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Abstract

The identification of disaster risk has remained a significant challenge due to the rarity of macroe-

conomic disasters. We show that the interbank market can help characterize the time variation

in disaster risk. We propose a risk-based model in which macroeconomic disasters are likely to

coincide with interbank market failure. Using interbank rates and their options, we estimate

our model via MLE and filter out the short-run and long-run components of disaster risk. Our

estimation results are independent of the stock market and serve as an external validity test of

rare disaster models, which are typically calibrated to match stock moments.
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1 Introduction

As an explanation for puzzles in macro-finance, the rare disaster literature has received ample

attention (for a comprehensive review, see Tsai and Wachter, 2015). The fundamental notion

behind rare disasters is to put more weight on events that are extremely bad, albeit unlikely.

Rietz (1988) and Barro (2006) introduce and formalize the rare disaster mechanism to ex-

plain the equity premium puzzle. More recently, Gabaix (2012), Gourio (2012), and Wachter

(2013) incorporate variable disaster risk to account for puzzles related to volatility and return

predictability.

However, rare disaster models have also received their fair share of criticism. For example,

rare disasters are often referred to as “dark matter” because of the rarity of their observations

and the obscurity of their source.1 These criticisms point to the fact that it is difficult to

reliably estimate the parameters associated with disasters. In line with this, Chen, Dou,

and Kogan (2021) raise concerns with regard to overfitting in-sample data: if a disaster

model excessively overfits in-sample data, then the model implication would be sensitive to

small perturbations of disaster parameters. Estimating time-varying disaster risk is even

more challenging. Cochrane (2017) considers time-varying probabilities of disasters as “dark

energy” unless there is a way to independently anchor them to an external data source.

In this paper, we address these issues by estimating the time variation in disaster risk

using interbank rates and their options. The key assumption we make is that macroeconomic

disasters are likely to coincide with interbank market failure. The connection between the two

types of extreme events has been empirically supported; according to Reinhart and Rogoff

(2013), virtually all consumption disasters documented by Barro and Ursúa (2008) were ac-

companied by severe systemic banking crises.2 Intuitively, this assumption provides a direct

1In order to describe an extreme and rare economic downturn, the literature defines macroeconomic disas-
ters as a severe drop in real consumption per capita (e.g., Barro, 2006; Barro and Ursúa, 2008; Gabaix, 2012;
Wachter, 2013) or as a significant reduction in total factor productivity (e.g., Gourio, 2012).

2The general idea of linking macroeconomic crises and banking crises has been well established in the
literature. Bernanke (1983) argues that the failure of a substantial fraction of U.S. banks was the primary
reason behind the Great Depression. Moreover, Allen, Bali, and Tang (2012) and Giesecke, Longstaff, Schaefer,
and Strebulaev (2014) empirically compare the risk of financial sector defaults with that of non-financial
corporate defaults and find that the former influences macroeconomic downturns, whereas the latter does not.
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link between disaster risk and the interbank market. We show that interbank rates and their

options allow us to characterize the time series evolution of disaster risk, with the aid of a

model.

For our analysis, we adopt a risk-based model where the nominal pricing kernel is affine

and is comprised of Brownian and Poisson shocks to four state variables of the economy:

real consumption growth, expected inflation, short-run disaster risk, and long-run disaster

risk. This framework allows us to derive the expressions for three distinct interest rates: (i)

interbank rate (LIBOR), (ii) risk-free rate (proxied by the OIS rate), and (iii) government

bill rate (Treasury rate).

Within our model, risk-free lending always pays back the promised amount at the end

of its maturity, whereas interbank lending is potentially subject to partial defaults in the

event of a disaster. Consequently, their interest rate difference, the so-called LIBOR-OIS

spread, is highly informative about disaster risk, directly reflecting the two disaster-related

state variables. We also show that the spread between the interbank rate and the Treasury

rate, commonly referred to as the TED spread, can serve as a useful indicator of disaster

risk. However, its signal may be noisier than the LIBOR-OIS spread due to the complexity

arising from the Treasury convenience yield. Following recent studies on safe/liquid assets,

we assume that government bills may carry a convenience yield in our model, causing the

Treasury rate to be, on average, lower than the risk-free rate.

In addition to the two interest rate spreads, we take advantage of interest rate caps and

swaptions. We approach these financial instruments from a new angle. Prior studies simply

consider them as option contracts on future benchmark interest rates, often overlooking the

aspect that the underlying rates are not default-free. In contrast, we view them as options

on future interbank rates: a cap consists of a series of caplets, each of which is a call option

on the LIBOR; a swaption provides its holder the right to enter into an interest rate swap

that exchanges fixed coupons with floating coupons based on the LIBOR. Naturally, these

instruments reflect the possibility of interbank market failure and hence that of economic

disasters. We believe that this is an important distinction because, as witnessed during the
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2008 financial crisis, interbank rates can significantly deviate from default-free interest rates.

We estimate the model parameters via maximum likelihood estimation using the data

from February 2002 to December 2019.3 As a result, we obtain parameter estimates whose

signs and magnitudes are economically sensible. The model-implied time series for interest

rates, caps, and swaptions mimic their data counterparts reasonably well. Our results provide

additional guidelines that can help discipline the calibration of rare disaster models.

An important advantage of our estimation is that it is possible to extract the short-run

and long-run components of latent disaster risk through a filtering approach. Specifically, we

adopt the extended Kalman filter because caps and swaption prices are nonlinear functions

of the latent and observable state variables. From a sensitivity analysis, we discover that the

short-run component of disaster risk is mainly identified by the LIBOR-OIS spread with a

short maturity. In contrast, the long-run component of disaster risk is primarily filtered out

through caps and swaptions whose payoffs are contingent on future interbank rates over a

long horizon. Importantly, the forward-looking information from interest rate options plays a

crucial role in estimating the whole dynamics of disaster risk.

Overall, our results emphasize that the interbank market can potentially be useful for

overcoming the criticisms of rare disaster models, which are typically calibrated to match

stock data. Our estimation is independent of equity market moments and, thus, serves as

an external/out-of-sample validity test of the models. The parameter estimates suggest that

disaster risk is significant in magnitude and in variation, strongly supporting macro-finance

models with the rare disaster mechanism. Additionally, based on the filtered time series of

the short-run and long-run components of disaster risk, we verify the testable implications

that disaster risk should be associated with various conditional moments and returns in the

equity market. All in all, our findings corroborate the disaster-based explanation of various

asset pricing puzzles.

We contribute to the rare disaster literature by estimating the time-varying risk of eco-

nomic disasters. Granted, we are not the first to attempt to quantify the time series variation

3In Section 4.5, we extend the data to December 2020 and examine how disaster risk evolved during the
COVID-19 pandemic crisis.
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in disaster risk. For example, Berkman, Jacobsen, and Lee (2011) proxy the perceived disaster

probability by a crisis severity index, constructed based on the number of international polit-

ical crises. Manela and Moreira (2017) create a text-based disaster concern measure, called

news implied volatility (NVIX), using the words in front-page articles of the Wall Street Jour-

nal.4 Rather than proposing another index that potentially correlates with disaster risk, our

goal is to directly estimate the risk of consumption disasters under the assumption that con-

sumption disasters are likely to coincide with interbank market failure. A key advantage of

our framework is that it is possible to exploit the information contained in interbank rates and

their options, which allows us to separately extract the short-run and long-run components

of disaster risk.

Our estimation relies on the pricing data on interest rate caps and swaptions. Prior

studies, including Longstaff, Santa-Clara, and Schwartz (2001), Han (2007), and Trolle and

Schwartz (2009), mainly concentrate on the relative pricing of caps and swaptions. However,

the literature has paid little attention to what these financial instruments imply about the

aggregate economy or other financial markets. We explore the economic content of caps and

swaptions by focusing on the fact that their payoffs are contingent on future interbank rates.

We confirm that interbank rate options indeed contain valuable information about the risk of

economic disasters.

The findings of this paper also potentially relate to the growing literature on the role of

financial intermediaries in asset pricing. He and Krishnamurthy (2013) and Brunnermeier and

Sannikov (2014) argue that intermediaries, rather than households, act as marginal investors

and, therefore, their financial constraints serve as key drivers of market risk premia. Adrian,

Etula, and Muir (2014) and He, Kelly, and Manela (2017) empirically support this theory by

showing that intermediary-induced factors outperform traditional risk factors in explaining

asset returns in various markets. Although our analysis mainly concerns economic disasters,

the pricing kernel we adopt has properties that are isomorphic to those of an intermediary-

4Related, Bollerslev and Todorov (2011a), Bollerslev and Todorov (2011b), Bollerslev and Todorov (2014),
and Andersen, Fusari, and Todorov (2015) estimate and study the risk of rare events in the equity market
using an essentially model-free approach based on high-frequency index time series and/or short maturity
out-of-the-money index options.
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based pricing kernel: when the interbank market is hit by a shock (which is modeled as a

shock to disaster risk in our framework), the pricing kernel responds and generates risk premia.

Our results hint that the disaster-based explanation and the intermediary-based explanation

of asset markets might share common microfoundations.

The rest of this paper proceeds as follows. Section 2 describes the model. Section 3

describes the data as well as explains how we estimate the model and extract time-varying

disaster risk. Section 4 reports the estimation results and discusses their implications. Section

5 concludes.

2 Model

2.1 Risk of disasters and interbank rates

How can we characterize the time-varying risk of economic disasters? In this section, we

illustrate how interbank rates can help. Let Ct denote aggregate real consumption, which

follows an affine jump diffusion process:

dCt

Ct−
= µCdt+ σCdBC,t +

(
eZC,t − 1

)
dNt,

where BC,t is a standard Brownian motion. The occurrence of consumption disasters is spec-

ified by a Poisson process Nt with a negative jump size random variable ZC,t: when a con-

sumption disaster occurs (i.e., dNt = 1), consumption falls from Ct− to Ct−e
ZC,t . Given this

setup, our main objective is to properly estimate the time series of the intensity process for

Nt. We assume that Nt has stochastic intensity λt whose dynamics are described by

dλt = κλ(ξt − λt)dt+ σλ
√
λtdBλ,t,

dξt = κξ(ξ̄ − ξt)dt+ σξ
√
ξtdBξ,t,

where ξt is the time-varying mean of λt. Simply put, λt and ξt represent the short-run and

long-run components of disaster risk.
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We study the time series evolution of λt and ξt by linking consumption disasters to the

banking sector. As evident in the example of the Great Depression, the collapse of the banking

sector is closely related to severe economic downturns. In fact, Reinhart and Rogoff (2013)

point out that virtually all consumption disasters documented by Barro and Ursúa (2008)

were accompanied by severe systemic banking crises. Motivated by this insight, we assume

that consumption disasters are likely to coincide with extreme rare events where the interbank

market fails and market participants suffer significant losses.

More formally, let Lt denote the time-t face value of interbank lending. We assume that

in the event of a consumption disaster, the interbank market fails with probability p̄, which

results in a loss Lt to the lenders:

Lt =

 Lt−e
ZL,t with probability p̄ if a disaster occurs at time t,

Lt− otherwise.

That is, the face value, or the expected principal payment from interbank lending, reduces

from Lt− to Lt−e
ZL,t if the interbank market fails. By defining It as a Bernoulli random

variable with success probability p̄, we can express the dynamics of Lt as

dLt

Lt−
=

(
eZL,tIt − 1

)
dNt. (1)

Here, we do not model the behaviors of banks nor the structure of the interbank market, which

can potentially generate consumption disasters and interbank market failure in an endogenous

fashion. Moreover, we are agnostic about any causal link: whether interbank market failure

leads to consumption disasters or vice versa, and through which mechanism they are related.

Since our focus is on empirically characterizing time-varying disaster risk, it suffices that these

two types of extreme events are likely to coincide with each other.

Under this simple setup, it is intuitive that the spread between the interbank rate and the

risk-free rate contains important information about disaster risk. The pricing relation implies
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that the τ -maturity zero-coupon interbank rate can be derived as

y
(τ)
i,t = −1

τ
logEt

[
Mt+τ

Mt

· Lt+τ

Lt

]
, (2)

where Mt+τ

Mt
represents the nominal pricing kernel whose existence is guaranteed under no

arbitrage. While interbank lending contracts are potentially subject to partial defaults, risk-

free lending always pays back the promised amount at the end of their maturity. The τ -

maturity zero-coupon risk-free rate is calculated as

y
(τ)
f,t = −1

τ
logEt

[
Mt+τ

Mt

· 1
]
. (3)

Comparing equations (2) and (3) suggests that changes in disaster risk have a direct effect

on the interest rate spread y
(τ)
i,t − y

(τ)
f,t . When disaster risk rises, the expectation of the future

payoff Lt+τ

Lt
decreases, which pushes the interbank rate upward. However, this effect is missing

for the risk-free rate as the future payoff from a default-free bond is, by definition, always 1.

As a result, the spread between the two interest rates widens when disaster risk increases.

These equations also suggest that fluctuations in disaster risk or in other potential risk

factors can have indirect effects on the interbank rate and the risk-free rate through the pricing

kernel. However, if risk factors only impact the pricing kernel but not the future payoff Lt+τ

Lt
,

they will move the interbank rate with the same degree as the risk-free rate, leaving the spread

between the two unchanged. As clear in equation (1), the distribution Lt+τ

Lt
only depends on

instantaneous disaster risk λt and its time-varying mean ξt, and this suggests that risk factors

that are orthogonal to λt and ξt will have no impact on the interest rate spread y
(τ)
i,t − y

(τ)
f,t . In

Section 2.3, we show that this spread indeed depends only on λt and ξt in our fairly flexible

setup, confirming this intuition.

2.2 Nominal pricing kernel

Equations (2) and (3) make it clear that we need a nominal pricing kernel Mt+τ

Mt
to derive the

expressions for zero-coupon yields. Before specifying the pricing kernel, we first establish the
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state variables in the economy. In addition to real consumption (Ct) and the short-run/long-

run components of disaster risk (λt, ξt), we take one more variable that is typically used to

capture the state of the nominal economy: expected inflation. This is particularly relevant, as

we examine the term structure of interest rates. In our model, the expected inflation process

qt solves the following stochastic differential equation:

dqt = κq(q̄ − qt)dt+ σqdBq,t + Zq,tdNt,

where Bq,t is a standard Brownian motion. As highlighted in Tsai (2015), it is necessary

for macroeconomic disasters to coincide with positive jumps in expected inflation in order

to generate an upward-sloping term structure of nominal interest rates. For parsimony, we

capture this commonality by assuming that qt is also subject to the same Poisson process Nt

and that the jump size random variable Zq,t is, on average, positive.

We specify our pricing kernel in a general form so that it can be directly estimated using

data. We assume that Brownian shocks (dBC,t, dBλ,t, dBξ,t, dBq,t) are independent of one

another and of a Poisson shock (dNt). These five independent shocks to the four state variables

(Ct, λt, ξt, qt) are priced and hence constitute the nominal pricing kernel:

dMt

Mt−
= −rtdt+ θCdBC,t + θλ

√
λtdBλ,t + θξ

√
ξtdBξ,t + θqdBq,t

+
(
eθNZC,t − 1

)
dNt − λtE

[
eθNZC,t − 1

]
dt, (4)

where rt represents the instantaneous nominal risk-free rate. To preserve the affine structure

of our setup, we represent the short rate rt as a linear function of the state variables, similar

to Ang and Piazzesi (2003) and Joslin, Le, and Singleton (2013):

rt = δ0 + δλλt + δξξt + δqqt. (5)

The pricing kernel fully characterizes the risk-neutral measure, as the Radon-Nikodym deriva-

tive process of the risk-neutral measure with respect to the physical measure equalsMt

∫ t

0
rsds.
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In Appendix A.1, we derive the risk-neutral dynamics of the underlying processes using Gir-

sanov’s theorem.

Based on the pricing kernel specified in equation (4), we finally calculate the expressions

for y
(τ)
i,t and y

(τ)
f,t in equations (2) and (3). We show that both interbank rates and Treasury

rates are linear in state variables λt, ξt, and qt:

y
(τ)
i,t = −1

τ

[
ai(τ) + bi,λ(τ)λt + bi,ξ(τ)ξt + bq(τ)qt

]
, (6)

y
(τ)
f,t = −1

τ

[
af (τ) + bf,λ(τ)λt + bf,ξ(τ)ξt + bq(τ)qt

]
, (7)

where deterministic functions ai, af , bi,λ, bf,λ, bi,ξ, bf,ξ, and bq solve the ordinary differential

equations derived in Appendix A.2.

2.3 Interest rate spreads

One important aspect when comparing equations (6) and (7) is that the loadings on expected

inflation qt are identical for both types of interest rates. Therefore, for each maturity τ , the

difference between y
(τ)
i,t and y

(τ)
f,t becomes a function of disaster risk (λt, ξt) alone, consistent

with the intuition developed in Section 2.1. In our analysis, the data counterparts of the

interbank rate and the risk-free rate are the London interbank offered rate (LIBOR) and the

overnight index swap (OIS) rate, respectively, after being adjusted for compounding frequen-

cies. Thus, we can see that the spread between the (continuously compounded) LIBOR and

OIS rate, the so-called LIBOR-OIS spread, can be expressed by

LOIS
(τ)
t = −1

τ

[ (
ai(τ)− af (τ)

)
+
(
bi,λ(τ)− bf,λ(τ)

)
λt +

(
bi,ξ(τ)− bf,ξ(τ)

)
ξt

]
.

Our view that the LIBOR-OIS spread directly reflects disaster risk is novel, but not

inconsistent with the existing view on the source of interbank risk. Prior studies typically

decompose interbank risk (and hence the LIBOR-OIS spread) into a liquidity component and

a pure credit component.5 We do not make such a distinction; we study the possibility of

5See, for example, Michaud and Upper (2008), Taylor and Williams (2009), Acharya and Skeie (2011),
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extreme tail events implied by the total risk of the interbank market, regardless of where it

originates from. Modeling these market phenomena separately is beyond the scope of our

paper. Instead, we simply capture the risk of such an economic downturn using disaster risk,

which we view as the ultimate source.

We also note that the fluctuations in the LIBOR-OIS spread are purely systematic in our

framework, as they are driven by the risk of economic disasters. One might argue that this

spread can also be influenced by bank-specific shocks. Granted, the LIBOR is calculated

empirically using input data from only about a dozen contributor banks. However, they are

large and systemically important banks; significant shocks to these banks cannot be purely

idiosyncratic, considering their critical roles in the intricately intertwined banking system.

It is worth highlighting that we do not assume the yield on Treasury securities (simply,

Treasury rate) to be our benchmark interest rate for riskless discounting; we choose the OIS

rate instead, which is a conventional market proxy for the risk-free interest rate. The recent

literature has documented that Treasury securities carry a convenience yield, derived from

their special role as safe/liquid assets (e.g., Krishnamurthy and Vissing-Jorgensen, 2012).

This implies that the Treasury rate can go even below the true risk-free rate. Consistently,

we define the τ -maturity treasury rate y
(τ)
g,t as

y
(τ)
g,t = y

(τ)
f,t − y

(τ)
x,t ,

where y
(τ)
x,t represents the Treasury convenience yield, typically proxied by the OIS-Treasury

spread.

In fact, the OIS-Treasury spread is on average positive in the data, supporting the presence

of a convenience yield from holding Treasury securities. Nevertheless, the data reveals that

this spread occasionally turns negative, most notably during the COVID-19 crisis (e.g., He,

Nagel, and Song, 2022). To capture these properties in reduced form, we assume that the

Treasury convenience yield is driven by an instantaneous convenience rate xt, which follows

Filipović and Trolle (2013), and McAndrews, Sarkar, and Wang (2017).
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a mean-reverting Gaussian process:

dxt = κx(x̄− xt)dt+ σxdBx,t. (8)

The standard Brownian motion Bx,t is assumed to be independent of other Brownian and

Poisson shocks. Under this setup, the τ -maturity convenience yield y
(τ)
x,t is derived as

y
(τ)
x,t =

1

τ
logEt

[
e
∫ t+τ
t xudu

]
= −1

τ

[
ax(τ) + bx(τ)xt

]
, (9)

where the expressions for the deterministic functions ax and bx are provided in Appendix A.2.

With the Treasury convenience, the spread between the LIBOR and the treasury rate, the

so-called TED spread, becomes a function of disaster risk (λt, ξt) as well as xt:

TED
(τ)
t = −1

τ

[ (
ai(τ)− af (τ) + ax(τ)

)
+
(
bi,λ(τ)− bf,λ(τ)

)
λt +

(
bi,ξ(τ)− bf,ξ(τ)

)
ξt + bx(τ)xt

]
.

This suggests that while the TED spread is still a meaningful indicator of disaster risk,

its signal is relatively less clear than the LIBOR-OIS spread due to the added complexity

introduced by the convenience factor xt.

2.4 Options on interbank rates

In this section, we introduce derivative contracts called caps and swaptions whose payoffs

depend on future interbank rates. When discussing their payoffs and pricing, it is convenient

to introduce the following notation:

Pi(t, t+ τ) = exp
[
−τ · y(τ)i,t

]
. (10)

In other words, Pi(t, t + τ) represents the time-t value of $1 zero-coupon interbank lending

maturing at time t + τ . Additionally, we need the expression for the LIBOR in the model.

Recall that the LIBOR is a simple interest rate and, therefore, is not exactly the same as the

continuously compounded rate y
(τ)
i,t . We can convert between the two interest rates using the
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following relation:

y
(τ)
i,t =

1

τ
log

[
1 + τLIBOR

(τ)
t

]
, or equivalently, LIBOR

(τ)
t =

1

τ

[
exp

(
τ · y(τ)i,t

)
− 1

]
.

An interest rate cap consists of a series of caplets that mature every 6 months.6 Specifically,

the first caplet matures 6 months from today, and the last caplet matures 6 months prior to

the cap maturity date. Let T denote the time to maturity of a cap from today (time t), and K

denote its strike interest rate. For notational convenience, we define ∆ = 0.5 and tj = t+∆j.

The j-th caplet provides the holder of the cap with the right, not the obligation, to

borrow a dollar at the rate of K between times tj and tj+1. If the future 6-month LIBOR

at time tj is higher than the strike K, this caplet is exercised and the holder borrows a

dollar at the lower-than-the-fair interest rate. That is, the payoff from exercising the caplet

is ∆ ×
(
LIBOR

(0.5)
tj −K

)
. This payoff occurs at time tj+1 because the interest payment is

made at the end of the borrowing period.

Since the cap is a collection of a mT =
(
T
∆
− 1

)
number of caplets, the time-t cap value is

calculated as

V (T )
cap (t,K) =

mT∑
j=1

EQ
t

[
exp

(
−
∫ tj+1

t

rsds

)[
∆×

(
LIBOR

(0.5)
tj −K

)]+]
, (11)

where Q represents the risk-neutral measure (see Appendix A.1).7 In Appendix A.3, we

demonstrate that equation (11) can be computed using the transform analysis of Duffie, Pan,

and Singleton (2000).

An interest rate swaption grants the holder the right, not the obligation, to enter into an

interest rate swap (IRS). There are two types of swaptions. When exercised, a payer swaption

delivers an IRS where the holder pays the fixed leg and receives the floating leg based on the

6More precisely, a conventional cap contract traded in the market is a collection of caplets that mature
every 3 months. As documented by Longstaff, Santa-Clara, and Schwartz (2001), assuming semi-annually
spaced caplets for computational convenience is innocuous, generating a negligible difference when it comes
to Black-implied volatilities.

7We can obtain the same result if we multiply the cap payoff by the pricing kernel and take the expectation
under the physical measure. Following the convention in the literature on interest rate derivatives, we use the
pricing relation under the risk-neutral measure.
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LIBOR (a payer IRS); a receiver swaption delivers an IRS where the holder receives the fixed

leg and pays the floating leg based on the LIBOR (a receiver IRS). We now define T as the

time to maturity of payer and receiver swaptions. Let K denote their strike interest rate. The

tenor of the IRS at the maturity of the swaptions is denoted as T̄ . Under this notation, our

swaptions of interest are often referred to as T -into-T̄ swaptions.

The payer swaption is exercised if the future T̄ -maturity swap rate at time t+ T is larger

than the strike K. In this case, the holder enters into a payer IRS contract and makes a profit

by exchanging the fixed rate K (which is lower than the fair swap rate) for the floating rate.

The profit, or the value of this payer IRS at time t + T , is simply the difference between its

floating leg and its fixed leg. The floating leg is always 1 because it is equivalent to the value

of a floating rate note whose coupons reset periodically. In contrast, the fixed leg is equivalent

to the value of a dollar notional coupon bond with the (annualized) coupon rate of K:

V
(T̄ )
fixed(t+ T,K) = ∆

K T̄ /∆∑
j=1

Pi (t+ T, t+ T + j∆)

+ Pi(t+ T, t+ T + T̄ ). (12)

Therefore, the time-t payer swaption value is expressed as

V (T,T̄ )
pay (t,K) = EQ

t

[
exp

(
−
∫ t+T

t

rsds

)[
1− V

(T̄ )
fixed(t+ T,K)

]+]
. (13)

Similarly, the receiver swaption is exercised if the future T̄ -maturity swap rate at time t+ T

is smaller than the strike K. The time-t receiver swaption value is expressed as

V (T,T̄ )
rcv (t,K) = EQ

t

[
exp

(
−
∫ t+T

t

rsds

)[
V

(T̄ )
fixed(t+ T,K)− 1

]+]
. (14)

These equations suggest that interest rate swaptions can essentially be viewed as options on

a coupon bond. Due to coupon payments, the expression for the coupon bond price contains

multiple terms, which makes it impossible to calculate the expectations in equations (13) and

(14) using the semi-analytic approach of Duffie, Pan, and Singleton (2000). To make the

computation tractable, we adopt the stochastic duration method implemented by Trolle and
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Schwartz (2009). This method enables us to accurately approximate the price of a coupon

bond option by a constant multiplication of the price of a zero-coupon bond option (see, e.g.,

Wei, 1997; Munk, 1999). We provide a detailed description of the swaption pricing procedure

in Appendix A.3.

3 Estimation

3.1 Data

Our data sample consists of the following variables: interbank rates, OIS rates, Treasury rates,

Black-implied volatilities for caps and swaptions, expected inflation, and real consumption per

capita. All variables are sampled at the monthly frequency at the end of each month, from

February 2002 to December 2019.

Interbank rates consist of 3-, 6-, and 12-month LIBOR rates as well as 2-, 3-, and 5-

year swap rates, all of which are downloaded from Bloomberg.8 We also collect OIS rates

and Treasury rates with the same maturities from Bloomberg and the Federal Reserve Bank

of St. Louis, respectively. To make the data comparable with the model-implied interest

rates, we need to convert the three types of interest rate term structures into continuously

compounded zero curves. To do so, we use linear interpolation to construct par curves with

maturities ranging from 6 months to 5 years with 6-month intervals. From these interpolated

par curves, we extract smooth forward rate curves and, in turn, zero-coupon yield curves via

the Nelson and Siegel (1987) parameterization.

Note that our analysis relies on interest rates with maturities of up to 5 years, despite their

availability of up to 30 years. This is our intentional choice, as long-term interest rates are

potentially subject to some frictions that are beyond our model. In particular, since the 2008

financial crisis, the 30-year swap rate has maintained a lower level than the 30-year Treasury

8On March 5, 2021, the ICE Benchmark Administration Limited announced the complete discontinuation
of the publication of USD LIBOR effective June 30, 2023. The crucial role of USD LIBOR as a benchmark
interest rate will be largely taken over by the secured overnight financing rate (SOFR). See Jermann (2019),
Jermann (2020a), and Klingler and Syrstad (2021) for further discussion about the transition from USD
LIBOR to SOFR.
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rate, which poses a puzzle. This phenomenon is not just seen in the 30-year maturity: we

frequently observe a negative swap spread for any long-term maturity between 5 years and 30

years. Klingler and Sundaresan (2019) argue that negative swap spreads reflect underfunded

pension plans’ increased demand for duration hedging with long-term swaps. Even without

such explicit demand effects, Jermann (2020b) shows that negative swap spreads can be

justified via limits to arbitrage associated with frictions for holding long-term Treasuries.

Rather than incorporating extra frictions into our model, we keep our model simple and focus

on short- and mid-term interest rates.

We download the pricing data on caps and swaptions from Bloomberg.9 Caps and swap-

tions are typically quoted in terms of Black-implied volatilities. For each market price, the

corresponding Black-implied volatility is found by backsolving the volatility term in the Black

(1976) model. Caps and swaptions in our sample are at-the-money forward (ATMF), meaning

that the strike price of each option is equal to the current forward price of the underlying.

Specifically, the strike price of a T -maturity ATMF cap is the T -maturity swap rate. The

strike price of a T -into-T̄ ATMF swaption is the forward swap rate between the option expiry

(T years from today) and the underlying swap expiry (T + T̄ years from today).

The data on expected inflation is obtained from the Blue Chip Economic Indicators survey.

This dataset provides the forecasts of inflation for the current calendar year and the next

calendar year. For each month, we calculate a proxy for the 1-year-ahead expected inflation

by calculating the weighted average between the two forecasts. Lastly, the monthly time series

of real consumption per capita is from the Federal Reserve Bank of St. Louis.

3.2 Extended Kalman filter and maximum likelihood estimation

From the data described in Section 3.1, we filter out the time series of the latent processes (λt,

ξt, xt) using the extended Kalman filter and estimate the model parameters via maximum

likelihood estimation (MLE). In this section, we detail our model estimation procedure.

9There are multiple sources for caps and swaptions data on Bloomberg. We mainly use the sources
“CMPN” for caps and “BBIR” for swaptions, which provide the Black-implied volatilities calculated based
on LIBOR-swap discounting.
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Estimating our model is computationally challenging. In each iteration of the MLE pro-

cedure, we need to evaluate the log-likelihood function. Due to cap/swaption pricing, this

requires numerically solving the system of complex-valued ordinary differential equations of

Duffie, Pan, and Singleton (2000) several times. Furthermore, we have a large number of

parameters to be estimated. Evidently, estimating all of these parameters all at once in a

single MLE is highly time-consuming.

To alleviate the computational burden, we first separately estimate the parameters µC ,

σC , κq, q̄, and σq, which govern the normal-time dynamics of real consumption and expected

inflation. This is possible because a consumption disaster is absent during our sample period,

implying that the observed time series of real consumption and expected inflation were com-

pletely driven by these five parameters. Specifically, µC and σC are estimated by maximizing

the log-likelihood of the real consumption time series, conditional on no disasters. Similarly,

κq, q̄, and σq are estimated from the expected inflation time series via MLE.

We further reduce the dimension of our parameter space by putting a restriction on the

value of δ0. Taking expectations on both sides of equation (5) results in:

E[r] = δ0 + δλE[λ] + δξE[ξ] + δqE[q].

Here, we proxy the unconditional mean of the short rate (E[r]) by the average 1-week OIS

rate (Ê[r]) from Bloomberg. Then, the value of δ0 can be obtained by

δ0 = Ê[r]− δλξ̄ − δξ ξ̄ − δqÊ[q],

where Ê[q] is the average expected inflation during our sample period.

Moreover, we set ξ̄ to be 2.86%, which is the average probability of consumption disasters

across OECD countries, according to Barro and Ursúa (2008). We also construct the empirical

distributions of ZC,t and Zq,t by compiling consumption declines and inflation rates during

historical consumption disasters from the Barro-Ursua dataset.10 Lastly, we assume ZL,t =

10The Barro-Ursua dataset contains a few extreme hyperinflation events, such as the hyperinflation of
Weimar Germany in the 1920s when the inflation rate exceeded 3,000%. Given that the number of historical
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ZC,t: the more severe the interbank market failure, the more severe the consumption disaster.11

As a result, we are left with 18 parameters to be estimated within the main MLE procedure:

Θ = [κξ, σξ, κλ, σλ, κx, σx, x̄, p̄, δλ, δξ, δq, θλ, θξ, θq, θN , σSP , σITR, σOPT ] ,

where the last three parameters concern measurement errors (described below). We construct

the likelihood function L under the assumption that we observe the following: (i) LIBOR-OIS

spreads and TED spreads with 3-, 6-, 12-month maturities, (ii) interbank rates, OIS rates,

and Treasury rates with 3-, 6-, 12-month, 2-, 3-, 5-year maturities, (iii) 2-, 3-, 4-, 5-year cap

implied volatilities, and (iv) 1-into-4, 2-into-3, 3-into-2, 4-into-1 swaption implied volatilities.

For notational simplicity, we let Yt denote the vector of all these observations at time t.

To obtain the likelihood function L, it suffices to derive the transition density of Yt.

Specifically, we define Lt as the likelihood of observing Yt conditional on Yt−∆t:

Lt = P (Yt|Yt−∆t; Θ) ,

where ∆t = 1/12 represents monthly time intervals between observations. Not only does this

transition density depend on the observable state variable qt, but it also relies on the three

latent variables λt, ξt, and xt.

In order to solve this filtering problem, we specify the state equation and the measurement

equation in the state-space representation of our model. The state equation describes the

dynamics of a latent state vector St = [λt, ξt, xt]
⊤. There are two ways to map the continuous-

time dynamics of St into the discrete-time state equation. The first approach applies the Euler

discretization to λt, ξt, and xt and then finds the discrete-time relation between St and St−∆t.

In contrast, the second approach finds the exact relation between St and St−∆t without any

approximation and then discretizes the resulting relation. We adopt the latter approach

consumption disasters is only 89, such extreme outliers completely dominate the moment generating function
of Zq,t. Thus, we exclude the observations that fall more than 3 times the interquartile range above the third
quartile. No observations fall more than 3 times the interquartile range below the first quartile.

11We can relax this assumption by setting ZL,t = kZC,t and estimating k directly. However, in this case,
the coefficient k is not well identified separately from p̄; an increase (decrease) in k can be compensated by a
decrease (increase) in p̄ or vice versa.
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following Chen and Scott (2003), as it better captures the square-root diffusions of the first

two latent processes. Consequently, we obtain the following linear state equation:

St = η +ΨSt−∆t + ϵt, where Et−∆t

[
ϵtϵ

⊤
t

]
= Ωt−∆t. (15)

We provide the expressions for three-dimensional vector η, 3 × 3 matrix Ψ, and 3 × 3 time-

varying covariance matrix Ω in Appendix B. Since ϵt is non-normal, we approximate it by

a normal distribution with the same covariance matrix. Prior studies document that this

approximation is innocuous.12

Now, we turn to the measurement equation. We assume that Yt is observed with a vector

of measurement errors et:

Yt = h(St, qt) + et, where Et−∆t

[
ete

⊤
t

]
= Q. (16)

Note that h is a vector-valued function of the state variables, which generates the model

counterparts of the data. The mean-zero random vector et is normally distributed with

covariance matrix Q. For parsimony, we assume that Q is determined by the following three

parameters: the standard deviation of the measurement errors for the LIBOR-OIS spreads and

TED spreads (σSP ), the one for the interest rates (σITR), and the one for the Black-implied

volatilities (σOPT ). All measurement errors are iid and independent of one another.

The measurement equation clearly suggests that the linear Kalman filter cannot be used

in our estimation. This is because h is not a linear function: cap/swaption prices as well

as their Black-implied volatilities are nonlinear in the state variables. Therefore, we apply

the extended Kalman filter, in which h is locally linearized at each set of predicted values of

the state variables. In Appendix B, we provide a detailed description of how the extended

Kalman filter is implemented under our setup.

In each iteration of the MLE procedure, we obtain not only the time series of the estimated

latent variables
{
λ̂t, ξ̂t, x̂t

}
, but also the time series of the transition densities {Lt}. Let

12See, for example, Duan and Simonato (1999), Duffee (1999), Chen and Scott (2003), Trolle and Schwartz
(2009), and Filipović and Trolle (2013).
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{tk}nk=1 denote monthly-spaced points in time when the data time series are observed. Then,

the log-likelihood function for the entire observations can finally be expressed as

logL =
n∑

k=1

logLtk . (17)

We obtain our parameter estimates by maximizing this log-likelihood function.13

4 Estimation results and implications

4.1 Parameter estimates

Table 1 reports the values of our parameter estimates, together with their robust standard

errors in parentheses. First of all, we can observe that the parameter values for consumption

growth and expected inflation are economically sensible. During normal periods without

disasters, consumption growth has a mean (µC) of 1.14% and a standard deviation (σC) of

0.73%, consistent with the first two moments of the observed consumption time series in our

sample. The parameter values for expected inflation are also in line with the corresponding

data time series: the long-run mean (q̄) is about 2.12%, the conditional volatility (σq) is

0.65%, and the monthly autocorrelation (e−κq∆t) is approximately 0.96.

Our main focus is on the model parameters that are associated with the dynamics of dis-

aster risk. In our model, disaster risk has a two-factor structure with λt and ξt. While both

processes are estimated to be highly persistent with low mean reversion speed (κλ = 0.3307

and κξ = 0.0601), λt is relatively less persistent than ξt. This is intuitive because λt cap-

tures the short-run component of disaster risk, whereas ξt captures the long-run component.

Consistent with this interpretation, λt exhibits a higher conditional volatility than ξt (i.e.,

σλ > σξ). Overall, our results reveal that the estimated dynamics of disaster risk are broadly

13For robustness, we also run the penalized MLE by adopting the fragility measure of Chen, Dou, and
Kogan (2021) as a penalty function. The fragility measure captures how much our estimated model overfits
in-sample data relative to the baseline case, in which the model is estimated only based on interest rates
without interbank options. While the penalized MLE slightly changes the point estimates of the model
parameters, we find that the overall implications of the model remain intact.
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Consumption growth

µC σC

0.0114 0.0073
(0.0017) (0.0004)

Expected inflation
κq σq q̄

0.5239 0.0065 0.0212
(0.3153) (0.0011) (0.0028)

Disaster risk

κξ σξ ξ̄
0.0601 0.0228 0.0286
(0.0005) (0.0002)

κλ σλ p̄
0.3307 0.1607 0.9840
(0.0105) (0.0012) (0.0389)

Convenience yield
κx σx x̄

3.3895 0.0049 0.0010
(0.0855) (0.0004) (0.0000)

Short rate
δλ δξ δq δ0

-0.1204 -2.1449 0.7047 0.0645
(0.0047) (0.0295) (0.0108)

Market price of risk
θλ θξ θq θN

0.2153 0.7330 2.1165 -0.3829
(0.0155) (0.0296) (0.0219) (0.0045)

Measurement errors
σSP σITR σOPT

0.0012 0.0036 0.0752
(0.0000) (0.0000) (0.0023)

Table 1: Parameter estimates. This table reports the values of the model parameters estimated through
the extended Kalman filter/MLE procedure. The model consists of the following four state variables: real
consumption (ct), expected inflation (qt), instantaneous disaster intensity (λt), and the long-run mean of
disaster intensity (ξt). We also report the dynamics of the instantaneous Treasury convenience rate (xt), the
factor loadings on the short rate, the market prices of risk, and the standard deviations of measurement errors.
Reported together in parentheses are robust standard errors.

consistent with the calibration of Seo and Wachter (2018), who adopt the same two-factor

disaster risk structure. In Section 4.3, we further characterize the time variation in disaster

risk by examining the filtered time series of λt and ξt. The conditional probability of interbank

market failure given the occurrence of a disaster (p̄) is estimated as 0.98, suggesting that the

two types of extreme events are indeed likely to coincide.

We also obtain the dynamics of the instantaneous convenience rate xt from our estimation.

Relative to λt and ξt, the process for xt is much less persistent with κx = 3.3895, which

corresponds to a monthly autocorrelation of 0.72. The long-run mean (x̄) is 0.1%, and the

conditional volatility (σx) is 0.49%. Given that the average 3-month Treasury rate is only

about 1.32% over our sample period, the relative magnitude of the Treasury convenience yield

is not small.
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The estimated coefficients δλ, δξ, and δq in Table 1 show how the three state variables λt,

ξt, and qt affect the nominal risk-free short rate in our estimated model. We observe that the

factor loadings on λt and ξt are negative. This is in accordance with the intuition behind the

precautionary savings motive. When disaster risk rises, investors are inclined to save more to

secure against future uncertainty, and this drives down the real risk-free rate in equilibrium.

In contrast, the factor loading on expected inflation is positive. This can be explained by the

so-called Fisher effect: the nominal risk-free rate is approximately the real risk-free rate plus

the expected inflation rate. Indeed, the magnitude of δq is 0.7, implying that a 1% increase

in expected inflation leads to a 0.7% increase in the nominal risk-free short rate.

Additionally reported are the market prices of risk. We find that the signs of these four

coefficients are reasonable. The market prices of diffusive risk (θλ, θξ, and θq) are positive. This

suggests that the pricing kernel or investors’ marginal utility rises when a positive Brownian

shock (dBλ,t, dBξ,t, or dBq,t) is realized. In contrast, the market price of jump risk (θN) is

negative. This indicates that eθNZC,t is larger than 1, which subsequently implies that the

pricing kernel goes up when a disaster occurs (dNt = 1). All in all, we conclude that the

signs and magnitudes of the model parameters from our estimation well comply with general

economic intuition.

4.2 Model fit to interest rates, caps, and swaptions

We now investigate whether our estimated model is capable of producing a reasonable fit to

the market data on interest rates, caps, and swaptions. Figure 1 first examines short-term

interest rates by plotting the time series of the 3-month Treasury rate (Panel A), OIS rate

(Panel B), interbank rate (Panel C), LIBOR-OIS spread (Panel D), TED spread (Panel E),

and Treasury convenience yield (Panel F) in the data (solid blue line) and in the model

(dashed red line).

Panel A of Figure 1 shows that at the beginning of our data sample, the Treasury rate

entered a steady downward trend up until 2004. During this time, the Federal Reserve lowered

the federal funds rate from 6% to 1%, as investors faced high economic and financial uncer-
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Panel A: Treasury rate Panel B: OIS rate Panel C: Interbank rate

Panel D: LIBOR-OIS spread Panel E: TED spread Panel F: Convenience yield

Figure 1: 3-month interest rates and their spreads in the data and in the model. This figure
plots the time series of the 3-month Treasury rate (Panel A), OIS rate (Panel B), interbank rate (Panel C),
LIBOR-OIS spread (Panel D), TED spread (Panel E), and Treasury convenience yield (Panel F) in the data
and in the model, from February 2002 to December 2019. The solid blue lines represent the data, and the
dashed red lines represent the model. All interest rates are calculated using continuously compounded zero
rates and are expressed in percentage terms.

tainty stemming from the 2001 recession, September 11 attacks, and Afghanistan War. This

period of expansionary monetary policy was followed by a 3-year period of contractionary

monetary policy due to a housing market bubble and high inflation, causing the Treasury

rate to gradually increase. From 2007, the Treasury rate began to rapidly decline again when

the economy was hit by the subprime mortgage crisis and eventually reached a level close

to zero. Since then, the Treasury rate maintained a very low level until the Federal Reserve

started raising interest rates in 2015.

The 3-month OIS rate in Panel B and the 3-month interbank rate in Panel C also exhibit

similar time series patterns compared to the 3-month Treasury rate, although their magnitudes

are generally larger. However, a distinctive pattern is observed around September 2008 when

Lehman Brothers filed for bankruptcy. In contrast to the other two rates, the interbank

rate sharply increased, reflecting a serious risk of a potential systemic meltdown in financial

markets. This event is more noticeable from the time series of the LIBOR-OIS spread in

Panel D and that of the TED spread in Panel E. While the LIBOR-OIS spread stayed at

a high level between 2007 and 2009 during the Great Recession period, an exceptionally
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high value of roughly 2.4% was seen in September 2008. Fluctuations in the TED spread

are more magnified. As can be seen in Panel F, the 3-month Treasury convenience yield

shot up to about 1% and remained high as investors hoarded Treasury securities (flight-to-

safety/liquidity). As a result, the TED spread, which is the sum of the LIBOR-OIS spread

and the Treasury convenience yield, sharply rises, even beyond 3%.

From the six panels of Figure 1, we find that our model is able to account for the patterns of

the three types of interest rates as well as their spreads. The dashed red lines that represent

the model-implied time series closely resemble the solid blue lines that represent the data

time series, peaking and dipping around the same points in time. This is the case for longer-

maturity interest rates as well: in Figure 2, we find that the model-implied Treasury rates, OIS

rates, and interbank rates with 2-, 3-, and 5-year maturities mimic their data counterparts

fairly well. Granted, the fit is not perfect. For instance, although our model matches the

low-frequency trend of the 5-year interest rates relatively well, it does not capture some of

their high-frequency short-run fluctuations, as can be seen in Panels C, F, and I. Instead of

adding more factors to improve the fit, we choose to keep our model simple and parsimonious,

as our goal is to extract time-varying disaster risk, not to fit interest rates.

We now turn to caps and swaptions. Panels A, B, and C of Figure 3 present the time

series of the Black-implied volatilities for the 2-, 3-, and 5-year caps, and Panels D, E, and

F present those for the 1-into-4, 2-into-3, and 4-into-1 swaptions. In each panel, the solid

blue line denotes the data, and the dashed red line denotes the model. Before discussing the

model outcomes, we point out that interpreting the magnitude and the time series variation of

Black-implied volatilities in the data is not straightforward. For example, the Black-implied

volatilities for the 2-year cap are generally much higher than those for the 5-year cap. Why

is this the case? Furthermore, in all of the panels in Figure 3, the Black-implied volatilities

between 2010 and 2016 are exceptionally high even compared to the Great Recession period

between 2007 and 2009.

Why do the time series and cross sectional patterns of Black-implied volatilities seem

odd? The reason is that Black-implied volatilities for caps and swaptions, converted from
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Panel A: 2-year Treasury rate Panel B: 3-year Treasury rate Panel C: 5-year Treasury rate

Panel D: 2-year OIS rate Panel E: 3-year OIS rate Panel F: 5-year OIS rate

Panel G: 2-year interbank rate Panel H: 3-year interbank rate Panel I: 5-year interbank rate

Figure 2: Interest rates in the data and in the model. This figure depicts the time series of the
Treasury rates (Panels A, B, and C), OIS rates (Panels D, E, and F), and interbank rates (Panels G, H, and
I) with 2-, 3-, and 5-year maturities in the data and in the model, from February 2002 to December 2019.
The solid blue lines represent the data, and the dashed red lines represent the model. All values are expressed
in percentage terms.

their market prices through the Black formulas, represent yield volatilities, not bond price

volatilities. Hence, the level of Black-implied volatilities tends to be higher when the level of

interest rates is lower. This explains why Black-implied volatilities in the data turn out to be

so high in the post-Great Recession period, despite relatively lower uncertainty in the market:

a 1% expected movement in a yield corresponds to 20% yield volatility if the yield is currently

at 5%, whereas it corresponds to 100% if the yield is at 1%. To facilitate interpretation, it is

possible to convert each Black-implied volatility into its equivalent price volatility. Under the

Black model, forward yield volatility σyield shares the following relation with forward-starting

bond price volatility σprice:

σprice = τ × y × σyield,
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Panel A: 2-year cap Panel B: 3-year cap Panel C: 5-year cap

Panel D: 1-into-4 swaption Panel E: 2-into-3 swaption Panel F: 4-into-1 swaption

Figure 3: Black-implied volatilities in the data and in the model. This figure presents the time
series of the Black-implied volatilities for the 2-, 3-, and 5-year caps (Panels A, B, and C) and those for the
1-into-4, 2-into-3, and 4-into-1 swaptions (Panels D, E, and F) in the data and in the model. The sample
period is from February 2002 to December 2019. The solid blue lines represent the data, and the dashed red
lines represent the model. All values are expressed in percentage terms.

where, with a slight abuse of notation, τ is the maturity of the bond and y is the given

(forward) yield. Using this simple relation, Figure 4 converts the Black-implied volatilities

in the data and in the model into their equivalent forward-starting bond price volatilities.

The Black-implied volatility for the T -maturity cap is converted into the price volatility of a

bond that corresponds to its last caplet: a 6-month zero-coupon bond starting after (T − 0.5)

years and maturing after T years from today. The Black-implied volatility for the T -into-T̄

swaption is converted to the price volatility of a T̄ -maturity zero-coupon bond starting T

years from today.

Figure 4 shows that our model’s fit to the data is decent but not perfect. While the fit to

short-maturity caps and short-tenor swaptions (Panels A, B, and F) is reasonably good, the

model slightly exaggerates the fluctuations of longer-maturity caps and longer-tenor swaptions

compared to the data (Panels C, D, and E). It is not surprising that our model is not able

to well match every cap or swaption. Prior studies document that it is challenging to jointly

account for the pricing of caps and swaptions in crisis periods, even with a flexible statistical

model featuring several latent processes (Longstaff, Santa-Clara, and Schwartz, 2001; Han,

2007; Trolle and Schwartz, 2009). We want to reiterate that our objective is not to fit the
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Panel A: 2-year cap Panel B: 3-year cap Panel C: 5-year cap

Panel D: 1-into-4 swaption Panel E: 2-into-3 swaption Panel F: 4-into-1 swaption

Figure 4: Equivalent bond price volatilities in the data and in the model. This figure plots the
time series of the equivalent bond price volatilities for the 2-, 3-, and 5-year caps (Panels A, B, and C) and
those for the 1-into-4, 2-into-3, and 4-into-1 swaptions (Panels D, E, and F) in the data and in the model.
The sample period is from February 2002 to December 2019. The solid blue lines represent the data, and the
dashed red lines represent the model. All values are expressed in percentage terms.

data perfectly. Rather, we attempt to characterize time-varying disaster risk by exploiting

the information contained in interbank rates and their options. For our purposes, we believe

that our simple economic model does a reasonably good job of capturing the data overall.

4.3 Characterizing time-varying disaster risk

Our estimation procedure enables us to characterize the time variation in disaster risk via the

extended Kalman filter. Figure 5 displays the filtered time series of the short-run disaster risk

component λt (solid blue line) and the long-run disaster risk component ξt (dashed red line).

From the figure, it is clear that the instantaneous disaster risk λt is much more volatile

than its time-varying mean ξt. Since λt is highly persistent, it sometimes significantly deviates

from its mean value of 2.86% for extended periods of time. While the instantaneous disaster

risk hovered around a low level below 1% between 2002 and 2006, it abruptly increased

to an extremely high level at the onset of the subprime mortgage crisis in 2007. During

the subsequent 2-year period of severe economic downturns and financial market turmoil, λt

jumped to a level above 4%. Specifically, when Lehman Brothers declared bankruptcy in

September 2008, λt reached its highest value, exceeding 9%. After the crisis, the level of λt
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Figure 5: Implied time-varying disaster risk. This figure displays the filtered time series of the short-run
disaster risk component λt (solid blue line) and the long-run disaster risk component ξt (dashed red line),
from February 2002 to December 2019. All values are expressed in percentage terms.

came back to a normal level, but we still can see some small peaks that are associated with

economic and financial uncertainty, like in the European sovereign debt crisis.

While λt captures a fast-moving component of disaster risk, ξt captures a slow-moving

component. The filtered time series in Figure 5 reveal that ξt is much less volatile than λt and

moves slowly without deviating too much from its mean value. Moreover, we observe that ξt

is far more persistent than λt: once it is hit by a large positive shock, it takes a long time for

it to mean-revert back to its previous level. For instance, the level of ξt was still high during

the post-Great Recession period. This is in sharp contrast with the behavior of λt, whose

level quickly dropped even before the crisis was over.

Which aspect of the data makes it possible for us to characterize the time variation in

λt and ξt, as discussed above? To understand how time-varying disaster risk is identified

through our model, we conduct a sensitivity analysis. Figure 6 shows how the 3-, 6-, 12-

month LIBOR-OIS spreads (Panel A) and the Black-implied volatilities for caps (Panel B)

and swaptions (Panel C) change when we vary λt or ξt from the 5th percentile to the 95th

percentile of its filtered values. In each panel, the solid blue lines describe the sensitivity

with respect to λt while fixing ξt at the median, whereas the dashed red lines describe the
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sensitivity with respect to ξt while fixing λt at the median. Expected inflation qt is set at its

median value in both cases. Lastly, the black dot in the middle of each bar represents the

model value when λt and ξt are both at their median values.

Panel A: Sensitivity of LIBOR-OIS Panel B: Sensitivity of caps Panel C: Sensitivity of swaptions

Figure 6: Comparative statics. This figure shows how the 3-, 6-, 12-month LIBOR-OIS spreads (Panel
A) and the Black-implied volatilities for caps (Panel B) and swaptions (Panel C) change when λt or ξt varies
from the 5th percentile to the 95th percentile of its filtered values. In each panel, the solid blue lines describe
the sensitivity with respect to λt while fixing ξt at the median, whereas the dashed red lines describe the
sensitivity with respect to ξt while fixing λt at the median. Expected inflation qt is set at its median value in
both cases. The black dot in the middle of each bar represents the model value when λt and ξt are both at
their median values. All values are expressed in percentage terms.

Panel A of Figure 6 reveals that the short-run component of disaster risk λt is mainly

identified by the LIBOR-OIS spreads. While the LIBOR-OIS spreads increase with both λt

and ξt, they are much more sensitive to λt. For example, the 3-month LIBOR-OIS spread

moves substantially, ranging from 0.1% to 0.9%, when λt varies between the 5th and 95th

percentiles. In contrast, the 3-month LIBOR-OIS spread barely changes with respect to ξt,

as can be seen in the panel.

These results are intuitive. The 3-month interbank rate is higher than the 3-month OIS

rate because it is further influenced by the risk of a disaster happening over a 3-month horizon.

Therefore, their gap, the 3-month LIBOR-OIS spread, is mostly sensitive to the short-run

component of disaster risk. For the same reason, ξt plays a more noticeable role if a longer

horizon is considered: from the panel, we find that the longest LIBOR-OIS spread with a

12-month maturity is more responsive to changes in ξt, compared to the 3-month LIBOR-OIS

spread. However, the magnitude of the effect of ξt is still minuscule across all maturities,
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relative to the effect of λt. This confirms that the time series of the LIBOR-OIS spreads are

the major channel through which the time variation of λt is identified.

Although the long-run component of disaster risk ξt has little impact on the LIBOR-OIS

spreads, it has a large impact on interbank rate options. In Panels B and C of Figure 6,

we discover completely opposite patterns. The Black-implied volatilities in both panels are

highly sensitive to changes in ξt, whereas they are relatively less sensitive to changes in λt.

Note that the payoffs of caps and swaptions depend on future interbank rates over a long

horizon ranging from 1 to 5 years. Hence, the pricing data on caps and swaptions play a

critical role in characterizing the time variation of ξt.

In sum, our analysis demonstrates that both the short-run and long-run components of

disaster risk are well identified using the data on interbank rates and their options. As

discussed in Section 2.1, LIBOR-OIS spreads do not depend on any risk factors orthogonal to

disaster risk and, thus, are highly informative about disaster risk, especially with respect to

its short-run component. Furthermore, caps and swaptions are long-term option contracts on

future interbank rates, which are pivotal in estimating the long-run component of disaster risk.

It is worth noting that the benefit of using interbank rate options is not limited to identifying

the long-run component: the forward-looking information from caps and swaptions helps us

accurately estimate the overall dynamics of disaster risk.

4.4 Implications for the equity market

Rare disaster models are often criticized as macro-finance models with “dark matter.” In

order to explain the high equity premium and volatility in the postwar period, these models

need to rely on the possibility of extremely bad events and its substantial time variation.

However, it is not possible to measure disaster risk directly from the data, nor statistically

test it with meaningful power, due to the rare nature of such events.

This dark matter criticism raises some concerns about how disaster risk models are cali-

brated: in typical variable disaster risk models, the dynamics of disaster risk are calibrated to

match some key stock market moments, such as the equity premium and the market volatility.
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However, Chen, Dou, and Kogan (2021) point out that a model with economic dark matter is

likely to be fragile due to the lack of internal refutability and poor out-of-sample performance.

Addressing this criticism is challenging: as discussed by Cochrane (2017), it requires either

independently anchoring time-varying disaster risk to some data or reconciling multiple asset

classes under one consistent assumption about disaster risk.

Our analysis highlights that the interbank market can potentially be useful for addressing

the dark matter criticism. We make a plausible assumption that consumption disasters are

likely to coincide with interbank market failure. This identification assumption makes it

possible to extract time-varying disaster risk that is manifested in LIBOR-OIS spreads as

well as caps and swaptions. Since our estimation does not depend on equity market moments,

our results can serve as an external/out-of-sample validity test of disaster risk models for the

equity market. The parameter estimates from Section 4.1 suggest that the estimated disaster

dynamics are fairly close to those implied by Seo and Wachter (2018), whose calibration is

primarily based on the equity market. Overall, our finding that disaster risk is significant in

size and in variation strongly supports a disaster-based explanation of various asset pricing

puzzles (Gabaix, 2012; Gourio, 2012; Wachter, 2013).

An additional advantage of our approach is that we obtain the past time series of the

short-run and long-run components of disaster risk, namely λt and ξt. These time series

provide an extra basis for testing the implications of disaster risk for the equity market. First

of all, Panel A of Table 2 considers the following conditional moments that are associated with

the equity market: the price-dividend ratio (log P/D), price-earnings ratio (log P/E), implied

variance (IV), expected realized variance (ERV), and variance risk premium (VRP).14 Since

these conditional moments are functions of disaster risk in variable disaster risk models, one

testable implication is that their time series variations should be explained by disaster-related

state variables.

Hence, we regress the five conditional equity market moments on λt and ξt. We standardize

both independent and dependent variables in our regressions to facilitate the interpretation of

14The price-dividend and price-earnings ratios are downloaded from Robert Shiller’s website. The three
variance-related variables are downloaded from Hao Zhou’s website.
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Panel A: Valuation ratios and variance-related variables

(1) (2) (3) (4) (5)
log P/D log P/E IV ERV VRP

λt
-0.74 -0.53 0.71 0.64 0.35
[-5.18] [-4.07] [4.67] [3.47] [2.37]

ξt
-0.23 -0.20 -0.04 -0.03 -0.03
[-3.09] [-2.47] [-0.67] [-0.58] [-0.48]

Adj R2 (%) 66.59 35.49 48.88 40.19 11.32

Panel B: Out-of-the-money put option prices

(1) (2) (3) (4) (5)
1 month 3 months 6 months 9 months 12 months

λt
0.69 0.67 0.64 0.58 0.39
[4.60] [5.13] [5.02] [4.79] [4.06]

ξt
-0.02 0.07 0.18 0.29 0.29
[-0.31] [1.04] [2.75] [4.35] [4.05]

Adj R2 (%) 46.66 46.52 48.73 47.87 28.06

Table 2: Disaster risk and conditional equity moments. This table reports the results of contempo-
raneous time series regressions that examine the relation between the filtered disaster risk variables (λt and
ξt) and conditional equity market moments. In both panels, we standardize the independent and dependent
variables. In Panel A, the dependent variables are the log price-dividend ratio (log P/D), log price-earnings
ratio (log P/E), implied variance (IV), expected realized variance (ERV), and the variance risk premium
(VRP). In Panel B, the dependent variables are the normalized put prices of 90% moneyness put options with
1-, 3-, 6-, 9-, and 12-month maturities. The t-statistics are reported in brackets and are computed based on
the Newey and West (1987) method with four lags.

slope coefficients. In columns (1) and (2) of Panel A, we document that the valuation ratios

fall when λt and ξt rise. For instance, a one standard deviation increase in λt leads to a 0.74

standard deviation drop in the log price-dividend ratio. A one standard deviation increase

in ξt leads to a 0.23 standard deviation drop in the log price-dividend ratio. These negative

relations are statistically significant with high Newey and West (1987) t-statistics.15 These

results are consistent with economic intuition as well as empirical evidence: stock market

valuations are low in bad economic times with high disaster risk.

In columns (3), (4), and (5), we examine the relation between disaster risk and each of

the three variance-related variables. Note that the implied variance and the expected realized

variance measure the risk-neutral and physical expectations of future 1-month stock market

variance, respectively. The variance risk premium, calculated as their difference, captures

15Since the sample size is 215, we choose the number of lags to be 0.75 3
√
215 ≃ 4, following Newey and West

(1994).
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compensation for taking variance risk over a 1-month horizon. We expect positive relations

from our regression because higher disaster risk results in higher variance risk as well as higher

compensation for variance risk. In line with this, we find a strong positive relation between

the short-run component of disaster risk λt and each variance-related variable. However, we

find that the impact of the long-run component ξt is insignificant. This is not surprising, since

the variance-related variables are based on a very short horizon, namely, a month.

Panel B of Table 2 considers out-of-the-money put option prices as additional conditional

moments since they are particularly informative about tail events. At each point in time, we

obtain the prices of S&P 500 put options with 90% moneyness, normalized by the underlying

index price.16 This normalization allows us to compare option prices at different points in time

by removing the effect of the index level. Columns (1)-(5) report the results from regressing

the normalized prices of put options with 1-, 3-, 6-, 9-, and 12-month maturities on the time

series of λt and ξt.

Column (1) of Panel B demonstrates that λt significantly and positively explains the 1-

month put option price while ξt has no statistically significant impact. This is consistent

with the results for the 1-month-ahead implied variance in Panel A. Comparing the five

columns in Panel B, we can see that λt is significant across all maturities. In the case of

ξt, its economic magnitude and statistical significance gradually increase as option maturity

increases. As a result, the effect of ξt becomes significant for maturities longer than or equal

to 6 months. These results are sensible: the long-run component of disaster risk ξt better

explains long-horizon equity moments, such as the price-dividend ratio, price-earnings ratio,

and longer-term option prices.

So far, we have examined whether disaster risk can explain the variations in conditional

equity market moments. Another testable implication of disaster risk for the equity market

is that equity returns should be negatively associated with shocks to λt and ξt. Panel A of

16We download options data from OptionMetrics. Since we do not observe options with fixed moneyness
nor a constant maturity every day, we use a regression-based interpolation of implied volatilities with respect
to moneyness and maturity by adopting the methodology of Seo and Wachter (2019). The price of an option
with a specific moneyness and a specific maturity is, then, calculated by plugging the interpolated implied
volatility into the Black-Scholes formula.
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Table 3 reports the results from regressing the market, size, value, momentum, and liquidity

factors on changes in λt and ξt.
17 We find that changes in both the short-run and long-run

components of disaster risk are indeed negatively related to the market, size, and liquidity

factors. This implies that λt and ξt capture more than just aggregate market risk. We do not

discover any significant results for the value and momentum factors.

Panel A: Factor portfolios

(1) (2) (3) (4) (5)
MktRf SMB HML MOM LIQ

∆λt
-0.23 -0.10 0.10 0.10 -0.15
[-4.01] [-3.15] [0.98] [1.17] [-1.32]

∆ξt
-0.28 -0.22 -0.10 0.15 -0.20
[-4.03] [-4.14] [-1.14] [1.68] [-2.43]

Adj R2 (%) 12.85 5.54 1.47 2.72 6.12

Panel B: Fama-French 10 industry portfolios

(1) (2) (3) (4) (5)
Durbl Manuf HiTec Telcm Shops

∆λt
-0.17 -0.24 -0.21 -0.23 -0.17
[-3.71] [-3.60] [-4.30] [-4.88] [-4.37]

∆ξt
-0.26 -0.24 -0.33 -0.25 -0.25
[-5.44] [-4.26] [-3.98] [-3.08] [-3.54]

Adj R2 (%) 9.37 11.47 15.43 11.68 8.61

(6) (7) (8) (9) (10)
Enrgy Hlth NoDur Utils Other

∆λt
-0.20 -0.18 -0.13 -0.24 -0.18
[-3.53] [-2.93] [-2.08] [-3.61] [-2.81]

∆ξt
-0.20 -0.16 -0.09 -0.03 -0.26
[-3.39] [-2.27] [-1.27] [-0.30] [-4.02]

Adj R2 (%) 7.50 5.59 2.19 5.40 9.51

Table 3: Shocks to disaster risk and equity returns. This table reports the results of contemporaneous
time series regressions that examine the relation between changes in the filtered disaster risk variables (λt

and ξt) and equity returns. In both panels, we standardize the independent and dependent variables. In
Panel A, the dependent variables are the excess market return (MktRf), size factor return (SMB), book-to-
market factor return (HML), momentum factor return (MOM), and liquidity factor return (LIQ). In Panel B,
the dependent variables are the excess returns on the 10 Fama-French industry portfolios. These industries
include consumer durables (Durbl), manufacturing (Manuf), business equipment (HiTec), telecommunication
(Telcm), retail (Shops), energy (Enrgy), healthcare (Hlth), consumer non-durables (NoDur), utilities (Utils),
and others (Other). The t-statistics are reported in brackets and are computed based on the Newey and West
(1987) method with four lags.

Lastly, Panel B of Table 3 investigates how shocks to disaster risk affect contemporaneous

17The market, size, and value factors follow Fama and French (1993), and the momentum factor follows
Fama and French (2012). These time series are downloaded from Kenneth French’s website. The liquidity
risk factor follows Pastor and Stambaugh (2003) and is downloaded from Robert Stambaugh’s website.
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excess returns on the Fama-French 10 industry portfolios. Intuitively, some industries are

less sensitive to disaster risk than others. For example, industries that focus on consumer

staples, such as food and utilities, are likely to be less exposed to disaster risk. This intuition

is confirmed in Panel B: the relations between changes in disaster risk and industry returns

show relatively smaller t-statistics for industries including consumer non-durables and utilities

(columns (8)-(9)). In contrast, for industries that are more business-cycle sensitive, such

as consumer durables, manufacturing, business equipment, telecommunication, and retail

(columns (1)-(5)), we obtain more significant negative relations.

4.5 COVID-19 Pandemic Crisis

In 2020, the global economy and financial markets were severely impacted by the COVID-19

pandemic crisis. What do interbank rates and their options imply about this crisis through

our model framework?

We extend our data sample and examine how the implied short-run and long-run compo-

nents of disaster risk progressed over the pandemic period. Based on the estimated parameters

in Table 1, we apply the extended Kalman filter constructed in Section 3.2 to the additional

data from January 2020 to December 2020.18 Figure 7 plots the resulting time series of filtered

λt (solid blue line) and ξt (dashed red line).

The figure reveals that the long-run component ξt immediately increased at the onset

of the crisis and remained elevated throughout 2020 (3.8% in December). In contrast, the

short-run component λt exhibited drastic changes over the period. Until February, λt stayed

at a low level of around 1%, but it jumped up to about 3.5% in March and rose as high as

4.5% in April. This was followed by an abrupt decline in May, pushing λt quickly back to its

pre-pandemic level. Overall, Figure 7 suggests that, at least through our model framework,

the COVID-19 pandemic resulted in a very short-lived economic/financial crisis, despite the

fact that the pandemic and its impact are very much in play even in 2021. This interpretation

is in line with the view of the Business Cycle Dating Committee of the NBER; the committee

18In this out-of-sample filtering, we determine the covariance matrix of measurement errors Q using the
mean squared measurement errors obtained from the in-sample period.
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Figure 7: Implied disaster risk during the COVID-19 pandemic crisis. This figure displays the
filtered time series of the short-run disaster risk component λt (solid blue line) and the long-run disaster risk
component ξt (dashed red line) during the COVID-19 pandemic crisis. The time series are from January 2019
to December 2020. All values are expressed in percentage terms.

determined that the pandemic-originated recession only lasted for two months (March and

April), making it the shortest U.S. recession ever documented.

5 Conclusion

While prior studies on rare disasters calibrate time-varying disaster risk, accurately charac-

terizing it from the data remains a considerable challenge. This is extremely difficult because

disasters are nearly unobservable events in the post-war sample. In order to tackle this is-

sue, our paper ties time-varying probabilities of disasters to an independent source of data:

interbank rates and their options.

Our approach relies on the assumption that macroeconomic disasters are likely to coincide

with interbank market failure. This link allows us to derive the model-implied interest rate

spreads and option prices on interbank rates as functions of the short-run and long-run com-

ponents of disaster risk. We show that these data are particularly sensitive to disaster risk,

which enables us to reliably infer not only the level of time-varying disaster probabilities but

also their dynamics.

The estimation results suggest that disaster risk is significant in size and in variation,

strongly upholding the validity of macro-finance models with the rare disaster mechanism.
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Using the filtered time series of the short-run and long-run components of disaster risk, we

also confirm that the implications of these models for equity moments and equity returns are

consistent with empirical evidence. Overall, our analysis highlights that interest rates and

their options can be useful for deepening our understanding about extreme economic tail risk.
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Appendix

A Model derivations

A.1 Risk-neutral dynamics

Given the assumption about the pricing kernel in equation (4), the Brownian shocks under

the risk-neutral measure are written as follows:

dBQ
C,t = dBC,t − θCdt,

dBQ
λ,t = dBλ,t − θλ

√
λtdt,

dBQ
ξ,t = dBξ,t − θξ

√
ξtdt,

dBQ
q,t = dBq,t − θqdt,

where θC , θλ, θξ, and θq indicate the market prices of risk. Moreover, under the risk-neutral

measure, the disaster intensity and the moment generating function (MGF) of the jump size

distributions are represented as

λQt = λtΦZ(θN , 0, 0),

EQ [
eu1ZC+u2ZL+u3Zq

]
=

ΦZ(u1 + θN , u2, u3)

ΦZ(θN , 0, 0)
,

where ΦZ(u1, u2, u3) = E
[
eu1ZC+u2ZL+u3Zq

]
is the MGF of (ZC , ZL, Zq) under the physical

measure. This leads to the following risk-neutral dynamics of the underlying processes,

dCt

Ct

= µQ
Cdt+ σCdB

Q
C,t +

(
eZC,t − 1

)
dNt,

dλt = κQλ (νξt − λt)dt+ σλ
√
λtdB

Q
λ,t,

dξt = κQξ (ξ̄
Q − ξt)dt+ σξ

√
ξtdB

Q
ξ,t,

dqt = κQq (q̄
Q − qt)dt+ σqdB

Q
q,t + Zq,tdNt,
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where µQ
C = µC + θCσC , κ

Q
λ = κλ − σλθλ, ν = κλ

κQ
λ

, κQξ = κξ − σξθξ, ξ̄
Q =

κξ ξ̄

κQ
ξ

, κQq = κq, and

q̄Q = κq q̄+θqσq

κQ
q

.

A.2 Zero-coupon yields

The time-t value of $1 zero-coupon interbank lending maturing at time t+ τ is written as

Pi(t, t+ τ) = EQ
t

[
e−

∫ t+τ
t rudu

Lt+τ

Lt

]
.

By multiplying both sides of the above equation with e−
∫ t
0 ruduLt, we obtain the following

martingale:

e−
∫ t
0 ruduPi(t, t+ τ)Lt = EQ

t

[
e−

∫ t+τ
0 ruduLt+τ

]
.

We conjecture that the price of a zero-coupon interbank lending is expressed as

Pi(t, t+ τ) = exp(ai(τ) + bi,λ(τ)λt + bi,ξ(τ)ξt + bi,q(τ)qt).

Since
(
e−

∫ t
0 ruduPi,t(τ)Lt

)
is a martingale, the sum of the drift and the jump compensator

should be zero. This martingale property provides the system of ordinary differential equations

(ODEs) for ai, bi,λ, bi,ξ, and bi,q as follows:

a′i(τ) = −δ0 + bi,ξ(τ)κ
Q
ξ ξ̄

Q + bi,q(τ)κ
Q
q q̄

Q +
1

2
bi,q(τ)

2σ2
q ,

b′i,λ(τ) = −δλ − bi,λ(τ)κ
Q
λ +

1

2
bi,λ(τ)

2σ2
λ

+ p̄ΦZ(θN , 1, bi,q(τ)) + (1− p̄)ΦZ(θN , 0, bi,q(τ))− ΦZ(θN , 0, 0),

b′i,ξ(τ) = −δξ + bi,λ(τ)κ
Q
λ ν − bi,ξ(τ)κ

Q
ξ +

1

2
bi,ξ(τ)

2σ2
ξ ,

b′i,q(τ) = −δq − bi,q(τ)κ
Q
q ,

with the initial condition: ai(0) = bi,λ(0) = bi,ξ(0) = bi,q(0) = 0.

Similarly, the price of $1 zero-coupon risk-free lending is given by

Pf (t, t+ τ) = EQ
t

[
e−

∫ t+τ
t rudu · 1

]
,
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and we conjecture the price has the form of

Pf (t, t+ τ) = exp(af (τ) + bf,λ(τ)λt + bf,ξ(τ)ξt + bf,q(τ)qt).

Since
(
e−

∫ t
0 ruduPf,t(τ)

)
is a martingale, the sum of the drift and the jump compensator should

be zero. This martingale property provides the following system of ODEs for af , bf,λ, bf,ξ,

and bf,q:

a′f (τ) = −δ0 + bf,ξ(τ)κ
Q
ξ ξ̄

Q + bf,q(τ)κ
Q
q q̄

Q +
1

2
bf,q(τ)

2σ2
q ,

b′f,λ(τ) = −δλ − bf,λ(τ)κ
Q
λ +

1

2
bf,λ(τ)

2σ2
λ + ΦZ(θN , 0, bf,q(τ))− ΦZ(θN , 0, 0),

b′f,ξ(τ) = −δξ + bf,λ(τ)κ
Q
λ ν − bf,ξ(τ)κ

Q
ξ +

1

2
bf,ξ(τ)

2σ2
ξ ,

b′f,q(τ) = −δq − bf,q(τ)κ
Q
q ,

with the initial conditions: af (0) = bf,λ(0) = bf,ξ(0) = bf,q(0) = 0. Note that bi,q(τ) and

bf,q(τ) are identical, as their ODEs are identical with the same initial condition. Therefore,

we simply denote them as bq(τ).

Now we turn to the Treasury rate. The stochastic differential equation for xt implies that

for any u ≥ t,

xu = xte
−κx(u−t) + x̄

(
1− e−κx(u−t)

)
+

∫ u−t

0

σxe
−κx(u−t−s)dBx,s.

Clearly, xu is Gaussian and so is
(∫ t+τ

t
xudu

)
. Hence, the expression for Et

[
e
∫ t+τ
t xudu

]
in

equation (9) can be derived using the moment generating function of a normal distribution.

This leads us to the following deterministic functions ax and bx shown in equation (9):

ax(τ) =

(
x̄+

σ2
x

2κ2x

)[
1− e−κxτ

κx
− τ

]
+

σ2
x

4κx

[
1− e−κxτ

κx

]2
,

bx(τ) = −
(
1− e−κxτ

κx

)
.
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Based on the identity y
(τ)
g,t = y

(τ)
f,t − y

(τ)
x,t , the τ -maturity Treasury rate y

(τ)
g,t is obtained by

y
(τ)
g,t = −1

τ

[
af (τ)− ax(τ) + bf,λ(τ)λt + bf,ξ(τ)ξt + bq(τ)qt − bx(τ)xt

]
.

A.3 Cap and swaption pricing

Before deriving the expressions for the prices of caps and swaptions, we first find the pricing

formula for a put option on Pi(T0, T1) with a strike price K. Following Duffie, Pan, and

Singleton (2000), Collin-Dufresne and Goldstein (2003), and Trolle and Schwartz (2009), we

compute the put option price by using the transform analysis:

P(t, T0, T1, K) = EQ
t

[
e−

∫ T0
t rsds(K − Pi(T0, T1))1{Pi(T0,T1)<K}

]
= KG0,1(logK)−G1,1(logK),

where

Ga,b(y) =
ψ(a, t, T0, T1)

2
− 1

π

∫ ∞

0

Im [ψ(a+ iub, t, T0, T1)e
−iuy]

u
du,

ψ(u, t, T0, T1) = EQ
t

[
exp

(
−
∫ T0

t

rsds

)
eu log(Pi(T0,T1))

]
.

Note that the function ψ solves the complex-valued ODEs of Duffie, Pan, and Singleton

(2000), and the operator Im[·] represents the imaginary part of a complex number.

The time-t cap price is given by equation (11). Under the approximation e
−

∫ tj+1
tj

rsds ≈

Pi(tj, tj+1), we re-express the cap pricing formula as

V (T )
cap (t,K) ≈

mT∑
j=1

EQ
t

[
exp

(
−
∫ tj

t

rsds

)
Pi(tj, tj+1)

[
1

Pi(tj, tj+1)
− 1−∆×K

]+]

= (1 + ∆×K)

mT∑
j=1

P
(
t, tj, tj+1,

1

1 + ∆×K

)
. (A.1)

As discussed in Section 2.4, we price swaptions by adopting the stochastic duration method

suggested by Wei (1997), Munk (1999), and Trolle and Schwartz (2009). Applying this method
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to equation (13) results in:

V (T,T̄ )
pay (t,K) = EQ

t

[
exp

(
−
∫ t+T

t

rsds

)[
1− V

(T̄ )
fixed(t+ T,K)

]+]
≈ ζP(t, T, t+D(t, T, T̄ ), ζ−1), (A.2)

where ζ =
∑T̄ /∆

l=1 YlPi(t,t+T+l∆)

Pi(t,t+D(t,T,T̄ ))
. The stochastic duration D(t, T, T̄ ), or simply D(t), is defined

as a quantity that satisfies:

bi,λ(D(t))2σ2
λλt + bi,ξ(D(t))2σ2

ξξt + bq(D(t))2σ2
q

+ [Φ(θN , 0, 2bq(D(t)))− 2Φ(θN , 0, bq(D(t))) + Φ(θN , 0, 0)]λt

=

T̄ /∆∑
j=1

wjbi,λ(T + j∆)

2

σ2
λλt +

T̄ /∆∑
j=1

wjbi,ξ(T + j∆)

2

σ2
ξξt +

T̄ /∆∑
j=1

wjbq(T + j∆)

2

σ2
q

+

T̄ /∆∑
j=1

[
w2

jΦ(θN , 0, 2bq(T + j∆))− 2wjΦ(θN , 0, bq(T + j∆))

+
∑
k>j

2wjwkΦ(θN , 0, bq(T + j∆) + bq(T + k∆))

]
+ Φ(θN , 0, 0)

λt, (A.3)

where wj =
YjPi(t,t+T+j∆)∑T̄ /∆
l=1 YlPi(t,t+T+l∆)

, Yj = ∆×K for j = 1, 2, · · · , T̄
∆
− 1, and YT̄ /∆ = 1+∆×K.

B Extended Kalman filter

As discussed in Section 3.2, we derive the discrete-time state equation based on the exact re-

lation between St = [λt, ξt, xt]
⊤ and St−∆t = [λt−∆t, ξt−∆t, xt−∆t]

⊤. To do so, we first integrate

both sides of the stochastic differential equations for λt, ξt, and xt from time t−∆t to time t:

λt = λt−∆t + κλ

∫ t

t−∆t

(ξu − λu)du+ σλ

∫ t

t−∆t

√
λudBλ,u,

ξt = ξt−∆t + κξ

∫ t

t−∆t

(ξ̄ − ξu)du+ σξ

∫ t

t−∆t

√
ξudBξ,u,

xt = xt−∆t + κx

∫ t

t−∆t

(x̄− xu)du+ σx

∫ t

t−∆t

dBx,u.
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Note that an Ito integral is a martingale and, hence, its conditional mean is zero. By taking the

conditional expectations Et−∆t[·] on both sides of the equations, we simply obtain Et−∆t [St] =

η +ΨSt−∆t, where

η =


− κλξ̄

κλ−κξ

(
e−κξ∆t − e−κλ∆t

)
+ ξ̄

(
1− e−κλ∆t

)
ξ̄
(
1− e−κξ∆t

)
x̄
(
1− e−κx∆t

)
 ,

Ψ =


e−κλ∆t κλ

κλ−κξ

(
e−κξ∆t − e−κλ∆t

)
0

0 e−κξ∆t 0

0 0 e−κx∆t

 .

This relation allows us to express St as in equation (15):

St = Et−∆t[St] + ϵt, where Et−∆t[ϵt] = 0 and Vart−∆t[ϵt] = Ωt−∆t,

where the 3× 3 covariance matrix Ωt−∆t is given by

Ωt−∆t =


Ωλλ,t−∆t Ωλξ,t−∆t 0

Ωλξ,t−∆t Ωξξ,t−∆t 0

0 0 Ωxx,t−∆t

 .

Clearly, ϵt is non-normal. However, in order to use a conventional filtering approach, we

approximate it by a mean-zero normal random variable with the same covariance matrix

Ωt−∆t.
19 We find each element of Ωt−∆t by considering the marginal and joint dynamics of

19As discussed in Section 3.2, it is well known that the effect of this approximation is minimal.
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λt, ξt, and xt:

Ωλλ,t−∆t =
κ2λσ

2
ξξt−∆t

(κλ − κξ)2κξ

(
e−κξ∆t − e−2κξ∆t

)
+

κ2λξ̄σ
2
ξ

2(κλ − κξ)2κξ

(
1− e−κξ∆t

)2
−

2κλσ
2
ξ (ξt−∆t − ξ̄)

(κλ − κξ)2
(
e−κξ∆t − e−(κλ+κξ)∆t

)
−

2κ2λσ
2
ξ ξ̄

(κλ − κξ)2(κξ + κλ)

(
1− e−(κλ+κξ)∆t

)
+

κ2λσ
2
ξ (ξt−∆t − ξ̄)

(κλ − κξ)2(2κλ − κξ)

(
e−κξ∆t − e−2κλ∆t

)
+

κλσ
2
ξ ξ̄

2(κλ − κξ)2
(
1− e−2κλ∆t

)
+

(λt−∆t − ξ̄)σ2
λ

κλ

(
e−κλ∆t − e−2κλ∆t

)
+

κλ(ξt−∆t − ξ̄)σ2
λ

(κλ − κξ)(2κλ − κξ)

(
e−κξ∆t − e−2κλ∆t

)
− (ξt−∆t − ξ̄)σ2

λ

κλ − κξ

(
e−κλ∆t − e−2κλ∆t

)
+
ξ̄σ2

λ

2κλ

(
1− e−2κλ∆t

)
,

Ωξξ,t−∆t =
σ2
ξξt−∆t

κξ

(
e−κξ∆t − e−2κξ∆t

)
+
σ2
ξ ξ̄

2κξ

(
1− e−κξ∆t

)2
,

Ωλξ,t−∆t =
κλ

κλ − κξ
Ωξξ,t−∆t

−
σ2
ξ

(
ξt−∆t − ξ̄

)
κλ − κξ

(
e−κξ∆t − e−(κλ+κξ)∆t

)
−

κλσ
2
ξ ξ̄

(κλ − κξ)(κλ + κξ)

(
1− e−(κξ+κλ)∆t

)
,

Ωxx,t−∆t =
σ2
x

2κx

(
1− e−2κx∆t

)
.

Since our measurement equation is not linear in the state variables, we adopt the extended

Kalman filter. Specifically, we locally linearize the function h(S, q) in equation (16) as follows:

h(St, qt) ≈ h
(
Ŝt|t−∆t, qt

)
+Ht ×

(
St − Ŝt|t−∆t

)
,

where Ŝt|t−∆t is the predicted time-t state vector given the information at time t − ∆t, and

Ht =
∂h
∂S

(
Ŝt|t−∆t, qt

)
is the partial derivative of h(S, q) with respect to S, evaluated at the

point (Ŝt|t−∆t, qt). Then, according to the Kalman filter recursion, we obtain the filtered state
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vector at time t (i.e., Ŝt) from the filtered state vector at time t−∆t (i.e., Ŝt−∆t) as follows:

Ŝt|t−∆t = η +ΨŜt−∆t,

Pt|t−∆t = ΨPt−∆tΨ
′ + Ωt−∆t,

Ŝt = Ŝt|t−∆t +Ktêt,

Pt = Pt|t−∆t −KtHtPt|t−∆t,

where

Kt = Pt|t−∆tH
′
tF

−1
t ,

Ft = HtPt|t−∆tH
′
t +Q,

êt = Yt − h
(
Ŝt|t−∆t, qt

)
.

For the initial month, the values of Ŝt−∆t and Pt−∆t are set to be the unconditional mean

and variance of St. The Kalman filter recursion also enables us to calculate the likelihood of

observing Yt conditional on Yt−∆t:

logLt = − l

2
log(2π)− 1

2
log |Ft| −

1

2
ê′tF

−1
t êt,

where l is the size of the vector Yt.
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