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Although intermittent demand items dominate service and repair parts inventories in many industries, research
in forecasting such items has been limited. A critical research question is whether one should make point
forecasts of the mean and variance of intermittent demand with a simple parametric method such as simple ex-
ponential smoothing or else employ some form of bootstrapping to simulate an entire distribution of demand
during lead time. The aim of this work is to answer that question by evaluating the effects of forecasting on
stock control performance inmore than 7,000 demand series. Tradeoffs between inventory investment and cus-
tomer service show that simple parametric methods performwell, and it is questionable whether bootstrapping
is worth the added complexity.
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1. Introduction

1.1. The intermittent demand forecasting problem

Traditionally, the relevant literature treats inventory management
and demand forecasting as independent problems. Most inventory
papers ignore forecasting altogether and simply assume that the
distribution of demand and all its parameters are known, while
most forecasting papers do not evaluate the stock control conse-
quences of employing different forecasting methods. The interac-
tions between forecasting and stock control are analyzed in this
paper for items with intermittent demand. Such demand series are
characterized by zero demand occurrences interspersed by positive
demands. The choice of forecasting method is shown to be an im-
portant determinant of the customer service that can be obtained
from a given level of inventory investment.

Since the early work of Brown (1959), the problem of forecasting
for fast moving inventory items has attracted an enormous body of
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academic research. However, forecasting for items with intermittent
demand has received far less attention, even though such items typical-
ly account for substantial proportions of stock value and revenues.
Intermittent demand items dominate service and repair parts invento-
ries in many industries (including the process industries, aerospace,
automotive, IT and the military sector), and they may constitute up to
60% of total stock value (Johnston, Boylan, & Shale, 2003). A survey by
Deloitte (2011) benchmarked the service businesses of many of the
world’s largest manufacturing companies with combined revenues
reaching more than $1.5 trillion; service operations accounted for an
average of 26% of revenues. Thus small improvements in management
of intermittent demand items may be translated to substantial cost
savings; research in this area has direct relevance to a wide range of
companies and industries.

In addition, intermittent items are at the greatest risk of obsoles-
cence, and case studies have documented large proportions of dead
stock in many different industrial contexts (Hinton, 1999; Molenaers,
Baets, Pintelon, & Waeyenberg, 2010; Syntetos, Keyes & Babai, 2009).
Improvements in forecastingmay be translated to significant reductions
in wastage or scrap with further environmental implications.

Intermittent demand series are difficult to forecast because they
usually contain a (significant) proportion of zero values, with non-
zero values mixed in randomly. When demand occurs the quantity
may be highly variable (Cattani, Jacobs, & Schoenfelder, 2011). One crit-
ical research question iswhether one shouldmake point forecasts of the
mean and variance of intermittent demand with a simple parametric
method or else employ some form of bootstrapping to simulate an

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbusres.2015.03.034&domain=pdf
http://dx.doi.org/10.1016/j.jbusres.2015.03.034
mailto:SyntetosA@Cardiff.ac.uk
mailto:Mohamed-Zied.Babai@kedgebs.com
mailto:EGardner@uh.edu
http://dx.doi.org/10.1016/j.jbusres.2015.03.034
http://www.sciencedirect.com/science/journal/01482963


1747A.A. Syntetos et al. / Journal of Business Research 68 (2015) 1746–1752
entire distribution of demand during lead time. Is bootstrapping worth
the added complexity? The aim of this study is to answer that question
in an empirical investigation of forecasting more than 7,000 inventory
demand series.

1.2. Research background

Two parametric methods, simple exponential smoothing (SES) and
Croston’s (1972) method with corrections by Rao (1973), are widely
used to forecast intermittent demand. SES forecasts the mean level of
demand for both non-zero and zero demand periods, treating them in
the same way, while Croston makes separate forecasts of the mean
level of non-zero demand and the mean inter-arrival time (time be-
tween demand occurrences). Croston assumes that the distribution of
nonzero demand sizes is normal, the distribution of inter-arrival times
is geometric, and that demand sizes and inter-arrival times aremutually
independent. Shenstone and Hyndman (2005) challenge these as-
sumptions and show that Croston’s method is inconsistent with
the properties of intermittent demand data. The primary problem
is that Croston’s method assumes stationarity, while any possible
model underlying themethodmust be non-stationary. Furthermore,
the underlyingmodel must be defined on a continuous sample space
that can take on either negative or positive demand values, some-
thing that is inconsistent with the reality that demand is always
non-negative.

Despite its theoretical shortcomings, Croston’smethod has been suc-
cessful in empirical research (see the review in Gardner, 2006) and is
widely used in practice. Both Croston and SES are available in demand
planning modules of component based enterprise and manufacturing
solutions (e.g. Industrial and Financial Systems– IFS AB) and in integrat-
ed real-time sales and operations planning processes (e.g. SAP Ad-
vanced Planning and Optimisation – APO 4.0).

Many improvements to Croston’s original method appear in the lit-
erature including Johnston and Boylan (1996), Snyder (2002), Syntetos
and Boylan (2005), Shale, Boylan, and Johnston (2006), and Teunter,
Syntetos, and Babai (2011). The Syntetos and Boylan method (known
as the SBA method for Syntetos-Boylan approximation), is the only
Croston improvement that has substantial empirical support. Although
Croston claims that hismethod is unbiased, Syntetos and Boylan (2001)
show that the opposite is true and present an improved method that
corrects for bias (Syntetos & Boylan, 2005). The SBAmethod was tested
by Eaves and Kingsman (2004) using a sample of more than 11,000
monthly repair parts demand series from Royal Air Force (RAF)
inventories. The results varied somewhat depending on the degree of
aggregation of the data (weekly,monthly, quarterly) and the type of de-
mand pattern (ranging from smooth to highly intermittent). However,
in general the SBAmethodwasmore accurate than SES and the original
Crostonmethod. Another study by Gutierrez, Solis, andMukhopadhyay
(2008) reaches similar conclusions. In the empirical study below, all
three parametric alternatives are tested: SES, Croston’s originalmethod,
and the SBA method.

Given the parametric point forecasts, a demand distribution is nec-
essary to set inventory levels. Both the Poisson and Bernoulli processes
fit demand arrivals, that is, the probability of demand occurring
(Dunsmuir & Snyder, 1989; Eaves, 2002; Janssen, 1998; Willemain,
Smart, Shockor, & DeSautels, 1994). Regarding the size of demand
when it occurs, various suggestions have been made for distributions
that are either monotonically decreasing or unimodal positively
skewed.With Poisson or Bernoulli arrivals of demands and any distribu-
tion of demand sizes, the resulting distribution of total demand over a
fixed lead time is compound Poisson or compound Bernoulli, respec-
tively. Compound Poisson distributions are simpler and have empirical
evidence in their support (e.g., Boylan & Syntetos, 2008). In this empir-
ical study, demand is modeled with the Negative Binomial Distribution
(NBD),whichperformedwell in the empirical study by Snyder, Ord, and
Beaumont (2012). The NBD is a compound distribution in which the
number of demands in each period is Poisson distributed, with random
demand sizes governed by a logarithmic distribution.

As the data become more erratic, the true demand size distribution
may not conform to any standard theoretical distribution, and it may
be that non-parametric approaches (that do not rely upon any underly-
ing distributional assumption) may improve stock control. Numerous
bootstrappingmethods are available to randomly sample (with orwith-
out replacement) observations from demand history to build a histo-
gram of the lead-time demand distribution. Alternative bootstrapping
methods are found in Efron (1979), Snyder (2002), Willemain, Smart,
& Schwarz (2004, hereafter WSS), Porras and Dekker (2008), Teunter
and Duncan (2009), Zhou and Viswanathan (2011), and Snyder et al.
(2012). The most robust bootstrapping method appears to be that of
WSS, a method patented earlier by Willemain and Smart (2001). WSS
is tested in this paper; further discussion on the justification for exclud-
ing other bootstrapping alternatives follows in the next section.

In a large empirical study, WSS claim significant improvements in
forecasting accuracy over both SES and Croston’s estimator. However,
Gardner and Koehler (2005) criticize this study because the authors
do not use the correct lead time demand distribution for either SES or
Croston’s method, and they do not consider published improvements
to Croston’s method, such as the SBA method (see Willemain et al.,
2005, for a rejoinder). These mistakes are corrected in this empirical
study.

The Teunter and Duncan (2009) empirical study is similar to the
study in the present paper. Using a sample of demand series for military
spare parts, Teunter and Duncan compare the inventory and service
tradeoffs that result from forecasting with the same parametric
methods tested below. They also test a simple bootstrapping method
in which they sample lead time demand with replacement to estimate
mean and variance, which are then fed into a normal distribution to
set stock levels. Reliance on the normal distribution defeats the purpose
of bootstrapping, which does not require a distributional assumption.

1.3. Organization of the paper

Section 2 explains the parametric and bootstrapping methods.
Section 3 discusses the data tested, performance measurement, and
simulation procedures. Empirical results are given in Section 4; in con-
trast to most previous research in intermittent demand forecasting,
results are presented in terms of stock control performance rather
than forecast accuracy. Section 5 discusses implications of the results
followed by conclusions and opportunities for further research in
Section 6.

2. Forecasting intermittent demand

2.1. Parametric forecasting

Simple exponential smoothing (SES) is written:

St ¼ α Xt þ 1−αð ÞSt−1; ð1Þ

where α is the smoothing parameter, Xt is the observed value of
both zero and nonzero demand, and St is the smoothed average
as well as the forecast for next period. Although SES is widely
used to forecast intermittent demand, the method has important
limitations. Exponential smoothing weights recent data more
heavily, which produces forecasts that are biased high just after a
demand occurs and biased low just before a demand. Replenish-
ment quantities are likely to be determined by forecasts made
just after a demand, resulting in unnecessarily high stock levels
most of the time.

In an attempt to compensate for these problems, Croston’s (1972)
method forecasts two components of the time series separately, the
observed value of nonzero demand (Dt) and the inter-arrival time of



Table 1
Jewelry data – 52 weeks of demands for 4076 SKUs.

Demand interval Demand size Demand per
period

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Minimum 1.3 0.6 1.0 0.0 0.1 0.3
25th percentile 3.3 2.6 1.1 0.3 0.2 0.4
Median 4.4 3.7 1.2 0.4 0.3 0.5
75th percentile 5.6 5.0 1.4 0.7 0.4 0.7
Maximum 8.7 13.0 3.2 3.7 2.2 2.5
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transactions (Qt). The smoothed estimates are denoted by Zt and Pt, re-
spectively:

Zt ¼ α Dt þ 1−αð ÞZt−1 ð2Þ

Pt ¼ α Qt þ 1−αð ÞPt−1 ð3Þ

Croston assumes that the value of the smoothing parameter α is the
same in both equations. The estimate of demand per unit time, i.e. the
forecast for next period (Yt) is then:

Yt ¼ Zt=Pt ð4Þ

If there is no demand in a period, Zt and Pt are unchanged. Note that
when demand occurs every period the Croston method gives the same
forecasts as conventional SES. Thus the same method can be used for
both intermittent and non-intermittent demands.

Syntetos and Boylan (2001) show that Yt is biased to over-forecast.
Later, Syntetos and Boylan (2005) developed the SBA method (for
Syntetos-Boylan approximation), a modified version of Eq. (4) that is
approximately unbiased:

Yt ¼ 1−α=2ð Þ Zt=Ptð Þ ð5Þ

SES, Croston, and SBA are used below to forecast demand over the
lead time plus review period. As Syntetos and Boylan (2006) recom-
mend on the grounds of simplicity, the variance of the forecast errors
is estimated by the exponentially smoothed mean squared error
(MSE) over the lead time plus review period.

2.2. Non-parametric forecasting

Non-parametric or bootstrapping approaches to forecasting permit a
reconstruction of the empirical distribution of thedata, thusmaking dis-
tributional assumptions redundant. Bootstrapping works by taking
many random samples from a larger sample or from a population itself.
These samples may be different from each other and from the popula-
tion, and they are used to build up a histogram of the distribution of in-
ventory demands during lead time. Statistics such as the mean and
variance of lead-time demand are computed directly from the histo-
gram rather than inferred from a theoretical distribution.

TheWSSmethod is an advanced formof bootstrapping that captures
the autocorrelation between demand realizations and can produce
values that have not appeared in the history. The method estimates
transition probabilities in a two-state (zero vs. non-zero) Markov
model and uses that model to generate a sequence of zero and non-
zero demand occurrences. The non-zero occurrences are then assigned
a positive value (demand) by using an ad-hocmethod of “jittering” pro-
posed by the authors. The WSS method works according to the follow-
ing steps, which are found in both Willemain, Smart and Schwarz
(2004) and Willemain and Smart (2001): obtain historical demand
data in chosen time buckets (e.g. days, weeks, months); estimate tran-
sition probabilities for a two-state (zero vs. non-zero) Markov model;
conditional on last observed demand, use theMarkovmodel to generate
a sequence of zero/non-zero values over the forecast horizon (lead
time); replace every non-zero statemarkerwith a numerical value sam-
pled at random, with replacement, from the set of observed non-zero
demands; “jitter” the non-zero demand values X. When X is selected
at random, generate a realization of a standard normal random deviate

Z. The jittered value is 1þ INT X þ Z
ffiffiffiffi
X

p� �
, unless the result is less than

or equal to zero, in which case the jittered value is simply X; sum the
forecast values over the horizon to get one predicted value of lead
time demand (LTD).

Porras and Dekker (2008) propose an empirical method based on
the construction of a histogram of demands over the lead time (L). A
block of L consecutive demand observations is sampled repeatedly
with replacement. Such a procedure results in capturing the potential
auto-correlation of the demand data. The method is intuitively appeal-
ing and links naturally to stock control. However, the method cannot
extrapolate beyond previous demands (an important advantage of
WSS), making it difficult to attain realistically high service level targets.
Preliminary results not reported here show poor performance of the
Porras and Decker method, which is not considered further.

Viswanathan and Zhou (2008) claim an improvement to the WSS
bootstrapping procedure. The key difference is that instead of the two-
state Markov chain used by WSS, the historical inter-demand interval
distribution generates demand arrivals. However, this procedure is
heavily dependent upon lengthy demand histories that are not often
available. Zhou and Viswanathan (2011) compare their procedure to
parametricmethods on empirical data andfind the parametricmethods
are more accurate. They attribute the inferior performance of the
bootstrapping method to the short demand histories available, and
this approach is not considered further.

Finally, a parametric bootstrapping method proposed by Snyder
(2002) performs well on a few SKUs. However, we did not consider
the Snyder method due to its constraining theoretical assumptions
that defy the purpose of using bootstrapping procedures in the first
place.

3. Experimental design

3.1. Data

Forecasting performance is tested in the data described in Tables 1
and 2 (all data are available from the corresponding author). The jewel-
ry data are one year of weekly retail demands for an inexpensive line of
costume jewelry; the distribution of demand intervals is relatively com-
pact around a median of 4.4 weeks, and most demands are for one or
two units. Stock replenishment lead-times in the jewelry data are one
week. A Japanese manufacturer supplied the electronics data, which
consists of four years of monthly demand histories for spare parts
used in European support operations. The median demand interval is
relatively short at 2.6 months, but both demand intervals and sizes are
skewed right due to outliers in most time series. Lead-times in the elec-
tronics data are three months, which makes stock control far more dif-
ficult than in the jewelry data.

3.2. Performance measurement

Syntetos and Boylan (2006) and Syntetos, Nikolopoulos, and Boylan
(2010) demonstrate an insubstantial relationship exists between tradi-
tional measures of forecast accuracy such as the mean error, and stock
control performance asmeasured by inventory investment and custom-
er service. (For a general discussion of the organizational and inventory
implications of forecast errors, refer to Sanders & Graman, 2009). There-
fore, accuracy measures are bypassed in this study and forecasting is
evaluated by its direct effects on stock control. Gardner (1990, 2006)
recommends the use of tradeoff curves for this purpose, and that exam-
ple is followed here by computing tradeoffs between total inventory
investment and customer service.



Table 2
Electronics data – 48 months of demands for 3055 SKUs.

Demand interval Demand size Demand per
period

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Minimum 1.0 0.0 1.0 0.0 0.0 0.2
25th percentile 1.5 1.0 3.5 3.0 0.9 2.2
Median 2.6 2.3 5.9 6.2 2.1 4.5
75th percentile 4.7 4.4 12.1 13.9 6.0 10.5
Maximum 24.0 32.5 5366.2 9149.3 5366.2 3858.4
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Another suggestion for evaluating performance is the use of average
regret metrics (Sani & Kingsman, 1997) or implied stock-holdings that
are based on a calculation of the exact safety margin providing a maxi-
mum stock-out of zero (Eaves & Kingsman, 2004). An alternative for-
mulation involves fixing a target service measure and searching for
the investment necessary to hit the target. However, tradeoff curves
are the most realistic representation of the various methods’ compara-
tive performance and the most meaningful one from a practitioner
perspective.

Performance is simulated using a periodic order-up-to-level stock
control system, which is widely used in practice because it requires op-
timization of only one parameter, the order-up-to-level. The stock con-
trol system is designed tomeet a target fraction of replenishment cycles
in which total demand can be delivered from stock. This fraction is
called the cycle service level (CSL) (i.e. the probability of no stock-outs
during a replenishment cycle). During out-of-sample testing, the fore-
casting methods are used to compute weekly or monthly order-up-to-
levels that attempt to meet four CSL targets: 85%, 90%, 95%, and 99%.
Other servicemeasures (like themost commonly usedfill rate for exam-
ple) are not considered because bootstrapping does not allow direct
calculation of such measures.

For the parametric methods, the order-up-to-level in each period is
computed as the inverse of the cumulative distribution function of
demand over the lead time plus one review period. Replenishment
decisions take place at the end of every period (week or month), so
the review period is set equal to one. Demands are assumed to follow
the Negative Binomial Distribution (NBD). One difficulty with the NBD
is that it requires the variance to be greater than the mean; in the few
cases where the reverse was true, the variance is set equal to 1.1 times
the mean. Although this may look ad hoc, Sani (1995) shows that it
produces robust results.

3.3. Model-fitting and forecasting

To test the parametric forecasting methods, the demand history for
each SKU is split into two parts:within sample (for initialization and op-
timization purposes) and out-of-sample (for reporting performance).
The first 12 observations are used as an initialization sample to compute
an average for the beginning level of demand and, in the case of
Croston’s method, the beginning demand size and interval (expressed
also as averages of the corresponding variables over the initialization
block). To make the most use of the data available, the optimization
block contains the initialization block and extends it by the same num-
ber of periods. That is, the first 24 observations are used as an optimiza-
tion sample to select the smoothing parameter over the range 0.05 to
0.30 (in steps of 0.01) that minimizes the mean squared error (MSE)
per series. (For more details on the issue of optimization of parameters
in an intermittent demand context, please refer to Petropoulos,
Nikolopoulos, Spithourakis, & Assimakopoulos, 2013.) Variances are
estimated by the cumulative smoothed MSE using a fixed smoothing
parameter of 0.25; analysis not reported here indicates that this value
performs well. In Croston’s original method, the same smoothing
parameter updates both demand size and interval, but a separate
smoothing parameter for each one is used here, following Schultz’s
(1987) advice that separate parameters lead to better forecast accuracy.
For the WSS method, the within sample data are used to compute an
initial value for the order-up-to-level, which is then updated weekly
or monthly. Out-of-sample testing starts at period 25, so there are 28
out-of-sample observations in each jewelry series and 24 in each elec-
tronics series.

4. Empirical results

Three performance measures are reported for every combination of
forecastingmethod, dataset, and target CSL. First, total inventory invest-
ment is computed by pricing each SKU by unit cost and summing across
all SKUs. Second, the achieved CSL is computed as the actual percentage
of replenishment cycles inwhich demand is satisfied directly from stock
on hand. Finally, total backorders are computed by averaging backorder
values over time (weeks or months) for each SKU and then summing
across all SKUs. These measures are presented in the form of tradeoff
curves showing achieved CSL and total backorders as a function of
total investment. Each curve has four plotting symbols corresponding
to the four CSL targets.

4.1. Jewelry data

In the jewelry data, Fig. 1 shows tradeoff curves between investment
and CSL. All forecasting methods achieve CSLs slightly larger than the
99% target (with the exception of SES that just falls short of that), but
achieved levels are significantly greater than targets of 85%, 90%, and
95%. The descriptive statistics presented in Table 2 indicate that the jew-
elry data are neither particularly intermittent nor erratic, the latter re-
ferring to the variability of the demand sizes. Thus the NBD provides a
good fit to the empirical data and the parametric methods produce
very similar CSL tradeoff curves (with the SBA and Croston being indi-
cated as the ‘best’ approaches). The curve for the WSS method runs
above the parametric curves at targets of 95% and 99% and gives a slight-
ly better CSL for any level of investment greater than about $130,000.
For example, at an investment of $175,000, WSS adds about one per-
centage point to CSL compared to the other methods. Inventory invest-
ment vs. backorders are plotted in Fig. 2, and again the parametric
methods produce similar results, while the WSS method yields lower
backorder values for any investment greater than $130,000.

4.2. Electronics data

The electronics data are more erratic than the jewelry data, and
the results are considerably different. In Fig. 3, all methods achieve
CSLs greater than the 85% target, and all methods are close to the
90% target. However, at the 95% and 99% target, all methods signifi-
cantly underperform. For example, when SES is run with a target of
99%, the achieved CSL is only 95%. Outliers in the electronics data
make it extremely difficult to estimate the parameters of the demand
distribution and hit the CSL targets.

The Croston method consistently gives better CSL performance than
the SBAmethod, even though SBAwas designed to improve on Croston.
The problem is that the Croston method is biased high, which increases
both customer service and inventory investment. SES produces the best
CSL tradeoff curve through an investment of about €48 million, and
thereafter WSS is marginally better. At an investment of €40 million,
SES yields a CSL about one percentage point higher than WSS. But at
an investment of €65 million, WSS is about one-half percentage point
better than SES.

Differences in backorder performance are more significant. In Fig. 4,
all parametric methods produce smaller backorders than WSS at all
levels of investment. For example, at an investment of €35 million, SES
backorders are €1.4million compared to €2.2million forWSS. SES yields
the smallest backorders though an investment of about €50 million;
thereafter, the SBA method is best, followed closely by Croston.



Fig. 1. Jewelry data – investment vs. CSL.
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5. Implications and practical considerations

The jewelry data are relatively well behaved, withmoderately in-
termittent demands and short lead times; all parametric methods
give similar performance, and the WSS bootstrapping method is
marginally better than the parametric methods. The electronics
data are more difficult to forecast because they are more intermit-
tent, contain more outliers, and have longer lead times. Under
these conditions, we might expect WSS to perform better than the
parametric methods, but this did not happen. In the electronics
data, all parametric methods give significantly better backorder per-
formance than WSS.

Willemain et al. (2004) claimed that an important advantage related
to the use of bootstrapping is its attractiveness to practitioners: “Users
intuitively grasp the simple procedural explanation of how the boot-
strap works. Their comfort with the bootstrap approach may derive
from the concrete, algorithmic nature of computational inference, in
contrast to the more abstract character of traditional mathematical ap-
proaches to statistical inference.” This claimmay be true for the general
bootstrapping concept, but the details of the WSS method, such as the
use of transition probabilities and Markov models, are more complicat-
ed and difficult to understand than any of the parametric methods
tested.
Fig. 2. Jewelry data – inves
Another consideration in evaluating the WSS procedure is that de-
mand forecasts are often subject to judgmental adjustments (Syntetos,
Nikolopoulos, Boylan, Fildes & Goodwin, 2009). Such adjustments can
be beneficial, especially when they are based on information not avail-
able to the forecasting model. However, adjustments can be unneces-
sary or even harmful when they are applied without an understanding
of how the forecasts were produced. Simple methods should result in
fewer damaging judgmental interventions.

Although the parametric forecastingmethods are simple, their inter-
actions with stock control are not. Many authors have pointed out that
forecast errors may seriously distort projections of customer service
levels in an intermittent demand context. The fundamental problem is
that inventory theory has been developed upon the assumptions of
known moments of the hypothesized demand distribution. Although
no concrete theory has been developed in this area, there is an expecta-
tion that parametric estimators will sometimes under-achieve the spec-
ified targets. A common reaction from practitioners is to incorporate
some bias in the forecasts to avoid running out of stock. However,
such adjustments are not straightforward since the variance of the esti-
mates (sampling error of themean) is also affected, leading to confusion
about the effects on performance of the system.

The application of bootstrapping is relatively straightforward under
the CSL constraint, but such is not the case should other service
tment vs. backorders.



Fig. 3. Electronics data – investment vs. CSL.
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measures and cost criteria be considered. Parametric theory, despite its
shortcomings, does provide guidelines for optimization of the stock
control system under a wide range of objectives and/or constraints.
More research is needed to extend the capacity of bootstrapping to
match parametric theory. Consider for example the specification of a
fill-rate target as opposed to the CSL in a practical setting; bootstrapping
cannot be used directly to meet a fill-rate target.

6. Conclusions and future research

The WSS method of bootstrapping does have advantages, most no-
tably the ability to simulate demand values that have not appeared in
history. However, whether or not theWSSmethod is worth the consid-
erable added complexity is questionable. Parametric methods are sim-
pler, and the simplest method of all, SES, performs well. In the messy
electronics data, SES produces fewer backorders than WSS at all levels
of inventory investment.

Parametric methods require less computing power, which is impor-
tant when demands for very large numbers of SKUs have to be forecast.
Parametric methods also require less specialist knowledge and thus are
more transparent andmore resistant to potentially damaging judgmen-
tal interventions.

Teunter and Duncan (2009) observe that analytical projections of
customer service are often different from empirical results in an
Fig. 4. Electronics data – inv
intermittent demand context, a conclusion that applies to this study as
well. In the jewelry data, achieved CSLs for allmethodswere significant-
ly greater than targets of 85%, 90%, and 95%. In the electronics data,
achieved CSLs were significantly less than targets of 95% and 99%. The
difference between target and achieved CSLs are attributed to errors in
estimating the parameters of the demand distribution; if these parame-
ters were known, achieved CSLs should correspond to the targets.

Several opportunities are available for further research in intermit-
tent demand forecasting. The M and M3 forecasting competitions
(Makridakis, Andersen, Carbone, Fildes, Hibon, Lewandowski, et al.,
1982;Makridakis &Hibon, 2000, respectively) donot consider intermit-
tent demand data. Future competitions should include such data.

Aggregating demand in lower-frequency time buckets thereby re-
ducing the presence of zero observations is an alternative strategy to
deal with intermittent demand patterns. Temporal aggregation is a
practice employed inmany realworld settings but there has been no re-
search apart from a few studies (Babai, Ali, & Nikolopoulos, 2012;
Nikolopoulos, Syntetos, Boylan, Petropoulos, & Assimakopoulos, 2011;
Spithourakis, Petropoulos, Nikolopoulos, & Assimakopoulos, 2014).

Another research opportunity is to consider stationary models for in-
termittent demand forecasting rather than restricting attention tomodels
based on Croston’s method. For example, Poisson autoregressive models
have been suggested by Shenstone and Hyndman (2005). Models based
on a variety of count probability distributions, coupled with dynamic
estment vs. backorders.
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specifications to account for potential serial correlation, have recently
been analyzed by Snyder et al. (2012), although the authors made no at-
tempt to evaluate stock control results. Further development and testing
of such models in the context of stock control is the next step in our
research.

Finally, the bootstrapping algorithmhere is the exclusive property of
Smart Software, Inc. under US Patent 6205431 B1. Use in this paper was
permitted by a special licensing arrangement with Smart Software and
does not imply a public license to use the algorithm. According to
Smart Software: “This algorithm differs in several important ways
from the commercial implementation in the SmartForecasts™ software,
so conclusions about the performance of the algorithm implemented
here cannot be extrapolated to the performance of SmartForecasts™. Fur-
ther, Smart Software provides no oversight or guidance in implementing
the algorithm.”
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