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Abstract

We analyze the effects of tacit collusion in a dynamic general equilibrium model of oligopolis-

tic sectors with capital investment, real frictions, and entry. Through their effects on equilibrium-

and off-equilibrium stock prices, fundamental shocks impact incentives for defection from tacit

collusion, amplifying the interaction between the real economy and financial markets as well as

firms’risk exposure. Quantitively, the model’s endogenous firm- and aggregate-level dynamics

help explain real and financial data. We also find quantitative and empirical support for novel

theoretical predictions regarding the effects of firm, industry and macrofinance characteristics

on cross-sectional and time-varying relation of concentration and returns.
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1 Introduction
Oligopolistic industries are ubiquitous and strategic behavior of firms in oligopolies receives long-

standing interest.1 In particular, the literature highlights the role of production capacity in protecting

oligopoly profits through tacit collusion (Brock and Scheinkman 1985; Benoit and Krishna 1987) and

entry deterrence (Spence 1977; Dixit 1980). A related literature examines the effects of oligopolistic

collusion on aggregate real outcomes (Rotemberg and Woodford 1992; Opp et al. 2014) and risk

factors (Dou et al. 2021). Meanwhile, another burgeoning literature considers the effects of industry

concentration and entry on equity returns. However, the effects of capital investment and strategic

capacity utilization on firm-level equity returns and aggregate dynamics through the channels of tacit

collusion, entry deterrence and endogenous capacity depreciation are still largely unexplored. In this

paper, we attempt to fill this gap.

The quantitative analysis of returns and aggregate dynamics with tacit collusion in production

economies with investment remains open because the existing literature mainly examines oligopolistic

outcomes in endowment economies (Dou et al. 2021) or in production economies without investment

(Opp et al. 2014; Loualiche 2021). Meanwhile, there are conflicting empirical results on the relation

of industry concentration and returns: One strand of the literature documents a negative relationship

(Hou and Robinson 2006; Gu 2016); while another strand presents a positive relationship (Bustamante

and Donangelo 2017; Corhay et al. 2020) or finds no significant relationship (Ali et al. 2013). Our

analysis and results help address both these quantitative and empirical issues.

We develop a dynamic general equilibrium model of a production economy with capital invest-

ment, composed of multiple oligopolistic consumer goods industries (or sectors) with unlevered firms.

In concentrated sectors, there is tacit collusion on product prices through strategic capacity utilization

(production) and investment along subgame perfect equilibrium (SPE) paths, enforced by credible

threats of “punishment”through Bertrand-Nash price competition following defection. Analytically,

the novel aspect of the model is equilibrium characterization of firms’real decisions and equity re-

turns, along with the resultant endogenous aggregate dynamics, through a dynamic optimization

problem of maximizing equity values subject to a tacit collusion incentive compatibility constraint,

namely, that current equity gains from defection not exceed losses from defection.

1Observations on strategic interaction among oligopolistic firms occur at least as far back as Smith (1776). While
the early literature (Cournot 1838) analyzed static interactions, the literature in the past few decades focuses on tacit
collusion in dynamic oligopolies. Friedman (1983), Bresnahan (1989), Feuerstein (2005), and Green et al. (2013)
provide useful surveys of these literatures.
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Focusing on oligopolistic strategic interaction with capital investment provides novel insights on

the interaction between the real economy and financial markets at both firm and aggregate levels.

Fundamental (productivity) shocks impact incentives for defection from tacit collusion through their

effects on equilibrium- and off-equilibrium stock prices. In response, firms adjust their real policies to

maintain tacit collusion, thereby linking financial markets and real decisions. In general equilibrium,

tacit collusion mediates the effects of sectoral shocks on endogenous aggregate dynamics in income,

price index, consumption and the risk-free rate. Indeed, productivity shocks in low-concentration

sectors have significant effects on tacit-collusive real and financial outcomes in concentrated sectors

because of intratemporal elasticity of substitution between industry products.

We find that these real and financial interactions in concentrated oligopolistic sectors are quanti-

tatively significant and better explain firm and aggregate real and financial data compared to sectors

with Bertrand-Nash price competition. Thus, while productivity shocks play a central role in the

real business cycle and macrofinance models in competitive settings, these shocks drive micro and

aggregate outcomes in oligopolistic production economies by affecting firm-level defection incentives

channeled through equilibrium- and off-equilibrium equity prices.2

It also follows that firms’risk exposure to fundamental shocks is amplified by the possibility of

defection from tacit collusion and off-equilibrium behavior plays a significant role in this exposure.

Indeed, our analysis provides a novel perspective on the role of capital and real frictions– that is,

fixed and capital adjustment costs, endogenous depreciation, and entry costs– on priced risks. In the

existing literature, real frictions amplify firms’risk exposure by restricting responses to fundamental

shocks (Jermann 1998; Carlson et al. 2004). Our framework highlights an additional channel:

On- and off-equilibrium industry production capacities are central to tacit collusion because they

determine short-term benefits and long-term expected costs of defection. Through their influence on

capital investment and entry, real frictions affect defection incentives and hence priced risks .

Similar to the literature (Baxter and Curcini 1993; Boldrin et al. 2001), we quantitatively analyze

a two-sector economy. In our case, these sectors comprise of a tacit-collusive concentrated sector and

a benchmark low-concentration sector with Bertrand-Nash price competition. The representative

consumer has Epstein and Zin (1989) preferences. We assume a moderate risk aversion of 5 and

calibrate the intertemporal elasticity of substitution consistent with recent production-based asset

pricing literature (e.g., Croce 2014). Our modeling of sectoral productivity shocks– the exogenous

2The significant effect of off-equilibrium equity values on equilibrium outcomes is consistent with the well known
importance of off-equilibrium behavior on subgame perfect equilibrium paths (Selten 1975; Kreps and Wilson 1982).
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sources of risk in our model– is parsimonious: They follow an AR(1) process in logs and we adopt a

conservative calibration of the second moments of these shocks.

To isolate the effects of entry and exit, we first analyze a baseline model with fixed concentration.

The baseline model generates volatility of aggregate real consumption growth and real risk-free rate

that match the data. But the volatilities of log changes in aggregate (financial) income, price index

and the risk-free rate understate the data. At the firm level, for the concentrated sector, the base-

line model generates an annual equity premium and its volatility that are higher than benchmark

production-based asset pricing models but lower than in the data. On the real side, the baseline

model understates the volatilities of capacity utilization and log changes in capital investment (for

the concentrated sector) relative to the data. However, the empirical performance of the tacit col-

lusion equilibrium path is substantially better relative to the low-concentration sector. The baseline

model does not match well the autocorrelation of aggregate outcomes, but is reasonably close to the

data in terms of autocorrelation of firm-level investment. The model is also largely consistent with

simultaneous correlations of real variables in the data.

We find that the interaction of endogenous entry in the tacit-collusive sector and capital adds

significant volatility to equilibrium real and financial outcomes. At the firm level, the volatilities

of capacity utilization and investment increase significantly with entry and no longer understate

the data. Similarly, at the aggregate level, the volatilities of income, price index, consumption and

risk-free rate also rise significantly. Notably, entry significantly improves the model performance

with respect to the autocorrelations of aggregate consumption and income. Endogenous changes in

industry structure through entry in concentrated oligopolies, along with endogenous capital and real

frictions, therefore appear important in explaining aggregate dynamics.

There is an intuition that with higher sectoral and aggregate volatility, endogenous entry should

further amplify firms’ risk exposure to fundamental shocks in the presence of tacit collusion and

capital. Consistent with this, relative to the baseline, the model with entry generates a significantly

greater equity premium with high volatility. Moreover, higher capital adjustment costs and volatility

of sectoral productivity shocks in the competitive sector significantly amplify the effects of entry on

firms’risk exposure in industries with tacit collusion.

The presence of tacit collusion also affects the link between micro characteristics and aggregate

dynamics. The existing literature generally finds that variations in micro-level adjustment costs have

negligible effects on aggregate dynamics because of compensating changes in prices (Veracierto 2002;
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Khan and Thomas 2008). In contrast, we find significant aggregate effects of variations in firm-level

adjustment costs and productivity processes in the presence of tacit-collusive prices and real frictions.

Our analysis also shows that capital and real frictions in tacit-collusive oligopolies help explain

the conflicting results in the literature on the relation of industry concentration and equity returns.

Specifically, higher concentration has two opposing effects on markups and, hence, equity payoffs.

There is an unambiguous negative “market dilution” effect of lower concentration because, for a

given industry capacity, firms’profits are positively related to concentration. This dilution effect

ceteris paribus leads to a positive relation of concentration and payoffs. On the other hand, lower

industry concentration has a positive “punishment” effect on equilibrium payoffs by facilitating a

credible threat of substantially lower equity values following defections. When the dilution effect

dominates, lower concentration is ceteris paribus negatively related to returns, and conversely when

the punishment effect is relatively strong.

We build on this analysis to generate unambiguous predictions regarding the effects of operat-

ing leverage, operating profitability, and investment on the relation of concentration and returns.

To illustrate, equity values of firms with high fixed or adjustment costs are relatively low during

recessions, so that the punishment effect becomes weak for such firms in high SDF states. Hence,

higher fixed or adjustment costs should negatively affect the relation of concentration and returns.

An opposing argument applies for high operating profitability firms and the concentration-returns

relation should switch in sign for such firms. We quantitatively confirm these predictions in an in-

dustry equilibrium setting. Meanwhile, higher depreciation costs of capacity utilization (Greenwood

et al. 1988; Jaimovich and Rebelo 2009) ceteris paribus lower optimal production and raise industry

prices, weakening the punishment effect. Therefore, the concentration-returns relation is predicted

to be more negative in industries with higher marginal depreciation costs of capacity utilization.

Moreover, incumbents in high entry-threat industries with scale economies can deter entry through

large capacities (Spence 1977; Dixit 1981), strengthening the link between concentration and capital

investment, as well as the effect of investment on the concentration-returns relation.

We also examine time-variation in the effects of concentration on returns. Duffee (2005) finds that

the conditional covariance between the SDF and (aggregate) returns rises in high aggregate return

periods, suggesting that the concentration-returns relation will ceteris paribus be greater in high

aggregate return states. Moreover, a growing literature shows that sales concentration and markups

have increased in recent decades for a few “super effi cient”firms, accompanied by technological change
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that raises the ratio of fixed-to-marginal costs (Berry et al. 2019; Autor et al. 2020). A secular

trend of increasing fixed-to-marginal cost ratios should further weaken the punishment effect for high

fixed cost firms and strengthen the negative effect of operating leverage on the concentration-return

relation. In contrast, superior effi ciency of larger incumbents reduces reliance on capital investment

for entry deterrence in high entry-threat industries, weakening the link between concentration and

investment, as well as the effect of higher investment on the concentration-returns relation.

Our empirical tests utilize the Text-based Network Industry Classification (TNIC) Herfindahl-

Hirschman Index of Hoberg and Phillips (2016) as the concentration measure because the TNIC

better matches our model. Our base sample includes all non-financial Compustat firms during 1989-

2019 with available concentration measure. Our cross-sectional tests utilize Fama and MacBeth

(1973) regressions on firms’stock returns, controlling for Fama and French (1992, 1993) factors and

leverage. We find empirical support for the above-mentioned predictions from the model.

Related literature The interaction of real economy and financial markets attracts much atten-

tion (Morck et al. 1990).3 The existing literature highlights the real effects of financial markets based

on the information role of security prices (Chen et al. 2007; Bond et al. 2012). We present a novel

channel for the real effects of stock prices in dynamic oligopolies that are widely prevalent. Indeed,

we find that both equilibrium and off-equilibrium equity prices have an empirically significant effect

on firm-level real decisions as well as on aggregate dynamics.

A growing literature examines real and financial outcomes in industries with imperfect competi-

tion and entry. Some papers in this literature– such as, Aguerrevere (2009), Morrellec and Zhdanov

(2019), Bustamente (2015), Farhi and Guorio (2018) and Corhay et al. (2020)– consider investment,

but not the interaction of capital and real frictions with tacit collusion in a dynamic general equi-

librium setting, as is the case with our study. Opp et al. (2014) and Dou et al. (2021) analyze the

effects of tacit collusion in general equilibrium models with oligopolistic sectors. However, Opp et

al. (2014) consider a production economy with only labor input and hence do not consider the role

of capital, while Dou et al. (2021) analyze an endowment economy model with exogenous aggregate

output. Similarly, other papers in the literature, such as Bustamente and Donangelo (2017) do not

consider endogenous investment. Corhay et al. (2020) and Loualiche (2021) positively link entry

threat and risk premium in imperfectly competitive industries but do not consider the interaction of

tacit collusion with capital and real frictions.

3Morck et al. (1990) frame this issue by asking whether the stock market is a “sideshow.”
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In contrast to this literature, we focus on the effects of tacit collusion on firm- and aggregate-

level real and financial variables in dynamic production economies with capital investment and entry.

Our study contributes by theoretically, quantitatively, and empirically showing the importance of

tacit collusion with endogenous capital and entry in helping explain firm-level and aggregate data

on salient real and financial variables. In particular, we highlight the importance of off-equilibrium

capital and real frictions on firms’priced risks and real behavior, and the significant economy-wide

effects of fundamental shocks through the tacit collusion channel in oligopolistic sectors. Our study

is also novel in highlighting the role of real frictions, strategic entry deterrence, and time-varying

risks in helping resolve the ambiguous relation of concentration and returns in the literature.

The literature also considers effects of operating leverage (Lev 1974; Novy-Marx 2011), operating

profitability and investment (Aharoni et al. 2013; Fama and French 2015), and entry threat (Corhay

et al 2020; Loualiche 2021) on the cross-section of returns, as well as the time-varying effects of

market returns (Duffee 2005). In contrast, these firm, industry and macrofinance characteristics

play a prominent role in our analysis because they help resolve the theoretically ambiguous effect

of industry concentration on equity returns. More generally, these conflicting effects point to the

importance of capital and real frictions in understanding the cross-sectional relation of concentration

and returns.

The received dynamic oligopoly literature also focuses on symmetric SPE that maximize profits

through worst-possible credible punishment following defection (Abreu 1986) and notes the theoret-

ically ambiguous effect of concentration on markups (Brock and Scheinkman 1985). In particular,

Rotemberg and Woodford (1992) use this framework to analyze the effects of aggregate demand

shocks on economic activity in an oligopolistic production economy with tacit collusion. However,

our analysis is distinct from this literature because of our emphasis on the interaction of tacit col-

lusion, capital investment, entry and entry deterrence, and real frictions with equity markets; our

focus yields novel results on the interaction of financial markets with the real economy, as well as on

the relation of industry concentration and equity returns.

2 The basic model
We consider an infinite horizon, discrete time model (indexed by t = 1, ...). For expositional ease,

we initially describe and analyze the basic model, which we subsequently extend to allow entry and

exit, as well as endogenous depreciation and capacity-based entry deterrence.

6



The economy consists of J consumer goods sectors (or industries) that each produce a homogenous

good, utilizing capital input from a (numeraire) investment goods sector. Firms in each industry are

unlevered and their equity shares are traded in frictionless security markets. Cash flows, determined

by operating profits net of investment and fixed capacity costs, are distributed to shareholders as

dividends. There is a continuum of identical consumer-investors (CIs) in the economy; the number

of CIs is normalized to unity, without loss of generality. CIs purchase consumption goods and

channel their savings back to firms through equity investment or investment in a riskless asset.

Firms maximize discounted expected shareholder value of real dividends.

2.1 Consumer preferences and consumption-investment choice
At each t, the representative CI chooses the consumption profile ct = (c1t, ...cJt) with given prices

pt = (p1t, ...., pJt), subject to an income constraint. The CI can invest in a riskless security (f) with a

unit mass that makes a unit payment next period. Asset holdings at the beginning of t are denoted

by the vector qt with the associated dividend vector dt (and dft = 1). Along with consumption, the

CI simultaneously chooses new asset holdings qt+1 taking as given ex-dividend equity prices st.

The CI has the constant elasticity of substitution (CES) form of Kreps and Porteus (1978) pref-

erences (Epstein and Zin 1989). At each t, the lifetime utility of the CI is recursively given by

Ut =

[
(1− α)C1−η

t + αEt
[
U1−γ
t+1

] 1−η
1−γ

] 1
1−η

, (1)

where Ct ≡
[

J∑
j=1

φj(cjt)
(σ−1)/σ

]σ/(σ−1)

is the aggregated CES consumption basket; σ > 1 is the

common elasticity of substitution (ES); and 0 < φj < 1 are aggregation weights. Furthermore, α

is the subjective rate of impatience; γ determines the degree of risk aversion; and η−1 measures the

IES. For tractability, we do not consider non-financial income. The CI’s budget constraint is thus

p · ct ≤ qt · (dt + st)− qt+1 · st ≡ Wt, (2)

whereWt is the net financial income. Because preferences are strictly increasing, the budget constraint

(2) will be binding in optimum. Intraperiod optimization yields the consumption demand functions

(Online appendix A.1):

cjt(pt,Wt) =
Wt

Pt

[
Ptφj
pjt

]σ
, j = 1, ..J, (3)
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where Pt ≡
[

J∑
j=1

(φj)
σ(pjt)

1−σ

]1/(1−σ)

is the aggregate (consumer) price index. Consumer optimum

implies that aggregate real consumption Ct = Wt

Pt
.

The CI’s portfolio optimization equates real current security prices st
Pt
to expected present value

of real equity payoffs next period. Letting Λt ≡ ∂Ut
∂Ct = (1− α)C−ηt Uηt denote the marginal valuation

at t, the SDF for the one-period investment horizon is Λt,t+1 ≡ Λt+1
Λt
, where

Λt,t+1 = α

(
Ct+1

Ct

)−η [ Ut+1

Et
[
U1−γ
t+1

]1/(1−γ)

]η−γ
. (4)

Hence, asset prices satisfy
st
Pt

= Et
[
Λt,t+1

(
dt+1 + st+1

Pt+1

)]
. (5)

It will be useful to express (5) in terms of nominal returns,4 namely, the gross return Rt+1 =(
dt+1+st+1

st

)
(with Rf,t+1 = (1/sft)) by defining the nominal SDF Ωt,t+τ ≡ Pt

(
Λt,t+τ
Pt+τ

)
, τ = 1, 2, ...We

can thus rewrite (5) as the equilibrium asset market condition 1 = Et [Ωt,t+1Rt+1] , where 1 and Rt+1

are the unit and gross nominal returns vectors, respectively.

2.2 Production and capital investment
The representative firm in the typical sector produces output Yt through the production function5

Yt = At(utKt)
ψ, (6)

where Kt is the firm’s capital stock at the beginning of t; At represents the stochastically evolving

industry-wide productivity level; 0 < ψ < 1 is the output elasticity of capital; and ut ∈ [0, 1] is the

firm’s capacity utilization at t. The sectoral productivity shocks follow an AR(1) process in logs,

at = ρat−1 + εt, (7)

where at = ln(At) and εt are mean zero variables with a stationary variance-covariance matrix [λij]

across sectors. The sectoral productivity shocks are the only exogenous sources of risk in the economy.

4The literature on cross-sectional and time-series analysis of expected returns usually utilizes nominal returns (Fama
and French 1992, 1993; Lewellen 1999). Our cross-sectional and time-series tests also use nominal stock returns.

5For notational ease, we suppress subscripts for sectors and firms unless necessary for exposition.
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Firms can undertake capital investment, It, by deploying a capital good and production capacity

evolves as

Kt+1 = (1− δ)Kt + It, (8)

where δ ∈ (0, 1) is the depreciation rate. For tractability, it is assumed that there is an infinitely

elastic supply of the capital good with unit price, so that relative prices for consumption goods are

defined in terms of the capital good.6 Firms are subject to strictly convex capacity adjustment costs

(Lucas 1967; Liu et al. 2009) and the investment cost function is

Ψ(It, Kt) = It + 0.5ϕ

(
It
Kt

− δ
)2

Kt, (9)

where ϕ is the capacity adjustment cost. The quadratic investment cost specification is common

in the literature (Summers 1981; Liu et al. 2009). Consistent with the real business cycle (RBC)

literature (Chari et al. 2000), we assume there are no adjustment costs in the steady state.

2.3 Equilibrium paths
All functional relationships in the model are common knowledge, as is the state of the economy,

denoted by the sequential filtration Γt, which includes all economically relevant variables at the

beginning of t. Because industry productivity shocks are the only exogenous shocks in the model,

uncertainty regarding exogenous events in period t is resolved conditional on Γt.

Given Γt, firms (denoted by n) in each industry independently choose their prices pt = (pnt)
N
n=1,

where N is the number of firms in the industry. Firm-level residual demand functions Fnt(pnt; Γt,pt)

are determined similar to the literature (Kreps and Scheinkman 1983; Brock and Scheinkman 1985):

The lowest-price firms sell as much of the quantity demanded subject to their production capacity and

all firms divide the demand equally. There are sector-specific constant variable costs h so that oper-

ating profits are Πnt(pnt; pt) = (pnt−h)Fnt(pnt), while capacity utilization is unt = min
(

1, Fnt
At(Knt)ψ

)
.

Firms then independently decide their investments with the resultant dividends

Dt = Πt −Ψ(It, Kt)−mKt, (10)

6In the literature, multisector competitive production economy models with investment consider heterogeneous
capital input prices (Horvath 2000). Our modeling approach facilitates focus on tacit collusion in consumer goods
prices, as in the received oligopoly literature. It is also useful in highlighting the effects of tacit collusion because Euler
conditions in our model can be readily compared with the RBC or macrofinance literature. In addition, this approach
allows a parsimonious representation of fundamental shocks, which is helpful in our quantitative analysis.
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wherem is the (sector-specific) fixed cost for operating production capacity. Hence, dt = Dt
Q
. Negative

dividends are financed through equity issuance.

Firms are instructed by shareholders to maximize the conditional present value of real divi-

dends,

[ ∞∑
τ=0

Λt,t+τ

(
Dt+τ
Pt+τ

)]
; or, in terms of the nominal SDF Ωt,t+τ ≡ Pt

(
Λt,t+τ
Pt+τ

)
, to maximize

Et

[ ∞∑
τ=0

Ωt,t+τDt+τ

]
. Using the Bellman representation, we can define the nominal cum-dividend

value function recursively by Vt(Γt) = max(pt,It) Dt + Et [Vt+1(Γt+1)] . The ex-dividend value of the

firm is denoted by St. Finally, similar to the literature, we adopt the convention that while there is

imperfect competition within sectors, firms take aggregate quantities and the SDF as given.

Our model specifies a multi-stage game with perfectly observed actions (Fudenberg and Tirole

1991), where Γt defines a subgame. Along a SPE, at every Γt : (i) the CI chooses optimal consumption

and portfolio policies (see (3) and (5)); (ii) in each sector, the profile of firms’price and investment

strategies (pt, It) comprise a Nash equilibrium; (iii) no firm strictly gains from deviating from the

prescribed action at any stage and then returning to the equilibrium path thereafter; (iv) prices

pt clear the product market in each sector; and (v) stock prices st clear equity markets, that is,

qt+1 = Qt+1. Without loss of generality, firms’shares are normalized to unity at every t. Note that

any SPE, 〈{pjt, Ijt}∞t=0〉
J
j=1 , determines at each t firms’dividends across industries (see (10)) and

hence aggregate income Wt (see (2)), price index Pt and real consumption Ct = Wt

Pt
.

3 Tacit collusion and equilibrium characterization
We now characterize the equilibrium, focusing on the role of tacit collusion and capital investment.

The consumption function (3) yields the pricing or inverse demand function

pt(Y
ind
t ) = φ

(
Y ind
t

)−1/σ (
WtP

σ−1
t

)1/σ
. (11)

Note that pt is strictly decreasing in industry output and is well defined for all positive output levels.

Hence, price is ceteris paribus negatively related to industry capacity utilization (see (6)).

It facilitates intuition to consider tacit collusion and defection incentives in a one-shot setting,

with industry capacity Kind. As usual, we can characterize the maximal industry (monopoly) profits

in terms of prices or quantities. Using (3) and solving maxp c(p
c,W ) (p− h) yields the monopoly

price p̂ =
(

σ
σ−1

)
h. Utilizing (11) and (6) then gives the industry profit-maximizing capacity utilization
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û = min

(
1,

[
(σ−1)W

1
σ P

σ−1
σ φ

σh(A)
1
σ (Kind)

ψ
σ

] σ
ψ

)
. But one can reframe the choice problem in terms of choosing the

profit maximizing industry capacity utilization, that is, û ∈ arg maxu(p(Y
ind)− h)A(uKind)

ψ
, which

yields the same solution. Now, û can be implemented by setting firm-level capacity utilization ûn =

û(N)
ψ−1
ψ , which is decreasing in N (since ψ < 1). Hence, û > ûn whenever N ≥ 2.7 But ûn < 1 is

not incentive compatible in the one-shot game: Any firm n can reduce its price slightly from p̂, raise

capacity utilization to 1 and increase profits by (p̂− h)A(K)ψ(1− (û)ψ).

With an infinite horizon, firms can attempt to enforce tacit collusion on prices– through strategic

capacity utilization– based on credible retaliation threats. In particular, in the stochastic production

and financial market setting of our model, defection incentives will evolve stochastically as firms

evaluate their current profit gains from defection against loss of future equity value from retaliation.

We turn now to characterize the equilibrium path.

3.1 Equilibrium characterization
The worst credible punishment path following a defection is the Bertrand-Nash (BN) SPE, where

firms compete on prices subject to their capacity constraints. Consistent with the literature (Abreu

1986; Rotemberg and Saloner 1986), and to generate empirical predictions, we focus on the (symmet-

ric) optimal SPE that maximizes equity values of industry firms through tacit collusion enforced by

threats of switching to the BN SPE following defection. Along the BN SPE, firms choose capacity

utilization and investment policies (ũt, Ĩt) subject to the constraint of no gains from defection to a

lower price. Because of product homogeneity and symmetric cost structure, the BN SPE involves

full capacity utilization (Kreps and Scheinkman 1983). We indeed verify that ũt = 1 in our setting

(Online appendix B.1). Ĩt is determined by the Euler condition, 1 + ϕ
(
Ĩt
Kt
− δ
)

= Et
[
∂Ṽt+1
∂It

]
that

equates marginal investment costs with marginal expected present value of gains

Et

[
∂Ṽt+1

∂It

]
= Et

Ωt,t+1

∂Π̃t+1

∂Kt+1

−m+ 0.5ϕ

( Ĩt+1

Kt+1

)2

− δ2

+

(1− δ)
(

1 + ϕ

(
Ĩt+1

Kt+1

− δ
))}]

, (12)

7Note that the industry output with û is Ŷ = A(û(NK))ψ, which is implemented by ûn such that NA(ûnK)ψ = Ŷ .

Thus, ûn = û(N)
ψ−1
ψ . Furthermore, 1−ψψ is a decreasing and convex function with the range (0,∞) on the domain

ψ ∈ (0, 1). Hence, N− 1−ψ
ψ < 1 and is decreasing in N.
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where Π̃t+1 are the operating profits with full capacity production by all firms (Online appendix B.2).

The resultant dividends are D̃t = Π̃t+1 − Ψ(Ĩt, Kt) −mKt, which determine cum- and ex-dividend

equity values Ṽt, S̃t, respectively, through the asset market condition Et
[
Ωt,t+1

(
D̃t+1+S̃t+1

S̃t

)]
= 1. In

particular, the OEP BN equity values will significantly affect equilibrium real and financial variables.

We now characterize the equilibrium path for the representative firm in the typical sector,

{u∗t , I∗t , S∗t }∞t=0. For any Γt, the product price is p∗t = pt(Y
ind∗
t ), with the industry output Y ind∗

t =

NAt(u
∗
tK
∗
t )ψ, and resultant dividends D∗t (see (10)). Defection potentially occurs by some firm choos-

ing the price and capacity utilization (p∗t − ε, ū∗t ), where ε is arbitrarily small and ū∗t is the optimal

defecting capacity utilization. But a firm willing to defect and suffer future loss of value from retalia-

tion will seek to maximize current profits and set ū∗t = 1 (see Online appendix C.1), 8 thus yielding the

defection profits, Π̄∗t = (p∗t − h)At(K
∗
t )ψ. Because a defecting firm reverts to the equilibrium path at

the next (investment) stage, it invests I∗t and the defecting dividends are D̄
∗
t = Π̄∗t−Ψ(I∗t , K

∗
t )−mK∗t .

Following defection at any t, all firms switch to the punishment (BN) equilibrium at t + 1 and

onwards. The tacit collusion incentive compatibility constraint (TCIC) is therefore

D̄∗t −D∗t ≤ Et
[
V ∗t+1(Γt+1)− Ṽt+1(Γt+1)

]
, (13)

that is, current gains from defection do not exceed the future loss of value from retaliation. Because

of the equivalence between collusive prices and capacity utilization, firms’equilibrium value function

is recursively defined by the constrained maximization problem

V ∗t (Γt) = max
ut∈[0,1],It

Dt + Et
[
V ∗t+1(Γt+1)

]
, s.t., (13). (14)

To see the effects of the TCIC, note that the immediate cash flow gain from defection is D̄∗t −D∗t =

Π̄∗t − Π∗t and hence the TCIC (13) becomes

(p∗t − h)At(K
∗
t )ψ(1− (u∗t )

ψ) ≤ Et
[
V ∗t+1(Γt+1)− Ṽt+1(Γt+1)

]
. (15)

(15) implies that gains from tacit collusion require excess capacity, that is, u∗t < 1, else V ∗t+1 = Ṽt+1.

Letting ς t be the Lagrange multiplier for the TCIC, the optimality conditions with respect to

8The situation is more subtle if there are capacity depreciation costs of higher capacity utilization, a case we will
consider in Section 5.2 below.
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(u∗t , I
∗
t ), respectively, are (see Online appendix C.2)

∂Dt

∂ut
=

ς t
(1 + ς t)

∂D̄t

∂ut
, (16)

−
[
1 + ϕ

(
It
Kt

− δ
)]

+ Et
[
∂V ∗t+1

∂It

]
=

ς t
(1 + ς t)

{
−
[
1 + ϕ

(
It
Kt

− δ
)]

+ Et

[
∂Ṽt+1

∂It

]}
. (17)

Equations (16)-(17) clarify the effects of TCIC on the equilibrium. In the absence of the TCIC or

when it not binding (ς t = 0), we obtain the unconstrained optimum for capacity utilization (ut)

and the standard Euler condition for investment (It). But with a binding TCIC, higher capacity

utilization ceteris paribus lowers current dividends from defection, D̄t, by reducing the industry price

pt and hence the gains from defection to full capacity (see (15)). The optimal ut in (16) thus takes

into account its effect on relaxing the TCIC. Next, eliminating the Lagrange multiplier from (16)-(17)

and rearranging terms yields the Euler condition

[
1 + ϕ

(
It
Kt

− δ
)]

(1− χt) = Et
[
∂V ∗t+1

∂It

]
− Et

[
∂Ṽt+1

∂It

]
χt, (18)

where χt ≡
(
∂Dt
∂ut

)
�
(
∂D̄t
∂ut

)
=
(
uψt
pt

)
(pt − σ(pt − h)) and represents the shadow value of using

investment to relax the TCIC. Now, investment impacts defection incentives through its effects on

(defection) dividends D̄t and on the punishment (BN) equity value next period because Ṽt+1 depends

on firms’capacity, Kt+1. Equation (18) therefore quantifies the effects of tacit collusion on optimal

investment. It also follows that the equilibrium path real decisions (u∗t , I
∗
t ) cannot be determined

independent of the equilibrium and OEP equity values (S∗t and S̃t) because of the TCIC.

We note that (18) suggests novel effects of real frictions– specifically, fixed and capital adjustment

costs– on equilibrium policies through the tacit collusion channel. To explicate, suppose there is

defection at t, so that firms utilize the BN-equilibrium investment policies (Ĩτ )τ≥t+1. But these policies

and, hence equity values Ṽτ , are affected by fixed and adjustment costs (see (12)). For example,

because adjustment costs are strictly convex in I/K (see (9)), they will be affected by capacity

K (Abel 1981); hence, investment along the equilibrium path will impact adjustment costs in the

punishment equilibrium. Thus, in addition to the usual channels, real frictions influence equilibrium
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investment through their effects on off-equilibrium behavior. More formally,9

Et
[
∂V ∗t+1

∂It

]
= Et

[
Ωt,t+1

{
∂Π∗t+1

∂Kt+1

−m+ 0.5ϕ

((
I∗t+1

Kt+1

)2

− δ2

)
+

(1− δ)
(

1 + ϕ

([
I∗t+1(1− χt+1) + χt+1Ĩt+1)

Kt+1

]
− δ
))}]

. (19)

Comparing (18)-(19) and the BN-equilibrium Euler equation (12) above helps clarify the “non-

standard” effects of real frictions on investment in the tacit collusion equilibrium: The “standard

effects” are captured by terms in the first row of (19) while the effects due to tacit collusion are

reflected in the presence of OEP investment Ĩt+1 and the TCIC-related terms χt and χt+1.

The tacit collusion channel suggests that firms’risk exposure due to fixed and adjustment costs,

which is highlighted in the literature (Jermann 1998; Carlson et al. 2004), will also be affected by the

interaction of these real frictions with off-equilibrium-path behavior. For example, higher adjustment

costs will ceteris paribus impede firms’capacity modification to address the greater price competition

in the BN equilibrium. In a similar vein, higher fixed costs ceteris paribus raise value exposure to

lower profits of the BN equilibrium. We will build on this intuition below to examine aggregate effects

of real frictions and to derive predictions on the relation of industry concentration and returns.

Now, the TCIC will be binding as long as the monopoly outcome is not incentive compatible at

the firm level. However, in our model with a continuous state space, the monopoly outcome will

not generically be incentive compatible for realistic number of industry firms even in concentrated

oligopolies. In the other polar case, it can be shown– consistent with intuition– that u∗t < 1 is not

sustainable when the number of industry firms gets suffi ciently large (Online appendix C.3). Thus,

the TCIC condition will generically apply for oligopolistic sectors except for low concentration levels;

our analysis will henceforth focus on equilibrium paths with binding TCIC.

In sum, the equilibrium path real and financial outcomes (u∗t , I
∗
t , S

∗
t ) are determined from three

conditions: the Euler equation (18); the (binding) TCIC (13); and the asset market clearing condition

Et
[
Ωt,t+1R

∗
t+1

]
= 1, where R∗t+1 = (D∗t+1 +S∗t+1)/S∗t . But, as noted by Cochrane (1991) and Liu et al.

(2009), equilibrium returns can also be computed through the returns on investment (ROI) because

9Detailed characterization of the equilibrium path is given in Online appendix C.2. In particular, the detailed
representation of the Euler condition (18) is given in Equation (C2.27).
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the firm’s optimality conditions imply Et
[
Ωt,t+1ROI

∗
t+1

]
= 1. In particular, using (18),

ROI∗t+1 =

∂V ∗t+1
∂It
− ∂Ṽt+1

∂It
χt[

1 + ϕ
(
It
Kt
− δ
)]

(1− χt)
. (20)

4 Model dynamics and outcomes
We now quantitatively analyze the equilibrium responses of salient real and financial model vari-

ables to the fundamental productivity shocks {Ajt}j,t , 10 utilizing perturbation methods (Jin and

Judd 2002). Specifically, we undertake quadratic approximations around the deterministic steady

state of the model,11 an approach widely adopted by the literature (Schmitt-Grohe and Uribe 2004;

Kim et al. 2008); and desirable properties of the accuracy of such approximations are documented

in the literature (Caldera et al., 2011; Fernández-Villaverde et al. 2016; Andreasen et al. 2017).

Similar to the literature (Baxter and Curcini 1993; Boldrin et al. 2001), we implement our

quantitative model in a two-sector setting. To focus on the role of tacit collusion, we consider a

concentrated sector (sector 1) with tacit collusion and a low-concentration sector (sector 2) where

tacit collusion is not sustainable and there is Bertrand-Nash price competition. The BN equilibrium

path behavior not only serves as a useful benchmark for equilibrium outcomes in the concentrated

sector but also provides intuition on the effects of productivity shocks on its off-equilibrium behavior.12

4.1 Calibration
We take industry-level data on capital, investment, output and productivity from the NBER-CES

manufacturing database. The latest data available are for 1958-2018 (annual). However, because pro-

ductivity data are generally available only through 2016, our sample period is 1958-2016. Consistent

10For parsimony, our framework follows the multisector general equilibrium literature (e.g., Horvath 2000) in focusing
on sectoral productivity shocks as the primary sources of risk in the economy. Empirically, sectoral productivity
shocks are a major component of aggregate shocks and the importance of the former relative to the latter appears
to be increasing in recent decades (Foerster et al. 2011). Our approach is also consistent with Gabaix (2011) who
emphasizes the microfoundations of aggregate shocks.
11As mentioned above, (9) implies that there are no adjustment costs in the deterministic equilibrium and OEP

steady states. And, consistent with the received RBC literature, we assume that there are no other adjustment costs
in the equilibrium steady state. We provide details on the OEP and equilibrium steady states in Section C.4 of the
Online appendix.
12For computational tractability, we take a linear approximation of the (OEP) Bertrand-Nash general equilibrium–

when the concentrated sector also follows the BN equilibrium path– around its deterministic steady state. This analysis
yields the policy functions for investment (Ĩ1t) and ex-dividend equity price (S̃1t) that allow us to compute the (binding)
TCIC (13) for the equilibrium path simulations through quadratic approximations around the steady state when there
is tacit collusion in the concentrated sector. We utilize Dynare software (version 5.4) for our computations.
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with our framework, we focus on consumer goods industries. We obtain times-series data on capacity

utilization in U.S. manufacturing industries and consumer goods industry production from the Fed-

eral Reserve Board (FRB). We extract information on aggregate variables that match quantities in

our model from National Income and Product Accounts (NIPA). Specifically, we use real per capita

personal consumption expenditures on durable and non-durable goods to quantify C, and (nomi-

nal) per capita personal income on assets (or “financial income”)– that is, dividends and interest

income– to calibrate W (see (2)). We obtain population data from the U.S. Census Bureau and the

price deflator for personal consumption expenditures on goods (P ) from the Bureau of Economic

Affairs (BEA). In addition, we obtain data on returns from Kenneth French’s website.

Table 1 summarizes the calibration for the baseline model. In the standard fashion, certain

parameters are externally calibrated, while others are internally calibrated to help match equilibrium

steady state outcomes and the model’s simulated moments with the data. We use a 1% annual

discount rate, that is, α = 0.99, which yields a steady state annual real risk-free rate of 1%, which

is close to the average real risk-free rate of 0.91% during 1960-2016. There is no consensus on

parameterization of relative risk aversion and the IES in the literature. We use a risk aversion of 5,

which is similar to Jermann (1998), and is close to the midpoints of the range of risk aversion (2-10)

considered reasonable by Mehra and Prescott (1985), as well as the range of risk aversion estimates

(2-7) in the finance literature (Elminejad et al. 2022). We set the IES (η−1) at 1.9, which is consistent

with the parameterization in recent production-based asset pricing models (e.g., Croce 2014). We

internally calibrate the intratemporal ES σ = 5.99, which is in the range of ES estimates in Redding

and Weinstein (2020) and Broda and Weinstein (2006).

We construct the concentrated (or tacit collusive) sector with manufacturing industries that are

in the top quintile of sales concentration, defined as the industry sales share of the largest eight firms;

correspondingly, the low-concentration sector (or BN equilibrium) is constructed by industries that

are below the median sales concentration. The annual depreciation rates in the two sectors are in the

5%−5.3% range, consistent with their mean investment rate (IR), or the investment-to-capital ratio

(I/K), in the steady state, which equals the depreciation rate. This calibration is also consistent

with the RBC literature (Gomme and Rupert 2007). We calibrate the autocorrelation coeffi cients of

sectoral productivity shocks ρj (see (7)) from the data. Meanwhile, there is a wide variation in the

literature regarding estimates of the capital adjustment cost parameter (ϕ), ranging from low to large

values over 20 (see Cooper and Haltiwanger 2006). In particular, Liu et al. (2009) report significant
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estimates of 7.7 and 1 using different estimation approaches. We therefore calibrate adjustment costs

in the concentrated sector at 8 and the low-concentration sector at 1.13 The production elasticities

of capital (ψj, j = 1, 2) in the two sectors (0.49 and 0.46, respectively) are consistent with strictly

decreasing returns; these parameters, along with marginal and fixed costs, are internally calibrated.

The variance-covariance matrix of the productivity shocks is internally calibrated to match the

volatility of real per capita consumption growth for the baseline model. The assumed annual volatil-

ities of productivity shocks in both sectors are conservative; that is, they are lower than the range

utilized in the RBC literature (Gomme and Lakhagvasuren 2012) as well as in the aggregate cap-

ital investment literature (Bachman et al. 2013).14 The negative correlation between the sectoral

productivity shocks is consistent with the data and with the conservative approach adopted here.

4.2 Productivity shocks and equilibrium responses
To develop intuition on the effects of tacit collusion on model dynamics, we utilize impulse response

functions (IRFs) and examine equilibrium path responses of salient firm and industry level variables

to (one standard deviation) sectoral productivity shocks, which are displayed below in Figures 1-3.

We follow these responses over a ten year horizon (horizontal axis); and, in the standard fashion, the

vertical axis represents the displacement from the “pre-shock” equilibrium path. These responses

also determine, through the general equilibrium mechanism, the endogenous responses of aggregate

variables in the model, namely, (Wt, Pt, Ct) as well as the risk-free rate (rf,t+1).

Figure 1 displays the dynamics of equilibrium responses to a positive productivity shock in the

concentrated sector (ε+
1t).We note that ε

+
1t has a positive effect on equilibrium equity price S1t greater

than its impact on the OEP equity price S̃1t. Consequently, the TCIC is relaxed (see (15)),15 and

the equilibrium capacity utilization (u1t) falls toward the monopoly level, consistent with intuition

on u1 and tacit collusion provided in Section 3. This raises the industry price (p1t) and sales (p1tY1t),

thereby increasing dividends D1t, other things being equal. Higher dividends raise aggregate financial

income (Wt), which has a reinforcing effect on industry price (see (11)).

13We use a lower value of ϕ for the non-concentrated sector to be consistent with economic survival in an industry
with implicit higher rates of entry.
14Recall that the relationship between quarterly (q) and yearly (y) volatility is λy = λq

√
(1 + ρ+ ρ2 + ρ3). Using

aggregate data, Gommes and Lakhagvasuren (2012) estimate a quarterly productivity shock volatility of 0.86% with
ρ = 0.96, which implies an annual volatility of 1.66%. Meanwhile, Bachman et al. (2013) utilize SIC-3 manufacturing
data to calibrate a quarterly volatility of 2.73% with ρ = 0.86, which implies an annual volatility of 4.91%.
15Note that the TCIC (13) is defined in terms of levels of on- and off-equilibrium equity values. Hence, the dis-

placements of these equity values from the “pre-shock” equilibrium path quantify the effects of the shock on the
TCIC.
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In a related vein, there is a mutually reinforcing relation of p1t and the aggregate price index

Pt. Indeed, because of the positive effects of Wt and Pt on industry prices, we also find a positive

general equilibrium effect of ε+
1t on the product price of the low-concentration sector (p2t) that follows

a similar trajectory as p1t. This reinforces the observed positive response of Pt to ε+
1t. Now, because

Ct = Wt

Pt
, the net effect of ε+

1t on consumption is theoretically ambiguous. We find, however, that

consumption responds immediately and positively to ε+
1t.

The effects of ε+
1t on the variables annunciated above are long-lasting even though they begin a

recovery to the original pre-shock levels after the immediate response. In particular, because of the

reversion process, the expected growth rate of consumption
(
Et
[
ln
(
Ct+1
Ct

)])
falls, which raises the

expected SDF, other being equal. This has implications for other variables of interest.

First, ε+
1t raises the investment rate (IR) because of a positive effi ciency effect. Because produc-

tivity shocks are persistent, higher current productivity ceteris paribus increases expected marginal

productivity of investment. Moreover, expected marginal value of investment rises because of the

increased expected SDF. This effect of ε+
1t on IR is also long-term. Indeed, while investment is ceteris

paribus negatively related to dividends, in the situation at hand ε+
1t raises D1t because of its strong

positive effect on sales. Second, the real risk-free rate (rrf,t+1) falls. Third, higher expected SDF and

dividends are consistent with the positive effect on stock price (S1t), which is not surprising because

the firm-, industry- and aggregate-level variables are jointly determined in equilibrium. And, fourth,

because of higher stock price, the expected equity return falls; indeed, even the risk premium falls,

despite the lower real risk-free rate.

Next, Figure 2 shows the general equilibrium effects of positive productivity shocks (holding

other things fixed) in the more competitive, low-concentration sector (ε+
2t) on tacit collusion in the

concentrated sector. In the BN equilibrium, there is an immediate negative output effect of ε+
2t on

industry price (p2t) because firms produce at full capacity. Consequently, because of the intratemporal

substitutability between products of the two sectors, there is a downward effect on the product price

(p1t) and hence the aggregate price index Pt falls. Because of productivity persistence, these negative

price effects are long term. Hence, there is an adverse effi ciency effect on the concentrated sector

investment (IR1). But because of significantly lower sales (p1tY1t), dividends are reduced resulting in

lower aggregate income Wt and consumption Ct. Again, due to persistence, the expected SDF falls,

resulting in lower stock prices in both sectors (S1t, S2t), as well as off-equilibrium path stock price S̃1t.

But in contrast to the earlier analysis, the TCIC now tightens resulting in higher capacity utilization.
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Moreover, in response to the lower expected SDF, the real risk-free rate rises, but the concentrated

sector risk premium still increases because of the significantly lower S1t. Finally, Figure 2 helps

clarify the effects of productivity shocks when the concentrated sector is in the OEP punishment

(BN) equilibrium and hence provides intuition on the effect of ε+
1t on the OEP equity price S̃1t

observed in Figure 1.

In sum, the IRF analysis above helps clarify the effects of tacit collusion and capital on firms’and

financial markets’equilibrium response to economy-wide fundamental shocks. Consistent with the

representation of defection incentives in the TCIC (see (13)), both on- and off-equilibrium responses

of equity markets to shocks and production capacities are central channels for firm- and aggregate-

level real effects of shocks. Thus, firms’risk exposure to shocks is materially amplified through their

(shocks’) effects on defection incentives. Our analysis below will quantify this intuition.

4.3 Moments and correlations of simulated variables
We now present the moments and correlations of simulations from perturbations around the

steady state.16 We also provide the corresponding figures from the data. Panel A of Table 2 displays

the simulated volatilities of capacity utilization (u1) as well as log changes in investment rates in

the concentrated sector (gir,1) and the low-concentration sector (gir,2). For the endogenous aggregate

variables, we report the volatilities of log changes in aggregate real consumption, financial income

and price index (gc, gw, gπ).

With tacit collusion, the volatility of capacity utilization generated by the model is 9.35%, com-

pared with the 18.11% in the data.17 However, the volatility of log changes in the investment rate

(gir1) is 8.9%, which is lower than the data (15.7%). But despite significantly higher volatility of

productivity shocks, lower adjustment costs, and similar production elasticity parameterization, the

investment rate volatility in the low-concentration sector (gir2)– that follows the BN equilibrium

path– is far lower than in the data. And, of course, the volatility of capacity utilization is counter-

factually zero in this sector. In addition, untabulated results show that the mean investment-to-sales

16The steady state equilibrium capacity utilization in the concentratrated sector (54%) implies that the average
capacity utilization in our two-sector economy is 77%, which is close to the mean 79.6% capacity utilization in the U.S.
manufacturing sector in our sample period. We note that the FRB data on capacity utilization only cover a relatively
small number of industries and there is sparse representation of the industries that comprise our concentrated sector.
We therefore use the capacity utilization in the manufacturing sector as the benchmark. And as mentioned above,
through the choice of the depreciation rates, the steady state investment rates (IR) in both sectors closely match their
respective sample means.
17This is the annualized volatility of the raw monthly manufacturing sector capacity utilization data from FRB

during 1962-2016.
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ratio (ISR) in the concentrated sector is 0.01 compared with 0.03 in the data; in contrast, the mean

ISR in the low-concentration sector is lower than the data by a factor of 100. We conclude that the

tacit-collusive equilibrium path fits capacity utilization and investment data significantly better than

the BN equilibrium path. For parsimony, we will henceforth focus on the concentrated sector.

For the aggregate variables, the volatility of log changes in real consumption generated by the

model (2.7%) is close to the data (2.6%). But the baseline model understates the volatility of log

changes in financial income (3.4%) and aggregate price index (1%) relative to the data (6.3% and

2.8%, respectively).

In Panel B, we display the correlation of firm-level and aggregate variables (u1,IR1,W, P, C)

generated by the model. The sectoral investment rate (IR1) is positively correlated with (W,P,C),

which is similar to the data, but the model correlation coeffi cients are significantly lower than in the

data. Equilibrium capacity utilization in the model is negatively correlated with (W,P,C) and this

is similar to the data, although the model correlation coeffi cients are significantly higher than in the

data.18 In untabultaed results, we also find that, similar to the data, the model generates a very high

correlations among W and P and C.

Panel C analyzes the four-year autocorrelation coeffi cients (ACF ) of log changes in salient con-

centrated sector and aggregate variables. In untabulated results, the model matches the high positive

autocorrelation coeffi cients of capacity utilization (u1) and the aggregate variables (W,P,C) in the

data. Turning to Panel C, the model generates negative serial correlation in investment rates (gir1),

similar to the data (except for year t − 3). There is negative but very low autocorrelation in con-

sumption (gc), which is distinct from the positive ACF (1) and ACF (2) in the data, but similar to

the negative and low ACF (3) and ACF (4) in the data. The autocorrelations in financial income

(gw) and untabulated price index (gπ) in the baseline model are not consistent with the data. As we

will show below, however, the autocorrelation of gw generated by the extended model with entry and

exit is closer to the data.

Panel A of Table 3 displays simulated model moments and correlation coeffi cients of the concen-

trated sector returns and the economy-wide real risk-free rate. The mean real risk-free rate is 0.86%,

which is very close to the 0.91% average real risk-free rate in our sample, in contrast to the well

known “risk-free rate puzzle”(Weil 1989). The volatility of the risk-free rate (0.11%) is significantly

18The literature documents pro-cyclical capacity utilization by using national income, and not per capita financial
income. To our knowledge, the literature has not investigated correlation of manufacturing capacity utlization with
the price index and per capita consumption of durables and non-durables.
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lower than the corresponding volatility in the data (2.15%), however. The mean equity risk premium

(ERP) is 2.87% versus the mean value-weighted industry portfolio ERP of 6.94% in our sample. The

model generates ERP volatility of 11.87% compared with 22.95% in the data. As benchmarks from

the macrofinance production-based asset pricing literature, Croce (2014) uses a risk aversion of 10

and IES of 2 and finds significantly higher risk-free rate and lower ERP without long-run productiv-

ity risks (the comparable setting to our model). Jermann (1998) utilizes additive utility preferences

and finds a significantly higher risk-free rate and lower ERP with adjustment costs but no habit

formation. Thus, strategic interaction among firms appears to induce additional volatility in the

SDF given that the volatilities of consumption and income generated by our model are either close

to or understate the data (Table 2).

In Panel B of Table 3, we show the autocorrelations of the real risk-free rate and the ERP. The

model generates positively autocorrelated risk-free rate, which is similar to the data. However, the

ERP generated by the model also is positively correlated; in the data, ACF (1) and ACF (2) are

negative while ACF (3) and AFC(4) are positive.

Overall, the baseline quantitative analysis shows that the effects of fundamental shocks on defec-

tion incentives can raise mean firm-level equity risk premia (ERP) and lower aggregate real risk-free

rate (compared with benchmark models) even when consumption volatility matches the data. The

baseline model understates the volatilities of firm-level capital investment and ERP, as well under-

stating volatilities of aggregate income, price index and real risk-free rate. We now turn to examine

the effects of entry and exit.

4.4 Entry and exit
We now consider the interaction of entry and exit with tacit collusion by analyzing model dynamics

when there is entry and exit. Endogenous entry along the tacit collusion equilibrium path occurs

because of productivity shocks that potentially raise expected industry profits. Given Γt, a finite

pool of symmetric firms (1, ..., N e
1 ) is sequentially given the opportunity to enter after expending

sunk entry costs (ζ1) and investing in production capacity that becomes available at t+ 1, consistent

with the timing conventions of the model and with the literature (Ericson and Pakes 1995). Similar

to the literature, in our quantitative analysis, we focus on symmetric equilibrium paths (Bilbiie et

al. 2012). In particular, entry capacity size is symmetric with incumbents as in Brock (1972) and

Smith (1974), and firms enter at t with capacity choice K∗1,t+1. In practice, there is displacement of

less effi cient firms (possibly due to idiosyncratic shocks) by entrants and, indeed, the asset pricing
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literature highlights displacement risk (Berk et al. 2004; Garleanu et al. 2012). Similar to the

literature (Bilbiie et al. 2012; Corhay et al. 2020), we model displacement risk along the tacit

collusion equilibrium path through an exit rate x1 ∈ (0, 1). The “law of motion”of the number of

firms is N1,t+1 = (1 − x1)(N1t + e1t), where e1t is the number of entrants at t. In equilibrium, entry

occurs as long as (1− x1)Et
[
V ∗1,t+1

]
− (K∗1,t+1 + ζ1) ≥ 0.

We choose entry cost calibration in the concentrated sector to allow a meaningful quantitative

comparison of equilibrium path outcomes with those of the baseline (no entry) model considered

above;19 this is useful to build intuition on the effects of entry and exit with tacit collusion and

capital investment. The exit rate is internally calibrated at 1% to reduce the distance between the

second moments and ACF generated by the model with the data. Apart from the exit rate and entry

cost, the model calibration is the same as in Table 1.

Because of exit, industry capacity falls (unless offset by suffi cient entry), which ceteris paribus

raises product prices and hence expected investment returns (ROIt+1). This increases optimal invest-

ment and hence capacity sizes of incumbent firms, other things being equal. Thus, exit has conflicting

effects on entry in a production economy with endogenous capacity: On the one hand, exit induces

entry by raising expected returns of incumbent firms; on the other hand, it deters entry because the

required initial capacity (K1,t+1) increases.20

Figure 3 shows the equilibrium response of some salient variables to a positive productivity shock

in the concentrated sector (ε+
1t).We start by focusing on the effects on entry. Because of the positive

effi ciency effect (noted earlier), investment rate (IR1) increases and henceKt+1 rises. The latter raises

entry capacity costs and the initial effect of ε+
1t on entry is negative. But this reduces the number

of incumbents in the next period, raising expected returns and entry rate subsequently rises so that

the number of entrants (e1) reverts to the initial levels after two years. This “reverting” effect of

productivity shocks on entry rate is an implication of endogenous capacity entry costs. But because

of exit, the number of incumbents is still below the pre-shock levels, which raises product prices in

subsequent periods allowing capacity utilization (u1) to fall (as explained previously). As the number

19We keep the low-profit low-concentration sector and the off-equilibriun path (OEP) “closed”with a fixed number of
firms, as in the baseline model considered earlier. The entry cost is calibrated so that entry is not optimal with the same
number of firms and steady state outcomes as in the baseline case. These assumptions ensure that we characterize
the equilibriium path with entry and exit through perturbations around the same steady and OEP policies as in
baseline model. We find, however, that allowing OEP entry and exit adds to computational complexity but does not
significantly affect the outcomes.
20But these effects of exit are not present, however, in entry models without production capacity costs of entry, such

as Bilbiie et al. (2012), Corhay et al.(2020) and Loualiche (2021).
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of incumbents recovers due to continued entry, the positive effect of ε+
1t on p1 reaches its maximum

about two years after the shock and then begins a slow decline. Consequently, the negative effect of

ε+
1t on u1 also reaches its maximum after two years.

Meanwhile, because of higher output, there is an immediate downward effect of ε+
1t on the current

industry price (p1t), which recovers quickly as in the subsequent period because the number of

incumbents is still below the pre-shock level. Due to intratemporal product substitutability, however,

the lower p1t reduces demand for the sector 2 product, leading to a significant reduction in p2t and

hence D2t. Consequently, the aggregate implications of ε+
1t are that Pt and Wt fall (despite the rise

in dividends of the concentrated sector) but revert to their original values two years after the shock,

in line with the price and entry trajectories. Ct also falls but begins recovery only after two years so

that the expected SDF rises due to lower expected growth of consumption. Hence, the real risk-free

rate initially falls but then recovers at t + 2 as consumption growth reverses the initial effect. In

contrast, ε+
1t has a strong positive effect on equity price S1t because of higher expected SDF and

dividends. Because of the higher S1t, the ERP falls– despite the lower risk-free rate– but recovers

by the second year after the shock.

A visual comparison of the trajectories of the salient model variables in Figures 1 and Figure 3

indicates greater volatility in the presence of entry and exit, as the post-shock trajectories get reversed

relatively sharply. This intuition is verified in the simulation outcomes with entry and exit reported

in Table 4. For expositional parsimony, we display results of variables that are most significantly

different from the baseline model outcomes (Tables 2 and 3). Panel A of Table 4 shows that, relative

to the baseline results, entry and exit significantly raise the volatilities of concentrated sector capacity

utilization, investment rates, as well as consumption; indeed, these now exceed those in the data.

The volatility of aggregate price index and financial income also rise, with the former essentially

matching the data, while the volatilities of investment rates and financial income are closer to the

data relative to the baseline model.

Panel B of Table 4 shows significant changes in the autocorrelation patterns of log changes in

consumption and income (relative to the baseline). Log changes in consumption are now significantly

positively autocorrelated for years t − 1 and t − 2, similar to the data. The positive autcorrelation

over longer horizon (years t − 3 and t − 4) does not match the data, however. A major change

(from the baseline) is the autocorrelation pattern of log changes in financial income: These are now

significantly positively autocorrelated, similar to the data. Untabulated analysis shows, however,
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that the ACFs of the aggregate price index are still not consistent with the data and the correlation

of the investment rate (IR1) with W and P is weakly negative (with entry and exit).

There is an intuition that with higher consumption and, hence, value volatility, endogenous entry

in the presence of tacit collusion and capital will amplify firms’risk exposure to fundamental shocks.

In Panel C, we indeed find that entry and exit improve the empirical performance of financial returns

compared to the baseline model above. The mean sectoral equity premium is 5.2%, which is much

closer to the data (6.9%) compared with baseline model and the volatility of ERP is also substantially

higher. Moreover, the risk-free rate is still close to the data (0.94% versus 0.91%) and its volatility

is now much closer to the data.

We conclude that entry and exit improve the fit of the model with data along some dimension,

but not so in others, consistent with the view that the data reflect a large number of industries with

widely varying rates of entry and exit. Our analysis highlights the effects of variations in oligopolistic

industry structure due to endogenous entry and idiosyncratic exit on aggregate dynamics.

4.5 Micro and aggregate effects of adjustment costs
In Section 3.1, we noted the effects of real frictions on equilibrium outcomes through the tacit

collusion channel. We now quantitatively analyze firm- and aggregate-level effects of variations in

capital adjustment costs. Specifically, we simulate our economy with entry and exit (Section 4.4) when

capital adjustment costs are significantly higher in the concentrated sector relative to the baseline

calibration (ϕ1 is raised to 14 from 8, holding other parameters the same). We display simulated

moments of salient variables in the second column of Table 5, and use Table 4 for comparison. Not

surprisingly, volatility of log changes in investment rate falls significantly and the volatility of capacity

utilization is also reduced. We find, however, that entry becomes more lumpy with higher capacity

adjustment costs. Untabulated results show that mean entry per period falls while its volatility rises

and, consequently, the volatilities of log changes in industry product price and dividends increase. We

thus see higher volatility of log changes in W, P and C. In addition, because of the increased friction

in accommodating productivity shocks both on- and off-equilibrium path, the mean and volatility of

firm-level risk premium as well as the real risk-free rate rise. In sum, real frictions further amplify

the effects of endogenous entry on firms’risk exposure along the tacit collusion equilibrium path.

A useful benchmark for these results is the influential literature that examines the aggregate

effects of firm- or plant-level real frictions (Veracierto 2002; Khan and Thomas 2008). This literature

generally finds that in competitive settings such frictions are essentially irrelevant for aggregate
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dynamics in general equilibrium because prices adjust to compensate for the frictions. In particular,

Khan and Thomas (2008) analyze a model with non-convex adjustment costs in a competitive setting

and do not consider entry with capacity and sunk fixed costs. They conclude that adjustment

costs are essentially irrelevant for aggregate dynamics once factor supplies are allowed to adjust in

general equilibrium. Our model assumes infinitely elastic supply of investment goods and smooth

adjustment costs. Nevertheless, we find significant effects of firm-level adjustment costs on aggregate

dynamics with tacit-collusive prices and endogenous entry with fixed and capacity costs. Intuitively,

the compensating price mechanisms that appear to be responsible for the neutrality results in the

literature are restricted due to tacit collusion and real frictions in entry.

4.6 Micro and aggregate effects of productivity processes
We examine next the effects of volatility and persistence of productivity shocks through the tacit

collusion channel. Column 3 of Table 5 displays the results when the productivity persistence of the

concentrated sector is varied from 0.73 (in the baseline) to 0.63, holding other parameters the same;

and Column 4 repeats the same procedure when productivity volatility in this sector is reduced to

0.05%. We find that variations in the parameters of the productivity process in the concentrated

sector have marginal effects. In contrast, as seen in Columns 4 and 5, relatively small variations in the

productivity persistence (from 0.96 to 0.95) and volatility (from 1.5% to 1%) in the low-concentration

sector have substantial effects on the tacit collusion equilibrium of the concentrated sector, especially

on the risk premium. In Section 4.2 above, we qualitatively highlighted the cross-sectoral or general

equilibrium effects of productivity shocks in the low-concentration sector on response functions in

the concentrated sector, as well as the aggregate effects of these shocks. The analysis in Table 5

indicates that these general equilibrium effects are quantitatively quite significant.

5 Industry concentration and equity returns
As mentioned before, the literature presents conflicting evidence on the cross-sectional relation

of industry concentration and equity returns.21 In this and the next section, we show– conceptually,

quantitatively and empirically– that tacit collusion with endogenous capital can help resolve the

observed ambiguity in the concentation-return relation. Now, the cross-sectional regressions of returns

on industry concentration are partial, or industry, equilibrium in that they take as given concentration

21We are grateful to an anonymous referee for highlighting this issue to us.
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and other covariates that affect returns. That is, these regressions empirically examine comparative

statics on returns with respect to exogenous variations in variables that are (at least temporarily)

taken as given. We therefore analyze the implications of tacit collusion and capital investment on

the concentration-return relation in this setting.22

Intuitively, industry production capacity plays a central role in tacit collusion because, as seen

above, defection incentives are determined by firms’production capacities both on and off the equi-

librium path. In particular, along the equilibrium path, defection incentives are positively related to

excess capacity, while these incentives are negatively related to industry capacity in the OEP punish-

ment path. But industry capacity is strongly affected by concentration. Hence, there is a clear link

between concentration and risk premium through the effects of the former on defection incentives.

More concisely, let us denote, for any variable Ht, ∆N(Ht) ≡ Ht(N + 1) − Ht(N). Then it can be

shown using the TCIC (13) (see Online appendix D) that the effect (in terms of sign) of increasing

the number of industry firms on equilibrium industry price is

∆N(pt) ∝ ∆N

(
Et
[
Vt+1(Γt+1)− Ṽt+1(Γt+1)

])
− (pt − h)∆N(Ȳt − Yt), (21)

where Ȳt is the firm’s production at full capacity. The first term in RHS of (21) represents the

punishment effect (PE) of lower concentration and is generally positive, while the second term is the

market dilution effect (MDE) of lower concentration and is negative. Thus, variations in concentration

generally have ambiguous effects on pt. The effects of industry concentration and firm-level dividends,

∆N(Dt+1), and hence the risk premium, ∆N (Et [Rt+1 −Rf,t+1]) , are therefore generally ambiguous.

Now, if ∆N (Ωt,t+1) and∆N (Rf,t+1) are small because of realistically large number of sectors, then

the industry ∆N (Et [Rt+1 −Rf,t+1]) ' −∆NCovt

(
Ωt,t+1,

(
Dt+1+St+1

St

))
Rf,t+1 (Online appendix D).

But if the MDE is strong relative to the PE, then ∆N

(
Dt+1+St+1

St

)
< 0 and the covariance of the SDF

with equity payoffs increases (in magnitude) with N, so that ∆N (Et [Rt+1 −Rf,t+1]) > 0, that is, the

risk premium is negatively related to concentration. An opposing argument applies when the PE is

relatively strong, so that ∆N

(
Dt+1+St+1

St

)
> 0 and hence ceteris paribus ∆N (Et [Rt+1 −Rf,t+1]) > 0.

We now derive testable empirical hypotheses (or predictions) on the relation of concentration and

returns by considering firm-, industry- and macro-level characteristics that help resolve the conflicting

MDE and PE of concentration on the risk premium.

22Such partial equlibrium analysis is often utilized in the literature as part of general equilibrium analysis (Veracierto
2002; Opp et al. 2014)
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5.1 Operating leverage, profitability, and adjustment costs
Consider first the case of firms with high operating leverage-to-operating profitability (OL/OP)

ratios. Firms with suffi ciently high fixed costs, or high OL/OP ratios, will ceteris paribus have low

dividends and equity values in low Wt (or high SDF) states. With smooth consumer preferences

and production relationships (see Section 2), S∗t = Et
[
V ∗t+1

]
is continuous in Wt.

23 Hence, for every

εst > 0, there exists εwt > 0 such that S∗t < εst whenever Wt < εwt (holding fixed other elements

of Γt). But due to limited liability, S∗t and S̃t are uniformly bounded below by zero. Hence, for

OL/OP suffi ciently high and Wt suffi ciently low, the PE, Et
[
V ∗t+1 − Ṽt+1

]
, can be made arbitrarily

close to zero. Consequently, for such firms the MDE must dominate the PE in high SDF states

because the markup (p∗t − h) stays strictly positive along tacit collusive equilibrium paths. The

argument above then implies that ∆N

(
Et
[
R∗t+1 −R∗f,t+1

])
> 0 for firms with high OL/OP ratios.

Similarly, in low Wt (or high SDF) states, firms with high adjustment costs ceteris paribus can not

reduce their production capacities, lowering Et
[
V ∗t+1

]
and weakening the punishment effect. Hence,

∆N

(
Et
[
R∗t+1 −R∗f,t+1

])
> 0 for such firms.

An opposing argument applies for firms that have high OP/OL ratios because of low marginal

costs relative to fixed costs. In this case, S∗t stays strictly bounded away from zero even in low

income states and hence the PE remains significant in high SDF states. Reversing the argument in

the previous paragraph, ∆N

(
Et
[
R∗t+1 −R∗f,t+1

])
< 0 for firms with suffi ciently high OP/OL ratios.24

In a similar vein, optimal investment (I∗t ) is ceteris paribus negatively related to fixed and capital

adjustment costs (see (18)). High investment firms therefore ceteris paribus reflect relatively low fixed

and/or low adjustment costs so that ∆N

(
Et
[
R∗t+1 −R∗f,t+1

])
< 0 for such firms.

It is useful to quantitatively demonstrate the opposing relation of equity returns and industry

concentration based on the foregoing analysis. To do so, we adapt the baseline general equilibrium

quantitative model of the previous section (Sections 4.2 and 4.3) to an industry equilibrium where

aggregate income and price index (Wt, Pt) are taken as state variables (rather than being endogenous).

We consider the relation of returns and concentration over a range of fixed cost, marginal cost, and

adjustment costs parameterizations. Hence, for computational tractability, we adopt the loglinear

approach of Jermann (1998) and Horvath (2000) who also quantitatively analyze returns (or asset

23The value functions V ∗t and Ṽt will be continuous in the state variables from an application of the Theorem of the
Maximum or from the arguments in Blume, Easley and O’Hara (1982).
24This prediction applies even in the absence of entry. Hence, it is different from Corhay et al. (2020) where a positive

relation of concentration and risk premium arises because of entry induced by higher profits in more concentrated
industries. The argument here relates to firms with higher operating profitability at a given level of concentration.
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pricing) in production economies.25 In this approach, the logs of firms’state (Wt, Pt, At), namely,

µt ≡ (wt, πt, at)
ᵀ follow an AR(1) process, that is, µt+1 = ρµt + εt+1, where ε is i.i.d mean zero

with variance-covariance matrix Σ = [Σij] and ρ is the square diagonal matrix of auto-correlation

coeffi cients with diag(ρ) = (ρw, ρπ, ρa), 0 ≤ ρ ≤ 1.

Considering the loglinear representation of returns in our framework provides additional intuition

on our model. Using the standard Campbell and Shiller (1988) loglinear approximation, equity

returns are given by rt+1 = κd0 + κd1`d,t+1 − `dt + dt+1 − dt, where `dt is the log price-dividend

ratio log(St/Dt), and κd0 and κd1 are approximating constants that depend on the mean level of

`d . As seen above, because of tacit collusion, firms’equilibrium real policies– and hence dividends–

depend on the aggregate and industry state variables, their existing capital stock and on- and off-

equilibrium stock prices. Consequently, the equilibrium price-dividend ratio is a (linear) function of

the logs of aggregate and industry state variables, as well as the endogenous off-equilibrium stock

price (see Online appendix D.2). The latter distinguishes our analysis from the standard loglinear

return representation in production-based asset pricing models. Heuristically, the coeffi cients of

`d capture firm and aggregate responses to sectoral productivity shocks through their impact on

defection incentives from tacit collusion that have been analyzed in general equilibrium above.26

We parameterize the variance-covariance matrix of shocks to µt ≡ (wt, πt, at)
ᵀ (that is, Σ) from

NIPA data on financial income and consumer price index, as well as the NBER-CES database for

consumer goods industries. We maintain the parameterization relating to the discount factor, risk

aversion and IES from the previous section; the taste-factor parameter (φ) takes a lower value to

reflect a generic industry rather than sectors; and the ES (σ) is again in the range estimated by

Broda and Weinstein (2006). The calibration is summarized in Table A.1 of the Online appendix.

We simulate conditional equity returns for various concentration levels as well as a range of OL, OP,

and adjustment costs. The means of simulated returns are displayed in Figures 4 through 6 through

(three-dimensional) “surface maps”plotted against industry concentration and model parameters.

The analysis above predicts that for firms with relatively high OL/OP ratios, the mean re-

turns will be positively (negatively) related to number of industry firms (concentration). And the

concentration-risk premium relation will reverse in sign– that is, be positive– for firms with rela-

25Jermann (1998) and Horvath (2000) study production economies in a competitive setting. A substantial strand
of the RBC and macrofinance literature also utilizes log-linear analytic approximations around a deterministic steady
state, including dynamic models with tacit collusion (Rotemberg and Woodford 1992).
26Methodologically, equilibrium investment and capacity utilization policies have to be determined simultaneously

with the stock price, which requires solving a higher-order polynomial compared with the standard case.
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tively high OP/OL ratios. We parameterize high OL/OP ratio firms by choosing high ratios of fixed

to marginal costs (that is, m/h) and conversely for high OP/OL ratio firms. Figure 4 considers the

case of high OL/OP ratio firms and shows that mean returns are monotonically negatively related to

concentration, consistent with the predicted relation, for an open interval of high ratios of fixed and

marginal costs. Next, Figure 5 analyzes the case of firms with high OP/OL ratios, or low OL/OP

ratio firms, by using significantly lower ratios of fixed and marginal costs. In contrast to Figure 4,

but consistent with the theoretical prediction above, mean returns are now monotonically positively

related to concentration. Finally, Figure 6 analyzes the effects of high adjustment costs on mean

returns. In this case, we set the OL/OP ratio to be significantly lower than in Figure 4; nevertheless,

for high adjustment costs, there is a negative relation of mean returns and concentration, similar to

Figure 4. This analysis confirms that high adjustment costs affect the concentration-returns relation

along a channel similar to high operating leverage, as we argued in Section 5.1.

5.2 Endogenous capacity depreciation
The RBC literature examines the implications of endogenous depreciation through capacity uti-

lization, but generally in a competitive framework. However, the trade-off between capacity uti-

lization and depreciation will influence tacit collusion by affecting the relative strengths of PE and

MDE.27 Intuitively, because of depreciation costs of higher capacity utilization, (ũt, K̃t) will ceteris

paribus be lower, raising prices and equity values in the BN equilibrium and weakening the PE. But

defecting firms will not necessarily produce at full capacity, which will weaken the MDE.

To show this, we let Kt+1 = (1 − δ(ut))Kt + It, where δ : [0, 1] → [0, 1] is strictly increasing

and convex on (0, 1). Similar to Greenwood et al. (1988), we set δ(u) = 1
ξ
u
ξ
, ξ > 1, so that the

marginal depreciation cost of capacity utilization δ̇(u) = u
ξ−1. Hence (for a fixed u < 1), both

δ(u) and δ̇(u) are strictly decreasing in ξ. We verify that ū∗t < 1 and ũt < 1 for ξ not too high

(Online appendix E). Our focus is on the effect of ξ on the risk premium. As noted above, there

are two opposing forces at play here. Lower ξ (that is, higher δ̇(u)) ceteris paribus weakens the

PE by reducing (ũt, K̃t+1). This is easiest to see in the punishment equilibrium steady state where

it can be shown that ∂K̃
∂ξ

> 0 when the marginal cost h is not too large (see Online appendix E).

Thus, higher depreciation costs (lower ξ) ceteris paribus weaken the PE. On the other hand, lower ξ

dampens defection incentives along the equilibrium path because D̄∗ −D∗ = (p∗ − h)(ū∗ − u∗) and

27We are grateful to an anonymous referee for pointing this out to us.
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∂ū∗

∂ξ
> 0 in the steady state. The weaker defection incentives allow higher tacitly collusive prices to be

sustained in equilibrium with lower industry concentration and weaken the MDE. The net effects of ξ

on equilibrium markups and the risk premium are hence theoretically ambiguous. However, because

the PE is (potentially) of infinite duration, we expect that the PE will be weaker than the MDE

for suffi ciently high δ̇(u). Thus, the prediction is that for industries with high depreciation costs of

capacity utilization, ∆N

(
Et
[
R∗t+1 −R∗f,t+1

])
> 0.

5.3 Strategic entry deterrence
A theoretical literature highlights strategic entry deterrence through firms with market power

(Spence 1977; Dixit 1980). We derive empirical implications for the concentration-returns relation by

obtaining from the equilibrium entry condition (Section 4.4) the conditional probability mass function

for the number of potential entrants Φ∗i,t+1 = Pr
(
e∗t+1 = i Γ̂t

)
, i = 0, 1, ..., N e. The corresponding

incumbents’value functions are denoted V ∗t+1(Γt+1, e
∗
t+1 = i) ≡ V ∗i,t+1(Γt+1). In general, let K∗t+1 be

the profile of incumbents’capacities at t+ 1 and partition the state Γt+1 = (Γ̂t+1,K
∗
t+1). If the MDE

dominates PE, then for all potential entrants, V ∗i,t+1(K∗t+1, Γ̂t+1) < V ∗i,t+1(K̆∗t+1, Γ̂t+1) if K∗t+1 > K̆∗t+1.

Optimal entry thus implies that the distribution Φ∗t+1 = (Φ∗0,t+1, ...,Φ
∗
Ne,t+1) is decreasing in K∗t+1 in

the sense of first order stochastic dominance if the MDE dominates. Therefore,

∂Et
[
V ∗t+1(Γt+1)

]
∂I∗t

=
Ne∑
i=0

Φ∗i,t+1

∂Et,Γ
[
V ∗i,t+1(K∗t+1, Γ̂t+1)

]
∂K∗t+1

+
Ne∑
i=0

∂Φ∗i,t+1

∂K∗t+1

Et,Γ
[
V ∗i,t+1(K∗t+1, Γ̂t+1)

]
, (22)

where Et,Γ[·] denotes expectations with respect to exogenous state Γt+1. Now, if the MDE is dominant,

then V ∗i,t+1 is decreasing in i and Φ∗t+1 is decreasing inK∗t+1; hence, the second term in (22) is positive

when the MDE is strong. In this case, we get Ke∗
t+1 = K∗t + Ie∗t > K∗t+1 = K∗t + I∗t , where I

e∗
t and I∗t

denote investment with and without entry threat, respectively. We conclude that in industries where

large incumbent capacities deter entry, higher capital investment indicates a strong MDE and hence

the effect of investment on the concentration-returns relation should be stronger.

5.4 Time-varying relation of concentration and returns
For analytic tractability, and similar to the common approach in the RBC and asset pricing

literatures, we have assumed that the variance-covariance matrix Σ of innovations to the state

variables is stationary. However, a large literature considers time-varying risk premia. In par-

ticular, Duffee (2005) finds that the conditional covariance between aggregate stock returns and
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consumption growth is high in times of high aggregate stock returns. Because aggregate returns

are weighted averages of firm-level returns, this finding would imply that in our setting, on aver-

age, −Covt
(

Ωt,t+1,
D∗
t+1+S∗t+1
S∗t

R̂t

)
< −Covt

(
Ωt,t+1,

D∗
t+1+S∗t+1
S∗t

Rt

)
, for aggregate return R̂t > Rt.

It then follows that ∆N

(
Et
[
R∗t+1 −R∗f,t+1

]
R̂t

)
> ∆N

(
Et
[
R∗t+1 −R∗f,t+1

]
Rt

)
. Hence,

∆N

(
Et
[
R∗t+1 −R∗f,t+1

]
R̂t

)
> ∆N

(
Et
[
R∗t+1 −R∗f,t+1

]
Rt

)
> 0 for high OL firms, and this in-

equality will reverse for high OP and high investment firms (Section 5.1).

Another source of time variation in the concentration-return relation is secular trends in industry

fundamentals. Markups and industry concentration in U.S. have increased significantly in recent

decades (Farhi and Gourio 2018; Autor et al. 2020; De Loecker et al. 2020), and these trends are

consistent with our sample (Table A.2 of Online appendix). The literature relates higher markups

to technological changes that have raised fixed costs (Berry et al. 2019), consistent with evidence

that higher concentration and markups are due to a few effi cient (“superstar”) firms with higher

fixed-to-marginal cost ratios (Autor et al. 2020). For the concentration-return relation, a secular

trend of increasing fixed-to-marginal cost ratios should weaken the PE for high OL firms and hence

strengthen the negative effect of OL, while superior effi ciency of incumbents implies less reliance on

capacity for entry deterrence and hence a weakening effect of investment.

5.5 Summary of empirical hypotheses
We now summarize novel empirically testable hypotheses derived in this Section, which we will

test below. The first three hypotheses are derived from extending the arguments in Section 5.1.

The first part of these hypotheses predicts that the slope of equity returns with respect to industry

concentration is monotone in operating leverage, operating profitability and investment. The second

part asserts that the concentration-returns relation becomes positive or negative for suffi ciently high

values of these firm characteristics.

Hypothesis 1. Industry concentration is ceteris paribus more negatively related to returns of firms

with higher operating leverage and the return-concentration relation is negative for high operating

leverage firms.

Hypothesis 2. Industry concentration is ceteris paribus more positively related to returns of firms

with higher operating profitability and the return-concentration relation is positive for high operating

profitability firms.

Hypothesis 3. Industry concentration is ceteris paribus more positively related to returns of firms

with higher investment and the return-concentration relation is positive for high investment firms.
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Next, Section 5.2 predicts that industry concentration will be negatively related to risk premium

when marginal depreciation costs of capacity utilization, δ̇(u), are high.

Hypothesis 4. Industry concentration is ceteris paribus more negatively related to returns of firms

with higher sensitivity of capital depreciation rates to capacity utilization (that is, δ̇(u)).

The next hypothesis is an implication of using capital investment for entry deterrence (Section 5.3):

Hypothesis 5. In capital-intensive high entry-threat industries, the positive effect of investment on

the concentration-returns relation is ceteris paribus strengthened.

While Section 5.3 and Hypothesis 5 focus on the effects of entry deterrence in capital-intensive

industries, deterrence can also more generally occur through large size of incumbents (Siegfried and

Evans 1994; Gershon 2013). In this case, higher OL ceteris paribus increases profits by deterring

entry, weakening the relative strength of MDE over PE for high OL firms (see Section 5.1). Thus:

Hypothesis 6. In high entry-threat industries where large incumbent size deters entry, the negative

effect of higher operating leverage on the concentration-returns relation is ceteris paribus weakened.

Next, considering time-varying risk premia (see Section 5.4) yields the hypotheses that:

Hypothesis 7. The concentration-returns relation as well as the effects of higher operating leverage,

investment, and operating profitability are ceteris paribus stronger in high aggregate return periods.

Meanwhile, the secular rise in market concentration and markups due to technological changes

that have increased fixed-to-marginal cost ratios leads to the prediction:

Hypothesis 8. The effect of higher operating leverage on the concentration-returns relation will

ceteris paribus become stronger in recent years.

The increasing dominance of highly effi cient firms in recent years implies that (in high entry-threat

industries) the importance of large capacities for entry deterrence will be weakened.

Hypothesis 9. The effect of higher investment on the concentration-returns relation in capital-

intensive high entry-threat industries will ceteris paribus become weaker in recent years.

Entry deterrence and time-varying industry trends also yield predictions for capital investment.

Cross-sectionally, capital-intensive high entry-threat industries with higher concentration reflect strong

MDE and entry deterrence benefits for investment. But increasing market power of super-effi cient

firms will attenuate the importance of larger capacities for entry deterrence in recent years.

Hypothesis 10. In capital-intensive high-entry threat industries, capital investment is ceteris parbus

positively related to industry concentration. But the relation of industry concentration and capital

investment will become weaker in recent years.
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6 Empirical tests

6.1 Data and sample construction
To test the empirical hypotheses, we obtain data on stock returns from CRSP (Center for Research

on Security Prices). We construct a number of firm-specific variables such as size, leverage, etc., using

data from Compustat. We employ the text-based TNIC HHI (THHI) industry concentration measure

of Hoberg and Phillips (2016), obtained from Gerard Hoberg’s website.28 We merge the quarterly

Compustat data with the THHI data.

Our sample begins in 1989 due to the availability of the industry concentration measure. We

merge the annual industry concentration measure with the quarterly Compustat files, holding the

industry concentration constant over the quarter. To base our empirical tests on the most recent

information available to investors, we lag all Compustat data and the industry concentration measure

by one quarter. We merge the quarterly Compustat and the industry concentration data with the

CRSP monthly data. The Compustat variables are held constant over quarter when we combine

the files. We also include the data on Capital Asset Pricing Model (CAPM) betas obtained from

the WRDS (Wharton Research and Database Services) betasuite. We drop financial firms from our

analysis (SIC codes between 6000 and 7000). Further details on sample construction are provided in

the Data appendix. Our final sample covers 1989-2019, with 8784 unique firms. We provide details

regarding the computation/construction of empirical measures for the dependent and independent

variables (used in our tests) in the Data appendix.

6.2 Results
To test the empirical hypotheses, we run Fama and MacBeth (FM) (1973) cross-sectional regres-

sions using interactions of industry THHI with firm characteristics. We extend the Fama and French

(FF) (1992, 1993) three-factor model (FF3) to include financial leverage, similar to Bustamente and

Donangelo (2017), since our theoretical model considers unlevered returns. We implement the FF3

model at quarterly frequency, with lagged stock beta (computed every quarter using past 5 years of

28(http://hobergphillips.tuck.dartmouth.edu/industryconcen.htm). The THHI measure is especially appropriate in
our setting because we define industries from the viewpoint of product homogeneity or proximity (see Section 2.1). The
THHI measure is derived from text-based descriptions of product characteristics and hence industries are defined in
terms of product homogeneity rather than commonality of activities and resource use, which is the basis for conventional
industry definitions (see Hoberg and Phillips 2016).
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monthly returns).29 Our basic regression specification is

Rit = β0t + β1tTHHIt−1 + β2tXi,t−1 + β3t(THHIt−1 ∗Xi,t−1) +G(controlst) + εit, (23)

where Xi is the implicated characteristic, such as OL, OP, and investment. In the standard fashion

for FM regressions, the coeffi cients are estimated each quarter and averaged over time, and the table

report the mean coeffi cients β̄ = Avg(βt). The first parts of Hypotheses 1-3 impose restrictions on the

sign of β3, the coeffi cient of
∂
∂X

(
∂R

∂THHI

)
. The second parts of these hypotheses impose restrictions

on the sign of the slope or total effect of concentration on returns, ∂R
∂THHI

= β̄1 + β̄3X̄.

Table 6 presents tests of Hypotheses 1-3. The first row shows only the loadings on FF3 and

leverage. Consistent with Fama and French (1992), there are strong effects of size and book-to-market

(BTM) factors but the market beta is not priced. In the second row, we add industry concentration

(THHI), which is not significantly related to equity returns, consistent with the ambiguous evidence in

the literature. The third row analyzes the effects of firms’OL on the concentration-returns relation.

Similar to the literature (Novy-Marx 2011), we measure OL by the ratio of selling, general, and

marketing expense (xsgaq) to the sum of xsagq and cost of goods sold (cogsq). We use OL lagged by

a quarter, in accord with the lags of the other covariates. Stock returns are significantly positively

related to OL, as is the case in the literature (Lev 1974; Novy-Marx 2011). But the estimated

coeffi cient for THHI × OL (β̄3) is negative and statistically significant, indicating that higher OL has

a negative impact on the on the concentration-returns relation, supporting the first part of Hypothesis

1. The effect of higher OL is also economically significant. The sample mean of OL is 0.32. Hence,

a 1% deviation from the mean OL amplifies the negative effect of concentration on equity returns

(that is, ∂R
∂THHI

= β̄1 + β̄3OL̄) by 1.6%. Finally, since β̄1 is insignificant but β̄3 is reliably negative,

the returns-concentration relation is negative for levels of OL above the sample mean.

We test Hypothesis 2 in the next row of Table 6 by analyzing the effects of lagged operating

profitability (OP) on the relation of concentration and equity returns. We measure (quarterly) OP

as the (total revenue (revtq) − cogsq − xsgq))/(market equity). There is a significant positive

relation of OP and returns, consistent with the literature (Fama and French 2015). The estimate of

THHI × OP (β̄3) is positive and significant, which is consistent with the first part of Hypothesis 3.

29While FF (1992) employ portfolio betas for greater precision, using directly computed stock betas should have a
minimal impact because (as in FF (1992)) the betas are not significant in any specification. We use WRDS betasuiyte
to obtain end-of-quarter betas computed using sixty months returns. We need at least thirty months of returns data
to compute betas.
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Furthermore, because β̄3 > 0 and β̄1 < 0, the concentration-returns relation is positive for all firms

with (lagged) OP higher than −(β̄1/β̄3) = 6.4%. On average, 12% of firms in a given quarter have

lagged OP levels exceeding this threshold (6.4%), which quantifies the second part of Hypothesis 2.

For testing Hypothesis 3, similar to the literature, we measure investment by capital investment-

intensity (CII): the ratio of capital investment (capxq) and total assets (atq). The next row in Table

6 analyzes the effects of firms’one-quarter lagged investment on the concentration-returns relation.

Investment loads significantly negatively on average returns, consistent with the literature (Aharoni

et al. 2013; Fama and French 2015). For our overall sample, the coeffi cient of THHI × CII is positive,

consistent with Hypothesis 3, but is not significant. The concentration-returns relation is positive

for all firms with (lagged) quarterly CII higher than 3.8%. On average, firms in the top decile of CII

(about 7%) in a given quarter have lagged investment exceeding this threshold.

We test Hypothesis 4 using inter-industry variation in δ̇ind(u), the estimated slope of depreciation

with capacity utilization in an industry. We use BEA data on annual depreciation rates and data on

annual capacity utilization available from FRB. The industry coverage of capacity utilization data

is relatively small compared with the depreciation data. There are twenty four three digit NAICS

industries (almost all in manufacturing) where we have both capacity utilization and depreciation

data. For each of these industries, we estimate δ̇ind(u) by regressing depreciation rates on capac-

ity utilization. We classify industries with higher depreciation sensitivity to capacity utilization as

the above-median (top-twelve) industries in terms of the estimated slopes δ̇ind(u), identified by the

dummy variable Iδ̇ind(u)>med(δ̇ind(u)). We examine the concentration-returns relation in high depreci-

ation sensitivity industries through the interaction term THHI × Iδ̇ind(u)>med(δ̇ind(u)). Hypothesis 4

predicts that the coeffi cient for this term should be negative. Panel A of Table 7 shows that this

coeffi cient is indeed negative and significant, supporting Hypothesis 4.

To test Hypothesis 5, we identify high capital-intensity and high entry-threat industries using data

from Bureau of Labor Studies (BLS) and entry activity analysis in Dunne et al. (1988), respectively.

The list of industries is given in the Data appendix. Panel B of Table 7 shows that, compared to the

full-sample results in Table 6, the effect of higher CII on the concentration-returns relation– that is,
∂

∂AG

(
∂R

∂THHI

)
– increases in statistical significance, consistent with Hypothesis 5.

For testing Hypothesis 6, we identify high entry-threat industries (both capital- and labor-

intensive) where large incumbent size deters entry. The US Census Bureau’s Survey of Small Business

provides data on start-up and business acquisition costs, which is a measure of entry costs (ζ). Retail
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trade, wholesale trade, and transportation and warehousing have low average startup and, hence, en-

try costs. However, large incumbent companies in these industries discourage entry (Gershon 2013).

Panel C of Table 7 shows that the effects of higher OL are not significant in these industries, in

contrast to the full sample results in Table 6, supporting Hypothesis 6.

Now, the high entry-threat industries utilized in Panel C are static over our sample. For ro-

bustness, we also construct a time-varying measure of entry threat based on new aggregate business

formation quarterly data available from the Bureau of Labor Statistics (BLS) from 1993Q2 onwards.

We define high entry quarters as those with rates of new business growth above the sample median

growth rate. Panel D of Table 7 shows that the effect of OL on the relation of concentration and

returns is not significant prior to high entry quarters, similar to Panel C.

We now examine time-variation in the relation of industry concentration and equity returns.

Panels A and B of Table 8 test Hypothesis 7 by analyzing the concentration-returns relation in

“boom”periods (Panel A)– defined as periods with quarterly returns exceeding 10%, which holds

for about 15% of our sample (19/124 quarters)– and in “no boom”periods (Panel B), that is, the

85% of sample periods with quarterly returns less than 10%. The first row of Panel A shows a

significant negative relation of concentration and equity returns during boom periods. In contrast,

in Panel B, there is no significant effect of concentration on returns during the no-boom periods.

Furthermore, we find that the economic and statistical significance of the effects of OL, CII and OP

on the concentration-returns relation is higher during boom quarters relative to “no boom”quarters

and therefore the entire sample (Table 6). The results in Panels A and B thus support Hypothesis 7.

We test Hypothesis 8 by considering the effects of high OL on the concentration-returns rela-

tion in the second half of our sample, namely, 2005-2019. To do so, we utilize dummy variables

I≥2005 and I<2005 so that β̄ = β̄t≥2005I≥2005 + β̄t<2005I<2005. Panel C of Table 8 reports coeffi cients

β̄t≥2005. Consistent with the hypothesis, the coeffi cient of THHI × OL is significantly negative. For

Hypothesis 9, we consider the effects of capital investment on the concentration-returns relation in

capital-intensive high entry-threat industries (used in Panel C of Table 7) for the second half of our

sample (2005-2019) adopting the dummy variable approach outlined above. Panel C of Table 8 also

shows that the coeffi cient of THHI × CII in the returns regression for the annunciated industries is

insignificant during 2005-2019, supporting Hypothesis 9.

For testing Hypothesis 10, we utilize a panel regression of CII on lagged THHI, identifying capital

intensive high entry-threat industries through a dummy variable (High Entry), and controlling for
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(lagged) Tobin’s Q, size, and leverage. We follow standard practice in the literature and use the book

values of firms’assets as proxies for their replacement value, and compute Q as the ratio of the sum

of market value of equity and total liabilities and the sum of book value of equity and total liabilities.

Table 9 shows that the coeffi cient for THHI × High Entry is positive and significant, supporting the

first part of the Hypothesis. We test for weakening of this effect in recent years through the dummy

variable (THHI × High Entry)I≥2005. Indeed, the coeffi cient for this term is negative and significant,

consistent with the second part of the Hypothesis.

7 Summary and Conclusions
Oligopolies are ubiquitous and real and financial outcomes of strategic interaction by firms in

such industries attract long-standing, substantial attention. In a dynamic general equilibrium pro-

duction economy setting with oligopolistic sectors and capital investment, our analysis theoretically,

quantitatively and empirically highlights the interaction of firm- and aggregate-level real outcomes

with financial markets. In response to productivity shocks, industry firms strategically choose ca-

pacity utilization and investment to maximize tacit-collusive equity values subject to a no-defection

constraint governed by on- and off-equilibrium equity values, thereby generating substantial interac-

tion between real outcomes and financial markets. Quantitatively, with moderate risk-aversion and

standard calibration, the model generates relatively high equity premium, low real risk-free rate, as

well as industry and aggregate fluctuations and autocorrelations that help explain the data. Strategic

interaction in our setting also generates novel perspectives on the role of capital and capital-related

frictions– such as, fixed and capital adjustment costs, endogenous depreciation, and entry capacity

costs– on priced risks. We find empirical support for novel predictions regarding the effects of firm

(operating leverage, operating profits and investment) and industry (durability and entry threat)

characteristics, as well time-varying aggregate financial market conditions, on the cross-sectional

relation of industry concentration and returns.

Our analysis highlights the significant effects of capital and real frictions on equilibrium out-

comes with strategic interaction in dynamic oligopolies. For tractability, we do not consider financial

leverage; therefore, the effects of capital and operating leverage we find could reflect the latent im-

pact of leverage. Analyzing tacit collusion in a dynamic production-based asset pricing model with

endogenous operational and financial leverage is an important area for future research.
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Data appendix

D1. Variable definitions

Book Equity (BE): We define book equity = shareholder equity + txditcq − pstkq, where txditcq are

the (quarterly) deferred taxes and investment tax credit and pstkq is the total preferred stock. We use

Compustat variable seqq for shareholder equity. If it is not available, we compute shareholder equity as the

sum of total common equity (ceqq) and pstkq. If this is not available, we compute shareholder equity as

the difference between total assets (atq) and total liabilities (ltq). We set negative BE to “not available”in

our tests.

Boom periods: We define boom as periods with quarterly market returns exceeding 10%, which holds for

about 15% of our sample– and “no boom” periods (Panel B), that is, the 85% of sample periods with

monthly market returns less than 10%.

Capital investment intensity (CII): Defined as the ratio of capital investment (capxq) and the total assets

(atq).

Industry concentration: As our industry concentration measure, we utilize the Text-based Network Industry

Classifications HHI (THHI) measure of Hoberg and Phillips (2016).

Industry entry threat : In Panel C of Table 7 and in Table 9, we identify capital-intensive high entry

threat industries through a dummy variable (at the two-digit SIC code level) based on industry-specific

entry activity documented in Dunne et al. (1988) and capital intensity in Kutscher and Mark (1983). These

industries include printing, chemicals, business services, research, and engineering and management services.

In Panel D of Table 7, the high entry-threat industries (at the two digit SIC code level) are retail trade,

wholesale trade, and transportation and warehousing.

Leverage: Computed as the ratio of total liabilities (ltq) and the sum of total liabilities and market equity.

Market equity (ME): Computed as the number of shares outstanding times the stock price.

Operating leverage (OL): Computed as the ratio of Selling, General, and Marketing expense (xsgaq) and

the sum of Selling, General, and Marketing expense and Cost of Goods sold (cogsq).

Operating profitability (OP): Computed as the ratio: (Total Revenue (REVTQ) - Cost of Goods Sold

(cogsq) - Selling, General, and Marketing expense (xsga))/Market Equity (ME).

Stock returns: These are firm-level quarterly total equity returns, measured in percentages.

Tobin’s Q: We follow standard practice in the literature and use the book values of firms’assets as proxies

for their replacement value, and compute Q by dividing the sum of market value of equity and total liabilities

with the sum of book value of equity and total liabilities.
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D2. Sample construction

For dependent variables that use Compustat quarterly data, we drop firms with irregular fiscal quarter-

ends, that is, with quarter-ends other than March, June, September, and year-end. To reduce the likelihood

of returns being driven by outliers, we winsorize the compustat data (e.g., markups and capex) at 1 percentile

and 99 percentile levels of their distributions. We then identify firms for which there is a THHI measure.

The sample selection procedure results in 8784 unique firms.
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Table 1. Baseline calibration

This table displays the calibration for simulations of the baseline model.

Consumption and Production

Annual discount factor (α) 0.99

Risk aversion (γ) 5

Intertemporal elasticity of substitution (η−1) 1.9

Intratemporal (product) elasticity of substitution (σ) 5.99

Output elasticity of capita: Concentrated sector (ψ1) 0.49

Output elasticity of capital: Low-Concentration sector (ψ2) 0.40

Marginal cost: Concentrated sector (h1) 0.1

Marginal cost: Low-Concentration sector (h2) 0.1

Fixed cost: Concentrated sector (o1) 0.01

Fixed cost: Low-Concentration sector (o2) 0.45

Capital adjustment cos: Concentrated sector (ϕ1) 8

Capital adjustment cost: Low-Concentration sector (ϕ2) 1

Annual depreciation rate: Concentrated sector (δ1) 5%

Annual depreciation rate: Low-Concentration sector (δ2) 5.3%

Variance-Covariance Matrix of Productivity Shocks (Annualized)

Volatility of Concentrated sector shock ε1 (λ1) 0.1%

Volatility of Low-concentration sector shock ε2 (λ2) 1.5%

Correlation of ε1 and ε2 (λ12) -0.07

Autocorrelation Coeffi cients (Annual)

Coeffi cient for ε1 (ρ1) 0.73

Coeffi cient for ε2 (ρ2) 0.96
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Table 2. Main real moments (baseline model)

This table presents the moments of salient firm-level and aggregate real variables from simulations of the

baseline model with eight firms in the concentrated sector and thirty eight firms in the low-concentration

sector. The displayed moments are based on 100,000 simulations each with 59 yearly observations.
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Variable Model Data

Panel A: Standard Deviations (%)

Capacity Utilization (u1) 9.35 18.11

Log Changes

Investment Rate: Concentrated sector (gir1) 8.88 15.69

Investment Rate: Low-Concentrated sector (gir2) 0.73 14.27

Aggregate Real Consumption (gc) 2.67 2.56

Aggregate Financial Income (W ) 3.4 6.29

Aggregate Price Index (P ) 0.73 2.8

Panel B: Correlations

Corr(IR1, W ) 0.05 0.65

Corr(IR1, P ) 0.03 0.8

Cov(u1, W ) -0.92 -0.57

Cov(u1, P ) -0.95 -0.58

Panel C: Autocorrelation coeffi cients (Log changes)

Investment Rate: Concentrated sector (gir1)

ACF(1) -0.2 -0.1

ACF(2) -0.12 -0.04

ACF(3) -0.07 0.01

ACF(4) -0.04 -0.07

Aggregate Consumption (gc)

ACF(1) -0.01 0.25

ACF(2) -0.01 0.05

ACF(3) -0.01 -0.02

ACF(4) -0.003 -0.09

Aggregate Income (gw)

ACF(1) -0.01 0.52

ACF(2) -0.01 0.18

ACF(3) -0.01 0.12

ACF(4) -0.001 0.16
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Table 3. Main financial moments (baseline model)

This table presents the moments of salient firm-level and aggregate financial variables from simulations of

the baseline model with eight firms in the concentrated sector and thirty eight firms in the low-concentration

sector. The displayed moments are based on 590,000 yearly simulations (100,000 simulations of our sample

of 59 years).

Panel A: Mean and Standard Deviations (%)

Mean S.D. (Log Changes)

Model Data Model Data

Real Risk-Free Rate (rrf ) 0.86 0.91 0.11 2.15

Risk-Premium: Concentrated sector (ERP1) 2.87 6.94 11.37 22.95

Panel B: Autocorrelations

Model Data

Real Risk-Free Rate (rrf )

ACF(1) 0.96 0.73

ACF(2) 0.93 0.55

ACF(3) 0.92 0.42

ACF(4) 0.91 0.21

Risk-Premium: Concentrated sector (ERP1)

ACF(1) 0.88 -0.06

ACF(2) 0.8 -0.25

ACF(3) 0.75 0.01

ACF(4) 0.71 0.03
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Table 4. Main moments with entry and exit

This table presents the moments of salient firm-level and aggregate variables from simulations of the model

with entry and exit. The displayed moments are based on 590,000 yearly simulations (100,000 simulations

of our sample of 59 years).

Panel A: Standard Deviations (%)

Variable Model Data

Capacity Utilization (u1) 28.09 18.11

Log Changes

Investment Rate: Concentrated sector (gir1) 19.68 15.69

Aggregate Consumption (gc) 5.72 2.56

Aggregate Financial Income (W ) 3.76 6.29

Aggregate Price Index (P ) 2.80 2.89

Panel B: Autocorrelation Coeffi cients (Log Changes)

Aggregate Consumption (gc)

ACF(1) 0.18 0.25

ACF(2) 0.05 0.05

ACF(3) 0.06 -0.02

ACF(4) 0.06 -0.09

Aggregate Income (gw)

ACF(1) 0.32 0.52

ACF(2) 0.11 0.18

ACF(3) 0.12 0.12

ACF(4) 0.12 0.16

Panel C: Mean and Standard of Financial Returns (%)

Mean S.D. (Log Changes)

Model Data Model Data

Real Risk-Free Rate (rrf ) 0.94 0.91 2.82 2.15

Risk-Premium: Concentrated sector (ERP1) 5.19 6.94 32.22 22.95
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Table 5. Effects of adjustment costs and sectoral productivity shock processes

This table analyzes the effects of varying adjustment costs and parameters governing the sectoral productivity

shock processes (relative to the baseline calibration given in Table 1) on the model with entry and exit (see

Table 4). The displayed moments are based on 590,000 yearly simulations (100,000 simulations of our sample

of 59 years).

High ϕ1 Low ρ1 Low λ1 Low ρ2 Low λ2

Panel A: Standard Deviations (%)

Capacity Utilization (u1) 26.48 28.09 28.14 23.18 14.85

Log Changes

Investment Rate: Concentrated sector (gir1) 12.94 19.68 19.63 17.48 12.98

Aggregate Consumption (gc) 6.03 5.72 5.7 4.92 3.42

Aggregate Financial Income (W ) 3.88 3.76 3.75 3.2 2.03

Aggregate Nominal Consumption (PC) 3.88 3.76 3.75 3.2 2.03

Aggregate Price Index (P ) 2.98 2.8 2.79 2.4 1.73

Panel B: Mean and Standard of Financial Returns (%)

Mean

Real Risk-Free Rate (rrf ) 0.98 0.94 0.94 0.90 0.98

Risk-Premium: Concentrated sector (ERP1) 5.99 5.18 5.24 1.00 2.29

Standard Deviation (Log Changes)

Real Risk-Free Rate (rrf ) 2.99 2.82 2.8 2.43 1.74

Risk-Premium: Concentrated sector (ERP1) 31.5 32.22 32.28 26.83 17.38
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Table 6. Industry concentration, stock returns and firm characteristics

This table analyzes the effects of operating leverage (OL), operating profitability (OP) and capital investment-

intensity (CII) on the relation of industry concentration and stock returns at the firm-level using cross-

sectional Fama and MacBeth (1973) regressions. The Text-based Network Industry Classifications Herfindahl-

Hirschman Index (THHI) of Hoberg and Phillips (2016) is used as the measure of industry concentration.

The definitions of other variables are provided in the Data appendix. The sample period is 1989-2019. The

annual industry concentration measure is merged with the quarterly Compustat files, holding the industry

concentration constant over the quarter. All Compustat data and the industry concentration measure are

lagged by one quarter. Quarterly Compustat and industry concentration data are then merged with CRSP

monthly data. The Compustat variables are held constant over quarter when we combine the files. We

also include the data on Capital Asset Pricing Model (CAPM) betas obtained from the WRDS (Wharton

Research and Database Services) betasuite. Financial firms are dropped (SIC codes between 6000 and 7000).

Further details on sample construction are provided in the Data appendix. The sample has 8784 unique

firms. For each estimated coeffi cient, the number in the parentheses report the corresponding Newey-west

adjusted standard error. *** indicates significance at 1% level, ** indicates significance at 5% level, and *

indicates significance at 10% level.

Beta ln(ME) BE/ME Leverage THHI OL THHI x OL OP THHI x OP CII THHI x CII

0.61 -0.46*** 1.64*** 0.14

(0.50) (0.16) (0.47) (1.42)

0.55 -0.49*** 1.62*** 0.12 -0.87

(0.48) (0.17) (0.47) (1.42) (0.57)

0.44 -0.41*** 1.70*** 1.17 0.56 3.45* -4.64*

(0.45) (0.15) (0.58) (1.23) (0.60) (1.49) (2.23)

0.75 -0.66*** 1.42** -5.65*** -2.34*** 62.64*** 36.74***

(0.47) (0.16) (0.58) (1.28) (0.65) (5.95) (11.51)

0.53 -0.46*** 1.75*** 0.35 -1.50** -34.03** 39.69

(0.46) (0.18) (0.50) (1.46) (0.71) (13.75) (24.21)
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Table 7. Industry concentration, stock returns and industry characteristics

This table analyzes the relation of industry concentration and stock returns at the firm-level using cross-

sectional Fama and MacBeth (1973) regressions for industries with high depreciation costs of capacity utiliza-

tion (identified with a dummy variable), as well as capital- and labor-intensive high entry-threat industries

(see Data appendix and Section 6.3). The Text-based Network Industry Classifications Herfindahl-Hirschman

Index (THHI) of Hoberg and Phillips (2016) is used as the measure of industry concentration. The defin-

itions of other variables are provided in the Data appendix. The sample period is 1989-2019. The annual

industry concentration measure is merged with the quarterly Compustat files, holding the industry concen-

tration constant over the quarter. All Compustat data and the industry concentration measure are lagged

by one quarter. Quarterly Compustat and industry concentration data are then merged with CRSP monthly

data. The Compustat variables are held constant over quarter when we combine the files. We also include

the data on Capital Asset Pricing Model (CAPM) betas obtained from the WRDS (Wharton Research and

Database Services) betasuite. Financial firms are dropped (SIC codes between 6000 and 7000). Further

details on sample construction are provided in the Data appendix. The sample has 8784 unique firms. For

each estimated coeffi cient, the number in the parentheses report the corresponding Newey-west adjusted

standard error. *** indicates significance at 1% level, ** indicates significance at 5% level, and * indicates

significance at 10% level.

Beta ln(ME) BE/ME Leverage THHI THHI x OL THHI x OL CII THHI x CII

Iδ̇ind(u)>med(δ̇ind(u))

Panel A: High Depreciation Slope

0.62 -0.43** 2.83*** 0.31 -2.40*** -10.67*

(0.50) (0.18) (0.78) (1.70) (0.93) (6.04)

Panel B: High Entry Threat (Capital-Intensive Industries)

0.04 -0.61*** 0.73 2.90*** -2.33*** -58.99* 74.85*

(0.42) ( 0.26) ( 0.54) (1.84) (1.27) (20.81) (44.28)

Panel C: High Entry Threat (General)

-2.37 -0.46 -0.81 -0.44 19.71 18.63 -75.16

(2.53) (0.33) (1.33) (0.53) (19.2) (18.52) (72.9)

Panel D: High Entry Threat (Time-varying, General)

0.19 -0.34 2.19* 0.53 0.80 3.01* -3.66

(0.61) (0.23) (1.26) (1.81) (0.90) (1.57) (2.39)
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Table 8. Time-variation in effects of industry concentration on stock returns

This table analyzes time-variation in the relation of industry concentration and stock returns at the firm-

level. The Text-based Network Industry Classifications Herfindahl-Hirschman Index (THHI) of Hoberg

and Phillips (2016) is used as the measure of industry concentration. The definitions of other variables

are provided in the Data appendix. The sample period is 1989-2019. The annual industry concentration

measure is merged with the quarterly Compustat files, holding the industry concentration constant over the

quarter. All Compustat data and the industry concentration measure are lagged by one quarter. Quarterly

Compustat and industry concentration data are then merged with CRSP monthly data. The Compustat

variables are held constant over quarter when we combine the files. We also include the data on Capital

Asset Pricing Model (CAPM) betas obtained from the WRDS (Wharton Research and Database Services)

betasuite. Financial firms are dropped (SIC codes between 6000 and 7000). Further details on sample

construction are provided in the Data appendix. The sample has 8784 unique firms. For each estimated

coeffi cient, the number in the parentheses report the corresponding Newey-west adjusted standard error.

*** indicates significance at 1% level, ** indicates significance at 5% level, and * indicates significance at

10% level.
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Beta ln(ME) BE/ME Leverage THHI OL THHI x OL OP THHI x OP CII THHI x CII

Panel A: Boom Months

7.18*** -1.44*** 1.62 0.75 -4.70**

(1.47) (0.54) (1.06) (4.81) (1.96)

6.35*** -1.05** 1.56 6.97* 3.11 16.50** -24.33**

(1.30) (0.45) (1.03) (3.89) (2.51) (6.62) (10.95)

6.95*** -1.41*** 1.24 -2.18 -8.21*** 31.31* 89.55***

(1.42) (0.50) (1.14) (4.12) (2.22) (15.60) (30.37)

6.87*** -1.30** 2.03* 1.15 -6.83*** -112.48*** 137.99**

(1.42) (0.53) (1.08) (4.86) (2.62) (36.16) (69.24)

Panel B: No-Boom Months

-0.64 -0.31** 1.62*** -0.00 -0.18

(0.40) (0.15) (0.51) (1.23) (0.45)

-0.63 -0.30** 1.72*** 0.12 0.10 1.09 -1.08

(0.40) (0.14) (0.65) (1.15) (0.58) (1.04) (1.51)

-0.37 -0.52*** 1.45** -6.28*** -1.28** 68.30*** 27.19**

(0.41) (0.14) (0.64) (1.19) (0.53) (6.18) (12.26)

-0.62 -0.31** 1.70*** 0.20 -0.54 -19.84 21.90

(0.39) (0.15) (0.54) (1.26) (0.52) (13.44) (23.10)

Panel C: Data from 2005 Onwards

0.25 -0.14 0.66 2.13 1.40** 2.05** -4.40***

(0.53) (0.11) (0.58) (1.54) (0.64) (0.96) (1.62)

-0.17 -0.17 0.40 3.77** -1.11 -50.84** 26.47

(0.52) (0.22) (0.74) (1.79) (1.10) (27.63) (61.73)
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Table 9. Entry deterrence and capital investment

This table analyzes effects of strategic entry deterrence on capital investment-intensity (CII) and the time-

variation in these effects. The Text-based Network Industry Classifications Herfindahl-Hirschman Index

(THHI) of Hoberg and Phillips (2016) is used as the measure of industry concentration. The definitions of

other variables are provided in the Data appendix. The sample period is 1989-2019. The annual industry

concentration measure is merged with the quarterly Compustat files, holding the industry concentration

constant over the quarter. All Compustat data and the industry concentration measure are lagged by one

quarter. Quarterly Compustat and industry concentration data are then merged with CRSP monthly data.

The Compustat variables are held constant over quarter when we combine the files. We also include the

data on Capital Asset Pricing Model (CAPM) betas obtained from the WRDS (Wharton Research and

Database Services) betasuite. Financial firms are dropped (SIC codes between 6000 and 7000). Further

details on sample construction are provided in the Data appendix. The sample has 8784 unique firms. For

each estimated coeffi cient, the number in the parentheses report the corresponding Newey-west adjusted

standard error. For ease of tabulation, the dependent variable is scaled by 100. *** indicates significance at

1% level, ** indicates significance at 5% level, and * indicates significance at 10% level.

Q ln(ME) Leverage THHI High Entry THHI x High Entry (THHI x High Entry)I≥2005

0.00 0.03*** -1.06*** -1.09*** -1.18*** 1.21**

(0.00) (0.01) (0.06) (0.06) (0.04) (0.07)

Q ln(ME) Leverage THHI High Entry THHI x High Entry (THHI x High Entry)I≥2005

0.00 0.03*** -1.06*** -1.09*** -1.18*** 1.26** -0.12*

(0.00) (0.01) (0.06) (0.06) (0.04) (0.07) (0.07)
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Figure 1. Responses to concentrated sector productivity shock (baseline model)

This figure displays ten-year impulse response functions of salient firm-level and aggregate variables in the

baseline model to a one standard deviation shock of capital productivity in the concentrated sector.
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Figure 2. Responses to low-concentration sector productivity shock (baseline model)

This figure displays ten-year impulse response functions of salient firm-level and aggregate variables in the

baseline model to a one standard deviation shock of capital productivity in the low-concentration sector.
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Figure 3. Responses to concentrated sector productivity shock (with entry and exit)

This figure displays ten-year impulse response functions of salient firm-level and aggregate variables in the

model with entry and exit to a one standard deviation shock of capital productivity in the concentrated

sector .
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Figure 4. Industry concentration and equity returns with high operating leverage

This figure displays, through a three-dimensional surface plot, the relation of mean equity returns and

industry concentration (inversely related to the number of industry firms) for high ratios of fixed-to-marginal

costs, or high (operating leverage/operating profits) ratios, in the industry equilibrium analyzed in Section

5.1. The mean returns are computed from 1000 simulations of 59 yearly observations.
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Figure 5. Industry concentration and equity returns with high operating profits

This figure displays, through a three-dimensional surface plot, the relation of mean equity returns and

industry concentration (inversely related to the number of industry firms) for low ratios of fixed-to-marginal

costs, or high (operating profits/operating profits) ratios, in the industry equilibrium analyzed in Section

5.1. The mean returns are computed from 1000 simulations of 59 yearly observations.
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Figure 6. Industry concentration and equity returns with high adjustment costs

This figure displays, through a three-dimensional surface plot, the relation of mean equity returns and

industry concentration (inversely related to the number of industry firms) for high levels of adjustment costs

in the industry equilibrium analyzed in Section 5.1. The mean returns are computed from 1000 simulations

of 59 yearly observations.
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A. Derivation of Optimal Consumption and Portfolio Policies

The representative consumer-investor’s (CI’s) optimization problem at any t is to

max
ct,qt+1

Ut, s.t., (A1.1)

pt · ct ≤ qt · (dt + st)− qt+1 · st ≡Wt. (A1.2)

The Lagrangian with respect to (A1.1)-(A1.2) is

max
ct,qt+1

Ut + χt [Wt − pt · ct] , Wt = qt · (dt + st)− qt+1 · st. (A1.3)

Because preferences are strictly increasing in consumption, the budget constraint (A1.2) will be binding

in optimum. Using concavity of the objective and convexity of the constraint, the optimal consumption

and portfolio policies can be characterized in the standard fashion through a two-step process, where the

optimal consumption vector ct is first determined as a function of available consumption expenditure

Wt, and the portfolio qt+1 is then determined taking as given the optimal consumption policy.

From the definition of the consumption basket Ct ≡

 J∑
j=1

φj(cjt)
(σ−1)/σ

σ/(σ−1)

, the first order

optimality conditions for cjt can be written

[(1− α)(1− η)](Ct)
1−ησ
σ (cjt)

− 1
σφj = χtpjt. (A1.4)

Isolating ct in (A1.4) and multiplying both sides by pjt yields

pjtcjt = χ−σt (pjt)
1−σ(Ct)

−(1−ησ)(φj)
σ[(1− α)(1− η)]σ. (A1.5)

Then recognizing that Wt =
∑

j pjtcjt and Pt =

 J∑
j=1

(φj)
σ(pjt)

1−σ

1/(1−σ)

, summing both sides of

(A1.5) over allows one to solve for the Lagrange multiplier as

χt =

(
Wt

Pt

)− 1
σ

P−1
t (Ct)

1−ησ
σ [(1− α)(1− η)]. (A1.6)

Substituting for χt in (A1.4) and rearranging terms then gives the optimal consumption functions

cjt(p
c
t ,Wt) =

Wt

Pt

[
Ptφj
pjt

]σ
, j = 1, ..J. (A1.7)

1



Now (A1.7) implies

(Ct)
σ−1
σ =

∑
φj(cjt)

σ−1
σ =

(
Wt

Pt

)σ−1
σ

(Pt)
σ−1

∑
j

(φj)
σ(pjt)

1−σ

 . (A1.8)

But since
∑

j(φj)
σ(pjt)

1−σ = (Pt)
1−σ, (A1.8) yields Ct = Wt

Pt
. Next, conditional on optimal ct (and

hence Ct = Wt
Pt

), the derivation of the optimal portfolio condition (6) in the text with Epstein and

Zin (1989) preferences is standard using straightforward application of arguments in Epstein and Zin

(1989).

B1. Capacity utilization in Bertrand-Nash equilibrium

We start with the characterization of the punishment or Bertrand-Nash (BN) equilibrium path

(where firms compete on prices) around its deterministic steady state. In the steady state of the BN

equilibrium, the inverse demand, or pricing function in our model is

p(Y ind) = Mφ(Y ind)−
1
σ , (B1.1)

where M = W
1
σP

(σ−1)
σ and Y ind =

∑N
n=1 Ynj is the industry output. Note that (B1.1) implies positive

prices for any finite industry output. This leads to unique full capacity equilibrium. The proof is

similar to Kreps and Scheinkman (1983) and hence the argument is only sketched here. Recall that the

production function is Yt = At(utKt)
ψ . Since At and Kt are state variables (or given) in each period t,

for notational ease we write Yt(ut) as the firm-level output function of the capacity utilization choice ut.

Now fix any firm n. Suppose that the prices chosen by other firms, i 6= n, are p
¯
it = p

(∑N
z=1 Yt(uzt = 1)

)
.

Then firm n clearly does not gain by choosing pnt < p
¯
it because, by construction, it can sell its full

capacity at p
¯
nt. On the other hand, the firm will have zero revenues if it chooses pt > p

¯
nt. Hence,

p̃nt = p
(∑N

z=1 Yt(uzt = 1)
)
≡ p
¯
t for all firms is a BN equilibrium price in the steady state. It follows

that ũt = 1 is indeed the optimal capacity utilization strategy for each firm in this equilibrium. Suppose

not. Any firm that chooses unt < 1 receives profits
(
p
¯ t
− h
)
Yt(unt) <

(
p
¯ t
− h
)
Yt(ũt).We note that this

argument applies for any distribution of production capacities (K1t, ...KNt). Finally, the full-capacity

BN equilibrium is clearly the worst equilibrium since it leads to the lowest feasible price.

B2. Characterization of Bertrand-Nash equilibrium path

Put y ≡ (σ(1−ψ)+ψ)
σ . It is convenient to set,

Υ̃t = MtφN
− 1
σA

(σ−1)
σ

t K
ψ(σ−1)

σ
t , (B2.1)

Υ̃K
t = MtφN

−σ+1
σ A

σ−1
σ

t K
−y
t

(
Nσ − 1

σ

)
. (B2.2)
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Then,

D̃t = Υ̃t − hAtK
ψ
t −Ψ(Ĩt,Kt)−mKt. (B2.3)

We also recall,Ψ(Ĩt,Kt) = Ĩt + 0.5ϕ
(
Ĩt
Kt
− δ
)2
Kt. It is straightforward to compute:

ΨI(Ĩt,Kt) = 1 + ϕ

(
Ĩt
Kt
− δ
)
, (B2.5)

ΨK(Ĩt,Kt) = −0.5ϕ

( Ĩt+1

Kt+1

)2

− δ2

 . (B2.6)

Now the optimal investment and firms’equity value along the BN equilibrium path satisfy:

∂D̃t

∂It
= Et

[
∂Ṽt+1(Kt+1)

∂It+1

]
, (B2.7)

Ṽt+1(Kt+1) = Et
[
Ωt,t+1

(
D̃t+1 + Ṽt+2

)]
, (B2.8)

Kt+1 = Kt(1− δ) + It. (B2.9)

Then, it follows from the foregoing that the Euler condition for investment satisfies

0 = −
[

1 + ϕ

(
Ĩt
Kt
− δ
)]

+ Et

[
Ωt,t+1

{
∂Π̃t+1

∂Kt+1
−m+

0.5ϕ

( Ĩt+1

Kt+1

)2

− δ2

+ (1− δ)
(

1 + ϕ

(
Ĩt+1

Kt+1
− δ
))

 , (B2.10)

where
∂Π̃t+1

∂Kt+1

= ψ
[
Υ̃K
t − hAt+1K

(ψ−1)

t+1

]
. (B2.11)

The resultant dividends are D̃t = Π̃t+1−Ψ(Ĩt,Kt)−mKt that determine cum- and ex-dividend equity

values Ṽt, S̃t respectively through the asset market clearing condition Et
[
Ωt,t+1

(
D̃t+1+S̃t+1

S̃t

)]
= 1.

C1. Price defection and optimal capacity utilization (ū∗t )

We argue that if any firm defects from u∗t < 1, then it does so by producing at full capacity, that is,

ū∗t = 1. Suppose not and consider some candidate ū∗t < 1. By the construction of the equilibrium, firms

switch to the BN (punishment) equilibrium strategies following any defection from the tacit-collusive

equilibrium path. Hence, the defecting firm’s future payoffs subsequent to the defection are independent

of ū∗t . Therefore, it is the optimal strategy of the defecting firm to maximize the current operating profits

(Πt) from defection. We now prove that defection optimally involves choosing possibly a subsequence

of lower prices arbitrarily close to p∗t and selling output up to full capacity.
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Note first that there exists some N̄t(u
∗
t ) such that

At(Kt)
ψ ≤ N̄t(u

∗
t )At (u∗tKt)

ψ . (C1.1)

In (C1.1), the left hand side (LHS) is the typical firm’s full capacity output and At (u∗tKt)
ψ in the RHS

is the firm’s output in the original equilibrium. Clearly, (C1.1) is satisfied if N̄t(u
∗
t ) ≥ (u∗t )

−ψ, where

N̄t(u
∗
t ) is well defined because 0 < u∗t < 1 and 0 < ψ < 1. Then, let the defecting firm initially choose

p∗t − ε, for some small ε > 0; doing so allows it to sell at least the industry output in the original

equilibrium, namely, NAt(u
∗
tKt)

ψ. The residual capacity following this sale is no greater than max(0,

At(Kt)
ψ−NAt(u∗tKt)

ψ). The firm then chooses p∗t −2ε and sells at least NAt(u
∗
tKt)

ψ. After the second

sale, max(0, At(Kt)
ψ − 2NAt(u

∗
tKt)

ψ) is the upper bound on the residual capacity. The firm then

charges p∗t −3ε to sell at least NAt(u
∗
tKt)

ψ and so on. From the foregoing, the firm must be able to sell

its full capacity through the sequence of prices
(
p∗t − ε, ..., p∗t −

[
N̄t(u∗t )
N

]+
ε

)
, where

[
N̄t(u∗t )
N

]+
is the

smallest integer greater than or equal to the ratio N̄t(u
∗
t )/N. But since ε can be made arbitrarily small,

it follows that the firm can sell its full capacity at price arbitrarily close to p∗t . Note also that leaving

residual capacity unsold following defection can not be optimal because the firm can sell that capacity

at price close to p∗t > h.

C2. Characterization of tacit-collusion equilibrium path

In the following, we suppress the ‘*’subscript for notational ease. Now, recall that the state along

the equilibrium path is Γt = (Wt, Pt, At,Kt). If there is a price defection at t, then firms next period

play the BN (or punishment) equilibrium derived above, with the state Γt+1 = (Wt+1, Pt+1, At+1,Kt+1),

where Kt+1 = Kt(1−δ)+It. The BN value at t+1 will be denoted Ṽt+1(Kt+1), where using the analysis

above (Section B.2)

Ṽt+1(Kt+1) = Mt+1φN
− 1
σA

(σ−1)
σ

t+1 K

ψ(σ−1)
σ

t+1 − hAtKψ
t+1 −Ψ(Ĩt+1,Kt+1)−mKt+1, (C2.1)

and Ĩt+1 is the optimal BN investment when the state is Γt+1 = (Wt+1, Pt+1, At+1,Kt+1), that is,

Ĩt+1 = Kt+2 − (1 − δ)Kt+1. Now, using the fact that along any candidate equilibrium path ūt = 1

(established above), the Lagrangian for the constrained optimization problem with choice variables

(ut, It) is

Lt = Dt(ut, It;Kt) + Et
[
Vt+1(Kt+1)

]
+ ςt

(
Dt(ut, It;Kt) + Et

[
Vt+1(Kt+1)

]
−{

D̄t(ut, It;Kt) + Et
[
Ṽt+1(Kt+1)

]})
, (C2.2)
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where Kt+1 = Kt(1− δ) + It and

Dt(ut, It;Kt) = MtφN
− 1
σA

(σ−1)
σ

t+1 (utKt)
ψ(σ−1)

σ − hAt(utKt)
ψ −

Ψ(It,Kt)−mKt, (C2.3)

D̄t(ut, It;Kt) = MtφN
− 1
σAt

(σ−1)
σ K

ψ(σ−1)
σ

t u
−ψσ
t − hAtKψ

t −

−Ψ(It,Kt)−mKt. (C2.4)

In (C2.4), we have used the fact that ūt = 1. As above, we let y ≡ σ(1−ψ)+ψ
σ . It follows that (suppressing

arguments of functions for notational convenience)

∂Dt

∂ut
=

ψ(σ − 1)

σ

[
MtφN

− 1
σA

(σ−1)
σ

t K

ψ(σ−1)
σ

t u−yt

]
− ψhAtKψ

t u
ψ−1
t , (C2.5)

∂D̄t

∂ut
= −ψ

σ

[
MtφN

− 1
σA

(σ−1)
σ

t K

ψ(σ−1)
σ

t u
− (ψ+σ)

σ
t

]
, (C2.6)

∂D∗t
∂It

=
∂D̄t

∂It
= −ΨI(It,Kt) = −

[
1 + ϕ

(
It
Kt

− δ
)]

. (C2.7)

Now taking the first order conditions of Lt (in C2.2) with respect to (ut, It, ςt) yields the optimality

conditions

∂Dt

∂ut
(1 + ςt) = ςt

∂D̄t

∂ut
, (C2.8)(

−
{

1 + ϕ

(
It
Kt

− δ
)}

+ Et
[
∂Vt+1(Kt+1)

∂It

])
(1 + ςt) = ςt

(
−
{

1 + ϕ

(
It
Kt

− δ
)}

+

Et

[
∂Ṽt+1(Kt+1)

∂It

])
, (C2.9)

Dt + Et
[
Vt+1(Kt+1)

]
= D̄t + Et

[
Ṽt+1(Kt+1)

]
, (C2.10)

where Kt+1 = Kt(1− δ) + It. Then eliminating ςt in (C2.8)-(C2.9) by dividing both sides of (C2.9) by

(C2.8) yields

Et
[
∂Vt+1(Kt+1)

∂It

]
=

[
1 + ϕ

(
It
Kt

− δ
)]1−

∂Dt
∂ut
∂D̄t
∂ut

+ Et

[
∂Ṽt+1(Kt+1)

∂It

] ∂Dt
∂ut
∂D̄t
∂ut

. (C2.11)
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But from (C2.3)-C2.4), we get,

χt ≡

(
∂Dt
∂ut

)
(
∂D̄t
∂ut

) =

(
uψt
pt

)
(pt − σ(pt − h)) (C2.12)

= −(σ − 1)uψt +
σhN

1
σA

1
σ
t K

ψ
σ

t u
ψ(σ+1)

σ

t

Mtφ
. (C2.13)

Hence (C2.9) can be written as

Et
[
∂Vt+1(Kt+1)

∂It

]
=

[
1 + ϕ

(
It
Kt

− δ
)]

(1− χt) + Et

[
∂Ṽt+1(Kt+1)

∂It

]
χt. (C2.14)

Furthermore, using standard techniques we have

Et
[
∂Vt+1

∂It

]
= Et

[
Ωt,t+1

{
∂Πt+1(ut+1Kt+1)

∂Kt+1
−m+ 0.5ϕ

((
It+1

Kt+1

)2

− δ2

)
+

(1− δ)Et+1

[
∂Vt+2

∂Kt+2

]}]
. (C2.15)

But Et+1

[
∂Vt+2(Kt+2)

∂It+1

]
= Et+1

[
∂Vt+2
∂Kt+2

]
and hence forward induction on (C2.15) yields

Et+1

[
∂Vt+2

∂Kt+2

]
=

[
1 + ϕ

(
It+1

Kt+1

− δ
)] (

1− χt+1

)
+ Et+1

[
∂Ṽt+2(Kt+2)

∂It+1

]
χt+1, (C2.16)

where χt+1 is defined as in (C2.12)-(C2.13) for t+ 1. However, since Et+1

[
∂Ṽt+2(Kt+2)

∂It+1

]
= Et+1

[
∂Vt+2
∂Kt+2

]
,

it follows from investment optimality along the punishment equilibrium path (see Section B.2)

Et+1

[
∂Ṽt+2(Kt+2)

∂Kt+2

]
= 1 + ϕ

(
Ĩt+1

Kt+1

− δ
)
. (C2.17)

Then substituting (C2.17) in (C2.16) and returning to (C2.15), we get

Et
[
∂Vt+1

∂It

]
= Et

[
Ωt,t+1

{
∂Πt+1(Kt+1)

∂Kt+1
−m+ 0.5ϕ

((
It+1

Kt+1

)2

− δ2

)
+ (1− δ)×(

1 + ϕ

([
It+1(1− χt+1) + χt+1Ĩt+1)

Kt+1

]
− δ
))}]

, (C2.18)
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where

Πt+1(ut+1,Kt+1) = Mt+1φN
− 1
σA

(σ−1)
σ

t+1 (ut+1Kt+1)
ψ(σ−1)

σ − hAt+1(ut+1Kt+1)ψ, (C2.19)
∂Πt+1

∂Kt+1
= ψ

[
(σ − 1)

σ
Mt+1φN

− 1
σA

(σ−1)
σ

t+1 u
ψ(σ−1)

σ
t+1 K−yt+1 − hAt+1u

ψ
t+1K

ψ−1
t+1

]
. (C2.20)

Furthermore, along the BN equilibrium path at t,

Et

[
∂Ṽt+1(Kt+1)

∂It

]
= Et

Ωt,t+1

∂Π̃t+1(Kt+1)

∂Kt+1
−m+ 0.5ϕ

(
Ĩt+1

Kt+1

− δ
)2

+ (1− δ)×

(
1 + ϕ

(
Ĩt+1

Kt+1

− δ
))}]

, (C2.21)

where

Π̃t+1(Kt+1) = Mt+1φN
− 1
σA

(σ−1)
σ

t+1 K
ψ(σ−1)

σ
t+1 − hAt+1K

ψ
t+1 (C2.22)

∂Π̃t+1(Kt+1)

∂Kt+1
= ψ

[
(σ − 1)

σ
Mt+1φN

− 1
σA

(σ−1)
σ

t+1 K−yt+1 − hAt+1K
ψ−1
t+1

]
(C2.23)

Hence it follows from (C2.20) and (C2.23) that

∂Πt+1

∂Kt+1
= u

ψ(σ−1)
σ

t+1

∂Π̃t+1

∂Kt+1
− ψhAt+1K

ψ−1
t+1 u

ψ
t+1[1− u−

ψ
σ

t+1] (C2.24)

Hence,
∂Π̃t+1

∂Kt+1
= (ut+1)−

ψ(σ−1)
σ

∂Πt+1

∂Kt+1
+ ψhAt+1K

ψ−1
t+1 (ut+1)

ψ
σ [1− u−

ψ
σ

t+1] (C2.25)

∂Πt+1

∂Kt+1
− χt

∂Π̃t+1

∂Kt+1
=
∂Πt+1

∂Kt+1
(1− χtu

−ψ(σ−1)
σ

t+1 )− χtψhAt+1K
(ψ−1)
t+1 [u

ψ
σ
t+1 − 1] (C2.26)

Then using (C2.18) and (C2.26) in (C2.14) and rearranging terms yields the optimality condition:[
1 + ϕ

(
It
Kt
− δ
)]

(1− χt) =

Et
[
Ωt,t+1

{
∂Πt+1

∂Kt+1

(
1− χtu

−ψ(σ−1)
σ

t+1

)
− χtψ[u

ψ
σ
t+1 − 1]hAt+1K

ψ−1
t+1 −

(1− χt)m+ 0.5ϕ

( It+1

Kt+1

)2

− χt

(
Ĩt+1

Kt+1

)2

− δ2(1− χt)

+

(1− δ)
[

(1− χt) + ϕ

(
It+1(1− χt+1)− Ĩt+1(χt − χt+1)

Kt+1
− (1− χt)δ

)]}]
. (C2.27)
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C3. Non-viability of tacit collusion for large number of firms

Utilizing the notation in (beginning of) Section 3, we denote by V̂t(Γt) the equity value of a monopoly

in the typical sector, condition on the state Γt. Along a symmetric equilibrium with binding TCIC, and

N firms in the sector, the per-firm equity value with state Γt is V ∗t (Γt;N) < V̂t(Γt)
N . Then fix any

subgame Γt and hence V̂t(Γt). Because
V̂t(Γt)
N is a continuous and strictly decreasing function of N

that converges to zero as N → ∞, it follows that for every ε > 0, there exists some Nε(Γt) such that

V ∗t (Γt;N) < V̂t(Γt)
N < ε if N ≥ Nε(Γt). Since this argument applies for any t and Γt, for every ε > 0,

we can set N̄ε(Γt) = maxΓt+1(Γt) {Nε(Γt+1)} , where Γt+1(Γt) denotes subgames Γt+1 that lie on the

continuation game from Γt.

Meanwhile, for every Γt, the BN equity value Ṽt(Γt;N) ≥ 0. It follows that (V ∗t (Γt;N)−Ṽt(Γt;N)) <

ε if N ≥ Nε. Now the markup (p∗t (Γt;N)−h) along the tacit-collusive path stays strictly bounded away

from zero, in contrast to the BN equilibrium. Since u∗t (Γt;N) < 1 in a binding TCIC (as shown in the

text), it follows from the foregoing that Γt, there exists some N̄(Γt) such that

(p∗t (Γt;N)− h)At(Kt(Γt;N))ψ(1− (u∗t (Γt;N))ψ) > Et
[
V ∗t+1(Γt+1)− Ṽt+1(Γt+1)

]
, (C3.1)

for N ≥ N̄(Γt), which violates the TCIC.

C4. Existence of deterministic steady state

In the deterministic steady state, sectoral productivity A is time-invariant and hence the endogenous

variables are also time-invariant. In the steady state of the BN equilibrium, the industry price is set

when production is at full capacity, that is, ũ = 1, following the arguments given above (Section B.1).

The equilibrium capital stock is K̃ and hence Ĩ = δK̃, which satisfies the capital transition condition

K̃ = K̃(1−δ)+Ĩ. K̃ is determined under the assumption that the adjustment costs in the transition from

K to K̃ following a defection are amortized over the infinite horizon, so that the per-period adjustment

costs are zero in the punishment equilibrium.1 It follows that Ψ(Ĩ , K̃) = Ĩ = δK̃ (since
(
Ĩ
K̃
− δ
)

= 0).

Now, suppose that the initial symmetric capital stock distribution is K̃ for all firms. For any firm n,

let K̃−n denote the capital stocks of each of the other firms. Then (with ũn = 1), the period operating

profits are

Π(K̃−n, K̃) =
(
MφA−

1
σ [(N − 1)K̃ψ

_n + K̃ψ]−
1
σ − h

)
AK̃ψ, (C4.1)

1Along the equilibrium path, once industry firms switch to the punishment equillibrium path following defection, then
they adopt the optimal punishment path investment policies specified in equation (B2.10) above, which involves adjustment
costs. However, defection in the steady state involves transitioning from the steady state capital stock K to K̃. Since the
deterministic steady state holds to perpetuity, amortization of the firxed adjustment costs of the transition yields per
period adjustment costs of zero, consistent with the constrained maximization problem set up in (C4.20)-(C4.21).
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and dividends are

D(I, K̃_n, K̃) = Π(K̃−n, K̃)−Ψ(I, K̃)−mK̃. (C4.2)

Furthermore, the firm’s steady state value function satisfies the optimization problem:

V (K̃−n, K̃) = max
I
D(I, K̃−n, K̃) + αV (K̃((1− δ) + I). (C4.3)

K̃ is then steady state equilibrium for all firms if the solution to (C4.3) implies Ĩ = δK̃. Hence,

Ψ(Ĩ , K̃) = δK̃ (since
(
I
K − δ

)
= 0). The Euler condition for (C4.3) evaluated at Ĩ = δK̃ is:

1 = α

[
∂Π̃

∂K
−m+ (1− δ)

]
, (C4.4)

where for notational ease ∂Π
∂K =

∂Π(K̃−n,K )

∂K K=K̃ . To compute this, we rewrite (C4.1) above as

Π(K̃−n,K) = MφA
σ−1
σ ((N − 1)K̃ψ

−n +Kψ)−
1
σKψ − hAKψ. (C4.5)

Hence, defining y ≡ (σ(1−ψ)+ψ)
σ ,

∂Π(K̃−n,K)

∂K K=K̃ = ψMφA
σ−1
σ N−

σ+1
σ K̃−y

[
− 1

σ
+N

]
− ψhAK̃(ψ−1), (C4.6)

which can be written as

∂Π̃

∂K
= ψ

[
ψMφA

σ−1
σ N−

σ+1
σ K̃−y

(
Nσ − 1

σ

)
− hAK̃(ψ−1)

]
. (C4.7)

For convenience, we will set

Υ̃ ≡ MφN−
1
σ K̃

ψ(σ−1)
σ A

(σ−1)
σ , (C4.8)

Υ̃K ≡ MφA
σ−1
σ N−

σ+1
σ K̃−y

(
Nσ − 1

σ

)
, (C4.9)

so that
∂Π̃

∂K
= ψ

[
Υ̃K − hAK̃(ψ−1)

]
. (C4.10)

Then the Euler condition (C4.4) and dividends D̃ are given by

1 = α
[
ψ
(

Υ̃K − hAK̃(ψ−1)
)
−m+ (1− δ)

]
, (C4.11)

D̃ = Υ̃− hAK̃ψ − (δ +m)K̃. (C4.12)
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Now, for every given (W,P ) and hence M (= W
1
σP

(σ−1)
σ ), (C4.9) and (C4.11) imply that ∂2Π̃

∂K2 < 0

(since y > 0 and ψ < 1). Furthermore, limK→0
∂Π̃
∂K = ∞ and limK→∞

∂Π̃
∂K = 0. Hence, by continuity of

Π̃ = Υ̃− hAK̃ψ in K, it follows that there exists a unique optimal K̃, namely, the solution to (C4.11).

This implies from (C4.12) that D̃ is well defined as is p̃ = Mφ(NAK̃
ψ

)−1/σ. Hence, W̃ =
∑

j D̃j +1−α

(where 1 − α is the net income from the risk free asset). Hence, W̃ is well-defined, as is P̃ . It also

follows that cum- and ex-dividend equity values are well defined in the steady state of the punishment

equilibrium since Ṽ = D̃
1−α , S̃ = αD̃

1−α .

We turn now to the definition and existence of the steady state for the (tacit-collusive) equilibrium

path. As above, we suppress the ‘*’subscript for notational ease. The firm’s equilibrium choices are

represented by (u, I,K), with I = δK. Hence, Ψ(I,K) = I. For further analysis, it is useful to define

Υ ≡ MφN−
1
σK

ψ(σ−1)
σ A

(σ−1)
σ u−

ψ
σ , (C4.13)

Υu ≡ MφN−
1
σ (uK)

ψ(σ−1)
σ A

(σ−1)
σ , (C4.14)

ΥK ≡ ψ(σ − 1)Υu

σK
. (C4.15)

The, for any (u, I), the per-period dividends are:

D(u, I;K) = Υu − hA (uK)ψ − I −mK. (C4.16)

Using Section B.2, the optimal price defection sets ū = 1. Hence, the defecting dividends can be written

D̄(u, I;K) = Υ− hAKψ − I −mK. (C4.17)

Therefore, D̄(u, I;K)−D(u, I;K) equals

[
MφN−

1
σ (uK)−

ψ
σA−

1
σ − h

]
AKψ(1− uψ)

=
[
Υ− hAKψ

]
(1− uψ). (C4.18)

It follows then that

∂D(u, I;K)

∂u
=

(
ψ

u

)[
(σ − 1)

σ
Υu − hA (uK)ψ

]
,

∂D̄(u, I;K)

∂u
= −

(
ψ

uσ

)
Υ. (C4.19)
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∂D
∂u
∂D̄
∂u

=

(
uψ

p

)
(p− σ(p− h))

= −(σ − 1)uψ +
σh(AN)

1
σK

ψ
σ u

ψ(σ+1)
σ

Mφ
≡ χ. (C4.20)

Then the deterministic steady state of the equilibrium is represented by the time-invariant version

of the tacit-collusion Euler condition (C2.27) under the assumption that the adjustment costs in the

transition from K to K̃ following a defection are amortized over the infinite horizon, so that the per-

period adjustment costs are zero. Hence, in the steady state:

1. (u,K) satisfy the condition

(1− χ) = α

[
∂Π

∂K
(1− χu−

ψ(σ−1)
σ )− χψu

ψ
σ [1− u

−ψσ ]hAK(ψ−1) + (1− χ)((1− δ)−m)

]
. (C4.21)

Equilibrium and defecting dividends are given by

D = Υu − hA (uK)ψ − (m+ δ)K, (C4.22)

D̄ = Υ− hAKψ − (m+ δ)K. (C4.23)

The tacit-collusion incentive compatibility condition (TCIC) is satisfied:

(
D̄ −D

)
=

α

1− α

(
D − D̃

)
, (C4.24)

where D̃ is given by (C4.12).

2. Product price in the representative sector is

p = MφA−
1
σN−

1
σ (uK)−

ψ
σ . (C4.25)

Aggregate income and price index is given by

W =
∑
j

Dj + 1− α, (C4.26)

P =

 J∑
j=1

φσj p
1−σ
j

1/(1−σ)

. (C4.27)
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The analysis for the existence of solutions to (C4.21) proceeds as follows. Let,

υ(u,K) = −(1− χ) + α

[
∂Π

∂K
(1− χu−

ψ(σ−1)
σ )− χψu

ψ
σ [1− u

−ψσ ]hAK(ψ−1)+

(1− χ)((1− δ)−m)] . (C4.28)

Note that υ(u,K) is continuous on its domain [0, 1]×R+. Furthermore, we have

∂Π

∂K
= ΥK − ψhAuψK(ψ−1). (C4.29)

It is then straightforward to check from the foregoing that for any 1 ≥ u > 0

lim
K→0

χ = 0, lim
K→∞

χ =∞, lim
K→0

∂Π

∂K
=∞, lim

K→∞

∂Π

∂K
= 0. (C4.30)

Furthermore, from (C4.20) and (C4.29), if
(
ψ
σ + ψ − 1

)
< 0, that is, if

σ

σ + 1
> ψ, (C4.31)

then it can be shown that

lim
K→0

υ(u,K) =∞, lim
K→∞

υ(u,K) =∞. (C4.32)

Hence, from continuity, (C4.32) implies that for every 1 ≥ u > 0, there exist well defined zeros of

the steady state Euler condition (C4.21). The local optimality of these zeros can be checked by

standard methods since υ(u,K) is also differentiable.

D. Derivation of Equations in Section 5

Let Ȳt ≡ At(Kt)
ψ and Yt ≡ At(utKt)

ψ. Using Equation (12) in the text, the (binding) TCIC is thus

(pt − h)(Ȳt − Yt)− Et
[
Vt+1(Γt+1)− Ṽt+1(Γt+1)

]
= 0. (D1.1)

Now consider the case where Nt is increased to Nt+1, while keeping fixed the aggregate quantities Wt

and Pt. We will denote the equilibrium path with the additional active firm by subscript “+.”The

TCIC is then

(p+
t − h)(Ȳ +

t − Y +
t )− Et

[
V +
t+1(Γt+1)− Ṽ +

t+1(Γt+1)
]

= 0. (D1.2)

12



Subtracting (D1.2) from (D1.1) gives

∆N (pt) =
∆Nt

(
Et
[
Vt+1(Γ̃t+1)− V̄t+1(Γ̃t+1)

])
− (pt − h)∆Nt(Ȳt − Yt)

(Ȳt − Yt)
. (D1.3)

Note that Ȳt−Yt > 0 because ūt = 1 > ut. Hence, the sign of ∆Nt(pt) is determined by the punishment

and market dilution effects defined in Equation (18).

Next, we denote by Rt+1(N) and Rt+1(N + 1) the gross t+ 1−period return of with N and (N + 1)

firms, respectively, holding other things fixed. Furthermore, for notational simplicity, we suppress the

dependence on the “status quo”number of firms N. Then,

∆N (Covt (Ωt,t+1, Rt+1)Rf,t+1) =

[Covt (Ωt,t+1(N + 1), Rt+1(N + 1))− Covt(Ωt,t+1, Rt+1)](Rf,t+1 + ∆N (Rf,t+1))

' [Covt (Ωt,t+1, Rt+1(N + 1)−Rt+1) + Covt (Ωt,t+1(N + 1)− Ωt,t+1, Rt+1(N + 1))]Rf,t+1

' [Covt(Ωt,t+1,∆N (Rt+1)) + Covt(∆N (Ωt,t+1), Rt+1(N + 1))]Rf,t+1

' Covt

(
Ωt,t+1,∆N

(
Dt+1 + St+1

St

))
Rf,t+1, (D1.4)

when ∆N (Ωt,t+1) and ∆N (Rf,t+1) are small.

E. Loglinear approximations (Section 5.1)

E1. Stochastic discount factor

Since Ct = Wt
Pt
, the SDF in Equation (4) in the text can be written (see Epstein and Zin 1989)

Λt+1

Λt
= αθ

(
GWt+1

GPt+1

)−ηθ
Rθ−1
C,t+1, θ ≡

1− γ
1− η , (E1.0)

where GWt+1 and G
P
t+1 are the gross growth rates ofW and P, respectively, and RC,t+1 is the gross return

on the asset that pays out aggregate consumption. Therefore, from Equation (E1.0), the log of the real

pricing kernel λt+1 ≡ log(Λt,t+1/Λt) is

λt+1 = θ logα− ηθ [gw,t+1 − gπ,t+1] + (θ − 1)rc,t+1, (E1.1)

where gw,t+1 and gπ,t+1 are the log growth rates of income and aggregate price index, respectively, and

rc,t+1 ≡ log(RC,t+1). Using the Campbell and Shiller (1988) log-linearization, we can represent rc,t+1 as

rc,t+1 = κc0 + κc1`c,t+1 − `ct + gw,t+1 − gπ,t+1, (E1.2)
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where `ct is the log price-consumption ratio. Here

κc0 = log(1 + exp(`c))− κc1`c;κc1 =
exp(`c)

1 + exp(`c)
, (E1.3)

where `c is the unconditional mean of `ct. We guess and then verify that `ct is a linear function of the

logs of the aggregate state variables Wt and Pt, that is,

`ct = κc0 + κcwwt + κcππt. (E1.4)

Now, gw,t+1 = (ρw − 1)wt + εwt+1 and gπ,t+1 = (ρπ − 1)πt + επt+1. Then substitution of (E1.3) and (E1.4)

in (E1.2) gives

λt+1 = B0 +Bwwt +Bππt + bwεw,t+1 + bπεπ,t+1, (E1.5)

where

B0 ≡ θ logα;

Bw ≡ (ρw − 1) [θ(1− η)− 1] + (θ − 1)κcw[κc1ρw − 1] ;

Bπ ≡ (ρπ − 1) [θ(η − 1) + 1] + (θ − 1)κcπ[κc1ρπ − 1];

bw ≡ −ηθ + (θ − 1)[κc1κcw + 1];

bπ ≡ ηθ − (θ − 1)[1− κc1κcπ]. (E1.6)

We can then obtain the coeffi cients of `ct in (E1.4) through the method of undetermined coeffi cients.

The Euler condition for returns yields

1 = Et[exp(λt+1 + πt − πt+1 + rc,t+1)]

= Et[exp(θ logα− ηθ [gw,t+1 − gπ,t+1] + θrc,t+1 + πt − πt+1)] (E1.7)

Since (E1.7) must hold for all values of the state variables, all terms involving wt and πt must satisfy

wtθ[(ρw − 1)(1− η) + κcw(κc1ρw − 1)] = 0, (E1.8)

πt {θ[(ρπ − 1)(η − 1) + κcπ(κc1ρπ − 1)] + 1− ρπ} = 0. (E1.9)

From (E1.8)-(E1.9), it follows

κcw =
(ρw − 1)(η − 1)

κc1ρw − 1
, κcπ =

(ρπ − 1)[θ(1− η) + 1]

θ(κc1ρπ − 1)
. (E1.10)
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And to ensure that the constant terms in (E1.7) equal zero, the coeffi cient κc0 is calculated from (E1.2)

and (E1.4) as, κc0 = logα+κc0
1−κc1 . We then solve for `c (the unconditional mean of `ct) using Equations

(E1.3), E(1.4), (E1.10) and κc0 in the steady state, that is, when `c = κc0 + κcww+ κcππ (where w and

π are the steady state values).

Note that the log of the nominal pricing kernel ωt+1 = λt+1 + πt − πt+1 is

ωt+1 = B0 +Bwwt + (Bπ + (1− ρπ))πt + bwεw,t+1 + bπεπ,t+1. (E1.11)

It is also useful to record the log-linearization of the expected nominal SDF around the deterministic

steady state. In subsequent analysis, we let H ′t ≡ log(Ht)− log(H ) be the log deviation of any variable

Ht from its steady state value H. Now, in the steady state, πt = πt+1 and hence Ω = Λ = α, so that

Et
[
Ω′t,t+1

]
= Et [ωt+1 − α] . Therefore, from (E1.11), we have

Et
[
Ω′t,t+1

]
= (θ − 1) logα+Bwwt + (Bπ + (1− ρπ))πt. (E1.12)

E2. Loglinearization of Bertrand-Nash equilibrium path

We note that the steady state of the OEP BN equilibrium and the equilibrium follows along the

lines of Section C.4 except that W and P are taken as exogenous. Similarly, in perturbations around

the steady state, the paths follow as in Section B2 and C2 with the proviso that Wt and Pt are now

taken to be exogenous log AR(1) processes (as specified in the text).

Now, log-linearization of the punishment equilibrium dividends (B2.3) gives

D̃D̃′t = Υ̃

[
W ′t
σ

+
(σ − 1)

σ

(
A′t + P ′t + ψK̃ ′t

)]
− hAK̃ψ(A′t + ψK̃ ′t)−

δK̃Ĩ ′t −mK̃K̃
′
t, (E2.1)

Meanwhile, the derivation of the equilibrium law of motion for capital stock proceeds, in the standard

fashion, by developing a second order difference equation in K̃
′
t from log-linearizing the Euler equation

(B2.10) through the log-linearization of the capital transition equation Ĩt = K̃t+1 − (1− δ)K̃t, so that

Ĩ(1 + Ĩ ′t) = K̃[(1 + K̃ ′t+1)− (1− δ)(1 + K̃ ′t)]. (E2.2)

But because Ĩ = δK̃, we have K̃/Ĩ = 1/δ. And since Ĩ = K̃[1− (1− δ)], (E2.2) yields

Ĩ ′t = δ−1
(
K̃ ′t+1 − (1− δ)K̃ ′t

)
. (E2.3)
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In particular, (E2.3) implies that Ĩ ′t − K̃ ′t = (δ)−1(K̃ ′t+1 − K̃ ′t). Then log-linearization of (B2.10) gives,

upon noting that Ω = α, canceling out the constant terms due to the steady state Euler equation

(E1.12), and taking period t terms under the expectation operator,

0 = −ϕ(K̃ ′t+1 − K̃ ′t) + Et
[
ψΥ̃K

(
αΩ′t,t+1 +

W ′t+1

σ
+

(σ − 1)

σ

(
A′t+1 + P ′t+1

)
−

yK̃ ′t+1

)
− ψhAK̃(ψ−1)(αΩ′t,t+1 +A′t+1 + (ψ − 1)K̃ ′t+1)−m+

αϕδ(K̃ ′t+2 − K̃ ′t+1)) + (1− δ){αΩ′t,t+1 + αϕδ(K̃ ′t+2 − K̃ ′t+1)}]. (E2.4)

Using Ĩ ′t+1 = δ−1
(
K̃ ′,t+2 − (1− δ)K̃ ′t+1

)
and rearranging terms, the RHS of (E2.4) can be written

0 = K̃ ′tT̃
,K
K0 + Et

[
Ω′t,t+1T̃

,K
Ω + K̃ ′t+1T̃

,K
K1 + K̃ ′,t+2T̃

,K
2 +

W ′t+1T̃
,K
W1 + P ′t+1T̃

,K
P1 +A′t+1T̃

,K
A1

]
, (E2.5)

where

T̃KΩ ≡ α
[
ψ(Υ̃K − hAK̃(ψ−1))−m+ (1− δ)

]
,

T̃KK0 = ϕ, T̃KK2 = αϕδ(2− δ),

T̃KK1 = −
[
ϕ(1 + αδ(2− δ)) + αψ(Υ̃Ky + (ψ − 1)hAK̃(ψ−1)

]
,

T̃KW1 = αψ
Υ̃K

σ
, T̃KP1 = αψ

Υ̃K(σ − 1)

σ
,

T̃KA1 = αψ

[
Υ̃K(σ − 1)

σ
− hAK̃(ψ−1)

]
. (E2.6)

Next, we express k̃t+1 as an affi ne function of the state variables, that is, of the form

k̃t+1 = Z̃k0 + Z̃kwwt + Z̃kππt + Z̃kaat + Z̃kk k̃t, (E2.7)

and determine the coeffi cients through the Euler condition (E2.5). Note that under the assumed policy

in (E2.7),

Et
[
K̃ ′tT̃

K
K0 + K̃ ′t+1T̃

K
K1 + K̃ ′t+2T̃

K
K2

]
=

k̃t

[
T̃KK2(Z̃kk )2 + T̃KK1Z̃

k
k + T̃KK0

]
+ wt

[
Z̃kw{T̃KK2(ρw + Z̃kk ) + T̃KK1}

]
+

πt

[
Z̃kπ{T̃KK2(ρπ + Z̃kk ) + T̃KK1}

]
+ at

[
Z̃ka{T̃KK2(ρa + Z̃kk ) + T̃KK1}

]
+

Z̃k0

[
T̃KK2(1 + Z̃kk ) + T̃KK1

]
− k̃[T̃KK0 + T̃KK1 + T̃KK2]. (E2.8)
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To ensure that terms multiplying k̃t equal zero, the following quadratic in Z̃
k
k must be satisfied

T̃KK2(Z̃kk )2 + T̃KK0 = 0, (E2.9)

so that

Z̃kk = − T̃KK1

2TKK2

±

√
(T̃KK1)2 − 4TKK2T̃

K
K0

2TKK2

. (E2.10)

In the standard way, the smallest real root will be chosen. Next collecting terms for wt in the Euler

(E2.5) and requiring them to be zero, we have

wt

[
Z̃kw{T̃KK2(ρw + Z̃kk ) + T̃KK1}+ ρw(T̃KW1 + T̃ΩBw)

]
= 0, (E2.11)

(where we have used Et[Ω′t,t+1] given in (E1.12)). Hence,

Z̃kw = − ρwT̃
K
W1 + T̃ΩBw

T̃KK2(ρw + Z̃kk ) + T̃KK1

. (E2.12)

Similarly, we calculate

Z̃kπ = −ρπT̃
K
P1 + T̃Ω(Bπ + (1− ρπ))

T̃KK2(ρπ + Z̃kk ) + T̃KK1

,

Z̃ka = − ρaT̃
K
A1

T̃KK2(ρa + Z̃kk ) + T̃KK1

. (E2.13)

where Bw and Bπ are defined in (E1.6) above. Finally, Z̃k0 is determined to ensure that the constant

terms in (E2.8) sum to zero.

Having determined the coeffi cients of (E2.7), we similarly express d̃t and s̃t as affi ne functions of log

of state variables, that is,

d̃t = Z̃d0 + Z̃dwwt + Z̃dππt + Z̃daat + Z̃dk k̃t, (E2.14)

s̃t = Z̃s0 + Z̃swwt + Z̃sππt + Z̃saat + Z̃skk̃t. (E2.15)

Then recognizing that D̃′t = d̃t− d̃K ′t = k̃t− k̃, and utilizing (E2.1) and (E2.7) yields (up to the constant
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term)

Z̃dw =
(
D̃
)−1

[
Υ̃

σ
− K̃Z̃kw

]
,

Z̃dπ =
(
D̃
)−1

[
Υ̃

(
σ − 1

σ

)
− K̃Z̃kπ

]
,

Z̃da =
(
D̃
)−1

[
Υ̃A

(σ−1)
σ

(
σ − 1

σ

)
− hAK̃ψ − K̃Z̃ka

]
,

Z̃dk =
(
D̃
)−1

K̃
[
(1− δ)− Z̃kk −m

]
. (E2.16)

Next, we use the log-linearization of the equilibrium asset pricing condition

Et

[
Ωt,t+1

(
D̃t+1

S̃t
+
S̃t+1

S̃t

)]
= 1. (C2.35)

Loglinear expansion of (C2.35) around the steady state (using Ω = α) gives:

αEt

[(
D̃

S̃

)(
1 + Ω′t,t+1 + D̃′t+1 − S̃t

)
+
(

1 + Ω′t,t+1 + S̃′t+1 − S̃t+
)]

= 1. (E2.18)

However, using the steady state return relationship
(

1 + D̃
S̃

)
= 1/α, (E2.18) becomes

Et
[
Ω′t,t+1 + (1− α)D̃′t+1 + αS̃′t+1 − S̃′t

]
= 0. (E2.19)

Note that

Et
[
αS̃′t+1 − S̃′t

]
= (α− 1)(Z̃s0 − s̃) + Z̃sw(αρw − 1)wt + Z̃sπ(αρπ − 1)πt +

Z̃sa(αρa − 1)at + Z̃sk(αk̃t+1 − k̃t), (E2.20)

Et
[
(1− α)D̃′t+1

]
= (1− α)

[
Z̃d0 + Z̃dwρwwt + Z̃dπρππt + Z̃daρaat+

Z̃dk k̃t+1 − d̃
]
, (E2.21)

αk̃t+1 − k̃t = α
[
Z̃k0 + Z̃kwwt + Z̃kππt + Z̃kaat

]
+ (αZ̃kk − 1)k̃t, (E2.22)

(1− α)k̃∗t+1 = (1− α)
[
Z̃k0 + Z̃kwwt + Z̃kππt + Z̃kaat + Z̃kk k̃t

]
. (E2.23)

Thus substituting (E2.22)-(E2.23) in (E2.20)-(E2.21) we get (up to constants),
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Et
[
Ω′t,t+1 + (1− α)D̃′t+1 + αS̃′t+1 − S̃′t

]
=

wt

(
Bwρw + Z̃sw(αρw − 1) + (1− α)Z̃dwρw + Z̃kw(αZ̃sk + (1− α)Z̃dk)

)
+ πt (Bπρπ + (1− ρπ)+

Z̃sπ(αρπ − 1) + (1− α)Z̃dπρπ + Z̃kπ(αZ̃sk + (1− α)Z̃dk)
)

+ atZ̃
s
a(αρa − 1) + (1− α)Z̃daρa +

Z̃ka (αZ̃sk + (1− α)Z̃dk)) + k̃t

(
Z̃sk(αZ̃kk − 1) + (1− α)Z̃dk Z̃

k
k

)
. (E2.24)

Then to ensure that the coeffi cient of k̃t is zero, we must have

Z̃sk =
(1− α)Z̃dk Z̃

k
k

1− αZ̃kk
, (E2.25)

where Z̃dk and Z̃
k
k have been computed above. With Z̃

s
k in hand, we can compute the coeffi cients of s̃t

with respect to the other state variables to ensure that the equilibrium asset market condition (E2.19)

is satisfied. We have:

Z̃sw =
Bw + (1− α)Z̃dwρw + Z̃kw(αZ̃sk + (1− α)Z̃dk)

1− αρw
,

Z̃sπ =
Bπ + (1− ρπ) + (1− α)ρπZ̃

d
π + Z̃kπ(αZ̃sk + (1− α)Z̃dk)

1− αρπ
,

Z̃sa =
(1− α)Z̃daρa + Z̃ka (αZ̃sk + (1− α)Z̃dk)

1− αρa
. (E2.26)

E3. Log-linearization of tacit collusion equilibrium path

We will use log-linearization to approximate the equilibrium path using the TCIC (C2.10), the Euler

(C2.27) and the asset market equilibrium condition

Et
[
Ωt,t+1

(
Dt+1

St
+
St+1

St

)]
= 1. (E3.1)

Note from (C2.13) that, for i = 0, 1 (and up to constants)

χ′t+i = −ψ(σ − 1)u
ψ
u′t+i + Θ

[
A′t+i + ψ(K

′
t+i + (σ + 1)u

′
t+i)−W ′t+i − (σ − 1)P ′t+i

]
, (E3.2)

where

Θ ≡ hN
1
σA

1
σK

ψ
σ u

ψ(σ+1)
σ

Mφ
. (E3.3)

We now log-linearize the Euler condition (C2.27). We recall that I ′t+1 − K ′t+1 = (1/δ)(K ′t+2 − K ′t+1)

and Ĩ ′t+1 = (1/δ)(K̃ ′t+2− (1− δ)K̃ ′t+1). Using these facts, log-linearization of (C2.27) gives (up to steady
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state constants),

0 = u′tT
K
u0 +K ′tT

K
K0 +A′tT

K
A0 +W ′tT

K
W0 + P ′tT

K
P0 +

Et
[
Ω′t,t+1T

K
Ω +K ′t+1T

K
K1 +K ′t+2T

K
K2 +W ′t+1T

K
W1 + P ′t+1T

K
P1+

A′t+1T
K
A1 + u′t+1T

K
u1 + K̃ ′t+2T

K
K̃2

]
, (E3.4)

where (using the definitions in (C4.13)-(C4.15)):

TKΩ = α
[(

ΥK − ψhAuψK(ψ−1)
)(

1− χu−
ψ(σ−1)

σ

)
− ψχ[u

ψ
σ − 1]hAK(ψ−1) + (1− χ) (1− δ −m)

]
,

TKK0 = ϕ (1− χ) + ψΘχ

(
1 + α

((
ΥK − ψhAuψK(ψ−1)

)
u−

ψ(σ−1)
σ − ψ(u

ψ
σ − 1)hAK(ψ−1) − (1− δ −m)

))
,

TKK1 = −ϕ (1− χ)− α
[
ΥKy(1− χu−

ψ(σ−1)
σ ) + ψ(ψ − 1)hAK(ψ−1)(u

ψ − 1) + ϕ(δ(1− χ)−

(1− δ){(1− χ)− δχψΘ})] ,

TKK2 = αϕ[δ + (1− χ)(1− δ)], TK
K̃2

= −ϕδχ,

TKu0 = (Θ(σ + 1)− (σ − 1)uψ)χ

[
ϕδψ + α−

(
ΥK − ψhAuψK(ψ−1)

)
u−

ψ(σ−1)
σ − ψ(u

ψ
σ − 1)hAK(ψ−1)+

m− (1− δ))] ,

TKu1 = α

[
ψΥK (σ − 1)

σ
− ψhAK(ψ−1)

(
ψ + χu−

ψ(σ−1)
σ

(
ψ(σ − 1)

σ
u
ψ − ψ

)
+
χψ

σ

)
+

(1− δ)ϕδχ(Θ(σ + 1)− (σ − 1)uψ)
]
,

TKW0 = −χΘ

[
1 + α

{(
ΥK − ψhAuψK(ψ−1)

)
u−

ψ(σ−1)
σ − ψ(u

ψ
σ − 1)hAK(ψ−1) − (1− δ −m)

}]
,

TKW1 = α
[
(σ)−1ΥK(1− χu−

ψ(σ−1)
σ )− (1− δ)ϕδχΘ

]
,

TKP0 = (σ − 1)TKW0, T
K
P1 = (σ − 1)TKW1, T

K
A0 = −TKW0,

TKA1 = α

[{(
σ − 1

σ

)
ΥK − ψhAu

ψ
σK(ψ−1)

}
(1− χu−

ψ(σ−1)
σ )− ψχ[u

ψ
σ − 1]hAK(ψ−1) + (1− δ)ϕδχΘ

]
.

We next log-linearize the TCIC Because, along the equilibrium path at every t, St = Et [Vt+1(Kt+1)]

and S̃t = Et
[
Ṽt+1(Kt+1)

]
, the TCIC can be written as

D̄t −Dt − (St − S̃t) = 0. (E3.5)

Now, D̄t −Dt equals [
MtφN

− 1
σK

ψ(σ−1)
σ

t A
(σ−1)
σ

t u
−ψσ
t − hAtKψ

t

]
(1− uψt ). (E3.6)

Hence, log-linearization of (E3.6) around the equilibrium steady state gives (after canceling out constant
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terms due to the steady state relation of D̄ −D)

Υ

(
W ′t
σ

+
(σ − 1)

σ

(
A′t + P ′t + ψK ′t

)
− ψ

σ
u′t

)
− hAKψ(A′t + ψK ′t)−

Υu

[
W ′t
σ

+
(σ − 1)

σ

{
A′t + P ′t + ψ(u′t +K ′t)

}]
+ hA (uK)ψ (A′t + ψ(K ′t + u′t)). (E3.7)

Then, log-linearization of the TCIC (C2.10) by inserting (E3.7) and rearranging terms yields

u′t = (Hu
0 )−1

(
SS′t − S̃S̃′t − (1− uψ)

[
Υ

(
W ′t
σ

+
(σ − 1)

σ
P ′t

)
+

A′tH
u
a +K ′tH

u
k

])
, (E3.8)

where

Hu
0 = ψ

[
hA(uK)ψ − Υ

σ

(
1 + uψ(σ − 1)

)]
,

Hu
a =

(σ − 1)

σ
Υ− hAKψ, Hu

k = ψHu
a . (E3.9)

Note that Hu
0 < 0 since in the steady state Υuψ ≥ hA (uK)ψ (as non-negative profits are necessary for

firm survival in steady state). But

Υ

(
1 + uψ(σ − 1)

σ

)
= Υuψ

(
σ − 1

σ
+

1

σ

)
+ Υ

(1− uψ)

σ
> Υuψ. (E3.10)

Since (E3.8) holds for any t along the equilibrium path, it follows therefore that

u′t+1 = (Hu
0 )−1

(
SS′t+1 − S̃S̃′t+1 − (1− uψ)

[
Υ

(
W ′t+1

σ
+

(σ − 1)

σ
P ′t+1

)
+

A′t+1H
u
a +K ′t+1H

u
k

])
. (E3.11)

We can then use (E3.8) and (E3.11) to substitute out u′t and u′t+1 in (E3.4), thereby obtaining an

approximation of the optimality condition (E3.4) as an affi ne function of exogenous state variables

(W ′t ,W
′
t+1, P

′
t , P

′
t+1, A

′
t, A
′
t+1) and the costate variables (K ′t, K

′
t+1, K

′
t+2, S

′
t, S

′
t+1, S̃

′
t, S̃

′
t+1). We now

use the method of undetermined coeffi cients to determine the coeffi cients for the optimality condition

by exploiting the asset pricing equilibrium condition:

αEt
[
Ω′t,t+1 + (1− α)D′t+1 + αS′t+1 − S′t

]
= 0. (E3.12)

We start by positing equilibrium affi ne functions for log investment and and log (ex-dividend) equity
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values, namely,

kt+1 = Zk0 + Zkwwt + Zkππt + Zkaat + Zkkkt, (E3.13)

st = Zs0 + Zswwt + Zsππt + Zsaat + Zskkt. (E3.14)

Using the above two equations, recognizing that S′t = st − s, K ′t+j = kt+j − k, j = 0, 1, 2, etc., using

Ω′t,t+1 in (E1.12), and utilizing the fact that µ
′
t+1 = diag(ρ)′µt+εt+1 yields the log-linearized optimality

condition (E3.4) of the firm he form:

0 = Et
[
ktH

k
k0 + kt+1H

k
k1 + kt+2H

k
k2

]
+ wtH

k
w +Hk

ππt +

Hk
aat +Hk

0 , (E3.15)

where the coeffi cients with respect to the state variables are

Hk
k0 = TKK0 +

(
TKu0

Hu
0

)[
SZsk − S̃Z̃sk − (1− uψ)Hu

k )
]
,

Hk
k1 = TKK1 +

(
TKu1

Hu
0

)
[SZsk − S̃Z̃sk − (1− uψ)Hu

k )],

Hk
k2 = TKK2,

Hk
w = TKW0 + ρw

(
TKW1 + TKΩ Bw

)
+

(
TKu0 + ρwT

K
u1

Hu
0

)
×

[SZsw − S̃Z̃sw − (1− uψ)
Υ

σ
] + (TKK1 + ρwT

K
K2)Zkw,

Hk
π = TKP0 + ρπT

K
P1 + TKΩ (ρπ(Bπ − 1) + 1) +

(
TKu0 + ρπT

K
u1

Hu
0

)
×[

SZsπ − S̃Z̃sπ − (1− uψ)
Υ(σ − 1)

σ

]
+ (TKK1 + ρπT

K
K2)Zkπ ,

Hk
a = TKA0 + ρaT

K
A1 +

(
TKu0 + ρaT

K
u1

Hu
0

)
×

[SZsa − S̃Z̃sa − (1− uψ)Hu
a ] + (TKK1 + ρaT

K
K2)Zka . (E3.16)

where the terms TK· have been defined in (E3.4). However, in (E3.16) Hk
k0 and H

k
k1 include (as yet)

undetermined stock price loading on capital, Zsk, that is the coeffi cient of kt in st (see (E3.14)).

To determine the coeffi cients of st in general, we utilize the log-linearization of the asset pricing

condition in (E3.1), which requires D′t. Log-linearizing Dt, we have

DD′t = Υu

(
W ′t
σ

+
(σ − 1)

σ
{P ′t +A′t + ψ(K ′t + u′t)}

)
− hA(uK)ψ ×

(A′t + ψ(K ′t + u′t))− δKI
′
t −mKK ′t, (E3.17)
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where I ′t = (1/δ)(K ′t+1− (1− δ)K ′t). Hence, since D
′
t = dt− d, substituting for u′t from (E3.8) and kt+1

from (E3.13), we can write

dt = Zd0 + Zdwwt + Zdππt + Zdaat + Zdkkt + Zds st + Zds̃ s̃t, (E3.18)

where (up to the constant term),

Zdw =
1

σHu
0D

[
Hu

0 Υu − ψ(1− uψ)Υ

{
(σ − 1)

σ
Υu − hA (uK)ψ

}
−KZkw

]
,

Zdπ =
(σ − 1)

σHu
0D

[
Hu

0 Υu − ψ(1− uψ)Υ

{
(σ − 1)

σ
Υu − hA (uK)ψ

}
−KZkπ

]
,

Zda =

(
(σ−1)
σ Υu − hA (uK)ψ

)
Hu

0D

[
Hu

0 − ψ(1− uψ)Hu
a

]
−KZka ,

Zds =
ψ
(

(σ−1)
σ Υu − hA (uK)ψ

)
S

Hu
0D

,

Zds̃ = −
ψuψ

(
(σ−1)
σ Υu − hA (uK)ψ

)
S̃

Hu
0D

,

Zdk =
[1− δ −m− Zkk ]K

D
+
ψ
(

(σ−1)
σ Υu − hA (uK)ψ

) [
Hu

0 − (1− uψ)Hu
k

]
Hu

0D
, (E3.19)

and where Hu
0 and Hu

k are defined in (E3.16), while the coeffi cients Z
k
· of kt+1 in (E3.13) will be

determined next. We note from (E3.13)-(E3.14) that kt and st do not directly depend on the (log of)

the off-equilibrium ex-dividend price s̃t, while dt in (E3.18) does so. The reason is apparent from the

Euler condition (C2.27) and the equity market clearing condition (E3.1). These conditions do no not

directly depend on S̃t; for example, in the Euler condition off-equilibrium behavior operates through

off-equilibrium path investment Ĩt+1. However, the optimality condition for capacity utilization ut in

(E3.11) depends directly on S̃t, which in turn directly affects dt.

Returning to the asset market equilibrium condition, we can utilize (E3.18)-(E3.19) to substitute

for dt+1 in the asset pricing condition (E3.12) to derive the equilibrium coeffi cients for st. To this end,

note that

αkt+1 − kt = α
[
Zk0 + Zkwwt + Zkππt + Zkaat

]
+ (αZkk − 1)kt, (E3.20)

(1− α)kt+1 = (1− α)
[
Zk0 + Zkwwt + Zkππt + Zkaat + Zkkkt

]
. (E3.21)
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Hence, collecting terms in (the LHS) of (E3.12), the asset pricing condition requires

0 = wt

[
(1− α)ρw(Zdw + Zds̃ Z̃

s
w) + Zsw{(αρw − 1) + (1− α)ρwZ

d
s }+

Zkw{(1− α)Zdk + αZsk}+Bw

]
+ πt

[
(1− α)ρπ(Zdπ + Zds̃ Z̃

s
π) + Zsπ{(αρπ − 1)+

(1− α)ρπZ
d
s }+ Zkπ{(1− α)Zdk + αZsk}+Bπ + (1− ρπ)

]
+

at

[
(1− α)ρa(Z

d
a + Zds̃ Z̃

s
a) + Zsa{(αρa − 1) + (1− α)ρaZ

d
s }+

Zka{(1− α)Zdk + αZsk}
]

+ kt

[
(1− α)(Zdk + Zds̃ Z̃

s
k) + Zsk(αZkk − 1)

]
+ Zs0 . (E3.22)

It is clear that to ensure that the coeffi cient of kt is zero for all values of the state, we must have

Zsk =
(1− α)(Zdk + Zds̃ Z̃

s
k)

1− αZkk
. (E3.23)

But we notice from (E3.19) that

Zdk = Hd
k −KZkk ,

Hd
k ≡ (1− δ −m)K

D
+
ψ(Υ− hA (uK)ψ)

[
Hu

0 − (1− uψ)Hu
k

]
Hu

0D
. (E3.24)

Hence, substituting (E3.24) in (E3.23) and then substituting the resultant expression for Zsk in (E3.16),

we get

HK
k0 =

(
1

1− αZkk

)
[ΞK00 + ZkkΞK01],

HK
k1 =

(
1

1− αZkk

)
[ΞK10 + ZkkΞK11], (E3.25)

where

ΞK00 = TKK0 +

(
TKu0

Hu
0

)
[S(1− α)Hd

k + S̃Z̃sk((1− α)Zds̃ − 1)− (1− uψ)Hu
k )],

ΞK01 = −αTKK0 −
(
TKu0

Hu
0

)
[SK(1− α)− α(S̃Z̃sk + (1− uψ)Hu

k )],

ΞK10 = TKK1 +

(
TKu1

Hu
0

)
[S(1− α)Hd

k + S̃Z̃sk((1− α)Zds̃ − 1)− (1− uψ)Hu
k )],

ΞK11 = −αTKK1 −
(
TKu1

Hu
0

)
[SK(1− α)− α(S̃Z̃sk + (1− uψ)Hu

k )]. (E3.26)

Returning to (E3.15)-(E3.16), to ensure that the terms involving the log of the capital stock are collec-
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tively zero, Zkk is derived as the smallest real root of the cubic equation:

ĤK
k0 + ĤK

k1Z
k
k + ĤK

k2(Zkk )2 + ĤK
k3(Zkk )3 = 0, (E3.27)

where

ĤK
k0 = ΞK00,

ĤK
k1 = ΞK01 + ΞK10,

ĤK
k2 = HK

k2 + αΞK11,

ĤK
k3 = −αHK

k2. (E3.28)

Note that the determination of Zkk (in (E3.27)-(E3.28)) also yields Z
d
k (from (E3.19)) and Zsk (from

(E3.23)). In a similar fashion, we can compute the loadings of kt+1 of st on the other state variables

(wt, πt, at) by utilizing the Euler condition (E3.15) and the asset market condition (E3.22), which then

yield the corresponding loadings of dt (from (E3.19)). More explicitly, because we require the coeffi cients

of the state variables in the asset market condition (E3.22) to each be zero, we can solve for the loadings

of st as

Zsw =
(1− α)ρw(Zdw + Zds̃ Z̃

s
w) + Zkw{(1− α)Zdk + αZsk}+Bw

(1− αρw) + (α− 1)ρwZ
d
s

,

Zsπ =
(1− α)ρπ(Zdπ +Hd

s̃ Z̃
s
π) + Zkπ{(1− α)Zdk + αZsk}+Bπ + (1− ρπ)

(1− αρπ) + (α− 1)ρπZ
d
s

,

Zsa =
(1− α)ρa(Z

d
a + Zds̃ Z̃

s
a) + Zka{(1− α)Zdk + αZsk}

(1− αρa) + (α− 1)ρaZ
d
s

. (E3.29)

Finally, we utilize the foregoing derivations to compute nominal equity returns (for the representative

firm in any industry) by using the Campbell and Shiller (1988) approximation

rt+1 = κd0 + κd1`d,t+1 − `dt + dt+1 − dt, (E3.30)

where `dt is the log price-dividend ratio log(St/Dt) = st − dt. And κd0 and κd1 are given by

κd0 = log[1 + exp(`d)]− κd1`d,κd1 =
exp(`d)

1 + exp(`d)
, (E3.32)

where `d is the unconditional mean of `dt. From the foregoing, it follows that

`dt = κd0 + κdwwt + κdππt + κdaat + κdkkt + κds̃s̃t, (E3.33)
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where (using (E3.14) and (E3.18)):

κd0 =
Zs0 − Zd0
1 + Zsd

;κdw =
Zsw − Zdw
1 + Zsd

;κdπ =
Zsπ − Zdπ
1 + Zsd

;κda =
Zsa − Zda
1 + Zsd

;

κdk =
Zsk − Zdk
1 + Zsd

;κds̃ =
−Zds̃

1 + Zsd
. (E3.34)

In our numerical simulations of conditional returns rt+1, we take `d to be the mean of the simulated

(st − dt), using the equilibrium rules derived above.

F. Depreciation costs of capacity utilization

We now consider the case where δ(u) = 1
ξu

ξ, ξ > 1. The steady state capital adjustment cost function

is Ψ(I,K) = I + 0.5ϕ
(
I
K − δ(u)

)2
K. It is convenient to define

Υ̃ = MφN−
1
σA

(σ−1)
σ (ũK̃)

ψ(σ−1)
σ ,

Υ̃K =

[
MφN−

σ+1
σ A

σ−1
σ ũ

ψ(σ−1)
σ K̃−y

(
Nσ − 1

σ

)]
,

Υ̃u =

[
MφA

σ−1
σ N−

σ+1
σ ũ−yK̃

ψ(σ−1)
σ

(
Nσ − 1

σ

)]
, (F1.1)

y ≡ (σ(1−ψ)+ψ)
σ . And when used without time subscripts– that is, Υ̃, Υ̃K and Υ̃u– the notation will

refer to the steady state values of these variables. The firm’s optimization problem, conditional on

capital stock K̃ and other firms’(symmetric) strategies (ũ−n, K̃−n), can be represented as

V (K̃, K̃−n) = max
u∈[0,1],I

D(u, I ũ−n, K̃−n, K̃) + αV (K̃((1− δ(u)) + I), (F1.2)

where

Π(u, ũ−n, K̃−n, K̃) =
(
MφA−

1
σ [(N − 1)(ũK̃)ψ + (uK̃)ψ]−

1
σ − h

)
A(uK̃)ψ, (F1.3)

D(u, I, ũ−n, K̃−n, K̃) = Π(u ũ−n, K̃−n, K̃)−Ψ(I, K̃)−mK̃. (F1.4)

Then, (ũ, K̃) is the steady state equilibrium for all if the solution to (F1.2)-(F1.4) implies Ĩ = δ̃K̃,

where δ̃ = 1
ξ (ũ)ξ. Thus, (ũ, K̃, ) are, respectively, characterized by the optimality conditions

0 =
∂Π(ũ, K̃)

∂u
− α(ũ)(ξ−1)∂Ṽ (K̃)

∂K
, (F1.5)

0 = −1 + α

[
∂Π(ũ, K̃)

∂K
−m+ (1− δ̃)

]
(F1.6)

26



Now, from (F1.3)

∂Π(ũ, K̃)

∂u
=

∂Π(u,K (ũ−n, K̃−n, K̃))

∂u u=ũ,K=K̃

= ψ

[
(σ − 1)

σ
Υ̃u − hAũ(ψ−1)K̃ψ

]
. (F1.7)

Similarly,
∂Π(ũ, K̃)

∂K
= ψ

[
(σ − 1)

σ
Υ̃K − hA(ũ)ψ(K̃)(ψ−1)

]
. (F1.8)

And dividends in the punishment steady state are:

D̃ = Π(ũ, K̃)−Ψ(δ̃K̃, K̃)−m. (F1.9)

(F1.7)-(F1.9) determine the steady state cum- and ex-dividend equity values as Ṽ = D̃
1−α , S̃ = αD̃

1−α .

In the standard fashion, we can use the implicit function theorem on the optimality conditions
∂Ṽ (K̃)
∂u = 0 (F1.5) and ∂Ṽ (K̃)

∂I = 0 (F1.6) to derive comparative statics with respect to the depreciation

cost parameter ξ. Note that (F1.6) implies 1 = α∂Ṽ (K̃)
∂K . Substituting this in (F1.5), we compute

∂2Ṽ (K̃)

∂u∂ξ
= − log(u)(ũ)(ξ−1)K̃ > 0, (F1.10)

since log(u) < 0 (as 0 < u ≤ 1). And from (F1.6) we have

∂2Ṽ (K̃)

∂I∂ξ
= −α∂δ̃

∂ξ
> 0. (F1.11)

Next, from Young’s Theorem, we have ∂2Ṽ (K̃)
∂u∂K = ∂2Ṽ (K̃)

∂K∂u and hence from (F1.7) and (F1.5)

∂2Ṽ (K̃)

∂K∂u
=
ψ2

K̃

[(
σ − 1

σ

)2

Υ̃u − hAũ(ψ−1)K̃ψ

]
− αũ(ξ−1)∂

2Ṽ (K̃)

(∂K)2
. (F1.12)

Then using standard comparative statics techniques for multivariate optimization we get

∂K̃

∂ξ
=
−∂2Ṽ (K̃)

(∂K)2
∂2Ṽ (K̃)
∂I∂ξ + ∂2Ṽ (K̃)

∂K∂u
∂2Ṽ (K̃)
∂u∂ξ

∂2Ṽ (K̃)
(∂K)2

∂2Ṽ (K̃)
(∂u)2

−
(
∂2Ṽ (K̃)
∂K∂u

)2 . (F1.13)

Now the local second order conditions for an optimum, ∂
2Ṽ (K̃)
(∂K)2

< 0 and the denominator of (F1.13) is

positive. Hence, from (F1.10) and (F1.11), ∂K̃∂ξ > 0 if ∂
2Ṽ (K̃)
∂K∂u ≥ 0. Returning to (F1.12), the second

term is positive by the local second order conditions. And from (F1.5), ∂Π(ũ,K̃)
∂u > 0, that is, (F1.7) is
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positive. Hence a suffi cient condition for ∂2Ṽ (K̃)
∂K∂u ≥ 0 is that

h ≤
(
σ − 1

σ

)2

MφN−
σ+1
σ A

−1
σ (ũK̃)−

ψ
σ

(
Nσ − 1

σ

)
=

(
σ − 1

σ

)2

N

(
Nσ − 1

σ

)
p̃. (F1.14)
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Table A.1. Calibration for quantitative analysis in Section 5.1

This table displays the parameterization used for the numerical computations of the loglinear approximation

of the industry equilibrium presented in Section 5.1. ρw, ρπ are the estimated autocorrelation coeffi cients

of the first order autoregressive processes of wt = logWt and πt = log Pt, that is, wt = ρwwt−1 + εwt

and πt = ρππt−1 + επt. Wt and Pt are described in Section 4.1. Σw, Σπ and Σwπ are the volatilities and

covariance of the estimated income and price index shocks εwt and επt. The autocorrelation coeffi cients of

sectoral log productivity shock (ρa), as well as the covariances of industry productivity shocks with wt and

πt (Σaw,Σaπ,Σxw,Σxπ) are estimated from the first order autoregressive processes of log productivity in

the NBER-CES (annual) data for U.S. manufacturing consumer goods sector during 1958-2016.

Consumption and Production

Annual discount factor (α) 0.99

Intertemporal elasticity of substitution (η−1) 1.9

Risk aversion (γ) 5

Product elasticity of substitution (σ) 2.5

Sectoral weight (φ) 0.05

Output elasticity of capital (ψ) 0.78

Capital adjustment cost (ϕ) 5

Annual depreciation rate (δ) 5.5%

Variance-Covariance Matrix Σ (Annual)

Volatility of εwt (Σw) 2.5%

Volatility of επt (Σπ) 2.85%

Volatility of εat (Σa) 0.5%

Cov(εwt , επt) (Σwπ) 0.001

Cov(εwt , εat) (Σaw) 0.0002

Cov(επt , εat) (Σaπ) 0.0005

Autocorrelation Coeffi cients (Annual)

Coeffi cient of wt (ρw) 0.95

Coeffi cient of πt (, ρπ) 0.965

Coeffi cient of at (ρa) 0.88
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