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Abstract

Over the past twenty years, damped trend exponential smoothing has performed well in numerous empirical studies, and it is
now well established as an accurate forecasting method. The original motivation for this method was intuitively appealing, but
said very little about why or when it provided an optimal approach. The aim of this paper is to provide a theoretical rationale for
the damped trend method based on Brown’s original thinking about the form of underlying models for exponential smoothing.
We develop a random coefficient state space model for which damped trend smoothing provides an optimal approach, and

within which the damping parameter can be interpreted directly as a measure of the persistence of the linear trend.
© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In a series of three papers (Gardner & McKenzie,
1985, 1988, 1989), we developed new versions of the
Holt—Winters (Holt, 2004; Winters, 1960) methods of
exponential smoothing that damp the trend as the fore-
cast horizon increases. Since those papers appeared,
damped trend exponential smoothing has performed
well in numerous empirical studies, as discussed by
Gardner (2006). In a review of evidence-based fore-
casting, Armstrong (2006) recommended the damped
trend as a well established forecasting method that
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should improve accuracy in practical applications. In
areview of forecasting in operational research, Fildes,
Nikolopous, Crone, and Syntetos (2008) concluded
that the damped trend can “reasonably claim to be a
benchmark forecasting method for all others to beat”.
Additional empirical evidence using the M3 compe-
tition data (Makridakis & Hibon, 2000) is given by,
Hyndman, Koehler, Ord, and Snyder (HKOS) (2008),
who found that the use of the damped trend method
alone compared favourably to model selection via in-
formation criteria.

Despite this record of empirical success, we still
have no compelling rationale for the damped trend.
Our original approach was pragmatic, based on the
findings of the M-competition (Makridakis et al.,
1982), which showed that the practice of projecting
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a straight line trend into the future indefinitely was
often too optimistic (or pessimistic). Thus, we added
an autoregressive-damping parameter (¢) to modify
the trend component in Holt’s linear trend method.
The result is a method which is stationary in first
differences, rather than in second differences as is the
case for Holt’s method. If there is a strong, consistent
trend in the data, we hypothesized that ¢ would be
fitted at a value near 1, and the forecasts would be very
nearly the same as Holt’s; if the data are extremely
noisy or if the trend is erratic, ¢ would be fitted at a
value less than 1 to create a damped forecast function.
This explanation may be intuitively appealing, but it
says nothing about when trend damping is the optimal
forecasting approach.

The aim of this paper is to provide a theoretical
rationale for the damped trend based on Brown’s
(1963) original thinking about the form of underlying
models for exponential smoothing. His preference was
for processes that are thought to be locally constant.
Brown argued that although the parameters of the
model may be constant within any local segment of
time, they may change from one segment to the next,
and the changes may be either sudden or smooth. We
present a new model for the damped trend method that
accommodates both types of change. Interestingly,
our interpretation of this model essentially reverses
our original thinking on the use of damped trend
forecasting in practice.

2. A modelling viewpoint

Our development is based on the class of single
source of error (SSOE) state space models (HKOS).
We begin with the model for a linear trend with
additive errors:

vi=4i—1+b1+¢& (D
b =41 +bi1+ (1 —a)g ()
by = b1+ (1 — B)e, 3)

where {y;} is the observed series, {¢;} is its level and
{b;} is the gradient of its linear trend. This model
has a single source of error {¢;}, hence the name.
We note that what we have to say here still applies
even if we consider models with multiple sources of
error. Compared to the presentation in HKOS, we have
written the coefficients of the innovations in the level
(2) and gradient (3) revision equations in a slightly

unusual way to simplify some of the results which
follow. The model (Egs. (1)-(3)) has a reduced form
as the ARIMA(0, 2, 2):

(1 =By, =& — (@ + B)er—1 +ag—a. 4)

The two models are equivalent, but the state space
expression is easier to interpret, especially when
the parameters take on extreme values. The usual
minimum mean square error (MMSE) forecasts of this
model can be generated using the recursive formulae
of Holt.

To damp the trend component in Egs. (1)—(3), we
incorporate an autoregressive-damping parameter ¢ to
create another SSOE model:

Vi =41+ b1 + & (5)
by =41+ b1 + (1 —a)g (6)
by = ¢bi—1 + (1 — B)e;. @)

This model (Egs. (5)—(7)) has a reduced form as the
ARIMA(1, 1, 2):

(1 —-¢B)(1 - B)y, = & — (a + ¢B)ei—1
+¢(X€[_2. (8)

Note that the gradient revision equation (7) is an
AR(1) rather than the random walk form used in Eq.
(3). Thus, revision equation (7) allows the gradient to
change, but in a stationary way, whereas in Eq. (3)
such changes are non-stationary and the longer-term
behaviour is quite different.

In Egs. (5)—(7), we can interpret ¢ as a direct
measure of the persistence of the linear trend. With
¢ close to 1, the linear trend is highly persistent, but
values of ¢ moving away from 1 toward zero indicates
weaker persistence. And, of course, ¢ = 0 would
indicate the complete absence of any linear trend.

Now we recall Brown’s idea of a locally constant
model and apply it to the gradient of the linear trend.
For the model in Egs. (1)—(3), this means that the usual
random walk form of the gradient revision equation
(3) holds for a while, but then the gradient changes to
anew value, which holds for a while, and then changes
again, and so on. Thus, we have runs of the linear
trend model given by Egs. (1)—(3), but each run ends
when the gradient revision equation (3) restarts with
a new gradient. Such behaviour may be modelled by
rewriting the gradient revision equation in the form

by = Aibi—1 + (1 — B)é;, 9
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where {A;} is a sequence of independent, identically
distributed binary random variates with P(A; = 1) =
¢and P(A; =0) = (1 — ¢).

At first sight, this is a strange model, but it is easy
to see what happens in particular cases. If we wish to
model a strongly persistent trend then ¢ will be close
to 1, and the sequence {A;} will consist of long runs
of 1s interrupted by occasional Os. This yields long
runs of a linear trend model with a similar gradient,
one changing smoothly by means of Eq. (3), but which
can change suddenly, with a small probability (1 — ¢),
to a completely different model. If ¢ is close to 0,
there are long runs of Os with occasional 1s, and so the
model displays only a very weak linear trend (if any),
with a range of different gradients. With values of ¢
between 0 and 1 we get a mixture, resulting in different
models operating over shorter time scales, i.e., low
persistence of trends. In passing, we note that the mean
length of runs of a similar trend is given by ¢ /(1 — ¢),
which may also be thought of as a way to measure the
persistence of trend. We also note that Eq. (9) is not the
only possible form we could use here. For example, if
we wish to generate a greater level of variation at the

gradient change-point, i.e. when A; = 0, we could
replace Eq. (9) by
by = Aib—1 + (1 — Apd; + (1 — Ple, (10)

where {d;} is another, independent, white noise source,
and we would obtain similar results. We will use
Eq. (9) here because it is the simplest form.

The new state space model corresponding to the
incorporation of the new gradient revision equation (9)
is a random coefficient state space model:

Vi =41+ Arbi—1 + & (11)
b=l + A1+ (1 —a)g (12)
by = Aibi_1 + (1 — BHey, (13)

whose reduced form is a random coefficient ARIMA(1,
1, 2):

(1—-AB)Y1—B)y, =& — (" + A f)er—1
+A[Ol*8t_2. (14)

We use (a*, B*) here rather than («, 8) in order to
emphasise that these coefficients will differ in our
discussion of the two models from Egs. (5)—(7) and
(11)—(13), whereas the same value of ¢ will apply to
both.

Although this random coefficient state space model
may appear complex, it is simply a stochastic mixture
of two well known forms. Thus, for example, Eq. (14)
may be rewritten as

(1 =By, =& — (@ + Ber—1 +a*en

with probability ¢, and (15)
(I=B)yr =& — o¥e_
with probability (1 — ¢). (16)

In this model, {y;} is generated by the ARIMA(O,
2, 2) given by Eq. (15) or (4), the usual linear trend
model, with probability ¢; but then, with probability
(1 — ¢), the gradient changes completely, with the
generation process switching to the ARIMA(O,1,1)
given by Eq. (16), the usual underlying model for
simple exponential smoothing. The resulting process
is a mixture of the two.

Now, in this model (11)—(14), the first differences
{(1—B)y;} are a stationary process, and thus, from the
Wold Decomposition, have an infinite moving average
representation, and hence an equivalent ARMA form.
In this case, the ARMA will be of order (1, 2), with
exactly the same autoregressive parameter ¢, since its
autocorrelation function may be shown to be of the
form p(k) = ¢*2p(2) for k > 2. It follows that {y;}
can be generated by a stochastic difference equation of
the form:

(I =¢B)(1 - By =a; —01a,-1 — ra,—2,  (17)

where {a;} is a white noise process which is different
from the white noise process {¢;} in Eq. (14). The
variance of {a;} and the parameters 6; and 6, in
Eq. (17) are complicated functions of the parameters
¢, a* and B*, and the variance of the innovation
process {&;} in Eq. (14). Except for ¢, the parameters
must be different, because those in Egs. (11)—(13)
have random components and those in Eqs. (5)—(7)
are constants. Thus, the MMSE forecasts of y; defined
by Eq. (17) are the MMSE forecasts of the random
coefficient ARIMA(1, 1, 2) given by Eq. (14), and
thus also of our random coefficient state space model
(Egs. (11)—(13)). Moreover, the MMSE forecasts of
(17) are clearly damped trend forecasts.

Hence, to summarize these relationships, the stan-
dard damped trend forecasts optimal for Egs. (5)—(7)
are also optimal for a random coefficient state space
model of the form of Egs. (11)—(13), with the same pa-
rameter value, ¢, in both, but with different values of



664 E. McKenzie, E.S. Gardner Jr. / International Journal of Forecasting 26 (2010) 661-665

« and B in Egs. (11)—(13). The values of these corre-
sponding parameters in Egs. (11)-(13), o* and §* say,
can be computed from the parameters of the damped
trend model in Egs. (5)—(7) by equating their autocor-
relation functions, but our intention here is simply to
note that the damped trend forecasts are also optimal
for such a broader and more general class of mod-
els. We also argue that such a random coefficient state
space model is itself often a good approximation to the
behaviour of practically occurring non-seasonal time
series, and that this is one of the main reasons for the
empirical success of the damped trend method.

3. Other models/methods

The same discussion and argument will apply in the
cases of other similar models that contain a linear trend
component. In particular, we note two important cases
here. The first is the additive seasonal model (of period
n) which, in random coefficient form, is given by

Vi =41+ Abi—1 + Si—n + & (18)
b=Li 1+ Abi—1+ S + (1 — o) (19)
by = Aibi—1 + (1 — B)e; (20)
St =S8i—ntver 2D

If the random coefficient A; is replaced by the
constant value 1 or 0, we obtain models for which
the Holt—Winters-type linear trend with additive sea-
sonality, or trend-free seasonality, forecasting meth-
ods, respectively, are optimal. If we replace A; by ¢,
the damped trend version (e.g. Gardner & McKenzie,
1989) is optimal.

The second model we wish to extend is the linear
trend version of the very important multiplicative error
models of HKOS. It is given by

yi = -1+ b))+ &) (22)
=1 +b-)1+A—-w)e) (23)
by =bi—1 + (1 = B)(li—1 + bi—1)e;. (24)

The importance of models of the form of Egs. (22)—
(24) lies in the fact that although the driving innovation
terms have variances that are now functions of the
level, exponential smoothing methods can be optimal
nevertheless. The random coefficient version of this is
given by

v = -1+ Abi—1)(1 + &) (25)

b= (-1 + Ath—1)(1 + (1 — @)&y) (26)
bt = Atbt—l + (1 - ﬂ)(ez—l + Atbt—l)gt» (27)

and, for completeness, we note that the reduced
random coefficient ARIMA may be written in the
mixture form we have used before: with probability ¢,

(1= By = o — (@ + Bor—1 + aw; 2,
where w; = (€,—1 + by—1)&;, (28)

and, with probability (1 — ¢),

(1-B)y, =w, —aw,_;, wherew; = £{;_1&.(29)

This form is essentially the same as Eqgs. (15) and (16),
except that the innovation process is now dependent on
level.

4. Conclusions

We have developed a model, given by Egs. (11)-
(13), or (14), or (15) and (16), for which damped trend
smoothing provides an optimal approach, and within
which the damping parameter can be interpreted
directly as a measure of the persistence of the linear
trend. Developing these models has led us to reverse
our earlier view that a damped trend is a good
approximation of a linear trend at short lead times,
and is better for longer lead times because the linearity
must eventually break down. Now, our argument is
that the underlying random coefficient linear trend
model is more realistic, i.e. is more often closer to the
true process that underlies our time series, and that the
linear trend model is simply a good approximation to
it for short lead times. Technically, we are arguing that
it makes more practical sense to model the uncertainty
of the gradient process of our putative linear trend as a
random coefficient autoregression (Eq. (13)) than as
a random walk (Eq. (3)), thus greatly widening the
legitimacy of damped trend forecasting.

We see this model as a natural extension of Brown’s
(1963) original work. Our aim is to capture the
locally constant nature of the linear trend by means
of its gradient, which may change either smoothly
or suddenly. The random walk form of the gradient
revision equation allows smooth change very well, but
is less successful with occasional, sudden changes.
Our random coefficient model accommodates both
kinds of change.
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Finally, we note that if we assume that the
random coefficient state space model (Eqgs. (11)-(13))
does indeed generate our observed time series, then
damped trend forecasting may be optimal, but the
corresponding prediction intervals will be much wider
than if we assume the standard damped trend model
of Egs. (5)—(7). This is because of the extra variation
introduced by the presence of the random binary
coefficient, and may go some way toward explaining
the often conservative performance of prediction
intervals in this area. This important topic will be
explored elsewhere.
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