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ABSTRACT

Management goals in distribution inventories are often expressed in terms of the max-
imum percentage of aggregate sales that should be back ordered. This paper compares several
strategies for allocating total inventory investment to each item stocked in order to meet
such goals. Computational results are given from a wholesale distribution inventory. The
results show that multi-item strategies (which consider the interactions between items) re-
quire substantially less investment to meet management goals than strategies that treat each
line item independently. All models in this research are approximations based on the assump-
tions commonly used in practice.

Subject Areas: Logistics and Distribution, Inventory Management, Production/Op-
erations Management, and Heuristics.

INTRODUCTION

A popular measure of customer service in distribution inventories is the per-
centage of aggregate sales that must be back ordered for later delivery to customers.
To meet back-order objectives set by management, single-item inventory models
are commonly used. These models ignore the interactions between items in allo-
cating total inventory investment. The IBM IMPACT system is a good example
of the single-item approach to inventory decisions. Order quantities in IMPACT
are computed with the simple EOQ. Safety stocks are allocated independently of
order quantities to give each item the same percentage of back-ordered sales.

This paper compares two multi-item investment allocation strategies to the
IMPACT approach. The first strategy is designed to minimize back-ordered sales
for any given safety-stock investment. Order quantities are computed independently
of safety stocks with the simple EOQ. The second multi-item strategy is based
on a Lagrangian model to minimize back-ordered sales subject to two aggregate
constraints: investment (cycle plus safety stock) and replenishment workload. Order
quantities and safety stocks are computed simultaneously.

The next section of the paper reviews the decision rules used in the IMPACT
strategy. The third section discusses the assumptions required by IMPACT. Using
the same assumptions, the fourth and fifth sections develop the decision rules for
the two multi-item strategies. The sixth section outlines a solution algorithm for
the Lagrangian model. The seventh section contrasts the Lagrangian model and
more conventional inventory models. The paper concludes with a comparison of
the investment allocation strategies, using a sample of 500 line items drawn from
a wholesale distribution inventory of service parts.
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THE SINGLE-ITEM (IMPACT) STRATEGY

The single-item decision rules in the IMPACT system [12] [13] were developed
by Brown [1]. They have been used since the mid-1960s in IMPACT and a variety
of other software packages for inventory control [2] [14].

Order quantities in IMPACT are computed with the simple EOQ. Since the
investment and service level comparisons below are in aggregate dollar terms, the
EOQ in dollars is repeated for reference:

0,=[(2C,D)/C,1"? (1)

where Q; is the EOQ in dollars for the ith item, D; is the annual demand (sales)
in dollars, C, is the marginal cost per order, and C,, is the holding or carrying
cost percentage.

Safety stocks in IMPACT are computed independently of order quantities to
give each item the same expected percentage of back-ordered sales. The following
approximation is used for this percentage:

B=[(Dy/Q) | (x—r)flx)dx)/D;. (7))

This expression can be interpreted as follows. The probability density func-
tion of the forecast errors during lead time is f(x). The reorder point in dollar terms,
r;, is composed of forecast (mean) demand during lead time plus safety stock:

ri=)_c+k,-0,-, (3)

where k; is called the safety factor and o; is the standard deviation of the forecast
errors. The integral in Equation (2) is thus the expected dollars back ordered dur-
ing one order cycle. Since D;/Q; is the expected number of annual orders, the nu-
merator is the annual expected dollars back ordered.

When the forecast errors are normally distributed, Equation (2) can be sim-
plified with the aid of the unit normal loss function tabled in Peterson and Silver
[15, pp. 779-786]. First, we let

u=(x—%)/a;. @)
Then the unit loss function during each lead time is

L= | 2u—k)fGudu. ®)

This function is equivalent to Brown’s partial expectation function tabled in [1,
pp. 95-103].

To get the expected dollars back ordered per order cycle, we multiply L by
;. Substituting Equation (5) into (2) and simplifying, we have B for the case of
normally distributed errors:
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B=[0;| g(u—k)fa)dul/ Q. (6)

To implement Equation (6), we select the safety factor &; so that B gives the same
protection from stockout for each item in the inventory.

In some applications of these decision rules, the interactions between order
quantities and safety stocks are taken into account by limiting the size of the order
quantity to be no smaller than the size of the standard deviation of forecast errors
over lead time. This constraint is recommended on an empirical basis by Brown
[2]113] and was used in making the calculations in the section on model comparisons
below. Brown demonstrates that the total investment (cycle plus safety stock) nec-
essary to maintain any given service level tends to increase when order quantities
are excessively small compared to standard deviations. Herron [9] also discusses
this problem.

Using these decision rules, the expected average inventory investment (/) in
IMPACT is approximated by

Ei(Qi/2+kioi)=I' (7)
ASSUMPTIONS

In order for Equations (6) and (7) to give good projections of the steady-state
behavior of the inventory, a number of assumptions are required. Lead times must
be constant. Since continuous review policies apply, we assume that a replenish-
ment order is placed when the inventory position is exactly at the reorder point.
In order for Equation (6) to hold exactly, it can be proven that demands must
arrive according to a Poisson process. In order for Equation (7) to hold exactly,
only one reorder can be outstanding at any one time. Finally, we assume that the
safety factors k; for any item will be relatively large. That is, management policy
will always result in the average level of back orders being small compared to aver-
age on-hand stock. This assumption allows us to neglect the expected value of
back orders in (7). For a more detailed discussion of these assumptions, see [8]
or [15, pp. 257-262].

These are strong assumptions, but they are frequently unavoidable in applied
inventory work. This is especially true in large inventory systems, where many
thousands of line items are stocked. The series of inventory texts by Brown [1]
[2] [3] gives numerous examples of applications in which these assumptions are
reasonable. Gardner and Dannenbring [6] describe a large inventory system man-
aged under these assumptions. The text by Peterson and Silver [15] develops a
variety of decision rules based on these assumptions.

A MULTI-ITEM DECISION RULE FOR SAFETY STOCKS
Several authors [2] [3] [7] [15] [16] have proposed a simple alternative to the

IMPACT strategy of giving each item the same percentage of back-ordered sales.
It can be shown that aggregate back-ordered sales are minimized when each item




1984] Gardner 25

has safety stock yielding the same number of shortage occurrences (NSO), which
is defined here as the number of annual order cycles times the probability of a
shortage on one order cycle:

NSO=(D/Q) | & fwydu. ®

Safety factors in this approach are selected to equalize NSO for each item
stocked. NSO is treated as a management policy variable which can be changed
to obtain different totals for aggregate back-ordered sales.

The mathematical basis for the equal-shortage-occurrences rule is straight-
forward. Given that order quantities have been computed independently of safety

stocks with the EOQ, the total costs (TC) associated with safety stocks for one
item are:

TC; = Cyko;+ Cy(Dy/ Qo | p(u— kftu)du )

where C; is the annual shortage or penalty cost per dollar back ordered. Differen-
tiating with respect to k; and equating the first derivative to zero yields the follow-
ing expression:

(D/Q)|E fluydu=Cy/Ci. (10)

The ratio Cj,/C; equals the number of annual shortage occurrences for the
ith item. If these costs are the same for all items, then all items should have the
same number of shortage occurrences to minimize the aggregate value of back-
ordered sales.

Equivalent versions of this decision rule for safety stocks can be found in
(2], 31, [7], [15], and [16].

MULTI-ITEM DECISION RULES FOR
ORDER QUANTITIES AND SAFETY STOCKS

Another multi-item strategy does not require that any marginal cost infor-
mation be specified by the decision maker. Instead, we simply minimize back-
ordered sales subject to aggregate replenishment workload and investment con-
straints. By varying the constraints, different sets of trade-offs among back orders,
workload, and investment can be evaluated.

The model formulation is

Min Z=EAD;/Q)o;f i(u— k)fw)du (11)
st.  LAQ/2+kg)=1, (12)

and  LAD/Q)=W. (13)
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The objective function in Equation (11) is equivalent to the numerator of the
approximation in Equation (2). Equations (12) and (13) are the investment and
workload constraints. The assumptions discussed in the second section apply to
this formulation.

After forming the Lagrangian function, differentiating, and solving the first-
order conditions (see [5] for details), the following decision rule for order quanti-
ties is obtained:

Q;=[2D(0;§ P(u— kfydu+ M)/ N 12 (14)
where \; and Ay are the Lagrangian multipliers associated with Constraints (12)

and (13).
The decision rule for safety stocks is

& fadu=(\Q)/D;. (15)
Expressions for the Lagrangian multipliers are:
N=(Z:D;) 7 fydu)/ 21 - Eikio, (16)
and
A= [OE:0)/2— (Z:D0; 2w — kfw)du)/ Z Q) W. )

SOLUTION ALGORITHM FOR THE LAGRANGIAN MODEL

Since all model functions are convex, any solution to the first-order condi-
tions is optimal. The solution algorithm is a heuristic, based on the method of
successive approximations developed by Wagner [17] and applied to multi-item,
stochastic inventory models by Gardner and Dannenbring [6].

The steps in the algorithm, using the normal distribution for safety stock, are:
Compute \;=(.55D)/2I.

Compute Q;=(.5D)/A.

Compute \y=[(\Z,0)/2~ (¥;.3989420,D;)/ LoVw.

Compute Q; with Equation 14).

Compute safety stocks with Equation (15).

Compute total investment and workload.

If both constraints are fulfilled, stop. Otherwise, compute A; with Equa-
tion (16).

8. Compute Ay, with Equation (17).

9. Go to Step 4.

To initialize the algorithm, we assume zero safety stocks in Equation (16).
This gives a starting point for A; to compute beginning order quantities. The results
of Steps 1 and 2 give a starting value for Ay in Step 3. Thereafter, we iteratively
update Q,, k; A, and Ay until the constraints are fulfilled.

Newam N
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One peculiarity of this algorithm is that it can result in negative safety stocks
for some items. This can happen when a tight investment constraint is applied
to items having a relatively large standard deviation in dollar terms. [tems with
negative safety stocks should be reviewed to ensure that the assumption of nor-
mally distributed forecast errors is justified. If the errors do appear to be normal,
a constraint should be added to the algorithm to ensure that safety stocks are non-
negative. In my experience, such a constraint does not interfere with convergence.

Since this algorithm is a heuristic, no guarnatees can be made for convergence.
As one of the referees pointed out, there are many alternative search routines that
could be used. Computational experience with the algorithm has been excellent.
In more than 150 runs on data sets ranging in size from 500 to 40,000 line items,
the algorithm has converged to within 1 percent of both constraints in 35 itera-
tions or less. CPU time on the UNIVAC 1100/40 is about .1 seconds per iteration
per 1,000 line items. Further discussion of this type of solution algorithm is given
in [5] and [6].

INTERPRETATION OF THE LAGRANGIAN MULTIPLIERS

The Lagrangian multipliers can be interpreted as imputed marginal cost in-
formation. To see this equivalence, suppose we use an objective function with mar-
ginal costs for ordering, holding, and shortages of stock. The total cost expres-
sion for any item is

TC;=(C,D;/Q) +(CyQy/ D) + Cykio;+ C{Dy/ QYo gu~ kpfydu.  (18)
The solutions for order quantities and safety stocks are:

Q;=[2DAC0; | Fu ~ kfiuydu + Co)/ Cyl' /2 (19)

D/ Q)| fuydu=(Cp/Cy. (20)

Comparing Equations (19) and (20) to Equations (14) and (15), the total cost model
gives order quantities and safety stocks equivalent to the Lagrangian model pro-
vided that A= C,/C, and \;=C,/C,.

It should be noted that the safety stock rule in Equation (20) is equivalent
to the multi-item rule for safety stocks (Equation (8)) in the fourth section. Thus
the main difference between the simpler model in the fourth section and the
Lagrangian model is the way order quantities are computed. In the fourth sec-
tion, order quantities are computed independently; in the Lagrangian model, order
quantities are computed simultaneously with safety stocks.

MODEL COMPARISONS

The three investment allocation strategies were compared using a sample of
500 line items drawn from a wholesale distribution inventory of service parts. The
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complete inventory numbers more than 6,000 line items. The sample consists of
the “‘Class A’’ or the more important items in terms of dollar sales. Annual sales
for the sample are about $4.9 million, representing 70 percent of total sales for
the inventory. Forecasts for the inventory are generated with standard exponen-
tial smoothing models. We assume that lead times are constant and forecast er-
rors are normally distributed (the assumptions currently used for the inventory).

The strategies were compared on the basis of the total investment and work-
load combinations required to achieve a number of different percentage objec-
tives for back-ordered sales. The relative differences between strategies were about
the same for all objectives, so computational results are given to illustrate only
one objective, that for back orders equal to 5 percent of annual sales. Figure 1
shows the workload and investment combinations required by each strategy to meet

this objective.

FIGURE 1
Isoservice Curves to Back Order 5 Percent of Annual Sales
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The curves in Figure 1 are called *‘isoservice curves”’ since all points on each
curve yield the same 5 percent level of back orders. For the single-item IMPACT
strategy, the isoservice curve was generated by varying the costs in the EOQ for-
mula to give a range of order quantity or cycle stock investments. Safety stocks
were added to cycle stocks using the decision rule in Equation (6) above.
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A similar procedure was followed to generate the curve for the EOQ coupled
with the optimal safety stock rule. Costs in the EOQ model were varied to give
a range of order quantity investments. A grid search was then made for the values
of the NSO policy variable yielding a 5 percent level of back orders.

For the Lagrangian model, a response surface was generated for back-ordered
sales as a function of aggregate investment and replenishment workload. The points
on the surface yielding a 5 percent level of back orders are plotted in Figure 1.

The results in Figure 1 show that both multi-item strategies require substan-
tially less investment to achieve the back-order objective than the single-item strat-
egy. This is consistent with previous work by Herron {9] [10], Herron and Hawley
[11], Brown [2] [3], and Peterson and Silver [15], all of whom have emphasized
the potential advantages of multi-item strategies for allocating inventory investment.

Note that the region below the Lagrangian isoservice curve is infeasible. Given
the assumptions discussed above, the investment and workload combinations for
this model are the best that can be done.

One characteristic of isoservice curves for any back-order objective is that
the slope decreases as the workload increases. The reason for this effect is com-
plex, since workload impacts on back orders in two ways. Increasing workload
reduces order quantities, so the investment saved can be used to increase safety
stocks. More frequent ordering, however, increases the number of exposures to
risk of stockout. The net effect allows the decision maker to exchange reduced
investment for increased workload for a time, while still maintaining a fixed level
of back orders. This trade-off is subject to diminishing marginal returns, so any
isoservice curve will eventually become perfectly flat. This is the case with the single-
item curve above a workload of 4,000 orders.

CONCLUSIONS

Several generalizations can be made that may be helpful in developing manage-
ment policy in distribution inventory systems. First, the isoservice curve is a useful
way to present inventory trade-offs to management without the need to make any
prior assumptions about cost information. There is considerable evidence that mar-
ginal inventory costs are virtually impossible to measure. See [4] for a discussion.

Second, users of single-item decision rules like those in the IMPACT system
should consider one of the multi-item strategies. Savings in investment and/or work-
load should be possible. No guarantee can be made that these savings will be sig-
nificant, but the mathematical basis of the multi-item strategies should always re-
sult in some savings.

Finally, this research showed little difference in the performance of the two
multi-item strategies. Arguments of simplicity favor the EOQ/optimal-safety-stock
strategy, although the Lagrangian model is easier to use when investment and/or
workload constraints apply. The Lagrangian model will meet the constraints with-
out the need for trial-and-error experimentation with cost estimates and the NSO
policy variable.
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The Lagrangian model is also useful when conducting an analysis of inven-

tory performance for top management. The Lagrangian model operates with ag-
gregate inputs and outputs. These are the terms in which senior executives evaluate
inventory performance. [Received: April 15, 1983. Accepted: August 4, 1983.]
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