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Abstract

We develop a dynamic production-based model with real options to examine the im-

plications of changes in output, investment and �nancial policies on �rms�future stock

return distributions. We introduce novel, competing channels showing that cash-�ow

hedging and capital investment by �rms endogenously impact not only future vari-

ance, but also future skewness and kurtosis. Empirically, using option prices and

hand-collected data on �rms�risk management policies, we �nd that hedging exhibits

a pull-to-normality e¤ect on �rms�returns, reducing future variance, excess negative

skewness and excess kurtosis, while this e¤ect is o¤set with increasing levels of invest-

ments.
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1 Introduction

Do risk-management policies a¤ect �rms�risk? While the answer to this question may seem

obvious, the seminal work of Modigliani and Miller (1958) demonstrates that hedging is

irrelevant within a frictionless setting. Even with the inclusion of frictions in the economy,

the impact of hedging on �rms� performance can be modest at best (Ghoddusi, Titman

and Tompaidis (2023)). Empirically, previous literature document no di¤erential e¤ect in

�rms�value from implementing hedging policies and no link between �rms�risk-management

policies and their future return volatility (see, for example, Hentschel and Kothari (2001)

and Jin and Jorion (2006)). Taken together, these studies suggest that the relevance of

hedging for �rms�performance is not a settled debate and several questions remain open.

Under what circumstances it is optimal for �rms to hedge and what is the impact of hedging

decisions on �rms�risk beyond return volatility?

In this paper, we attempt to answer these questions from a combined theoretical and

empirical perspective. We address this task with a dynamic framework relating �rms�pro-

duction, investment and risk management (hedging) policies with their future return distri-

butions, beyond the second moment. We then contrast the predictions of our model with

�rms in the energy sector, for which reliable data on hedging is available, and study whether

hedging can, in fact, reshape �rms�future return distribution.

Modern �nance theory indicates that the higher moments of stock returns will be sub-

stantially a¤ected by �rms� real (production and investment) and �nancial (leverage and

hedging) policies. To �x ideas, consider a levered commodity producing �rm that manages

default risk by hedging through (commodity price) swap contracts, which e¤ectively elimi-

nate the �rm�s price risk exposure over some time interval. Risk management of this form

clearly a¤ects not just volatility but also the higher moments� in particular, skewness and

kurtosis� of prices, cash �ows and, hence, equity returns.
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Extending this example further, suppose that the �rm also has a real option (project) to

reduce production costs based on capital investment in a new technology; and this investment

is �nanced through additional debt. The literature documents the signi�cant e¤ects of

price uncertainty on capital investment and risk management of commodity producing �rms

(Doshi, Kumar and Yerramili (2018); Gilje and Taillard (2017)). Conversely, however, capital

investment should a¤ect higher moments of future stock returns. Intuitively, in the example

at hand, capital investment will increase� relative to the pre-investment phase� the �rm�s

pro�ts in high price states (where the reduced cost e¤ect dominates), and reduce pro�ts in low

price states (where the higher debt repayment e¤ect dominates). Consequently, the variance

and kurtosis of returns should rise, other things being equal, while the e¤ect on skewness

may depend on whether the �rm faced negative or positive skewness prior to investment.

But while there is an extensive existing literature that examines the relation of invest-

ment and hedging with (price, cash �ows or return) uncertainty (or variance), the links

between �rms� real and �nancial policies with skewness and kurtosis are relatively unex-

plored.1 Therefore, some fundamental questions remain open. In particular, with concavity

of the value function, hedging is optimal in the sense of restricting uncertainty. But �rms�

preferences towards higher moments are generally ambiguous because it is well known that

shareholder risk aversion does not restrict preferences over skewness or kurtosis (e.g., Brock-

ett and Kahane (1992)). Hence, the e¤ects of �rms�hedging choices on higher moments

require empirical resolution. In particular, the in�uence of �rm characteristics, such as size

and leverage, on the relation of �rms�hedging and return moments requires attention. Turn-

ing to the role of real options and risk management, Doshi, Kumar and Yerramili (2018)

document the negative e¤ects of uncertainty on capital investment for small �rms, but �nd

that larger �rms increase hedging to moderate its impact of greater uncertainty on capital

investment. To our knowledge, the endogenous e¤ects of capital investment and hedging on

1This literature includes Rolfo (1980), Stulz (1984), Froot et al. (1993), Graham and Smith (1999),
Campello et al. (2011), Kumar and Rabinovitch (2013) and Kellogg (2014).
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higher moments are not examined in the literature.

To develop empirical implications that relate �rms�real and �nancial policies to higher

moments of stock returns, we construct a dynamic production-based model of levered �rms

subject to default risk in the presence of �nancial covenants (Leland (1994); Toft and Prucyck

(1997)). We derive the endogenous risk-neutral distribution of stock returns along the opti-

mal production path. This distribution is generally asymmetric with excess negative skew-

ness and excess positive kurtosis (relative to the normal distribution). That is, we show that

asymmetric risk-neutral return distributions arise for �rms in rather general product market

settings and facing realistic default risk boundaries.

The presence of default risk endogenously generates a demand for managing cash �ow risk

by hedging commodity or product price risk. We characterize the optimal hedging policy

to generate empirical predictions on the demand for hedging. Consistent with intuition,

hedging demand is, ceteris paribus, positively related to leverage and the economic costs of

bankruptcy, while it is negatively related to pro�ts. We then show that hedging using �xed

price contracts a¤ects higher moments of future risk-neutral return distributions by reducing

not only variance but also excess skewness and kurtosis. Hence, �rms optimally hedge

to avoid endogenous default risk (along the optimal production path) and thereby reduce

higher moments of their future risk-neutral stock distribution and lower its deviation from

a normally distributed variable. We label this novel set of theoretical results as the pull-to-

normality e¤ect of corporate hedging on �rms�return distributions. Based on the predictions

on the demand for hedging, the theoretical analysis generates the empirical hypotheses that

the pull-to-normality e¤ect will be stronger among �rms with high leverage, small size and

high rollover-risk, as well as low net sales and low market-to-book. The �rst three covariates

proxy for bankruptcy risk and costs of distress, while the last two covariates re�ect lower

pro�tability.

We then consider the implications of real options on higher moments by extending our
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model to allow capital investment in a cost saving technology, �nanced with additional debt.

We characterize the optimal exercise policy: The �rm optimally invests when the product

prices crosses a threshold level. Following investment, the spread in pro�ts between high

and low price states expands, increasing volatility and kurtosis, while the e¤ect on skewness

depends on the direction of the skew prior to investment. Therefore, capital investment has

an opposing e¤ect to pull-to-normality, by amplifying higher moments; �rms can moderate

this e¤ect by hedging, however.

Our empirical tests are guided by the availability of hedging and equity options data.

We therefore focus on �rms in the oil and gas (O&G) sector, where product price hedging

is prevalent among non-vertically integrated �rms. We rely on entities from this sector, as

information provided by these �rms allows us to compute a direct, quanti�able measure of

hedging intensity instead of implied hedging measures based on textual analytics techniques

applied to �rms in other industries. Hedging intensity is the �rm-level percentage of hedged

oil and gas production. In addition, �rms in this sector have access to one of the most liquid

derivatives markets in order to hedge output price risk. Our hand-collected hedging data,

complemented by data on equity options and the underlying stock prices fromOptionMetrics,

covers the period 1996-2014. The main outcome variables are end-of-month higher moments

computed using equity options data. We compute the option-implied variance, skewness and

kurtosis using the methodology in Bakshi, Kapadia and Madan (2003). We utilize monthly

predictive panel regressions where the dependent variable is the �rm�s distributional moment

(estimated using option prices) and the main covariate is hedging intensity. We control for

�rm-level variables that can potentially impact return distributions, including latent time-

trends.

We �nd strong support for the hypothesis that hedging has a pull-to-normality e¤ect on

�rms�future stock return distribution. Raising hedging intensity signi�cantly reduces future

variance, negative excess skewness and excess kurtosis of �rms�returns. These e¤ects are
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both statistically and economically signi�cant. A one-standard-deviation shock to hedging

intensity reduces �rm-level return variance by more than 3.2% of the mean variance in the

following month, and this result is robust to the inclusion of lagged option implied volatility.

Meanwhile, a change in the hedging intensity coe¢ cient from the 25th to the 75th percentile

generates a reduction in excess negative skewness next month of about 8.3% of average

skewness. In a similar vein, a change in the hedging intensity coe¢ cient from the 25th to

the 75th percentile generates a reduction in excess kurtosis next month of about 2.5% of the

mean kurtosis.

In line with our priors (based on intuition and results in the literature), �rms�variance

increases with higher levels of leverage and rollover risk, while it decreases with higher

levels of pro�tability. We also �nd that leverage and market-to-book signi�cantly impact on

future skewness and carry the expected sign. However, their e¤ect pales when compared to

the impact of hedging. And the e¤ects of leverage, roll-over risk, size and book-to-market on

the kurtosis of �rms�return distribution are also signi�cant and of expected sign. In sum,

our basic test speci�cation is consistent with the received literature.

Having established the signi�cant pull-to-normality e¤ect of hedging, a natural question

is: Who bene�ts most from a reduction in variance, excess negative skewness and excess

kurtosis due to hedging? Based on our theoretical framework, we expect that hedging is

a more e¤ective tool for �rms that face a relatively more challenging environment for their

�nancial management. Thus, our hypothesis is that �rms that exhibit the strongest e¤ects of

hedging on their higher moments will be smaller in size, carry larger levels of leverage, have

higher rollover risk, and exhibit lower levels of market-to-book and pro�tability. To test this

hypothesis, we estimate predictive regressions by splitting the sample into �rms with below-

and above-median levels of these characteristics.

We �nd that the reduction in return variance from hedging is signi�cant for small �rms,

but not for large �rms. Furthermore, while hedging signi�cantly lowers excess negative
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skewness and excess kurtosis for small �rms, it (hedging) has opposing e¤ects on these

higher moments of large �rms�return distributions. These results have general implications

for risk management by small �rms. The literature �nds that small size �rms lower capital

expenditures and debt issuance instead of increasing hedging to mitigate uncertainty. Our

�ndings suggest that hedging could be a more e¤ective tool at reducing �rms�return variance,

excess negative skewness and excess kurtosis. Hedging has signi�cant negative e¤ects on

return variance for both high and low levered �rms, but only highly levered �rms bene�t from

the reduction in excess negative skewness and excess kurtosis due to hedging. Furthermore,

hedging has signi�cant reduction e¤ects on return variance, excess negative skewness and

excess kurtosis only for high (but not low) rollover risk �rms as well as high (but not low)

book-to-market �rms. Hedging also signi�cantly reduces return variance of low (but not

high) pro�tability �rms.

We also �nd that �rms�volatility, skewness and kurtosis are signi�cantly and positively

a¤ected by capital investment. While the e¤ects on volatility and kurtosis are unambiguously

predicted by our model, the positive relation of skewness and investment provides empirical

resolution. To our knowledge, this paper is the �rst to document the impact of investment on

higher moments of �rms�stock distribution. In addition, and consistent with the predicted

e¤ects of commodity price hedging, we �nd that hedging ameliorates or weakens the e¤ect

of capital investment on �rms�higher moments.

We organize the paper as follows. Section 2 discusses the literature related to our paper.

Section 3 develops the dynamic model and derives the empirical hypotheses. Section 4

describes the data and the empirical test design. Section 5 discusses the empirical results

and Section 6 concludes.
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2 Related Literature

Our study contributes to both corporate �nance and asset pricing literatures. Several im-

portant studies document the implications of corporate hedging on �rms�value (e.g., see

Almeida, Hankins and Williams (2017), Brown and Toft (2002), Corgnaggia (2013), Kumar

and Rabinovitch (2013), MacKay and Moeller (2007) and Purnanandam (2008)). Second, a

prominent line of work �nds signi�cant predictability of higher moments of �rms�returns on

the �rms�future stock performance (e.g., see Ang, Hodrick, Xing, and Zhang (2006), Bali,

Cakici and Whitelaw (2011), Bali, Hu and Murray (2019), Conrad, Dittmar and Ghysels

(2013), Kim and White (2004) and Xing, Zhang and Zhao (2010)). We introduce a novel

channel connecting both �elds of research.

The literature on the links between �rms�investment and future return distributions is

rather succinct. Schneider and Spalt (2015) empirically �nd a positive relationship between

investment and skewness in conglomerates, with segment-level investment in conglomerates

increasing with the expected skewness of the segment. Our paper support this �nding. In our

theoretical framework, investment endogenously impact on future return distributions, and

our regression analysis documents a positive link between investments and future variance,

skewness and kurtosis.

Our paper has important implications for the literature on corporate risk management.

We provide economic foundations for the impact of �rms�hedging policies on their access

to and use of external �nancing. For example, Campello, Lin, Ma and Zou (2011) docu-

ment that �rms that hedge have access to lower borrowing costs, while Doshi, Kumar and

Yerramili (2018) �nd that investment of �rms with hedging policies in place is less sensitive

to output price uncertainty.2 Our dynamic model introduces the channel through which

2Studies using hedging intensity from energy related �rms (for di¤erent purposes than ours) include
Bakke, Mahmudi, Fernando and Salas (2016), Chen, Lu, and Vij (2021), Gilje (2016), Gilje and Taillard
(2017) and Jin and Jorion (2006).
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these e¤ects manifest in the data. Speci�cally, we show that hedging reduces �rms�future

risks (i.e., variance, skewness and kurtosis) and we empirically con�rm these results using

forward looking option implied moments. Additionally, while recent studies document con-

�icting arguments as to whether �rms in worse �nancial conditions hedge less (Rampini and

Viswanathan (2013)) or more (Bolton, Chen and Wang (2011)), we demonstrate that �nan-

cially constrained �rms are the ones bene�ting the most (by reducing returns variance, excess

negative skewness and excess kurtosis) from hedging. Lin and Paravisini (2011) document

that �rms�distribution of cash-�ows becomes more volatile and skewed as they experience

�nancial constraints. We �nd that the pull-to-normality e¤ect of hedging on �rms�returns

is stronger among these type of �rms.

To our knowledge, this is the �rst paper to theoretically and empirically link �rms�hedg-

ing to the higher moments of their stock returns distributions. While there is a vast body of

work on the motivations for and implications of hedging and risk management, the e¤ects

of hedging on higher moments of stock return distributions that we theoretically motivate

and empirically document are novel to this literature. Protection against default risk and

avoidance of bankruptcy costs are emphasized in the literature to be major motivations for

hedging (Bessembinder (1991); Froot, Scharfstein and Stein (1993)). However, the impact

on future return distributions of changes in risk-management and investment policies (the

competing channels in our framework) are not highlighted in the existing literature. In ad-

dition, we show that �rm-level investment has a counter e¤ect to that of hedging, mitigating

the initial e¤ect of stricter risk-management policies.

We also add to an incipient literature that explores micro-level foundations of higher

moments. For instance, Morellec and Zhadnov (2019) relate product market competition to

the generation of the well known negative volatility skew in option prices. However, as we

mentioned at the outset, the analysis of �rm-level determinants of higher moments is still

quite unexplored.
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3 The Model

This section introduces the dynamic production-based model for a representative �rm, links

corporate hedging policies to the risk-neutral distribution of the �rm�s stock returns and

then expands the framework as �rms have a real option to invest.

3.1 Firms and Pro�ts

We consider a competitive industry in a partial equilibrium setting. The typical �rm has

non-depreciable capital stock K that allows it choose output fYt : 0 � t < 1g with the

variable cost function �(Yt) =
�Y 2t
2
; � > 0:3 The industry price fPt : 0 � t < 1g follows a

geometric Brownian motion with constant drift and volatility, that is,

dPt = �Ptdt+ �PtdWt; (1)

where Wt is a standard Brownian motion. With the competitive industry market structure,

the �rm is a price-taker and and hence its operational pro�ts, as a function of output, are

given pointwise by

�t = PtYt �
�Y 2t
2
: (2)

The optimal production policy of the �rm will be derived below following the speci�cation

of the �rm�s objective function. Note that operational pro�ts will be strictly decreasing with

the cost parameter �: Hence, variations in � will be a convenient way to model cross-sectional

di¤erences across �rms in terms of pro�t opportunities.

The �rm faces a constant marginal corporate tax rate �: We will refer to the expected

present value of after tax operational pro�ts, that is, the asset� or the unlevered� value of

3The results are qualitatively unchanged as long as C(Yt) is strictly increasing, strictly convex and twice
continuously di¤erentiable.
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the �rm as V u:

3.2 Financial Structure and Equity Cash Flows

The �rm is widely-held and levered. Security markets are frictionless, and there exists a

traded riskless asset that pays a continuous interest rate r: Similar to Leland (1994) and Toft

and Prucyck (1997), it is convenient to derive the basic results under the assumption that

the �rm has non-callable consol debt with face value F that promises continuous coupon

payments of C to perpetuity, unless there is bankruptcy. In that event, and consistent

with absolute priority rule (APR), the �rm�s production processes and capital stock are

transferred to the bondholders as an unlevered �rm with equity claims based on existing

bond ownership.4 The asset value at bankruptcy will be denoted by V uB : But because of

bankruptcy costs, debt holders receive only (1� )V uB : The bankruptcy �trigger�is given by

a �nancial covenant that forces the �rm to declare bankruptcy when the recoverable asset

value (i.e., (1� )V uB )) falls below the present value of promised coupon payments, that is,

C=r.5

Coupon payments are tax deductible. Therefore, the net equity cash �ows or dividends

in solvent states are given by

�tdt � (1� �)(�t � C)dt: (3)

Positive dividends are paid out to equity holders pointwise, while negative dividend values

imply equity issuance to �nance the coupon payments.

4This is consistent with APR. There is a literature that examines deviations from APR (see, e.g., Allanis,
Chava and Kumar (2018) and the references cited therein). However, these considerations are extraneous to
the objectives of our study.

5This bankruptcy trigger is also considered in Toft and Prucyck (1997).
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3.3 Equity Value

We now derive the �rm�s equity value, denoted V . It is apparent from (2) that as long

as it is solvent at t, the �rm�s operational pro�ts and, hence, its dividends depend on Pt:

Because fPt : 0 � t < 1g is a Markov process, in the standard fashion it represents the

state variable for the �rm�s optimization problem. Namely, at each instant, conditional on

P; equity holders optimally decide the optimal production level Y if the �rm is solvent:

Using Ito�s Lemma along the solvency path, the pointwise Bellman representation of

optimal production is given by

rV dt = max
Y

�
�dt+

�
VP�P +

1

2
VPP�

2P 2
�
dt

�
: (4)

In addition, there are two boundary conditions imposed by the �nancial covenant that trig-

gers bankruptcy, namely,

V (PB) = 0; (5)

V uB � V u(PB) =
C

r(1� ) : (6)

where PB is the default threshold for the price process. The �rst boundary condition sets

the equity value to zero at the default boundary while the second sets the underlying asset

value at default, as required by the �nancial covenant.

Using (2) and (4), it is straightforward to derive the �rm�s optimal production policy and

the attendant indirect (or maximized) operating pro�ts as Y � = P
�
and �� = P 2

2�
; respectively.

Hence, along the optimal production path the �rm�s equity value is given by the second order

di¤erential equation (SDE)

(1� �)
�
P 2

2�
� C

�
� rV + VP�P +

1

2
VPP�

2P 2 = 0: (7)
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Solving the SDE in (7) with the boundary conditions (5)-(6) yields

V (P ) =
(1� �)P 2
2�(r � �) +

�C

r
� C
r
+HP�x; (8)

� � 2�+ �2 and (r� �) > 0: Moreover, x > 0 is the positive root of the quadratic equation

r = �x�+ 0:5x(x+ 1)�2: (9)

The positive root exists since r > �: Furthermore,

H = � C

r(1� ) [1� (1� )(1� �)] < 0: (10)

In (8), conditional on the state P; the �rst term represents the indirect (or optimized)

asset value of the �rm, that is, the present value of after-tax operational pro�ts V u: The

second term is the present value of the tax shield from debt and the third term is the present

value of the �xed coupon costs. The last term is the value of the default option, say, V D

where equity holders exchange ownership of the �rm with bondholders (at V u = V uB ) in

return for release from the the debt obligation (Toft and Prucyck (1997)). Because H < 0;

equity holders are shorting (or selling) this option with the payment of (V uB �
(1��)C

r
):

We can also deduce the conditional equity beta of the �rm, that is � = d lnV (P ;C)
d lnP

from

Equation (8), that is,

�t = 1 +
V ut
Vt
+
(1� �)C
rVt

+
V Dt
Vt
(x� 1)

The �rst two terms represent the after-tax pro�t beta. In our case, the pro�t beta exceeds 1

and is, hence, greater than the usual revenue beta because with endogenous output, operating

pro�ts are no longer linear in the state, as is usually assumed in literature (e.g., Carlson,

Fisher and Giamarrino (2004), Gomes and Schmid (2010)).

13

Electronic copy available at: https://ssrn.com/abstract=3978125



3.4 Risk Neutral Returns and Higher Moments

Applying Ito�s Lemma to (8) yields the stochastic process for equity value as the di¤usion

dV = �(P )dt+ �(P )dWt; (11)

where6

�(P ) �
�
(1� �)P
�(r � �) � xHP

�(x+1)
�
�P + 0:5

�
(1� �)
�(r � �) + x(x+ 1)HP

�(x+2)
�
�2P 2; (12)

�(P ) �
�
(1� �)P
�(r � �) � xHP

�(x+1)
�
�P: (13)

Dividing through (11) by V then yields the equity return process dR = dV
V
.

To derive the equity return process under risk-neutral measure, we assume (in the stan-

dard fashion) existence of a risky asset fZt : 0 � t < 1g that has the same transitions as

the product price process, except possibly di¤erent drift rates, that is,

dZt = �Ztdt+ �ZtdWt: (14)

The traded riskless and risky assets allow a replicating portfolio such that the measure

~Wt = Wt +
��r
�
t is a standard Brownian motion. De�ning q � � � � > 0; under this

risk-neutral measure, the product price process follows

dPt = (r � q)Ptdt+ �Ptd ~Wt: (15)

6We recall that x > 0 and H < 0, and hence � > 0:
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Under the risk-neutral measure, equity value is

~V (Pt) =
(1� �)P 2
2�q

+
�C

r
� C
r
+HP�x: (16)

Using (11) and setting

~�(P ) �
�
(1� �)P
�(r � �) � xHP

�(x+1)
�
(r � q)P + 0:5

�
(1� �)
�(r � �) + x(x+ 1)HP

�(x+2)
�
�2P 2;

(17)

we can then write the risk-neutral return process as

d ~Rt =

�
1

~V (Pt)

�
[~�(Pt)dt+ �(Pt)d ~Wt]: (18)

Of course, empirically we can measure risk-neutral returns and their moments over some

�xed intervals. Furthermore, we will derive the higher moments� that is, volatility, skew and

kurtosis� of risk-neutral returns from traded calls and put options of �rms. We, therefore,

compute these higher moments in the form that can be recovered from option prices. It

is notationally convenient to set the drift and instantaneous volatility of the risk-neutral

returns as gt �
~�(Pt)
~V (Pt)

and !t � �(Pt)
~V (Pt)

; and de�ne

Mt;t+� � Et[ ~Rt+�] = ~Rt exp

�Z t+�

t

gsds

�
; (19)

St;t+� � Et[ ~R2t+�] = ~R2t exp

�Z t+�

t

�
2gs + !

2
s

�
ds

�
; (20)

Ut;t+� � Et[ ~R3t+�] = ~R3t exp

�Z t+�

t

3
�
gs + !

2
s

�
ds

�
; (21)

Qt;t+� � Et[ ~R4t+�] = ~R4t exp

�Z t+�

t

�
6gs + 4!

2
s

�
ds

�
: (22)

We then compute the recoverable higher moments of risk-neutral returns scaled by ap-

propriate powers of return variance (e.g., Bakshi, Kapadia and Madan (2003)).
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Proposition 1 Conditional on Pt; the scaled conditional higher moments of risk-neutral

equity returns over (t; t+�); ~Rt;t+�, are:

V ARIANCEt;t+� = St;t+� �M2
t;t+�; (23)

SKEW (t; t+�) =
Ut;t+� � 3Mt;t+�St;t+� + 2M

3
t;t+�

(V ARIANCEt;t+�)3=2
; (24)

KURT (t; t+�) =
Qt;t+� � 4Mt;t+�Ut;t+� + 6M

2
t;t+�St;t+� � 3M4

t;t+�

(V ARIANCEt;t+�)2
: (25)

These derivations follow from a straightforward application of the moment generating

function for the Brownian motion. Because the focus of our study is risk management of

the commodity price risk, the following comparative statics of the higher moments of (risk-

neutral) equity returns with respect to the commodity risk parameter � will be useful in

further analysis.7

3.5 Hedging

Recall, from Jensen�s inequality, that risk management or hedging would improve equity

value ~V if it is strictly concave in P: From Equation (8), we get

~VPP (Pt) =
(1� �)
�q

+ x(x+ 1)HP
�(x+2)
t : (26)

Using (10) and the fact that x > 0, ~VPP (Pt) < 0 if (using the value of H from (10))

(1� �)
�q

< x(x+ 1)
C

r(1� ) [1� (1� )(1� �)]P
�(x+2)
t : (27)

It follows from (27) that

7In our empirical analysis we use (option-implied) variance as one of the dependent variables. We obtain
similar results if we use standard deviation instead of variance.
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Proposition 2 There exists a threshold price level

�P �
�
�qx(x+ 1)

(1� �)
C

r(1� ) [1� (1� )(1� �)]
� 1
x+2

;

such that hedging for solvent �rms is optimal if Pt < �P : Furthermore, �P is increasing with

the �rm�s total debt repayment C; production cost �, and bankruptcy costs (as measured by

):

The �rst part of Proposition implies that �rms are more likely to hedge when their

revenues are low. The �rm�s total coupon payment C is a proxy for the �rm�s leverage or

debt level, since for a given coupon rate, C is increasing with debt principal F: Hence, �rms

are also more likely to hedge if there leverage is higher, other things being equal. Moreover,

�rms are ceteris paribus more likely to hedge is their costs are higher or pro�ts lower. Finally,

�rms are also more likely to hedge if their economic costs of bankruptcy are higher, other

things being equal.

3.6 Model Implications: A Simulation Exercise

Because hedging is optimal for an open interval of product prices, we can develop empirical

hypotheses regarding the e¤ects of hedging on the higher moments of risk-neutral equity

returns speci�ed in Proposition 1. To see the e¤ects of hedging, suppose that hedging �rms

at t use swap contracts to �x the output price in the interval (t; t + �): Hence, !s = 0;

s 2 (t; t +�): It therefore follows from Proposition 1, that variance of returns falls to zero.

From continuity, it can be shown that if hedging reduces !s to some neighborhood of zero,

the variance and kurtosis of returns will fall, while negative skewness will rise.

To show the role of hedging on higher moments of equity returns, we next implement a

simulation exercise using our dynamic framework. Our objective is to study the variation
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in the return distribution as the �rm�s changes its hedging policy rules. We simulate the

industry output price for one-month horizon under the risk-neutral measure using equation

(15). We follow Leland (1998) and set r = 2%; q = 1%; � = 20%; � = 0:2; � = 0:2;  = 0:1

and C = 0:1.8 Using the simulated distribution of the industry output price, we generate

the distribution of equity value using equation (16).

We assume that a �rm can implement di¤erent risk management policies or hedging rules,

deciding when to hedge based on changes in the current product price. Speci�cally, the rep-

resentative �rm hedges output price anywhere from one standard deviation to four standard

deviations below the current price using derivatives. Assuming the hedge is performed using

a put option, the strike price for the put option ranges from one to four standard deviations

below the current price. In the event of an output price drop below the strike price, the

derivative contract covers the losses. Thus, the output price distribution is constrained be-

low by the put strike price. We generate the equity value distribution using the constrained

output price distribution and use it to compute equity return moments: standard deviation,

skewness, and kurtosis.9

We compare the equity return distribution with and without the hedging policies. In

Figure 1, we show the variation in the equity return moments as a function of the �rm

hedging. The black dashed line shows the equity return moments without hedging in place.

The green solid line shows the equity return moments for various levels of hedging policy

rules. The horizontal axis ranges from -4 standard deviations (less strict hedging rule) to -1

standard deviation (more strict hedging rule), representing the output price hedge from 4 to

1 standard deviation below the current price.

[Insert Figure 1 Here]

8See also Leland (1994) and Toft and Prucyck (1997).
9Note that in the simulations, a �rm hedges the price level. In our empirical analysis below, we measure

hedging activity as the proportion of output hedged. Since the dynamic model does not carry a production
quantity, the two representations are isomorphic in that both capture the overall hedging intensity of the
�rm.
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In Panel A, we observe that the �rm equity�s standard deviation (its volatility of returns)

is signi�cantly reduced as the �rm implements stricter hedging policies. A �rm that imple-

ments no hedging policies (the dashed black line) exhibits volatility in its returns of around

16.8%. A �rm with a risk management rule that triggers hedging activity if the product

price is one-standard deviation below its mean generates a reduction in its return volatility

of more than two percentage points (from 16.8% to 14.6%). In addition, as the �rm�s risk

management rule becomes more lax, the bene�ts of hedging in reducing the �rm�s return

volatility decrease.

In Panels B and C of Figure 1 we obtain similar conclusions about the impact of hedging

on the higher moment of returns. A �rm that implements hedging rules reduces its negative

skewness and reduces its kurtosis, and these e¤ects are ampli�ed with stricter hedging rules.

These results indicate that corporate hedging has material impact on the higher moments

of equity returns.

From Proposition 2, it also follows that the relationship between hedging and higher

return moments described in the previous paragraph is likely to be more signi�cant for �rms

with high leverage and rollover risk ratios as well as low pro�tability or operating margins

and, hence, have low market-to-book ratios.

3.7 Capital Investment, Hedging and Higher Moments

Our dynamic model also has implications for �rms�capital investment, which is a central

driver of their cash �ows. Suppose that the �rm has a real option to invest in a cost-saving

technology. Speci�cally, the �rm can exercise the option at any time by undertaking capital

investment of K, and realizing cost savings of ��; � 2 (0; 1); thereafter. Thus, if the exercise
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time is T; then got t > T the �rm�s instantaneous pro�ts are:

�t = PtYt �
�(1� �)Y 2t

2
: (28)

Investment is �nanced through an increase in (perpetual) debt that raises the instantaneous

coupon payment by k: Hence, following exercise of the real option, the �rm�s equity value is

given by (see (8)):

V̂ (P ) =
(1� �)P 2

2�(1� �)(r � �) +
�(C + k)

r
� (C + k)

r
+ ĤP�x; (29)

Ĥ = � (C + k)
r(1� ) [1� (1� )(1� �)]; (30)

and x still satis�es (9). Using (11)-(17), the coe¢ cients of the �rm�s risk neutral distribution

in (18) are then straightforwardly adapted to post-investment time periods.

Using (8) and (29), it is straightforward to show that V̂ (P ) � V (P ) is increasing in P:

Hence, there exists a critical price P̂ such that V̂ (P ) > V (P ) for all P � P̂ . The optimal

exercise time is thus the �rst passage time T = infft > 0 : Pt � P̂g: Relative to the

pre-investment phase, the �rm�s cash �ows are therefore increased in high price states and

reduced in low price states after exercising the real option. The empirical implication is

that capital investment raises variance and kurtosis of future stock return distribution, other

things being equal. The implications for skew are more ambiguous because it depends on

whether the �rm was facing negative or positive return slew prior to capital investment.

We now empirically test the hypotheses developed in this section. We �rst describe the

data and methodology in Section 4 and then present the results in Section 5.
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4 Data and Methodology

Our empirical analysis uses accounting and �nancial data from U.S. �rms in the energy

sector (SIC 1311). The reason to focus on these �rms is that it allows us to explicitly

compute hedging levels for individual entities. Several studies use textual analysis measures

to determine implied degrees of hedging by corporations (e.g. see Hoberg and Moon (2017)

and Campello, Lin, Ma and Zou (2011)). For our purposes, we require a direct, quanti�able

level of hedging to then determine its impact on the distribution of individual stock returns.

We begin with all U.S. listed �rms and use information on four di¤erent industry classi-

�cations from Compustat. The four industry classi�cations are: North American Industry

Classi�cation System (NAICS), Standard Industry Classi�cation (SIC), S&P industry sector

code (SPCINDCD), and the Global Industry Classi�cation System Code (GSECTOR). A

�rm is classi�ed as oil & gas and included in our sample if all four industry classi�cations

suggest that the �rm belongs to the upstream oil and gas sector.10 Using 10Q �lings from

SEC, we collect information on total production volume and hedging activities of each �rm

in our sample. We compute a �rm�s hedging intensity (HED) as the proportion of total

oil production that is hedged. We require at least 8 quarters of Compustat data of equity

options data and hedging activity data for a �rm to be included in our sample. This leads

to 63 �rms in our sample from January 1996 to January 2014. Our �nal sample is based on

the availability of hedging data and liquidity in the cross-section of equity options data.

Our main variables of interest are end-of-month higher moments computed using eq-

uity options data. We obtain data on equity options and the underlying stock prices from

OptionMetrics. We follow the procedure discussed in Goyal and Saretto (2009) in order to

discard observations due to liquidity or arbitrage issues. We compute a �rm�s option-implied

variance, skewness and kurtosis using the method proposed by Bakshi and Madan (2000)

10For a �rm to be classi�ed as belonging to oil and gas sector, its NAICS code must equal 211111, its SIC
code must equal 1311, its SPCINNDCD must equal 380, and its GSECTOR must equal 10.
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and Bakshi, Kapadia and Madan (2003). We provide additional information about the

computations in Appendix B. We focus on short-term options to avoid liquidity constraints

contaminating our empirical analysis (see for example Ilhan, Sautner and Vilkov (2021) and

Muravyev and Pearson (2020)). Therefore, we estimate model-free higher moments for all

traded maturities and interpolate these moments to generate a 30-day constant maturity

time-series for each of the higher moments.

The estimation of model-free variance, skewness, and kurtosis require information on

a large cross-section of option prices. Speci�cally, we require option prices for out-of-the-

money puts with moneyness (de�ned as the ratio of strike price to the underlying stock

price) ranging from 0 to 1 and out-of-the-money calls with moneyness ranging from 1 to

in�nity. In practice, we do not have options traded for such a wide range of moneyness.

To obtain option prices for non-traded moneyness, we interpolate implied volatilities across

moneyness. For moneyness levels above or below the available moneyness in the market,

we use the implied volatility of the highest or lowest available moneyness. We perform

intrapolation and extrapolation of implied volatilities for maturities for which we have at

least two out-of-the-money put and two out-of-the-money call options traded.

In addition to hedging intensity, we include a set a control variables that can potentially

in�uence �rms� future return distributions. The selection of these variables is based on

the dynamics of the model in Section 2 and follows the existing literature (e.g., see Denis

and Mayhew (2002) and Morellec and Zhdanov (2019)). We obtain �rm-level quarterly

accounting data from Compustat and monthly securities price data from CRSP.

We next de�ne the �rm-level quarterly control variables used in the empirical tests. Size

is the logarithm of the market capitalization (log(prccq � cshoq)). Leverage is the ratio of

total debt to total capitalization ((dlttq + dlcq) / (dlttq + dlcq + cshoq � prccq)). Market-

to-Book is the ratio of the market value to book value of equity (prccq � cshoq) / ceqq).

Rollover Risk is the ratio of debt in current liabilities to total debt (dlcq /(dlttq+dlcq)).
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Pro�tability is the ratio of revenues minus cost of goods sold to total assets ((revtq - cogsq)

/ atq). Investment is capital expenditures over total assets (capxq) / (atq). Return is the

six-month cumulative �rm return from CRSP. Implied Volatility is the at-the-money option

implied volatility for contracts with 30 days to maturity and obtained from OptionMetrics.

Table 1 de�nes all variables used in this paper.

[Insert Table 1 Here]

In Table 2, we report the summary statistics for all the variables using energy-related

�rms (SIC 1311). All variables are computed at the �rm-level and the sample period is from

January 1996 to January 2014.

[Insert Table 2 Here]

For our main variables of interest (variance, skewness and kurtosis), main explanatory

variable (HED) and control variables we report their mean, median, standard deviation and

percentiles 25 and 75. The top panel reports the summary statistics for the risk-neutral

distributional moments. The average of �rms�variance is 0.0192, which represents an an-

nualized volatility of 48% (
p
0:0192� 12). The skewness of �rms�returns is negative, with

a mean of -0.4, median of -0.39 and percentiles between of -0.52 and -0.27. Note that a

more negative skewness (e.g., a change from -0.4 to -0.5) indicates that the mass under the

risk-neutral density shifts from the right tail of the distribution to the left tail of the distribu-

tion. The observed negative skewness is in line with the literature and implies that investors

expect few large negative returns but frequent small positive returns. Black (1976) relates

the negative skewness observed in stock returns to �rm�s changes in leverage. We also �nd

that �rms exhibit excess kurtosis. Average (median) kurtosis equals to 3.89 (3.72), close to

unit a above a normally distributed random variable. Overall, the summary statistics for

risk-neutral moments are consistent with the asset pricing literature using option implied
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moments (see for example, Bali and Murray (2013), Bali, Hu and Murray (2019), Conrad,

Dittmar, and Ghysels (2013) and Denis and Mayhew (2002)).

The bottom panel reports the statistics for the percentage of hedged oil production

(HED) along with the control variables. The summary statistics for HED indicate that the

average (median) �rm hedges about 33% (29%) of its oil production. There is substantial

cross-sectional variation in hedging activity across �rm-quarters, as indicated by the 25th

and 75th percentile values of 4% and 54%, respectively; that is, more than one-fourth of

the �rm-quarter observations in our sample involve almost no hedging, whereas at the other

extreme, one-fourth of the �rm-quarter observations feature �rms that hedge more than

half their oil production. The summary statistics for the accounting measures using energy-

related �rms are broadly in line with existing studies (see for instance, Doshi, Kumar and

Yerramili (2018), Gilje (2016) and Gilje and Taillard (2017)), with di¤erences attributed to

the �nal set of �rms (restricted by availability of options prices) and the sample period.

5 Empirical Results

In this section, we empirically test the predictions of the model derived in Section 2. First,

we investigate the e¤ects of hedging on �rms�returns distributions (i.e., variance, skewness

and kurtosis) after controlling for a battery of �rms characteristics. Second, based on �rms�

di¤erent pro�les, we study when is hedging more e¤ective at taming these distributional

risks. Third, we interact �rms�hedging and investment policies to study the overall impact

on higher moments.
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5.1 Hedging and Higher Moments of Stock Returns

The main hypothesis of the model derived in Section 2 is that hedging has a signi�cant

impact on �rms�future return distributions, a result we summarize as the pull-to-normality

e¤ect. Speci�cally, our conjecture is that �rm-level hedging reduces variance, reduces excess

negative skewness and reduces excess kurtosis.11

In this section, we empirically test this hypothesis. We construct the explanatory vari-

ables (HED and accounting ratios) at a quarterly frequency, but given that our dependent

variables are estimated at a monthly frequency, we estimate the regressions using monthly

observations. Our results are largely unchanged using annual observations. We therefore

estimate monthly predictive regressions where the dependent variable is the �rm�s distribu-

tional moment, estimated using option prices

Yk;i;t+1 = �1 + �2HED i;t + �3Xi;t + �t + "i;t+1 (31)

The dependent variable Yk;i;t+1 is the risk-neutral moment k (with k=variance, skewness,

kurtosis) of �rm i in month t. The main explanatory variable is HED i;t; the �rm-level

percentage of hedged oil obtained from the �rms�10Q �lings and de�ned as the ratio of

the number of hedged oil barrels to the number of oil barrels produced. We control for

�rm-level variables Xi;t that can potentially impact on �rms returns distributions. Control

variables include monthly at-the-money option implied volatility and six-month cumulative

return, and quarterly leverage, rollover risk, size, market-to-book and pro�tability ratio. All

variables are described in Table 1. We include time �xed e¤ects �t to account for economy-

wide shocks to returns distributions. Finally, since all variables are de�ned at the �rm-level,

we cluster standard errors by �rm to control for potential serial correlation in the residuals

"i;t+1. Our interest is in the signi�cance of �2; and we conjecture it is negative for the case

11The excess is with respect to a (Laplace-Gauss) normally distributed random variable.
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of variance and kurtosis but positive for the case of skewness.

Table 3 reports the main empirical results of the paper. We report the panel regression

coe¢ cients along with their the t-statistics in parentheses, computed with �rm-clustered

standard errors. All explanatory variables are one-period lagged.

[Insert Table 3 Here]

In column 1 of Table 3, we report the panel regression using �rms�risk-neutral variance as

the dependent variable. Consistent with the model of Section 2, hedging reduces the future

variance of �rms�returns. The HED coe¢ cient is negative and statistically signi�cant (-0.002

and t=-2.63).

The economic signi�cance of the HED coe¢ cient is important: using the summary sta-

tistics of Table 2, a one-standard-deviation shock to HED reduces �rms�variance by 6 basis

points in the following month (-0.002�0.297). Note this result is robust to the inclusion

of lagged option implied volatility. In line with our priors, �rms variance is increases with

higher levels leverage, consistent with the positive link found in Christie (1982). Variance

also increases with rollover risk (He and Xiong (2012)), while it decreases with higher levels

of pro�tability.

Column 2 of Table 3 reports the regression results using risk-neutral skewness as the

dependent variable. Hedging loads with positive sign and signi�cantly reduces the negative

skewness of �rms�returns (0.065 and t=2.98). Stated di¤erently, higher levels of hedging

turns �rms�return distributions less negatively skewed.

A change in theHED coe¢ cient from the 25th to the 75th percentile generates a reduction

in excess negative skewness of 0.032 in the following month ((0.537-0.043)�0.065). This is

about 8.3% of average skewness. We also �nd that leverage and market-to-book signi�cantly

impact on future skewness and carry the expected sign. However, their e¤ect pales compared
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to HED, as a one-standard deviation shock in each predictor amounts to a change of 2.4%

and 4.8% average skewness. Our results on the second distributional moment of returns is

related to recent work by Morellec and Zhdanov (2019), who �nd that competition increases

excess negative skewness of returns.

In column 3 of Table 3, we repeat the analysis but this time use �rms�risk-neutral kurtosis

as the variable to predict. The HED coe¢ cient is economically and statistically signi�cant

(-0.19 and t=-2.37). The e¤ect on �rms�kurtosis of leverage, market-to-book and rollover

risk is also signi�cant.

To further analyze the importance of hedging for �rms future return distributions, we

now examine its impact at di¤erent time horizons. This analysis is motivated by managers�

pressure to mitigate an increase in the perceived risk of the company, as it manifests in

expected distributional moments.

We therefore estimate �rm-level risk-neutral variance, skewness and kurtosis using op-

tion contracts with di¤erent maturities, which in turns generates a term-structure of risks.

We then take the di¤erence between the long horizon and short horizon option contracts.

Speci�cally, we de�ne the slope of a distributional moment as the di¤erence between the

three-months to maturity contract and the one-month to maturity contract.12 We construct

�rm-level, monthly slopes for the risk-neutral variance, skewness and kurtosis.

Armed with these new set of variables, we then ask what is the impact of increasing levels

of hedging on the future term structure of variance, skewness and kurtosis. We therefore im-

plement panel regressions where the dependent variable is the �rm-level variance (skewness,

kurtosis) slope and the main explanatory variable is HED, the percentage of oil production

hedged. As with Table 3, we control for the at-the-money option implied volatility, six-month

cumulative return, leverage, rollover risk, size, market-to-book and pro�tability ratios. Table

4 reports the regression results, which include time-�xed e¤ects and �rm-clustered standard

12We obtain similar results using six-months (instead of three-months) to maturity option contracts.
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errors.

[Insert Table 4 Here]

The results can be summarized as follows. Increasing levels of hedging seem to have

relatively larger impact on shorter horizon distributional moments. This is re�ected in the

positive loadings for the slopes of variance and kurtosis, and the negative loading for the

slope of skewness. Statistically, this conclusion is signi�cant in the case of skewness, with a

loading of -0.051 and t-statistic of -2.14. The impact of hedging on variance, skewness and

kurtosis slopes is also consistent with anecdotal evidence of �rms in the oil and gas industry

using short term derivatives contracts to hedge, given that �rms avoid locking themselves

into low crude oil prices for too long given its volatility.

Firms�perceived risk, based on option prices distributional moments, seem to react faster

to increasing levels of hedging in the short run. And as reported by the results on skewness,

this is particularly signi�cant for extreme negative events, which translate in large declines

in the equity price of the company. This indicates that managers can observe the results of

stricter risk-management policies relatively sooner than later, with hedging being an e¤ective

tool for controlling misalignments in �rms�perceived future risks.

Taken together, the results from Tables 3 and 4 are consistent with the predictions of

the model in Section 2. Firm-level hedging generates a pull-to-normality e¤ect on the �rm�s

distribution of stock returns, as it signi�cantly reduces variance, excess negative skewness

and excess kurtosis in the following month.

5.2 Who Bene�ts from Hedging?

Having con�rmed the e¤ects of hedging on �rms�distributional moments, we now turn to a

related important question: Who bene�ts the most from hedging? This exercise allows to
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answer when is hedging more e¤ective at reducing �rms�variance, reducing excess negative

skewness and reducing excess kurtosis. Based on our theoretical model, our prior is that

hedging is a more e¤ective tool for �rms that face a relatively more challenging environment

for their �nancial management. Thus, we expect for these �rms to be smaller in size, carry

larger levels of leverage and rollover risk, and exhibit lower levels of market-to-book and

pro�tability.

To approach this task, we split the sample into �rms with above and below median levels

of di¤erent �rm characteristics. We therefore estimate predictive regressions by splitting

the sample into �rms with below median and above median levels of �rms�size, leverage,

market-to-book, rollover risk and pro�tability. The dependent variable is the monthly �rm-

level risk-neutral moment (variance, skewness and kurtosis). The main explanatory variable

is the �rm-level percentage of hedged oil (HED) and control variables are de�ned in Table

1. We report in Table 5 the regression results.

[Insert Table 5 Here]

Size. We �rst split the sample into �rms with below median size (small �rms) and above

median size (large �rms), with �rm size de�ned as the logarithm of the �rm�s market capi-

talization.

In Panel A, we report the predictive regression coe¢ cients for the e¤ects of hedging

on �rms�variance using small size �rms (column 1) and large size �rms (column 2). The

HED coe¢ cient is negative and statistically signi�cant for small �rms (-0.006 and t=-1.96)

whereas the e¤ect on large �rms is not statistically signi�cant.13 The economic impact on

small �rms is important: a percentage increase in HED reduces �rms�variance by 0.006,

which is about 40% of its median (0.006/0.0176). This result suggests that small size �rm

seem to be particularly bene�ted from implementing hedging policies. We repeat the analysis

13In all speci�cations, we report Newey and West (1987) corrected t-statistics using �ve lags.
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in columns 3 and 4, this time using return skewness as the dependent variable. Similar for

the case of variance, the e¤ect of hedging on �rms�skewness is economically and statistically

signi�cant for small size �rms (0.191 and t=3), turning �rms less negatively skewed. Columns

5 and 6 con�rm the important e¤ects of hedging on the return distribution of small �rms,

as HED signi�cantly lowers future kurtosis (-0.62 and t=-2.15).

The results from Panel A con�rm the important implications of hedging for smaller �rms.

Doshi, Kumar and Yerramili (2018) �nd that small size �rms lower capital expenditures and

debt issuance instead of increasing hedging to mitigate uncertainty. Our �ndings suggest

that hedging could be a more e¤ective tool at reducing �rms�return variance, excess negative

skewness and excess kurtosis.

Leverage. We next study the impact of hedging on �rms di¤erentiated by their level of

leverage, the �rm�s total debt over total capitalization.

In Panel B of Table 5, we report the monthly predictive regressions in which, based on

�rms�leverage, we split the sample into �rms with below median leverage (low) and above

median leverage (high). For the case of variance, hedging loads negatively but insigni�cantly

in both cases (columns 1 and 2). In the case for the �rm�s risk-neutral skewness, column

4 reports that hedging is particularly important at reducing excess negative skewness for

�rms with high leverage levels, with a positive coe¢ cient of 0.28 (t=4.48). Lastly, column 6

of Panel B reports similar results for the case of kurtosis. Hedging helps reduce kurtosis in

�rms with relative high leverage levels, with a negative coe¢ cient of -0.61 (t=-2.56).

Market-to-Book. We test for the e¤ectiveness of hedging by splitting �rms based on their

level of market to-book, the ratio of the market value to book value of equity. Note that

the inverse of this ratio proxies for �nancial distress (Chan and Chen (1991); Gri¢ n and

Lemon (2002)), and therefore we expect hedging e¤ects to be stronger among �rms with low

market-to-book ratios.
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In Panel C of Table 5, columns 1, 3 and 5 report the regression coe¢ cients for low market-

to-book (high �nancial distress) �rms and con�rm our priors. In all cases, HED carries the

expected sign and signi�cantly loads on �rms�distributional moments. For low market-to-

book �rms, hedging signi�cantly reduces �rms variance (-0.004 and t=-2.23), reduces �rms�

excess negative skewness (0.22 and t=3.43) and reduces �rms�excess kurtosis (-0.36 and

t=-2.02).

Rollover Risk. In Panel D of Table 5, we report the e¤ects of hedging �rms�returns dis-

tribution once we di¤erentiate between �rms with low and high rollover risk ratios. Rollover

risk is the �rm�s debt in current liabilities divided by total debt.

Comparing columns 1 and 2, variance return predictability of HED for �rms with high

rollover risk is -0.003, with a Newey-West t-statistic of -1.9, while it is not signi�cant for �rms

with low rollover risk. We obtain similar qualitative conclusions for the impact of hedging

on skewness, as �rms with higher level of rollover risk reduce excess negative skewness with

higher levels of hedging, but the statistics are no signi�cantly di¤erent than zero. Coe¢ cients

are not statistically signi�cant in the case of kurtosis return (columns 5 and 6). In line with

the previous panels, the results from Panel D suggest that �rms with higher rollover risk

bene�t the most from implementing hedging policies.

Pro�tability. We also study the impact of hedging on �rms variance, skewness and kurtosis

depending on the level of the �rm�s pro�tability ratio, de�ned as the ratio between the �rm�s

revenues minus cost of goods sold and total assets (Novy-Marx (2013)). We expect for a �rm

with relatively low levels of pro�tability to bene�t the most from hedging, as it would allow

for this �rm to be perceived as more likely to incur in �nancial distress in the near term. In

Panel E, column 1 reports that hedging lowers the variance of �rms with low pro�tability

ratios but t-statistic is not signi�cant. Column 3 reports that hedging signi�cantly reduces

excess negative skewness, while columns 5 and 6 do not report signi�cant loadings on �rms�

kurtosis.
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The results from Table 5 support the predictions of our model derived in Section 3 .

The e¤ects of hedging at reducing variance, excess negative skewness and excess kurtosis

are particularly stronger among �rms that are smaller in size and facing more challenging

outlooks: higher leverage and rollover risk and lower market-to-book and pro�tability ratios.

Our �ndings complement Bolton, Chen and Wang (2011), who demonstrate that �rms in

worse �nancial conditions increase hedging levels to avoid higher �nancing costs. From Table

5, we �nd that these are precisely the type of �rms that bene�t the most from implement-

ing stricter risk-management policies, as higher levels of hedging make their returns more

normally distributed.

In all, the implications of our results are important for understanding the relevance of

risk management within corporations. While the previously documented literature �nds

that hedging impacts �rms�access to and use of funds, we show that the e¤ects of hedging

directly translate into �rms�carrying future lower overall risk (the pull-to-normality e¤ect

of hedging). The �ndings from this section can be summarized as follows. First, we �nd

that hedging reduces �rms return�s variance, negative skewness and kurtosis. Second, we

document this e¤ect of hedging on returns�distributions to be stronger among �rms with

high leverage, high rollover-risk, low market-to-book, low pro�tability and small size.

5.3 Investment and its Impact on Higher Moments

Section 3.7 discusses the implications of incorporating capital expenditures in our dynamic

model. In this Section, we empirically examine the e¤ect of capital expenditures on future

changes in �rms�higher moments, based on the real options analysis in Section 3.7. We also

analyze the combined e¤ect of capital expenditures and �rm�s hedging policies on the �rm�s

returns distribution.

Following the empirical analysis of Section 4, we collect quarterly data on �rms in the
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oil and gas sector. We proxy for �rms� investments with the ratio of quarterly capital

expenditures to total assets (capxq/atq). Using options data, we estimate �rms�risk-neutral

moments (variance, skewness and kurtosis). We compute �rms�hedging intensities (HED),

de�ned as the percentage of hedged oil production. All variables used in the paper are

described in Table 1. The dependent variable is the �rm�s risk-neutral variance, skewness and

kurtosis, while the explanatory variable is the �rm�s investments. We implement quarterly

predictive cross-sectional regressions for each risk-neutral moment individually (i.e., variance,

skewness and kurtosis). We interact each risk-neutral moment with the �rm�s level of hedging

intensity (HED). The interaction is a dummy variable that takes the value of one if HED is

above the sample median in each quarter and it is zero otherwise. All speci�cations include

the dummy variable itself. We report the results from the predictive regressions in Table 6.

[Insert Table 6 Here]

The results in columns 1, 3 and 5 indicate that the impact of investments on future

variance, skewness and kurtosis is positive and statistically signi�cant (Newey-West corrected

t-statistics of 2.08, 1.93 and 1.99 respectively). These �ndings are novel to the literature,

and they support the hypotheses derived from the real options analysis in Section 3.7. To

see the implications of these results, consider the impact of investments on even moments

(variance and kurtosis) from a real options perspective. An increase in investments can

lead to positive or negative future cash-�ows, increasing the tails of the return distribution,

thus raising future variance and kurtosis. This is precisely what Table 6 reports in columns

1 and 5, respectively. As discussed earlier, the impact of investments on future skewness

depends on the �rm�s current �nancial situation. Empirically, column 3 reports that the

impact of changing investments on future skewness is positive (1.087), suggesting that it

mitigates the likelihood of future large and negative return events. Columns 2, 4 and 6,

interact investments with �rm�s hedging intensity levels. The coe¢ cient for investments is
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statistically for future variance (t=1.99), skewness (t=2.15) and kurtosis (t=2.01). While the

interaction terms are not statistically signi�cant, they show opposite sign to the investment

term, highlighting the o¤setting e¤ects of risk-management policies on investments policies.

In summary, our analysis indicates that the e¤ects of capital investment on higher mo-

ments are diluted by risk-management policies. We �nd that capital investment tends to

move the �rm�s stock return distribution away from normal, and this in turn raises the

incentives for hedging, other things being equal.

6 Conclusion

Higher moments of stock return distributions play an important role in equity markets. There

is long-standing evidence of excess negative skewness and excess positive kurtosis in equity

returns, complemented by accumulation of evidence against the single factor capital asset

pricing model (CAPM) based on the assumption of multivariate normality of returns. But

while there is an extensive literature on higher moments in security markets, the analysis of

the e¤ects of �rm-level production, investment and �nancial policies on the higher moments

of their stock return distributions is relatively unexplored. We contribute to the literature by

theoretically and empirically studying the e¤ects of changing risk-management and capital

investment policies of levered �rms on the higher moments of their future stock return

distributions.

We construct a dynamic model of levered �rms exposed to default risk through uncertain

product prices and, hence, cash �ows. Even though the product price follows Brownian

motion, the presence of a default boundary implies that the risk-neutral equity value dis-

tribution along the �rm�s optimal production path is generally asymmetric; that is, it is

characterized by excess negative skewness and excess positive kurtosis (relative to the nor-

mal distribution). We characterize the value-maximizing hedging policy and relate its e¤ects
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to the variance, excess negative skewness, and excess positive kurtosis. Hedging is predicted

to reduce not only variance but also excess skewness and kurtosis of the �rm�s future stock

return distributions, a set of results we coin as the pull-to-normality e¤ect. Thus, hedging

tends to reduce the asymmetric characteristics of the �rm�s risk-neutral return distribution

and, hence, lower the deviation of stock return distribution from a normally distributed

random variable. Our model also generates the empirical hypotheses that the reduction in

variance, excess negative skewness, and excess positive kurtosis will be stronger, other things

being equal, among �rms with high leverage, small size, and high rollover-risk, as well as low

pro�tability and low market-to-book. Finally, our model also shows that capital investment,

�nanced through additional debt, increases variance and kurtosis, while the e¤ect on excess

skew is theoretically ambiguous. Thus, the e¤ect of capital investment on the �rm�s higher

moments is opposite to that of hedging. It is in this sense that capital investment generates

a pull-from-normality e¤ect on �rms�future returns distribution.

Using the cross-section of U.S. equity options prices and hand-collected hedging data for

a sample of �rms in the oil and gas industry, our empirical tests �nd strong support for

the predictions of the model. Raising hedging intensity signi�cantly reduces future variance,

negative skewness and kurtosis of �rms�returns; these e¤ects are both statistically and eco-

nomically signi�cant. And the pull-to-normality e¤ect of hedging is stronger among �rms

with high leverage, high rollover-risk, low pro�tability, low market-to-book, and small size.

But consistent with our theoretical framework, we �nd that investment raises variance, excess

skewness and kurtosis, that is we con�rm the pull-from-normality e¤ect of investment; hedg-

ing ameliorates this e¤ect, however. Our analysis extends the literature on higher moments

of equity returns as well as the literature on corporate hedging and capital investment.
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Appendix

A Proofs

Proof of Proposition 1: The expressions (23)-(25) follow from using Equations (19)-(22) in the
higher moments for Ito processes (see e.g. Theorem 1 of Bakshi, Kapadia, and Madan (2003)).

Proof of Proposition 2: We compute �P such that

(1� �)
�q

= x(x+ 1)
C

r(1� ) [1� (1� )(1� �)]
�P�(x+2): (A.1)

It follows then from Equation (26) that ~VPP (Pt) < 0 for all Pt < �P : Next, applying the implicit
function theorem on (A.1), we can show that @

�P
@C > 0;

@ �P
@� > 0; and

@ �P
@ > 0:

B Risk Neutral Variance, Skewness and Kurtosis

We follow Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003) to estimate the
variance, skewness and kurtosis of the risk-neutral density function of individual securities. The
risk-neutral variance (V ARQt ) and skewness (SKE

Q
t ) and kurtosis (KUR

Q
t ) at time t for a � -

maturity contract are given by

V ARQt = e
r�Vt (�)� �t (�)2

SKEQt =
er�Wt (�)� 3�t (�)2 er�Vt (�) + 2�t (�)3h

er�Vt (�)� �t (�)2
i 3
2

KURQt =
er�Wt (�)� 4�t (�)2 er�t W (�) + 6er��t (�)

2 Vt (�)� 3�t (�)4h
er�Vt (�)� �t (�)2

i2
where �t (�) = er��1�er�Vt (�) =2�er�Wt (�) =6�er�Xt (�) =24 and r is the risk free rate. Bakshi,
Kapadia, and Madan (2003) show that one can express the � -maturity price of a security that pays
the quadratic, cubic, and quartic return on the base security as

Vt (�) =

Z 1

Ft

2
�
1� ln

�
K
Ft

��
K2

Ct (� ;K) dK +

Z Ft

0

2
�
1� ln

�
K
Ft

��
K2

Pt (� ;K) dK (B.3)

Wt (�) =

Z 1

Ft

6 ln
�
K
Ft

�
� 3 ln

�
K
Ft

�2
K2

Ct (� ;K) dK +

Z Ft

0

6 ln
�
K
Ft

�
� 3 ln

�
K
Ft

�2
K2

Pt (� ;K) dK (B.4)

36

Electronic copy available at: https://ssrn.com/abstract=3978125



Xt (�) =

Z 1

Ft

12 ln
�
K
Ft

�2
� 4 ln

�
K
Ft

�3
K2

Ct (� ;K) dK +

Z Ft

0

12 ln
�
K
Ft

�2
� 4 ln

�
K
Ft

�3
K2

Pt (� ;K) dK

(B.5)
where (B.3)-(B.5) are the time t prices of ��maturity quadratic, cubic, and quartic contracts,
respectively. Ct (� ;K) and Pt (� ;K) are the time t prices of European calls and puts written on
the underlying asset with strike price K and expiration � periods from time t:We use a trapezoidal
approach to numerically approximate equations (B.3)-(B.5) (see for example, Bali and Murray
(2013) and Conrad, Dittmar, and Ghysels (2013)).
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Figure 1: Hedging Rules and Distributional Moments
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Notes to Figure: We plot simulated distributional moments based on the �rm�s risk management

policies with respect to the industry output price. We simulate the industry output price for

one-month horizon under the risk-neutral measure using equation (15) with the following parame-

terization: r=2%, q=1%, �=20%, �=0.2, �=0.2, =0.1 and C=0.1. Hedging rules are based on

standard deviations shocks in the product price. Panel A reports the e¤ect of hedging on the �rm�s

standard deviation. Panel B reports the e¤ect of hedging on the �rm�s skewness. Panel C reports

the e¤ect of hedging on the �rm�s kurtosis. The dashed black line represents a �rm with no hedging

rules. The solid green line represents a �rm with hedging rules in place. The horizontal axis ranges

from -4 standard deviations (less strict hedging rule) to -1 standard deviation (more strict hedging

rule).
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Table 1: Description of Variables

Notes to Table: We report the description of variables used in the paper.

HED Number of barrels of oil hedged to the number of barrels of total oil

production. The ratio is hand-collected for each �scal quarter from

�rms�10-Q �lings. Source: SEC EDGAR.

Variance Option implied risk-neutral variance (Bakshi, Kapadia and Madan

(2003)). The Appendix provides derivation details. Source: Op-

tionMetrics.

Skewness Option implied risk-neutral skewness (Bakshi, Kapadia and Madan

(2003)). The Appendix provides derivation details. Source: Op-

tionMetrics.

Kurtosis Option implied risk-neutral kurtosis (Bakshi, Kapadia and Madan

(2003)). The Appendix provides derivation details. Source: Op-

tionMetrics.

Implied Volatility At-the-money option implied volatility. Source: OptionMetrics.

Return Six-month cumulative �rm return. Source: CRSP.

Investment Ratio of capital expenditures to total assets (capxq) / (atq). Source:

Compustat.

Leverage Ratio of total debt to total capitalization ((dlttq + dlcq) / (dlttq

+ dlcq + cshoq * prccq)). Source: Compustat.

Size Logarithm of the market capitalization (log(prccq * cshoq)).

Source: Compustat.

Market-to-Book Ratio of the market value to book value of equity ((prccq * cshoq)

/ ceqq). Source: Compustat.

Rollover Risk Ratio of debt in current liabilities to total debt (dlcq /(dlttq+dlcq)).

Source: Compustat.

Pro�tability Ratio of revenues minus cost of goods sold to total assets ((revtq -

cogsq) / atq). Source: Compustat.
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Table 2: Summary Statistics

Notes to Table: We report the summary statistics for energy related �rms (SIC 1311): mean,

median, standard deviation and percentiles 25th and 75th. The top panel reports the option-implied

risk-neutral moments: variance, skewness and kurtosis. The bottom panel reports the summary

statistics for the �rm-level percentage of hedged oil production (HED) and control variables: at-

the-money option implied volatility, six-month cumulative return, investment intensity, leverage,

size, rollover risk, market-to-book and pro�tability ratios. All variables are de�ned in Table 1.

The sample period is from January 1996 to January 2014.

Mean Median Std. Dev. Perc.25 Perc.75

Variance 0.0192 0.0176 0.0061 0.0147 0.0224

Skewness -0.4002 -0.3875 0.1732 -0.5192 -0.2763

Kurtosis 3.8906 3.7247 0.5768 3.4750 4.1897

HED 0.3287 0.2892 0.2971 0.0430 0.5369

Implied Volatility 0.4343 0.4226 0.0619 0.3878 0.4740

Return 0.1056 0.0930 0.2467 -0.0431 0.2389

Investment 0.0236 0.0209 0.0117 0.0145 0.0301

Leverage 0.3079 0.2822 0.1767 0.2205 0.3845

Rollover Risk 0.0518 0.0135 0.1318 0.0010 0.0745

Size 6.9928 7.1060 1.5534 6.2876 7.7150

Market-to-Book 2.4613 2.4629 3.2326 1.4658 3.3961

Pro�tability 0.0488 0.0524 0.0403 0.0324 0.0706
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Table 3: Firm Hedging and Risk-Neutral Moments

Notes to Table: We report the monthly predictive regressions using energy-related �rms (SIC 1311).

The dependent variable is the monthly �rm-level risk-neutral variance, skewness and kurtosis,

respectively in columns 1, 2 and 3. The main explanatory variable is the �rm-level percentage

of hedged oil production (HED). Control variables include the following: at-the-money option

implied volatility, six-month cumulative return, leverage, rollover risk, size, market-to-book and

pro�tability ratios. All variables are computed at the �rm-level and de�ned in Table 1. We report

in parentheses the t-statistics with �rm-clustered standard errors. All explanatory variables are

one-month lagged. All speci�cations include time �xed e¤ects. The sample period is from January

1996 to January 2014.

Dep. Variable Risk-Neutral Moments

Variance Skewness Kurtosis

(1) (2) (3)

Intercept -0.031 -0.070 -0.150

(-4.00) (-0.55) (-0.31)

HED -0.002 0.065 -0.191

(-2.63) (2.98) (-2.37)

Implied Volatility 0.102 0.128 0.684

(9.12) (1.05) (1.55)

Return 0.001 -0.121 0.273

(0.67) (-3.53) (2.26)

Size 0.001 -0.054 0.394

(1.39) (-5.98) (9.60)

Leverage 0.010 -0.150 1.376

(2.83) (-2.07) (5.36)

Market-to-Book 0.000 0.026 -0.044

(-0.10) (4.05) (-2.17)

Rollover Risk 0.010 -0.105 1.477

(3.16) (-1.32) (3.49)

Pro�tability -0.033 -0.160 0.101

(-4.50) (-1.18) (0.19)

R2Adj: 0.88 0.44 0.28
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Table 4: Firm Hedging and the Slope of Risk-Neutral Moments

Notes to Table: We report the monthly predictive regressions using energy-related �rms (SIC

1311). The dependent variable is the monthly �rm-level risk-neutral variance slope, skewness slope

and kurtosis slope, respectively in columns 1, 2 and 3. For each distributional moment, slopes

are de�ned as the di¤erence between the 90 days to maturity option contract and the 30 days to

maturity option contract. The main explanatory variable is the �rm-level percentage of hedged oil

production (HED). Control variables include the following: at-the-money option implied volatility,

six-month cumulative return, leverage, rollover risk, size, market-to-book and pro�tability ratios.

All variables are computed at the �rm-level and de�ned in Table 1. We report in parentheses the

t-statistics with �rm-clustered standard errors. All explanatory variables are one-month lagged.

All speci�cations include time �xed e¤ects. The sample period is from January 1996 to January

2014.

Dep. Variable Slope of Risk-Neutral Moments

Variance Skewness Kurtosis

(1) (2) (3)

Intercept -0.113 -0.210 0.444

(-1.47) (-1.97) (1.25)

HED 0.001 -0.051 0.116

(0.16) (-2.14) (1.25)

Implied Volatility 0.203 0.321 -0.460

(5.42) (4.25) (-1.86)

Return -0.005 0.109 -0.179

(-1.65) (4.28) (-2.01)

Size 0.007 -0.009 -0.008

(0.98) (-1.08) (-0.25)

Leverage 0.035 -0.112 -0.182

(2.12) (-1.35) (-0.55)

Market-to-Book -0.001 0.002 -0.039

(-1.10) (0.39) (-2.02)

Rollover Risk 0.008 -0.055 0.122

(0.94) (-0.65) (0.37)

Pro�tability -0.045 -0.160 0.594

(-2.05) (-1.15) (1.44)

R2Adj: 0.89 0.07 0.01

47

Electronic copy available at: https://ssrn.com/abstract=3978125



Table 5: Firm Hedging and Firm Type

Notes to Table: We report the monthly predictive regressions using energy-related �rms (SIC 1311).

The dependent variable is the monthly �rm-level risk-neutral variance, skewness and kurtosis. The

main explanatory variable is the �rm-level percentage of hedged oil production (HED). For each

risk-neutral moment, we split the sample into �rms with below median and above median level of

a �rm�s characteristic: size, leverage, market-to-book, rollover risk, pro�tability. Columns 1 and 2

report the cases for the risk-neutral variance. Columns 3 and 4 report the cases for the risk-neutral

skewness. Columns 5 and 6 report the cases for the risk-neutral kurtosis. Panel A reports the

sample split based on �rms�size, the logarithm of the market cap. Panel B reports the sample

split based on �rms�leverage, the ratio of total debt to total capitalization. Panel C reports the

sample split based on �rms�market-to-book, the market value to book value of equity. Panel D

reports the sample split based on �rms�rollover risk, the ratio of debt in current liabilities to total

debt. Panel E reports the sample split based on �rms�pro�tability, revenues minus cost of goods

sold over total assets. Control variables include at-the-money option implied volatility, six-month

cumulative return, rollover risk, size, leverage, pro�tability and market-to-book ratio. All variables

are computed at the �rm-level and de�ned in Table 1. We report the Newey-West corrected t-

statistics in parentheses. All explanatory variables are one-month lagged. The sample period is

from January 1996 to January 2014.

Dep. Variable Risk-Neutral Moments

Variance Skewness Kurtosis

(1) (2) (3) (4) (5) (6)

Panel A. Size

Small Large Small Large Small Large

Intercept -0.038 -0.027 -0.473 -0.445 3.978 4.728

(-4.52) (-5.17) (-4.54) (-8.86) (7.76) (26.21)

HED -0.006 -0.001 0.191 -0.048 -0.623 0.154

(-1.96) (-0.69) (3.00) (-1.66) (-2.15) (1.83)

Controls Y Y Y Y Y Y

R2Adj: 0.71 0.69 0.23 0.12 0.09 0.07
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Dep. Variable Risk-Neutral Moments

Variance Skewness Kurtosis

(1) (2) (3) (4) (5) (6)

Panel B. Leverage

Low High Low High Low High

Intercept -0.014 -0.064 0.455 0.022 0.375 1.848

(-1.51) (-2.75) (2.54) (0.14) (0.77) (3.58)

HED -0.003 -0.003 -0.022 0.279 0.152 -0.608

(-1.89) (-1.29) (-0.79) (4.48) (1.67) (-2.56)

Controls Y Y Y Y Y Y

R2Adj: 0.70 0.73 0.25 0.19 0.23 0.23

Panel C. Market-to-Book

Low High Low High Low High

Intercept -0.031 -0.034 0.568 0.621 0.346 0.297

(-1.56) (-2.19) (3.28) (3.24) (0.59) (0.49)

HED -0.004 0.000 0.216 -0.049 -0.355 0.086

(-2.23) (-0.37) (3.43) (-1.53) (-2.02) (0.78)

Controls Y Y Y Y Y Y

R2Adj: 0.72 0.68 0.11 0.15 0.24 0.16

Panel D. Rollover risk

Low High Low High Low High

Intercept -0.013 -0.022 -2.048 0.312 2.123 1.269

(-0.37) (-1.12) (-0.22) (1.53) (1.27) (1.79)

HED -0.023 -0.003 -2.594 0.061 0.848 0.009

(-0.76) (-1.90) (-0.61) (1.30) (1.38) (0.06)

Controls Y Y Y Y Y Y

R2Adj: 0.46 0.68 0.39 0.18 0.57 0.16

Panel E. Pro�tability

Low High Low High Low High

Intercept -0.037 -0.029 0.294 0.399 0.202 0.709

(-1.55) (-3.59) (1.69) (3.11) (0.33) (1.68)

HED -0.003 0.000 0.174 -0.098 -0.096 0.068

(-1.62) (0.29) (3.30) (-3.00) (-0.57) (0.56)

Controls Y Y Y Y Y Y

R2Adj: 0.69 0.76 0.18 0.20 0.20 0.26
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Table 6: Investments, Risk Neutral Moments and Hedging

Notes to Table: We report the quarterly predictive regressions using energy-related �rms (SIC

1311). The dependent variable is the quarterly risk-neutral variance, skewness and kurtosis. The

independent variable is the �rm�s ratio of capital expenditures to total assets (capxq/atq). We

interact investments with the �rm-level percentage of hedge oil (HED). The interaction term is

based on the indicator variable that takes the value of one if HED is above the sample median in

each quarter and zero otherwise. Columns 1 and 2 report the cases for the risk-neutral variance.

Columns 3 and 4 report the cases for the risk-neutral skewness. Columns 5 and 6 report the cases

for the risk-neutral kurtosis. All regressions also include the dummy variable itself. All variables

are computed at the �rm-level and de�ned in Table 1. We report the Newey-West corrected t-

statistics in parentheses. All explanatory variables are one-quarter lagged. The sample period is

from January 1996 to January 2014.

Dep. Variable Risk-Neutral Moments

Variance Skewness Kurtosis

(1) (2) (3) (4) (5) (6)

Intercept 0.044 0.042 -0.497 -0.589 3.742 3.384

(4.15) (2.80) (-15.95) (-11.28) (54.14) (23.15)

Investments 0.536 1.299 1.087 1.829 18.58 86.89

(2.08) (1.99) (1.93) (2.15) (1.99) (2.01)

Investments � HED -0.408 -2.223 -60.99

(-0.35) (-1.27) (-1.45)
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