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Why the damped trend works 
 
 

The damped trend method of exponential smoothing is a benchmark that has been difficult to 

beat in empirical studies of forecast accuracy.  One explanation for this success is the flexibility 

of the method, which contains a variety of special cases that are automatically selected during the 

fitting process.  That is, when the method is fitted, the optimal parameters usually define a 

special case rather than the method itself.  For example, in the M3-competition time series, the 

parameters defined the damped trend method only about 43% of the time using local initial 

values for the method components.  In the remaining series, a  special case was selected, ranging 

from a random walk to a deterministic trend.  The most common special case was a new method, 

simple exponential smoothing with a damped drift term. 
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Why the damped trend works 
 
 
Introduction 

 In forecasting with exponential smoothing, it is common to apply the damped trend 

method to every time series, although many attempts have been made to improve on this practice 

by selecting individual methods for each series.  Examples include selection based on 

information criteria (Hyndman et al, 2008), expert systems (Flores and Pearce, 2000), and time 

series characteristics (Gardner and McKenzie, 1988).  Although method selection procedures can 

result in simpler methods than the damped trend, they have yet to produce better forecast 

accuracy.  For a review of the evidence, see Gardner (2006).  See also Fildes (2001), who 

concluded that it is difficult to beat the damped trend when a single forecasting method is applied 

to a collection of time series.  If individual methods are selected for each series, Fildes argued 

that it may be possible to beat the damped trend, although this has not been demonstrated and it 

is not clear how one should proceed.  In a later review of forecasting in operational research, 

Fildes et al (2008) concluded that the damped trend can “reasonably claim to be a benchmark 

forecasting method for all others to beat.” 

 How do we explain the success of the damped trend method?  In McKenzie and Gardner 

(2009), we presented a theoretical rationale based on an underlying random coefficient state 

space (RCSS) model, which we view as an extension of Brown’s (1963) original thinking about 

the form of underlying models for exponential smoothing.   We aim to capture local time series 

behavior with a constant model whose parameters may change smoothly or suddenly.  The RCSS 

model adapts to both types of change, and the damping parameter in the model may be 

interpreted as a measure of the persistence of trends. 



This paper presents an alternative rationale for the damped trend aimed at the practical 

forecaster faced with the problem of method selection.  We show that fitting the damped trend 

method is actually a means of automatic selection from a variety of special cases, ranging from a 

random walk to a deterministic trend.  The next section derives the special cases, including a new 

method of exponential smoothing.  Next, we show how each special case method can be justified 

by an underlying RCSS model.  Finally, we demonstrate the frequency with which special cases 

occur in the time series from the M3 competition (Makridakis and Hibon, 2000).  

 

The damped trend method and its special cases 

Following the notation of Hyndman et al (2008), the damped trend method can be written 

in several different forms.  The original recurrence form (Gardner and McKenzie, 1985) is 

written: 

))(1( 11 −− +−+= tttt by φαα ll         (1) 

   
 

11 )1(( ) −− −− += tttt bb φββ ll                      (2) 

 
 

t
h by ttht )...(ˆ 2 φφφ ++++=+ l                  (3) 

 

where  is the level and   is the trend.  The smoothing parameters for level and trend are tl tb α  

and β , while φ  is the damping or autoregressive parameter. 

 Equations (1) and (2) can be rewritten in the simpler error-correction form: 

tttt eb αφ ++= −− 11ll                  (4) 
 

ttt ebb αβφ += −1                     (5) 
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where  is the one-step-ahead error.   It appears that (1) and (2) always produce the same level 

and trend components as (4) and (5), but this is not true when 

te

0=α .  The difficulty lies in (5), 

which contains the product αβ ;  when 0=α , the optimal value of β  cannot be determined, 

and the recurrence and error-correction forms of the method are not equivalent.   Some 

forecasters simply drop the α  parameter in (5) and smooth the trend component using β  only, 

but again we lose equivalence to the recurrence form.   In the results below, we use the 

recurrence form of the method to avoid these problems.  

When all parameters are selected from the [0, 1] interval, at least eleven different 

methods can be defined.  The damped trend itself is defined by optimal parameters in the ranges 

10 ≤≤ α , 10 ≤< β , and 10 << φ .  Another well-known method occurs with the same α  and 

β  ranges and 1=φ ;  there is no damping of the trend component and the method is Holt.  An 

interesting variation on the Holt method occurs when we allow 1=α , with 10 << β  and 1=φ , 

a method sometimes called the smoothed trend method, although for the sake of simplicity we 

counted it as the Holt method. 

Three versions of simple exponential smoothing (SES) can be obtained.  When 

0== βφ  and 10 << α , there is no trend and the method is standard SES.  When 10 << α , 

0=β , and 1=φ , the method becomes SES with drift, as discussed in Hyndman and Billah 

(2003): 

by ttt ++= −− 1)1( ll αα         (6) 

bhy ttht +=+ lˆ          (7) 

With the same α  and β  parameters and 10 << φ , we have a new method, SES with 

damped drift: 
 3



by ttt φαα +−+= −1)1( ll         (8) 

by h
ttht )...(ˆ 2 φφφ ++++=+ l       (9) 

 Three versions of the random walk are possible.   When 1=α  and 0== βφ , the 

method is the standard random walk.  When 1=α , 0=β , and 1=φ , the method is a random 

walk with drift.  With the same α and β  parameters and 10 << φ , we have another new 

method, a random walk with damped drift. 

  Finally, with 0=α  and 0=β , three deterministic methods  are possible depending on 

the value of φ .  If 1<<0 φ , the method is a deterministic modified exponential trend.   If 1=φ , 

the method is a deterministic linear trend because parameter optimization does not change the 

initial values of level and trend.   Finally, if  0=φ , the method reduces to a simple average of 

the data in the fit periods. 

 

Random coefficient models that underlie the special cases 

Although the state space models of Hyndman et al (2008) provide a theoretical rationale 

for exponential smoothing methods, we prefer the RCSS models of McKenzie and Gardner 

(2009) on the grounds that they are more realistic.  Hyndman et al (2008) show that damped 

trend exponential smoothing is optimal for a single source of error state space model with 

constant coefficients: 

                                                                                       (10) tttt by εφ ++= −− 11l

tttt hb εφ 111 ++= −−ll                 (11) 
 

ttt hbb εφ 21 += −                  (12) 
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In this model, α=1h and .2 αβ=h   In McKenzie and Gardner (2009), we demonstrate that 

the approach is also optimal for an RCSS model of the form 

                                                                                      (13) ttttt vbAy ++= −− 11l

ttttt vhbA *
111 ++= −−ll               (14) 

 

tttt vhbAb *
21 += −                 (15) 

 

where {  is a sequence of independent, identically distributed binary (0,1)  random variates 

with  

}tA

φ== )1( tAP .  The white noise innovations processes of these two models, (10-12) and 

(13-15), are different, while the RCSS coefficients  are related to, but usually different 

from those of the constant coefficient model .  The RCSS model has two advantages as an 

underlying model for the damped trend.  First, the gradient revision equation (15) allows both 

smooth and sudden changes of gradient.  When sudden changes occur, 

),( *
2

*
1 hh

),( 21 hh

0=tA , which yields 

consecutive runs of different linear trends.   The second advantage is that the parameter φ  can be 

interpreted directly as a measure of the persistence of these different linear trends.  

 Now consider the three damped models other than the standard damped trend: 

SES with damped drift:  ,10 << α  :0=β  ⇒  ,1 α=h  02 =h  

Random Walk with damped drift:  ,1=α  :0=β  ⇒  ,11 =h  02 =h  

Modified exponential trend:  ,0=α  :0=β   ⇒ ,01 =h  02 =h  

In all three models,  and  so the corresponding forms of (13-15) are easily 

derived.  All three models have gradient revision equations of the form , so there is 

an initial linear trend of constant gradient which changes to zero gradient at a random time.  Such 

1
*
1 hh = ,2

*
2 hh =

1−= tt bAb t
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behavior is reflected in the series plotted in Figure 1, and in many other series in the M3 data 

base.  

 Furthermore, for all three models we can specify an alternative gradient revision equation 

of the form  where ttttt dAbAb )1(1 −+= − { }td  is a sequence of independent, identically 

distributed random variates of zero mean.  Use of this form implies a gradient which remains the 

same as long as , and changes suddenly to another (non-zero) value when  Thus, 

we would get consecutive runs of linear trend , each with a distinct gradient, and each of random 

length.  Such a class of models forms a natural generalization of  the other special cases 

identified here, for example the single linear trend of constant gradient and the random walk with 

globally constant drift. 

1=tA .0=tA

 

The special cases demonstrated 

To demonstrate the special cases,  we used the 3,003 series from the M3 competition  

(Makridakis and Hibon, 2000).  The damped trend method was fitted after holding out the last 6, 

8, and  18 observations for ex ante testing in the annual, quarterly, and monthly series, 

respectively.  There is also a group of “other” series for which no sampling frequency was given 

and for which the last 6 observations were held out.  The series were deseasonalized using 

multiplicative seasonal indices computed from data in the fit periods.   To obtain initial values 

for level and trend, we used two common procedures.  First, local initial values were computed 

by fitting an OLS regression on time to the first five observations in the fit periods.  Because 

many of the special cases include a fixed drift or trend component, we also tested global initial 

values, computed by extending the regression to include all observations in the fit periods.  For 
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each set of initial values, the Excel Solver was applied to find the parameter set from the [0, 1] 

interval that minimized the sum of squared errors in the fit periods.   

Tables 1 and 2  summarize the methods identified using local and global initial values, 

respectively.  There are some surprising findings in both tables.  Either a drift or a smoothed 

trend component was identified in about 99% of the series for both local and global initial 

values.  Methods with a drift component were identified in about 38% of the  series using local 

initial values and 53% with global.  The drift or trend component was usually damped, which 

happened in 84% of the series using local initial values and in 70% with global. 

 

(Insert Tables 1 and 2 here) 

 

The damped trend method itself was identified in only 43% of the series with local initial 

values and 28% with global.   Notice that the frequency of identification of the damped trend 

increased with sampling frequency in both tables.   The most common special case of the 

damped trend was SES with damped drift, which occurred in almost a quarter of the series for 

both types of initial values.   This method describes a fixed early trend that gradually dies out, 

behavior that may seem strange, but is actually quite common in the M3 series;  an example for 

one of the annual series is given in Figure 1. 

 

(Insert Figure 1 here) 

 

In Gardner and McKenzie (1985), we hypothesized that the damped trend would often 

reduce to SES, but this method was identified in less than 1% of the series with both types of 
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initial values.  We hypothesized that the damped trend would often reduce to the Holt method, 

but this happened in only 10% of the series with local initial values and 2% with global.  We also 

thought that the standard random walk method would be identified with some frequency, but this 

happened not at all with local initial values and in only 0.1% of the monthly series using global 

initial values.  However, we did find that the random walk with damped drift was a fairly 

common special case using both types of initial values. 

Our forecast accuracy results are not presented in detail here because they are not 

significantly different from the results reported for the Makridakis and Hibon implementation of 

the damped trend, which used the recurrence form in (1) - (3), with backcasting to obtain initial 

values.  Over all series and forecast horizons, Makridakis and Hibon reported a mean symmetric 

absolute percentage error of 13.6%, compared to 13.5% for our implementation with local initial 

values, and 13.8% with global initial values. 

 

Conclusions 

In an evaluation of progress in forecasting over the last 25 years, Armstrong and Fildes 

(2006) concluded that the diffusion of useful methods such as the damped trend has been slow.   

Many textbooks continue to ignore the damped trend despite it having been shown to improve 

accuracy in multiple hypotheses studies since 1985.  Software companies have been slow to 

adopt methods that should improve accuracy, and few software programs include the damped 

trend as an extrapolative option.  We hope that the findings in this paper will encourage adoption 

of the damped trend.  In particular, we note that damping was necessary in 84% of the M3 series 

using local initial values and in 70% when global values were used.  The interpretation of this 

damping in terms of the RCSS models serves to emphasize the continuing importance of 
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Brown’s (1963) advice that our forecasts must attempt to capture local behavior and allow both 

smooth and sudden changes to occur. 

One explanation for the empirical success of the damped trend is the flexibility of the 

method, which adapts to the time series by automatically selecting from a variety of special cases 

during the fitting procedure. Each special case method can be justified by an underlying RCSS 

model.  If  forecasters wish to exclude any of the special cases, this is easily accomplished by 

constraining the parameters of the method. 

Perhaps the special cases of the damped trend are obvious, but what is surprising is the 

frequency with which they are selected.  Most of the time, fitting the damped trend produces a 

special case rather than the damped trend itself.   An unusual special case is a new variant of 

exponential smoothing, SES with a damped drift term.  This may seem an unlikely method, but 

in our opinion it is no more unlikely than any of the other time series methods that contain a 

fixed drift.  Given that SES with damped drift was identified so often in the M3 series, this 

method should receive some consideration in both empirical research and practice. 
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Table 1. 

Percent of series
Case Level Trend Damping Method Ann. Qtr. Mon. Other All

1 0 ≤  α ≤ 1 0 < β ≤ 1 0 < φ < 1 Damped trend 25.9 47.1 47.5 51.1 43.0
2 0 ≤  α ≤ 1 0 < β ≤ 1 1 Holt 17.4 14.2 3.6 17.2 10.0
3 0 < α < 1 0 0 < φ < 1 SES with damped drift 17.7 16.7 33.6 14.4 24.8
4 0 < α < 1 0 1 SES with drift 3.6 3.7 1.1 2.3 2.4
5 0 < α < 1 0 0 SES 0.2 0.4 1.5 0.0 0.8
6 1 0 0 < φ < 1 Random walk with damped drift 18.3 9.0 1.9 12.6 7.8
7 1 0 1 Random walk with drift 7.8 2.1 0.4 2.3 2.5
8 1 0 0 Random walk 0.0 0.0 0.0 0.0 0.0
9 0 0 0 < φ < 1 Modified exponential trend 9.1 6.0 10.1 0.0 8.3

10 0 0 1 Linear trend 0.2 0.1 0.1 0.0 0.1
11 0 0 0 Simple average 0.0 0.8 0.2 0.0 0.3

Total 100.0 100.0 100.0 100.0 100.0

Parameter values
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Table 2. 
 

Percent of series
Case Level Trend Damping Method Ann. Qtr. Mon. Other All

1 0 ≤  α ≤ 1 0 < β ≤ 1 0 < φ < 1 Damped trend 11.8 32.0 32.6 29.3 27.8
2 0 ≤  α ≤ 1 0 < β ≤ 1 1 Holt 2.9 3.2 0.8 0.0 1.8
3 0 < α < 1 0 0 < φ < 1 SES with damped drift 15.8 18.3 30.5 17.8 23.5
4 0 < α < 1 0 1 SES with drift 7.1 17.3 10.4 13.2 11.6
5 0 < α < 1 0 0 SES 0.0 0.4 1.0 0.0 0.6
6 1 0 0 < φ < 1 Random walk with damped drift 21.4 10.1 2.8 19.0 9.6
7 1 0 1 Random walk with drift 24.3 6.3 0.9 20.1 8.4
8 1 0 0 Random walk 0.0 0.0 0.1 0.0 0.0
9 0 0 0 < φ < 1 Modified exponential trend 8.1 5.7 11.7 0.0 8.7

10 0 0 1 Linear trend 8.5 6.7 9.2 0.6 7.9
11 0 0 0 Simple average 0.0 0.0 0.0 0.0 0.0

Total 100.0 100.0 100.0 100.0 100.0

Parameter values
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 Captions for Figures and Tables 

 

Figure 1.  Fit periods for M3 annual series YB067, an apt series for a method with a damped drift 

term. 

 

 Table 1.    Methods identified in the M3 series using local initial values. 

 

Table 2.   Methods identified in the M3 series using global initial values. 

 


