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a b s t r a c t

In supply chains, forecasting is an important determinant of operational performance,
although there have been few studies that have selected forecasting methods on that
basis. This paper is a case study of forecasting method selection for a global manufacturer
of lubricants and fuel additives, products usually classified as specialty chemicals. We
model the supply chain using actual demand data and both optimization and simulation
techniques. The optimization, a mixed integer program, depends on demand forecasts to
develop production, inventory, and transportation plans thatwillminimize the total supply
chain cost. Tradeoff curves between total costs and customer service are used to compare
exponential smoothing methods. The damped trend method produces the best tradeoffs.
© 2011 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

A comprehensive review of research in forecasting for
supply chains is given by Fildes and Kingsman (2010), who
conclude that there are few findings of anymanagerial im-
portance. We agree. To ensure mathematical tractability,
most researchers have assumed greatly simplified operat-
ing systems and cost structures. Furthermore, most have
also failed to match the generation process for demand
with the choice of a forecasting method. Thus, forecast er-
rors have been compounded with misspecification errors,
making it difficult to understand the effects of forecasting
on efficiency, costs, inventory investment, or customer ser-
vice levels. In a careful MRP simulation, Fildes and Kings-
man set out to correct many of the fallacies in previous
research. They found that the benefits of improved fore-
casting are considerably greater than the effects of choos-
ing inventory decision rules, and that a misspecification of
the forecasting method leads to increases in costs.

Fildes and Kingsman call for more empirical modelling
of the supply chain that is grounded in observed practice,
and that is the theme of this paper. We model the rela-
tionship between forecasting and operational performance
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in the supply chain of a global manufacturer of lubricants
and fuel additives, products which are usually classified
as specialty chemicals. The model includes four manu-
facturing plants and daily time series of actual demand
collected over a four-year period. Both optimization and
simulation techniques are used to develop production
schedules, inventory targets, and transportation plans for
shipments between plants and to customers. Optimiza-
tion depends on demand forecasts, supplied by expo-
nential smoothing, and is done with a mixed integer
program in order to minimize total variable supply chain
costs.

Management asked for forecasting methods that were
simple and easily automated, making some form of
exponential smoothing the only reasonable choice. We
considered three methods: simple exponential smoothing
(SES), Holt’s additive trend (Holt, 2004), and the damped
additive trend (Gardner & McKenzie, 1985). SES and the
damped trend are obvious choices, given their long record
of success in empirical studies (Gardner, 2006); the data
suggested that the Holt method would not perform well,
but it was retained as a benchmark for the other methods.
To select the best method, tradeoff curves were computed
between total supply chain cost and several measures
of customer service. The damped trend gave the best
operational performance for any level of cost, followed by
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SES and Holt. It is interesting to contrast these results with
traditional method selection based on average forecast
accuracy measures; surprisingly, SES gave the best overall
average accuracy.

2. The supply chain model

The company produces lubricants and fuel additives
for automobiles, farm equipment, marine vessels, trains,
construction equipment, and power tool motors. There
are four manufacturing plants, located in North and South
America, Europe, and Asia. The scheduling of production
orders is best described as a combination of push and pull
processes. Ten component chemicals are produced in a
push mode based on forecasts from one to six months
ahead, while end products are produced in a pull mode by
blending the components according to individual product
recipes as customer orders are received. Forecasting is
done at the component level by aggregating component
requirements across the end products at each plant.
Considerations of technology, production and shipping
costs, and plant capacity are such that not all components
are produced in all plants. Thus, we have only 25 time
series of component demands rather than 40 (4 plants×10
components).

The supply chain model, depicted in Fig. 1, integrates
optimization and simulation and performs tactical plan-
ning at two levels. At the first level, the model produces a
monthly master production schedule and a stock transfer
plan over a six-month planning horizon. These plans are
generated by a mixed integer programming (MIP) model
that incorporates demand forecasts as described below,
pending orders, beginning inventory levels, machine and
storage capacities, alternative modes of transportation,
and shipments in transit. Themodel also incorporates com-
pany business rules for minimum run lengths and trans-
portation carrier selection. The objective is tominimize the
total variable supply chain cost, including costs of produc-
tion, transportation, inventory carrying, and import tar-
iffs. Tactical planning at the second level uses another MIP
model to break down the first level results into a detailed
weekly production schedule for eachmachine at each plant
over a 12-week planning horizon. For a complete math-
ematical formulation and solution methodology for the
MIP models, see Acar, Kadipasaoglu, and Day (2009); Acar,
Kadipasaoglu, and Schipperijn (2010). The models of Acar
et al. were developed using simple assumptions about de-
mand, whereas in this paper we study the behavior of the
modelswhen they are driven by a forecasting systemusing
real data.

The simulation model at the second level executes the
manufacturing plans on a daily basis, using the actual
daily demand history that occurred over a four-year
period. Themodel reads the first-level production schedule
and manufactures components accordingly, placing them
in inventory. Production is measured in tons, and total
demand for the last year of operations was about 250,000
tons. As customer orders arrive, the demand is met by
blending end products from the component inventory.
There are a total of 15 machines in the four plants, and
production lead-times range from two to seven days,

Fig. 1. The supply chain model.

depending on product and order size. If the available
inventory is not sufficient to meet demand, backorders
are generated. The second-level model also transfers
stock between plants as required, debiting inventory from
the sending plant on the departure date and crediting
inventory at the receiving plant on the arrival date. There
are numerous transshipments between plants, and the
average transportation lead-time is 47 days. All shipment
quantities are set as close as possible to those determined
in the first-level model (based on inventory availability).
If a shipment quantity is significantly less than that
suggested in the first-level model, no further shipments
can be scheduled until that model is run again.

There are three sources of uncertainty in the simulation.
First, actual demand is of course uncertain. Second,
transportation lead-times are generated from a set of
truncated normal distributions, one for each source-
destination pair. Means and standard deviations are based
on actual experience, and the distributions are truncated
such that the minimum lead-time is 85% of the mean. The
reason for the truncation is that most of the transportation
is by marine vessel, and it is impossible to achieve lead-
times any shorter.

Finally, there is some supply uncertainty due to ma-
chine breakdowns. We did not have empirical data avail-
able to enable us to develop distributions of machine
breakdowns, so we chose the following simulation proce-
dure in consultation with maintenance and supply chain
managers. The occurrence of breakdowns for eachmachine
was generated from a uniformdistribution; for each break-
down, the duration was generated from a normal distribu-
tion with a mean of five days and a standard deviation of
two days. It might seem that the probability of a break-
down should increase with time, but the company dis-
agreed because rigorous maintenance schedules were en-
forced. Managers reviewed the simulated breakdowns and
found them to be reasonable.

At the end of eachweek, the second-levelmodel records
inventory levels, pending orders, quantities shipped to
other plants, and costs incurred. The model also records
two measures of customer service: number of orders late
and weighted lateness. The latter measure, considered by
management to be the most important, is defined as the
number of days an item is backordered times the backorder
quantity.
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Fig. 2. Examples of monthly time series of component demands.

When the second-level model completes the last week
of the month, the first-level model is run again. Otherwise,
the second-level model calculates production targets for
the remainder of the month. The calculations are based on
week-ending inventory levels, pending orders, consump-
tion of the forecastwithin the currentweek, and scheduled
incoming shipment quantities. Also considered are end-of-
month inventory targets, any shipments scheduled to de-
part later in the month, and safety stocks. There are many
alternative procedures for computing safety stocks in the
literature. We chose the bootstrap procedure of Snyder,
Koehler, and Ord (2002), which was incorporated in the
simulation model and used to compute safety stocks after
the forecast updates describedbelow. The Snyder et al. pro-
cedure has several advantages. It is easy to implement, tai-
lored to lead-time demand, and does not require normally
distributed demand—a common assumption but one that
cannot be supported in most inventory systems.

The combined optimization and simulation model was
run 300 times: 20 replications of transportation lead-times
andmachine breakdowns times three forecastingmethods
times five different levels of safety stock corresponding to
Z-values of 0.5, 1.0, 1.5, 2.0, and 2.5. The precision test of
Law and Kelton (2000) showed that 20 replications were
sufficient to achieve what we considered to be reasonable
90% confidence limits around each measure of customer
service.

3. Forecasting

At the end of eachmonth, forecasts required in the first-
level model, from one to six months ahead, are updated
using one of the exponential smoothing methods. Before
forecasting, the 25 time series of demand were aggregated
from daily to monthly. At first we considered using
weekly or biweekly time series, but some series presented
intermittency problems. All zero observations disappeared
in themonthly series, althoughmanyobservations are near
zero. The monthly series are not homogeneous, and it is
difficult to generalize about their properties except to say
that they are nonseasonal and ill-behaved. Some series
display a relatively constant level with extreme variance,
as in Fig. 2, series 1. Some display drastic shifts in level,
like series 2, while others display changes in variance, like
series 3. There are trend patterns in more than half the
series, and all are erratic as in series 4.

The exponential smoothing methods were fitted to
the first three years of data, with the last year reserved
as a holdout sample for evaluating cost and service
performance measures in the simulation model. During
the last year, the methods were not refitted, and forecasts
were made from one to six steps ahead following monthly
updates of method components. The methods could have
been fitted to less data, with a longer holdout sample.
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Fig. 3. Tradeoffs between total supply chain costs and weighted lateness (tons backordered times days on backorder) during the last year of operations.

However, it was not clear that the performance measures
stabilized until near the end of the third year of operations,
sowewaited until the fourth year to evaluate themethods.
The smoothing parameters in all methods were selected
from the [0, 1] interval by using the Excel Solver to
minimize the mean squared error (MSE) over the first
three years. SES was initialized with the mean of the
observations in the fit periods,while the damped trend and
Holt methods were initialized with a linear regression on
time during the fit periods.

Different procedures for initialization and fitting were
tested, although theymade no significant difference in cost
or service performance during the last year of operations.
For example, to confirm parameter optimization, we
restarted the Solver several times from different initial
positions in each series, but found little difference
in performance. There was also little difference when
parameters were optimized simultaneously with initial
values of the method components (level and trend), when
the methods were fitted so as to minimize the mean
absolute error, and when the methods were initialized
using only the first six months or the first year of data.

4. Tradeoff analysis

Gardner (1990) recommended the use of tradeoff
curves for evaluating the operational performance of
forecasting methods, and we followed that example here.
For the last year of operations, Fig. 3 gives a tradeoff curve
for total supply chain costs vs. average weighted lateness,
and Fig. 4 gives another curve for costs vs. numbers of
backorders. The plotting symbols on each curve represent
the five levels of safety stock, and the corresponding costs
and service measures are averages of the replications
at each level. To put the numbers of backorders into
perspective, about 41,000 customer orderswere processed
during the last year of operations, and the percentages of

backorders were rather large, ranging from about 7%–19%
for the damped trend, for example. We were concerned
about these percentages, but management felt that the
numbers were reasonable in view of capacity constraints.
All four plants worked near capacity, both during the
last year of the simulation and in actual operations in
recent years. Fortunately, most of the backorders were of
relatively short duration.

In both Figs. 3 and 4, the damped trend gives the best
tradeoffs—that is, the lowest cost for any customer service
level—followedby SES andHolt. For example,management
believed that a cost target of about $115 million was
appropriate for this system; at that cost, the damped trend
produces a weighted lateness of about 118,000 ton-days,
compared to 134,000 for SES. At the same cost target, the
damped trend produces 6,100 backorders, compared to
7,600 for SES. For the Holt method, this cost target could
not be achieved at reasonable levels of weighted lateness
or backorders. In both Figs. 3 and 4, as costs and safety
stocks increase, the differences between methods become
smaller, as should be expected, although the differences
are always significant.

Production costs account for an average of 90% of the
total costs for each forecasting method, and we found that
these costs do not vary significantly between methods.
Management believed that this made sense because all
plants operate near capacity. The production process is
highly automated, and expediting or overtime related costs
are minimal when shortages develop.

The remaining costs are related to transporting and
carrying inventory, and are sensitive to the choice of
forecasting method. The consequences of forecast errors
are extremely complicated, and there is no simple
explanation as to why the damped trend produced the
best tradeoff curves. To illustrate the problem, consider
the effects of under-forecasting for a single product,
which of course creates backorders. But backorders usually
develop not just for that product, but for others as well.
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Fig. 4. Tradeoffs between total supply chain costs and numbers of backorders during the last year of operations.

What happens is that under-forecasting sets off a chain
reaction due to capacity constraints. To fill backorders
for a single product, capacity is borrowed from routine
production schedules for other products, and they in
turn can suffer stock shortages at a later date. When
backorders are filled, emergency shipments are necessary,
with transportation costs which are greater than the
costs of routine shipments. On the other hand, over-
forecasting for a single product means that capacity has
been put to the wrong use, and excess stocks are created.
What is surprising is that over-forecasting can also create
serious backorder problems. During the time that limited
capacity is devoted to building excess stocks, products
competing for that capacitymay incur backorders and later
emergency shipments as capacity becomes available.

Keep in mind that all 25 products contribute forecast
errors which interact with each other in allocating
production capacity, and the system is dynamic with
monthly updates. This means that forecast errors are
frequently reversed before the system has fully responded
to previous backorders or excess stocks. Given this
complexity, the best that can be done in explaining
the performance of the damped trend is to say that
the method is robust, a property demonstrated in many
previous studies of forecast accuracy. The damped trend
also performed especially well for a group of four critical
components that account for about 3/4 of total production.

5. Average forecast accuracy

It is interesting to compare the average forecast
accuracy of the exponential smoothingmethods with their
customer service and cost performance. For horizons 1–6,
Table 1 gives the mean absolute percentage error (MAPE),
mean percentage error (MPE), mean absolute scaled error
(MASE), and mean square scaled error (MSSE). The MAPE
and MPE are seriously misleading in these series because
they vary drastically in scale, with some observations near
zero. We therefore followed the advice of Hyndman and

Koehler (2006) and scaled the errors based on the in-
sample, one-step errors from the naïve method. The mean
absolute scaled error (MASE) is thus the mean of the
absolute values of the scaled errors, and the mean square
scaled error (MSSE) is defined analogously.

Judged by the MAPE, MASE, and MSSE measures, SES
is the most accurate method for all products and forecast
horizons, followed by the damped trend and Holt. For
the group of four critical products mentioned above,
the damped trend is the most accurate method, which
supports the service and cost tradeoffs above, although we
can see no way to predict service or cost from the average
accuracy.

Judged by theMPE values over all products, all methods
had a tendency to over-forecast, and the Holt method
was the least biased while SES was the worst. For the
critical products, the rankings are reversed, with Holt as
the worst and SES as the best. Sanders and Graman (2009)
argue that bias in forecasts is more important than the
average accuracy in determining costs, and that there is
some optimal amount of bias for a given cost structure.
Fildes and Kingsman (2010) are sharply critical of this line
of research, and it is not clear how Sanders and Graman’s
arguments are relevant to our study. The MPE results in
Table 1 are difficult to explain except to say that they are
distorted by enormous percentage outliers in series with
observations near zero. It is easy to change the averages
and ranking of the methods by removing a few selected
series. In summary, the average forecast accuracy results
were unhelpful, and of no interest to management.

6. Conclusions

There appears to be no previous research on forecasting
method selection based on operational performance in a
real supply chain. The supply chain model in this paper
is driven by actual daily demand data and integrates
exponential smoothing, optimization, and simulation. We
show that the choice of forecasting method makes a
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Table 1
Average forecast error measures for the chemicals demand series. For the MASE and MSSE measures, errors at all horizons were scaled by the one-step-
ahead naïve error.

Horizon
1 2 3 4 5 6 All

MAPE All products Holt 38.7 39.4 41.3 43.6 45.4 49.1 42.9
Damped 35.6 35.6 37.6 39.3 40.7 42.8 38.6
SES 30.5 30.6 31.8 33.6 35.0 35.3 32.8

MAPE Critical products Holt 16.0 16.8 17.3 17.0 17.8 18.9 17.3
Damped 13.0 13.6 13.8 13.9 13.4 14.0 13.6
SES 13.3 13.9 14.3 14.2 14.3 14.2 14.0

MPE All products Holt −3.1 −3.4 −3.4 −2.7 −3.4 −2.7 −3.1
Damped −4.3 −4.9 −5.4 −5.4 −6.6 −6.5 −5.5
SES −11.7 −13.2 −13.7 −14.5 −15.7 −15.6 −14.1

MPE Critical products Holt −8.4 −10.4 −10.5 −9.5 −11.2 −11.2 −10.2
Damped −2.6 −4.3 −4.0 −2.6 −3.5 −2.5 −3.2
SES 0.0 −1.1 0.0 2.1 2.3 4.3 1.3

MASE All products Holt 1.08 1.08 1.11 1.16 1.20 1.28 1.15
Damped 1.00 0.98 1.02 1.05 1.07 1.11 1.04
SES 0.93 0.90 0.93 0.97 0.99 1.01 0.95

MASE Critical products Holt 1.12 1.15 1.21 1.23 1.27 1.38 1.23
Damped 0.97 0.98 1.00 1.03 0.98 1.03 1.00
SES 1.02 1.04 1.07 1.06 1.10 1.08 1.06

MSSE All products Holt 1.13 1.14 1.18 1.23 1.32 1.46 1.24
Damped 1.05 1.01 1.06 1.13 1.17 1.26 1.11
SES 0.93 0.88 0.90 1.03 1.06 1.10 0.98

MSSE Critical products Holt 1.01 1.14 1.21 1.18 1.26 1.40 1.20
Damped 0.79 0.86 0.88 0.88 0.87 0.86 0.86
SES 0.92 0.96 0.90 0.98 1.08 0.95 0.96

significant difference to both the customer service and cost
tradeoffs available to management.

Hyndman and Koehler’s scaled error measures are the
best available options for measuring the average forecast
accuracy, but there is no relationship between operational
performance and average accuracy across all products in
this supply chain. Syntetos, Nikoloupoulos, and Boylan
(2010) argue that, in comparisons of average accuracy for
inventory demands, the errors should be weighted by the
cost or customer service impact. We agree that this should
be done in a pure distribution inventory, where there are
few interactions between inventory items, but it is difficult
to do so when modeling production, transportation, and
distribution in the supply chain context. The consequences
of forecast errors are complex because there are powerful
interactions between products competing for the same
production capacity. These interactions lead us to the
conclusion that forecasting must be evaluated at the
aggregate level in the form of cost-service tradeoff curves
for the entire supply chain.

Finally, one obvious question about this research is
whether the damped trend is superior to the company’s
existing forecasting method. Anecdotal evidence suggests
that the damped trend is an improvement, but the
company has no clearly defined forecasting method at
present, so there is no real basis for comparison. The
companyhas relied onpurely subjective forecasts formany
years, and there are no reliable records of forecast values,
when forecasts were made, or how they were made. Our
experience is that this is not unusual.
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