
11: Data Manipulation 
(part two)

null values - page 531

2 ways to insert null:
use the word NULL

define a character string of length zero

⚠ 0 and blank spaces are not null values

INSERT INTO Textbook VALUES (‘012-54765-32’, ‘Fundamentals of SQL’, 2004, null); 
INSERT INTO Textbook VALUES (‘0296748-99’, ‘Economics for Managers’, 2001, ‘’);  
INSERT INTO Textbook VALUES (‘111-11111111’, ‘Data Modeling’, 2006, ‘ ’);

textbook relation

null values look like blank spaces when viewing query results

blank space

null

textbook relation

SELECT TEXTBOOK.TX_PUBLISHER FROM TEXTBOOK;

is null and not null

SELECT TEXTBOOK.TX_TITLE,
TEXTBOOK.TX_PUBLISHER FROM TEXTBOOK

WHERE TEXTBOOK.TX_PUBLISHER IS NOT NULL;

blank
space

is null and not null

SELECT * FROM TEXTBOOK
WHERE TEXTBOOK.TX_PUBLISHER IS NULL;

is null and not null

SELECT * FROM TEXTBOOK
WHERE TEXTBOOK.TX_PUBLISHER <> NULL;

cannot use relational operators >, <, =, <>, etc. with null values

no rows selected.

null values

SELECT DISTINCT TEXTBOOK.TX_PUBLISHER
FROM TEXTBOOK;

null
blank space

COUNT function

SELECT COUNT(*) FROM TEXTBOOK;

count(*) includes null values

COUNT function

SELECT COUNT(TEXTBOOK.TX_PUBLISHER) FROM
TEXTBOOK;

count(column_name) ignores null values

COUNT function

SELECT COUNT(TEXTBOOK.TX_PUBLISHER) AS
“NUMBER OF PUBLISHERS” FROM TEXTBOOK;

COUNT function

SELECT DISTINCT COUNT(TEXTBOOK.TX_PUBLISHER)
AS “NUMBER OF DISTINCT PUBLISHERS” FROM

TEXTBOOK;

COUNT function

SELECT TEXTBOOK.TX_PUBLISHER, COUNT(*)
FROM TEXTBOOK

GROUP BY TEXTBOOK.TX_PUBLISHER;

null

blank space

COUNT function

SELECT TEXTBOOK.TX_PUBLISHER,
COUNT(TEXTBOOK.TX_PUBLISHER)FROM TEXTBOOK

GROUP BY TEXTBOOK.TX_PUBLISHER;

null

blank space

COUNT function

SELECT TEXTBOOK.TX_PUBLISHER, COUNT(*) FROM
TEXTBOOK WHERE TEXTBOOK.TX_PUBLISHER IS NOT

NULL GROUP BY TEXTBOOK.TX_PUBLISHER;

blank space

COUNT function

SELECT TEXTBOOK.TX_PUBLISHER, COUNT(*) FROM
TEXTBOOK WHERE TEXTBOOK.TX_PUBLISHER = ' '

GROUP BY TEXTBOOK.TX_PUBLISHER;

blank space

COUNT function

SELECT TEXTBOOK.TX_PUBLISHER, COUNT(*) FROM
TEXTBOOK WHERE TEXTBOOK.TX_PUBLISHER <> ' '

GROUP BY TEXTBOOK.TX_PUBLISHER;

cannot use relational operators >, <, =, <>, etc. with null values

pattern matching

% one or more characters

_ one character

pattern matching

SELECT TEXTBOOK.TX_TITLE FROM TEXTBOOK
WHERE TEXTBOOK.TX_TITLE LIKE '_i%';

pattern matching

SELECT TEXTBOOK.TX_TITLE FROM TEXTBOOK
WHERE TEXTBOOK.TX_TITLE LIKE 'P%';

pattern matching

SELECT TEXTBOOK.TX_TITLE FROM TEXTBOOK
WHERE TEXTBOOK.TX_TITLE LIKE 'p%';

no rows selected.

pattern matching
SELECT TEXTBOOK.TX_TITLE FROM TEXTBOOK
WHERE TEXTBOOK.TX_TITLE LIKE ‘%e%';

pattern matching
SELECT TEXTBOOK.TX_TITLE FROM TEXTBOOK

WHERE TEXTBOOK.TX_TITLE LIKE ‘%';

null values not included

set theoretic operations - page 546

union - page 546

SELECT * FROM R
UNION

SELECT * FROM S;

duplicate rows not included (unless UNION ALL is used)

intersect - page 547

SELECT * FROM R
INTERSECT

SELECT * FROM S;

minus - page 547
SELECT * FROM R

MINUS
SELECT * FROM S;

SELECT * FROM S
MINUS

SELECT * FROM R;

inner joins

SELECT
FROM <TABLE>

JOIN <TABLE> ON
<JOIN CRITERIA>

inner joins

SELECT
FROM <TABLE>,
<TABLE> WHERE
<JOIN CRITERIA>

inner joins

SELECT TAKES.TK_ST_SID FROM TAKES INNER JOIN
SECTION ON SECTION.SE_YEAR = 2006 AND

TAKES.TK_SE_YEAR = 2006 AND
SECTION.SE_SECTION# = TAKES.TK_SE_SECTION#;

what are the student IDs of those students who took a section
of a course during the year 2006?

self join - page 550

SELECT X.TK_ST_SID
FROM TAKES X JOIN TAKES Y

ON X.TK_ST_SID = Y.TK_ST_SID
AND X.TK_SE_CO_COURSE# <> Y.TK_SE_CO_COURSE#;

list the student IDs of those students recorded as having taken
more than one course

self join - page 550

SELECT DISTINCT X.TK_ST_SID
FROM TAKES X JOIN TAKES Y

ON X.TK_ST_SID = Y.TK_ST_SID
AND X.TK_SE_CO_COURSE# <> Y.TK_SE_CO_COURSE#;

list the student IDs of those students recorded as having taken
more than one course

joins

SELECT DISTINCT STUDENT.ST_NAME
FROM (TAKES X JOIN TAKES Y
ON X.TK_ST_SID = Y.TK_ST_SID

AND X.TK_SE_CO_COURSE# <> Y.TK_SE_CO_COURSE#)
JOIN STUDENT ON X.TK_ST_SID = STUDENT.ST_SID;

list the names of those students having taken more than one
course

joins - page 551

SELECT STUDENT.ST_NAME, SECTION.SE_ROOM,
TAKES.TK_SE_CO_COURSE# FROM (STUDENT JOIN
TAKES ON STUDENT.ST_SID = TAKES.TK_ST_SID)
JOIN SECTION ON TAKES.TK_SE_CO_COURSE# =
SECTION.SE_CO_COURSE# AND SECTION.SE_QTR =

TAKES.TK_SE_QTR AND
SECTION.SE_YEAR = TAKES.TK_SE_YEAR AND

TAKES.TK_SE_QTR = 'A' AND TAKES.TK_SE_YEAR =
2007;

for each student taking a course in the fall quarter of 2007, list the
student’s name, classroom where the course is offered, and course

number

St_name Se_room Tk_se_co_course

Poppy Kramer 22QA375

Sweety Kramer 22QA375

Gladis Bale 22QA375

Joumana Kidd Lindner 108 22IS330

Poppy Kramer Lindner 108 22IS330

Sweety Kramer Lindner 108 22IS330

Sweety Kramer Lindner 108 22IS330

Elijah Baley Lindner 108 22IS330

Shweta Gupta Lindner 108 22IS330

joins - page 551-552

left outer join - page 553
for each section taken by a student, display the section

number, quarter, year, course number, grade, student ID, and
student name. include the names of all students (i.e., even

those who have never taken a course)

SELECT TAKES.*, ST_NAME
FROM STUDENT LEFT OUTER JOIN TAKES
ON STUDENT.ST_SID = TAKES.TK_ST_SID;

left outer join - page 553-554

verifying the results - page 554

 SELECT STUDENT.ST_SID FROM STUDENT
MINUS SELECT TAKES.TK_ST_SID FROM TAKES;

right outer join - page 555

for each textbook, display all available information about the
book and its usage in courses. include textbooks that have

never been used

SELECT * FROM USES RIGHT OUTER JOIN TEXTBOOK
ON USES.US_TX_ISBN = TEXTBOOK.TX_ISBN;

right outer join - page 555

full outer join - page 556

join the GRAD_STUDENT and TAKES tables making sure that
each row from each table appears in the result

SELECT * FROM GRAD_STUDENT FULL OUTER JOIN
TAKES ON GRAD_STUDENT.GS_ST_SID =

TAKES.TK_ST_SID;

full outer join - page 556

subqueries

uncorrelated: subquery is executed first
and passes one or more values to the

outer query (IN, NOT IN, ANY, ALL, etc.)

correlated: subquery is executed once
for every row in the outer query

(EXISTS, NOT EXISTS)
Z

subqueries

SELECT COURSE.CO_COURSE#, COURSE.CO_NAME,
COURSE.CO_COLLEGE FROM COURSE
WHERE COURSE.CO_COURSE# IN

(SELECT SECTION.SE_CO_COURSE# FROM SECTION);

subquery executed first

display the course number, course name, and college of those
courses for which sections have been offered

subqueries
display the section number and course number for which at

least one grade of “A” has been assigned
SELECT DISTINCT SECTION.SE_SECTION#,

SECTION.SE_CO_COURSE# FROM SECTION WHERE
(SECTION.SE_SECTION#, SECTION.SE_CO_COURSE#)

IN (SELECT TAKES.TK_SE_SECTION#,
TAKES.TK_SE_CO_COURSE#

FROM TAKES WHERE TAKES.TK_GRADE = 'A');

subqueries

SELECT TAKES.TK_ST_SID, STUDENT.ST_NAME,
COUNT(*) AS "Sections Taken” FROM STUDENT JOIN

TAKES ON STUDENT.ST_SID = TAKES.TK_ST_SID
GROUP BY TAKES.TK_ST_SID, STUDENT.ST_NAME

UNION
SELECT STUDENT.ST_SID, STUDENT.ST_NAME, 0 FROM

STUDENT WHERE STUDENT.ST_SID NOT IN
(SELECT TAKES.TK_ST_SID FROM TAKES)
ORDER BY “Sections Taken” DESC;

what is the
purpose of the 0?

subqueries - use of ANY and ALL

subqueries - use of ANY and ALL

display the names and salaries of those professors who earn
more than all professors in department number 3

SELECT PROFESSOR.PR_NAME, PROFESSOR.PR_SALARY
FROM PROFESSOR WHERE PROFESSOR.PR_SALARY > ALL
(SELECT PROFESSOR.PR_SALARY FROM PROFESSOR

WHERE PROFESSOR.PR_DPT_DCODE = 3);

subqueries - use of ANY and ALL
display the names and salaries of those professors who earn

as much or more than the highest paid professor in
department number 3

SELECT PROFESSOR.PR_NAME, PROFESSOR.PR_SALARY
FROM PROFESSOR WHERE PROFESSOR.PR_SALARY >=

ALL (SELECT PROFESSOR.PR_SALARY FROM PROFESSOR
WHERE PROFESSOR.PR_DPT_DCODE = 3);

subqueries - use of ANY and ALL

display the names and salaries of those professors who earn
less than all professors in department number 7

SELECT PROFESSOR.PR_NAME, PROFESSOR.PR_SALARY
FROM PROFESSOR WHERE PROFESSOR.PR_SALARY < ALL
(SELECT PROFESSOR.PR_SALARY FROM PROFESSOR

WHERE PROFESSOR.PR_DPT_DCODE = 7);

subqueries - use of ANY and ALL

display the names and salaries of those professors who earn
as much or more than the lowest-paid professor in

department 3

SELECT PROFESSOR.PR_NAME, PROFESSOR.PR_SALARY
FROM PROFESSOR WHERE PROFESSOR.PR_SALARY >=
ANY(SELECT PROFESSOR.PR_SALARY FROM PROFESSOR

WHERE PROFESSOR.PR_DPT_DCODE = 3);

subqueries - use of ANY and ALL

null salaries
not included

subqueries - MIN and MAX functions

SELECT PROFESSOR.PR_NAME, PROFESSOR.PR_SALARY
FROM PROFESSOR WHERE PROFESSOR.PR_SALARY >

(SELECT MAX(PROFESSOR.PR_SALARY) FROM
PROFESSOR WHERE PROFESSOR.PR_DPT_DCODE = 3);

display the names and salaries of those professors who earn
more than the highest paid professor in department number 3

subqueries - MIN and MAX functions

SELECT PROFESSOR.PR_NAME, PROFESSOR.PR_SALARY
FROM PROFESSOR WHERE PROFESSOR.PR_SALARY >

(SELECT MIN(PROFESSOR.PR_SALARY) FROM
PROFESSOR WHERE PROFESSOR.PR_DPT_DCODE = 3);

display the names and salaries of those professors who earn
more than the lowest paid professor in department number 3

subqueries - HAVING clause

SELECT DEPARTMENT.DPT_NAME,
AVG(PROFESSOR.PR_SALARY) FROM DEPARTMENT JOIN

PROFESSOR ON DEPARTMENT.DPT_DCODE =
PROFESSOR.PR_DPT_DCODE

GROUP BY DEPARTMENT.DPT_NAME
HAVING AVG(PROFESSOR.PR_SALARY) >

(SELECT AVG(PROFESSOR.PR_SALARY) FROM
PROFESSOR);

display all departments with an average salary that exceeds
the average salary of all professors

aggregate functions and grouping

display the maximum, minimum, total, and average salary for
the professors affiliated with each department. in addition,

count the number of professors in each department as well as
the number of professors in each department with a not null

salary

aggregate functions and grouping

SELECT DEPARTMENT.DPT_NAME "Dept Name”,
DEPARTMENT.DPT_DCODE "Dept Code",

MAX(PROFESSOR.PR_SALARY) "Max Salary",
MIN(PROFESSOR.PR_SALARY) "Min Salary”,

 SUM (PROFESSOR.PR_SALARY) "Total Salary”,
ROUND(AVG(PROFESSOR.PR_SALARY),0) “Avg Salary",

COUNT(*) "Size",
COUNT(PROFESSOR.PR_SALARY) "# Sals"
FROM DEPARTMENT JOIN PROFESSOR ON

DEPARTMENT.DPT_DCODE = PROFESSOR.PR_DPT_DCODE
GROUP BY DEPARTMENT.DPT_NAME,

DEPARTMENT.DPT_DCODE
ORDER BY 6 DESC;

what does
the 6 mean?

aggregate functions and grouping

ordered by
average salary

correlated subquery

Z
correlated subqueries make use of the

EXISTS operator which returns the value of
true if a set is non-empty

execution stops and the condition of
the main query is declared true for a

given row if the condition in the
subquery is true

correlated subquery

SELECT PROFESSOR.PR_NAME FROM PROFESSOR WHERE
EXISTS (SELECT * FROM SECTION WHERE

PROFESSOR.PR_EMPID = SECTION.SE_PR_PROFID);

display the names of professors who have offered at least one
section

can also use
NOT EXISTS

