
Refrigerator	1850
Dishwasher	600
Television	1400
Humidifier	55
Vacuum Cleaner	300
Computer	
Lawn Mower	300
Washing Machine	750

INVENTO	RY
---------	----

Store	Product	Quantity
15	Refrigerator	120
15	Dishwasher	150
13	Dishwasher	180
14	Refrigerator	150
14	Television	280
14	Humidifier	30
17	Television	10
17	Vacuum Cleaner	150
17	Dishwasher	150
11	Computer	180
11	Refrigerator	120
11	Lawn Mower	

DISC_STRUCTURE

Quantity	Discount
120	5%
150	5%
180	10%
280	10%
30	
10	

relational schema reverse-engineered

from tables

Figure 7.4a A reverse-engineered logical schema for the set of tables in Figure 7.3

design-specific ER diagram reverse-engineered

from relational schema

Figure 7.4b Design-specific ER diagram reverse-engineered from the logical schema in Figure 7.4a

how do we systematically identify data redundancies?

how do we know how to decompose the base relation schema under investigation?

how we know that the data decomposition is correct and complete?

the seeds of data redundancy are undesirable functional dependencies.

functional dependencies

relationship between attributes that if we are given the value of one of the attributes we can look up the value of the other

the building block of normalization principles

functional dependencies

an attribute A (atomic or composite) in a relation schema R functionally determines another attribute B (atomic or composite) in R if:

for a given value a_1 of A there is a single, specific value b_1 of B in every relation state r_i of R.

examples of functional dependency

Store \rightarrow Location Store \rightarrow Sq_ft Store \rightarrow Manager Product \rightarrow Price {Store, Product} \rightarrow Quantity Quantity \rightarrow Discount

STOCK

Store	Product	Price	Quantity	Location	Discount	Sq_ft	Manager
15	Refrigerator	1850	120	Houston	5%	2300	Metzger
15	Dishwasher	600	150	Houston	5%	2300	Metzger
13	Dishwasher	600	180	Tulsa	10%	1700	Metzger
14	Refrigerator	1850	150	Tulsa	5%	1900	Schott
14	Television	1400	280	Tulsa	10%	1900	Schott
14	Humidifier	55	30	Tulsa		1900	Schott
17	Television	1400	10	Memphis		2300	Creech
17	Vacuum Cleaner	300	150	Memphis	5%	2300	Creech
17	Dishwasher	600	150	Memphis	5%	2300	Creech
11	Computer		180	Houston	10%	2300	Creech
11	Refrigerator	1850	120	Houston	5%	2300	Creech
11	Lawn Mower	300		Houston		2300	Creech

Figure 7.1c An instance of the relation schema, STOCK

Store \rightarrow LocationProduct \rightarrow PriceStore \rightarrow Sq_ft{Store, Product} \rightarrow QuantityStore \rightarrow ManagerQuantity \rightarrow Discount

all tuples have the same price value for any given product value (not necessarily the other way around)

a FD in R is undesirable when the determinant is not a candidate key of R.

- a candidate key is a superkey with no proper subset that uniquely identifies a tuple of a relation.
- {uniqueness property + irreducibility}

normalization

systematic validation of participation of attributes in a relation schema from a data redundancy perspective

normal forms (NFs) stepwise progression towards attaining the goal of a fully normalized relation schema

first normal form

no multi-valued attributes or composite attributes

ensuring that if the base relation were stored as a file it does not contain records with a variable number of fields

first normal form

by definition, a relation schema is in 1NF

normal forms associated with functional dependencies are second normal form (2NF), third normal form (3NF), and boyce-codd normal form (BCNF)

1NF violation

ALBUM

Album_no	Artist_nm	Price	Stock
DC122	Britnov Spears	17.05	1000
B2123	Britney spears	17.95	1000
JT111	Justin Timberlake	17.95	1200
BTL007	{John Lennon, Paul McCartney, George	23.95	
	Harrison, Ringo Star}		
MJ100	Michael Jackson	17.95	
JM456	John Mayer	16.95	1000
JM151	John Mayer	16.95	1000
MX789	Madonna	11.95	500
DJM237	{John Denver, Michael Jackson,	11.95	2000
	Madonna}		
DR711	Diana Ross	12.95	1000
PM137	Paul McCartney	19.95	

NEW_ALBUM

<u>Album_no</u>	<u>Artist_nm</u>	Price	Stock
BS123	Britney Spears	17.95	1000
JT111	Justin Timberlake	17.95	1200
BTL007	John Lennon	23.95	
BTL007	Paul McCartney	23.95	
BTL007	George Harrison	23.95	
BTL007	Ringo Star	23.95	
MJ100	Michael Jackson	17.95	
JM456	John Mayer	16.95	1000
JM151	John Mayer	16.95	1000
MX789	Madonna	11.95	500
DJM237	John Denver	11.95	2000
DJM237	Michael Jackson	11.95	2000
DJM237	Madonna	11.95	2000
DR711	Diana Ross	12.95	1000
PM137	Paul McCartney	19.95	

does the below relation satisfy 1NF?

EMPLOYEE

Name	Age	Sex	Emp#
Anderson	21	F	010110
Decker	22	Μ	010100
Glover	22	Μ	101000
Jackson	21	F	201100
Moore	19	Μ	111100
Nakata	20	F	111101

full functional dependency defined

a functional dependency of the form $Z \rightarrow A$ is a 'full functional dependency' if and only if no proper subset of Z functionally determines A.

if $Z \rightarrow A$ and $X \rightarrow A$, and X is a proper subset of Z, then Z does not fully functionally determine A, i.e., $Z \rightarrow A$ is not a full functional dependency; it is a <u>partial dependency</u>.

second normal form

at least one of the following conditions applies:

- primary key consists of a single attribute
- no non-key attributes
- every non-key attribute depends on all of the primary key (fully functionally dependent)

2NF violation

NEW_ALBUM

Album_no	Artist_nm	Price	Stock
BS123	Britney Spears	17.95	1000
JT111	Justin Timberlake	17.95	1200
BTL007	John Lennon	23.95	
BTL007	Paul McCartney	23.95	
BTL007	George Harrison	23.95	
BTL007	Ringo Star	23.95	
MJ100	Michael Jackson	17.95	
JM456	John Mayer	16.95	1000
JM151	John Mayer	16.95	1000
MX789	Madonna	11.95	500
DJM237	John Denver	11.95	2000
DJM237	Michael Jackson	11.95	2000
DJM237	Madonna	11.95	2000
DR711	Diana Ross	12.95	1000
PM137	Paul McCartney	19.95	

candidate key: {Album_no, Artist_nm} Album_no \rightarrow Price Album_no \rightarrow Stock

modification anomalies

change the value of price or stock of Album_no BTL007 in NEW_ALBUM

multiple tuples require update and failure to update some can cause an update anomaly

add a new tuple (Album_no: XY11, Price: 17.95 and Stock:100) to NEW_ALBUM

cannot insert without artist name, which is an insertion anomaly

delete Album_no BTL007 from NEW_ALBUM

requires deletion of multiple tuples and failure to delete some can cause a deletion anomaly

resolution of 2NF violation

pull out the undesirable FD(s) from the target relation schema as a separate relation schema(s)

keep the determinant (left side of the FD equation) of the pulled-out relation schema as an attribute(s) in the leftover target relation schema

resolution of 2NF violation

ALBUM_INFO

<u>Album_no</u>	Price	Stock
BS123	17.95	1000
JT111	17.95	1200
BTL007	23.95	
MJ100	17.95	
JM456	16.95	1000
JM151	16.95	1000
MX789	11.95	500
DJM237	11.95	2000
DR711	12.95	1000
PM137	19.95	

ALBUM_ARTIST

Album_no	<u>Artist_nm</u>
BS123	Britney Spears
JT111	Justin Timberlake
BTL007	John Lennon
BTL007	Paul McCartney
BTL007	George Harrison
BTL007	Ringo Star
MJ100	Michael Jackson
JM456	John Mayer
JM151	John Mayer
MX789	Madonna
DJM237	John Denver
DJM237	Michael Jackson
DJM237	Madonna
DR711	Diana Ross
PM137	Paul McCartney

does the below relation satisfy 2NF?

EMPLOYEE

Name	Age	Sex	Emp#
Anderson	21	F	010110
Decker	22	Μ	010100
Glover	22	Μ	101000
Jackson	21	F	201100
Moore	19	Μ	111100
Nakata	20	F	111101

yes, because the primary key is one attribute

somewhat arbitrary

choosing a primary key

least number of attributes may be a good choice

numeric attributes and/or of small sizes may be easy to work with for a developer

MAJOR(<u>SNUM</u>, MAJOR-DEPT, DEPT-HEAD)

SNUM	MAJOR-DEPT	DEPT-HEAD
1000	ANTHRO	KHALIFA
2000	STAT	WAYNE
3000	MUSIC	DRAKE
4000	STAT	WAYNE
5000	STAT	WAYNE
6000	MUSIC	DRAKE

what information is lost if student number 1000 is deleted?

if the dept. head of MUSIC changes, what is required to update the relation?

what happens if we want to insert DRE as the department head of ZOOLOGY? what is required to accomplish this update?

transitive dependency: existence of a functional dependence between two non-key attributes

 $MAJOR-DEPT \rightarrow DEPT-HEAD$ $DEPT-HEAD \rightarrow MAJOR-DEPT$

transitive dependency illustrated

transitive dependency illustrated

third normal form

- it is in second normal form
- it has no transitive dependencies

attribute	non-key attribute	
SNUM	MAJOR-DEPT	DEPT-HEAD
1000	ANTHRO	KHALIFA
2000	STAT	WAYNE
3000	MUSIC	DRAKE
4000	STAT	WAYNE
5000	STAT	WAYNE
6000	MUSIC	DRAKE

SNUM → MAJOR-DEPT DEPT-HEAD → MAJOR-DEPT X SNUM → DEPT-HEAD MAJOR-DEPT -/-> SNUM X MAJOR-DEPT → DEPT-HEAD DEPT-HEAD -/-> SNUM

STU-MAJOR (<u>SNUM</u>, MAJOR-DEPT) HEAD (<u>MAJOR-DEPT</u>, DEPT-HEAD)

SNUM	MAJOR-DEPT		
1000	ANTHRO	resolution: move transitive dependency to new relation	
2000	STAT		
3000	MUSIC		
4000	STAT		
5000	STAT		
6000	MUSIC		
		MAJOR-DEPT	DEPT-HEAD
		ANTHRO	KHALIFA
		STAT	WAYNE
		MUSIC	DRAKE

3NF violation

FLIGHT (Flight #, Origin, Destination, Mileage)

FLIGHT

Flight#	Origin	Destination	Mileage
DL507	Seattle	Denver	1537
DL123	Chicago	Dallas	1058
DL723	Boston	St. Louis	1214
DL577	Denver	Los Angeles	1100
DL5219	Minneapolis	St. Louis	580
DL357	Chicago	Dallas	1058
DL555	Denver	Houston	1100
DL5237	Cleveland	St. Louis	580
DL5271	Chicago	Cleveland	300

Flight # → Origin Flight # → Destination {Origin, Destination} → Mileage

3NF violation

FLIGHT (Flight #, Origin, Destination, Mileage)

FLIGHT

Flight#	Origin	Destination	Mileage
DL507	Seattle	Denver	1537
DL123	Chicago	Dallas	1058
DL723	Boston	St. Louis	1214
DL577	Denver	Los Angeles	1100
DL5219	Minneapolis	St. Louis	580
DL357	Chicago	Dallas	1058
DL555	Denver	Houston	1100
DL5237	Cleveland	St. Louis	580
DL5271	Chicago	Cleveland	300

add a flight between Cincinnati to Houston that is 1100 miles (need flight number) remove flight # DL507 (lost mileage and origin/destination information)

resolution of 3NF violation

FLIGHT

Flight#	Origin	Destination
DL507	Seattle	Denver
DL123	Chicago	Dallas
DL723	Boston	St. Louis
DL577	Denver	Los Angeles
DL5219	Minneapolis	St. Louis
DL357	Chicago	Dallas
DL555	Denver	Houston
DL5237	Cleveland	St. Louis
DL5271	Chicago	Cleveland

DISTANCE

<u>Origin</u>	Destination	Mileage
Seattle	Denver	1537
Chicago	Dallas	1058
Boston	St. Louis	1214
Denver	Los Angeles	1100
Minneapolis	St. Louis	580
Denver	Houston	1100
Cleveland	St. Louis	580
Chicago	Cleveland	300

Normal Form	Requirements	Decomposition Rules
First	No multi-valued attributes	Form new relations for each multivalued attribute or repeating group
Second	Satisfy at least one of the following three conditions: Primary key consists of a single attribute No non-key attributes No non-key attribute should be functionally dependent on part of the primary key (every non-key attribute should be fully functionally dependent on the primary key)	Decompose and setup a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it
Third	No transitive dependencies. Relation should be in second normal form and should not have a non-key attribute functionally determined by another non-key attribute (or a set of non-key attributes)	Decompose and set up a new relation that includes the nonkey attribute(s) that functionally determine(s) the other nonkey attributes

"The data depends on the key [1NF], the whole key [2NF] and nothing but the key [3NF] (so help me Codd¹)."

¹ Source: http://en.wikipedia.org/wiki/Ted%5FCodd The examples in the next four slides are from: http://stackoverflow.com/questions/723998/

Course ID	Semester	# Places	Course Name
IT101	2009-1	100	Programming
IT101	2009-2	120	Programming
IT102	2009-1	200	Databases
IT102	2010-1	150	Databases
IT103	2009-2	120	Web Design

X Course ID \rightarrow Course Name

COURSE-DESC (Course ID, Course Name)

Course ID	Course Name
IT101	Programming
IT102	Databases
IT103	Web Design

CLASS (Course ID, Semester, #Places)

Course ID	Semester	# Places
IT101	2009-1	100
IT101	2009-2	120
IT102	2009-1	200
IT102	2010-1	150
IT103	2009-2	120

Course ID	Semester	# Places	Teacher ID	Teacher Name
IT101	2009-1	100	332	Mr. Jones
IT101	2009-2	120	332	Mr. Jones
IT102	2009-1	200	495	Mr. Bentley
IT102	2010-1	150	332	Mr. Jones
IT103	2009-2	120	242	Mrs. Smith

X Teacher ID \rightarrow Teacher Name

COURSE (Course ID, Semester, # Places, Teacher ID)

Course ID	Semester	# Places	Teacher ID
IT101	2009-1	100	332
IT101	2009-2	120	332
IT102	2009-1	200	495
IT102	2010-1	150	332
IT103	2009-2	120	242

TEACHER (Teacher ID, Teacher Name)

Teacher ID	Teacher Name
332	Mr. Jones
495	Mr. Bentley
242	Mrs. Smith

SID	Activity	Fee
100	Basketball	100
120	Jousting	75
150	Racquetball	75
180	Jousting	75

 $SID \rightarrow Activity$ $SID \rightarrow Fee$

$$\bigstar \quad \text{Activity} \rightarrow \text{Fee}$$

STU-ACT (SID, Activity)

SID	Activity
100	Basketball
120	Jousting
150	Racquetball
180	Jousting

ACTIVITY-FEE (Activity, Fee)

Activity	Fee
Basketball	100
Jousting	75
Racquetball	75

STU-CLASS (<u>Snum</u>, Sname, Major, <u>Cname</u>, Time Room)

Snum	Sname	Major	Cname	Time	Room
0110	KHUMAWALA	ACCOUNTING	BA482	MW3	C-150
0110	KHUMAWALA	ACCOUNTING	BD445	TR2	C-213
0110	KHUMAWALA	ACCOUNTING	BA491	TR3	C-141
1000	STEDRY	ANTHROPOLOGY	AP150	MWF9	D-412
1000	STEDRY	ANTHROPOLOGY	BD445	TR2	C-213
2000	KHUMAWALA	STATISTICS	BA491	TR3	C-141
2000	KHUMAWALA	STATISTICS	BD445	TR2	C-213
3000	GAMBLE	ACCOUNTING	BA482	MW3	C-150
3000	GAMBLE	ACCOUNTING	BP490	MW4	C-150

what if the time for a class has to be updated? what if we need to add a new student to the database? what happens if we delete the student STEDRY?

STU-CLASS (<u>Snum</u>, Sname, Major, <u>Cname</u>, Time Room)

Snum	Sname	Major	Cname	Time	Room
0110	KHUMAWALA	ACCOUNTING	BA482	MW3	C-150
0110	KHUMAWALA	ACCOUNTING	BD445	TR2	C-213
0110	KHUMAWALA	ACCOUNTING	BA491	TR3	C-141
1000	STEDRY	ANTHROPOLOGY	AP150	MWF9	D-412
1000	STEDRY	ANTHROPOLOGY	BD445	TR2	C-213
2000	KHUMAWALA	STATISTICS	BA491	TR3	C-141
2000	KHUMAWALA	STATISTICS	BD445	TR2	C-213
3000	GAMBLE	ACCOUNTING	BA482	MW3	C-150
3000	GAMBLE	ACCOUNTING	BP490	MW4	C-150

identify the 6 undesirable functional dependencies

STU-CLASS (Snum, Sname, Major, Cname, Time Room)

Snum	Sname	Major	Cname	Time	Room
0110	KHUMAWALA	ACCOUNTING	BA482	MW3	C-150
0110	KHUMAWALA	ACCOUNTING	BD445	TR2	C-213
0110	KHUMAWALA	ACCOUNTING	BA491	TR3	C-141
1000	STEDRY	ANTHROPOLOGY	AP150	MWF9	D-412
1000	STEDRY	ANTHROPOLOGY	BD445	TR2	C-213
2000	KHUMAWALA	STATISTICS	BA491	TR3	C-141
2000	KHUMAWALA	STATISTICS	BD445	TR2	C-213
3000	GAMBLE	ACCOUNTING	BA482	MW3	C-150
3000	GAMBLE	ACCOUNTING	BP490	MW4	C-150
	Snum →	Sname Cname	$e \rightarrow Time$		

Snum \rightarrow Major Time \rightarrow Cname Cname \rightarrow Room Time \rightarrow Room

decomposing relations - getting to 3NF

some basic rules:

if at 1NF and a non-key attribute is functionally dependent on part of the primary key, those attributes should appear together in a smaller relation

if at 2NF and there is a functional dependence between two non-key attributes, those attributes should appear together in a smaller relation

STUDENT (SNUM, SNAME, MAJOR)

SNUM	SNAME	MAJOR
0110	KHUMAWALA	ACCOUNTING
1000	STEDRY	ANTHROPOLOGY
2000	KHUMAWALA	STATISTICS
3000	GAMBLE	ACCOUNTING

ENROLL (SNUM, CNAME)

CLASS (CNAME, TIME, ROOM)

CNAME	TIME	ROOM
BA482	MW3	C-150
BD445	TR2	C-213
BA491	TR3	C-141
BP490	MW4	C-150
AP150	MWF9	D-412

SNUM	CNAME
0110	BA482
0110	BD445
0110	BA491
1000	AP150
1000	BD445
2000	BA491
2000	BD445
3000	BA482
3000	BP490

CAR (Model, <u># Cylinders</u>, Origin, Tax, Fee)

Model	#cylinders	Origin	Тах	Fee
Camry	4	Japan	15	30
Mustang	6	USA	0	45
Fiat	4	Italy	18	30
Accord	4	Japan	15	30
Century	8	USA	0	45
Mustang	4	Canada	0	30
Monte Carlo	6	Canada	0	45
Civie	4	Japan	15	30
Mustang	4	Mexico	15	30
Mustang	6	Mexico	15	45
Civie	4	Korea	15	30

X Origin \rightarrow Tax **X** # Cylinders \rightarrow Fee

CAR_DESC (Model, <u># Cylinders</u>, Origin)

CAR_TAX (Origin, Tax)

Model	#	Origin
Camry	4	Japan
Mustang	6	USA
Fiat	4	Italy
Accord	4	Japan
Century	8	USA
Mustang	4	Canada
Monte	6	Canada
Civic	4	Japan
Mustang	4	Mexico
Mustang	6	Mexico
Civic	4	Korea

Origin	Tax
Japan	15
USA	0
Italy	18
Canada	0
Mexico	15
Korea	15

CAR_FEE (<u># Cylinders</u>, Fee)

# Cylinders	Fee
4	30
6	45
8	45

SPORT (Stu #, Sport, Coach)

Stu#	Sport	Coach
125	Football	Register
140	Basketball	Lambert
220	Baseball	Register
246	Basketball	Lambert

Stu # \rightarrow Sport \Rightarrow Sport \rightarrow Coach

STUDENT-SPORT (Stu #, Sport)

Stu#	Sport
125	Football
140	Basketball
220	Baseball
246	Basketball

SPORT-COACH (Sport, Coach)

Sport	Coach
Football	Register
Basketball	Lambert
Baseball	Register

boyce-codd normal form

a relation is in BCNF if every determinant is a candidate key

BCNF violation

STU_SUB

<u>Stu#</u>	<u>Subject</u>	Teacher	Ap_score
IH123	Chemistry	Raturi	4
IH123	English	Stephan	4
IH235	History	Walker	5
IH357	English	Campbell	4
IH571	Chemistry	Raturi	3
IH235	English	Campbell	4

{Stu #, Subject} → Teacher
{Stu #, Subject} → Ap_score
X Teacher → Subject

Candidate keys: {Stu #, Subject}, {Stu #, Teacher}

resolution of BCNF violation

TEACH_SUB	
<u>Teacher</u>	Subject
Raturi	Chemistry
Stephan	English
Walker	History
Campbell	English

STU_A	Ρ
-------	---

—		
<u>Stu#</u>	<u>Teacher</u>	Ap_score
IH123	Raturi	4
IH123	Stephan	4
IH235	Walker	5
IH357	Campbell	4
IH571	Raturi	3
IH235	Campbell	4

Teacher → Subject

{Stu #, Teacher} \rightarrow Ap_Score

BCNF violation - page 410

Patient	Hospital	Doctor
Smith	Methodist	D. Cooley
Lee	St. Luke's	Z. Zhang
Marks	Methodist	D. Cooley
Marks	St. Luke's	W. Lowe
Lou	Hermann	R. Duke

Candidate keys: {Patient , Hospital}, {Patient, Doctor}

{Patient, Hospital} → Doctor
★ Doctor → Hospital

resolution of BCNF violation

PAT-DOC (Patient, Doctor)

Patient	Doctor
Smith	D. Cooley
Lee	Z. Zhang
Marks	D. Cooley
Marks	W. Lowe
Lou	R. Duke

DOC-HOS (Doctor, Hospital)

Doctor	Hospital
D. Cooley	Methodist
Z. Zhang	St. Luke's
W. Lowe	St. Luke's
R. Duke	Hermann

Normal Form	Requirements	Decomposition Rules
First	No multi-valued attributes	Form new relations for each multivalued attribute or repeating group
Second	Satisfy at least one of the following three conditions: Primary key consists of a single attribute No non-key attributes No non-key attribute should be functionally dependent on part of the primary key (every non-key attribute should be fully functionally dependent on the primary key)	Decompose and setup a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it
Third	No transitive dependencies. Relation should be in second normal form and should not have a non-key attribute functionally determined by another non- key attribute (or a set of non-key attributes)	Decompose and set up a new relation that includes the nonkey attribute(s) that functionally determine(s) the other nonkey attributes
BCNF	Every determinant is a candidate key	Decompose and set up a new relation that includes the non-candidate key attribute(s) that functionally determine(s) the other nonkey attributes.