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Constrained multi-item inventory models have long presented significant computational
problems. This article presents a general algorithm to obtain simultaneous solutions for
order quantities and safety stocks for each line item in an inventory, while satisfying
constraints on average inventory investment and reordering workload. Computational
experience is presented that demonstrates the algorithm’s efficiency in handling large-
scale applications. Decision rules for several customer service objectives are developed,
with a discussion of the characteristics of the inventory systems in which each objective
would be most appropriate. The decision rules are approximations, based on the as-
sumptions commonly used in practice.

1. INTRODUCTION

Several measures of customer service are commonly used by management to evaluate
performance in multi-item inventory systems: the dollar value of sales that must be
backordered for later delivery to customers, the number of times that a shortage
condition occurs, and the number of customer requisitions that must be backordered.
The decision-maker is often concerned with minimization of one or more of these
measures given constraints on inventory investment and order-processing capacity or
workload. This article presents an efficient solution procedure to obtain approximate
decision rules for such problems.

The solution of constrained inventory models of this nature has long presented
significant computational problems (see the discussion in Hadley and Whitin [15], for
example). Several authors have proposed trial-and-error solution strategies [2,5,6,13,17—
21], which can be inefficient and tedious in large-scale applications. Others have
developed algorithms which guarantee convergence but are severely limited in problem
size [23].

In [12], we described a solution algorithm which overcame these difficulties for the
objective of minimizing an approximation for the number of customer requisitions
backordered. In this article, we show that the algorithm can be modified to minimize
approximations for the other commonly used performance measures for customer
service. We provide computational experience that demonstrates the algorithm’s ef-
ficiency in handling large-scale applications. We also comment on the characteristics
of the inventory systems in which each customer service objective would be most
appropriate. Finally, we illustrate the tradeoffs among customer service measures that
should be considered by the decision-maker before selecting an objective.

Since the marginal cost parameters often assumed in inventory models are difficult,
if not impossible, to measure accurately [11], the models presented here do not require
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marginal cost estimates. Instead, as surrogates for ordering and holding costs, the
models include constraints for both workload and total inventory investment. The
efficiency of the general-solution algorithm allows experimentation by the decision-
maker with various levels of these constraints and with different customer service
objectives. The constraints impute marginal cost information to assist in the decision
process.

2. ASSUMPTIONS

Throughout this article we consider a continuous review inventory system, managed
with order quantity, order point (Q,r) policies. Aggregate inventory investment is
approximated by

> (92_ + s,-> =1 )
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where Q; is the order quantity in dollars for the ith item, and S; is the safety stock.
The probability of a shortage on one order cycle is

P = f " o, @

r; is the reorder point in dollars, composed of safety stock plus leadtime demand stock.
f(x) is the probability density function for the forecast errors over leadtime, usually
assumed to be normal.

The expected dollars short per order cycle is given by the partial expectation function
tabled by Brown [1]:

E = f T - fedx. 3)

A number of assumptions are necessary if these expressions are to give a reasonable
projection of the steady-state behavior of the inventory. These assumptions generally
hold independent of the method of measuring customer service. First, we assume that
f(x) is normal, although the general-solution algorithm can be modified for any of the
standard probability distributions. Next, we assume that leadtimes are constant, or that
any variability is negligible. Since continuous review policies apply, we assume that
a replenishment order of fixed size is placed when the inventory position is exactly
at the reorder point. If Equation (2) is to hold exactly, it can be proven that demands
must arrive according to a Poisson process [15].

Implicit in Equations (1)—(3) is the assumption that there is never more than a single
order outstanding. This means that when the reorder point is reached, there will be
no previous orders outstanding. If we further assume that the reorder point is positive,
which is almost always true in practice, there will be no backorders unfilled at the
reorder point. The result is that inventory position (the amount on hand plus reorders
minus backorders) is equal to on-hand inventory at the reorder point.

Finally, we assume that management policy will always result in the average level
of backorders being negligibly small when compared with the level of on-hand stock.
This is almost always true in practice and allows us to neglect the expected value of
backorders in Equation (1).

These are strong assumptions, so the models presented in this article must be regarded
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as heuristics or approximations. A more detailed discussion of these assumptions is
given in Hadley and Whitin’s heuristic treatment of (Q,7) models [15, Sec. 4-2], and
in Peterson and Silver [21]. In the opinion of Hadley and Whitin, these assumptions
are frequently unavoidable in developing the decision rules needed for practical ap-
plications. This is especially true in large-inventory systems, where many thousands
of line items are managed. Hadley and Whitin also offer the opinion that the special
cases for which exact models are available do not represent the real world much more
accurately than approximate models based on the assumptions above.

Numerous examples of wholesale service parts inventories in which these assump-
tions are reasonable are given in Brown [1-3]. Peterson and Silver [21] develop a
variety of practical decision rules for distribution inventories using these assumptions.
The military distribution system described in Gardner and Dannenbring [12] is managed
under these assumptions. Other precedents for these assumptions in applied work
include Eagle [7], Fetter and Dalleck [8], Gerson and Brown [13], Groff and Muth
[14], Flansmann [16], Parker [20], Prichard and Eagle [22], Schrady and Choe [23],
and Starr and Miller [24].

3. THE BACKORDERED SALES MODEL

To minimize the approximate expected backordered sales in an inventory, the ob-
jective function is

min Z = Y, D.E/Q, “)

where D; is the annual demand or sales in dollars. The constraints on aggregate
investment and replenishment workload are

> (% + Si) =], (5)
and
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To solve this model for any combination of constraints, we form the Lagrangian
function,
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where A; and Ay are the Lagrangian multipliers associated with constraints (5) and (6).
Differentiating with respect to @;, S;, \;, and Ay, we obtain the first-order conditions:

i —‘DiE,' )\, )\WD,

00, @ 2 o T % ®
oL —-D,P;

— = "t + K = O,

as; Qi ! ®

%=2<-Qz—"+s,.>—1=o, (10)
1 i



62 Naval Research Logistics Quarterly, Vol. 30 (1983)

and

oL D;
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Solutions to the first-order conditions yield the following decision rules for order
quantities and safety stocks:

172
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P; = NOUD,. (13)

The Lagrangian mult.pliers can be written as
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4. SOLUTION ALGORITHM

Since all model functions are convex (see Gerson and Brown [13] for proofs), any
solution to the first-order conditions is optimal. Unfortunately, there is no direct
solution to any of the variables in the problem. The approach followed here uses the
method of successive approximations developed by Wagner [25], and applied to multi-
item, stochastic inventory models by Gardner and Dannenbring [12]. The steps in the
solution algorithm are:

N Compute initial A,, assuming zero safety stock in (14).

2) Solve (13) for Q; and compute an initial value for each order quantity, again
assuming zero safety stock.

3) Compute A, assuming zero safety stock in (15).

“) Compute Q; with (12).

(5) Compute S; with (13).

(6) If both constraints are fulfilled, stop. Otherwise, recompute A, with (14) and
Aw with (15).

@) Go to step 4.

The first three steps in the algorithm are used to initialize each variable. In step 1,
P; = 0.5 for each item, since there is no safety stock. The denominator of (14) is
simply 27. In step 2, we use (13) for Q;, rather than (12). Note that (12) includes Ay,
which has not yet been computed. Next, step 3 determines a beginning Ay with the
initial values of \;, 0;, and the E, values corresponding to zero safety stock (0.398942a;
assuming that forecast errors are normally distributed). From this starting position, we
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update Q,, S, A;, and Ay iteratively in steps 4—7. The objective function is monotonically
decreasing with each iteration, since aggregate safety stocks are built up from a zero
starting point.

Convergence of this algorithm cannot be proven to occur in any finite number of
iterations. However, extensive computational experience shows that convergence is
rapid. CPU time on the UNIVAC 1100/40 is less than 0.1 s per iteration per 1000 line
items. In more than 150 runs on data sets ranging from 500 to 40,000 line items, the
model has converged to within 1% of the investment constraint in 12 iterations or
less. Convergence to within 1% of the workload constraint has occurred in 35 iterations
or less.

An example of the performance of the solution algorithm on a sample of 500 line
items is given in Table 1. The sample was drawn from a distribution inventory of
12,000 line items. Sales in the sample are about $4.8 million, representing 70% of
sales for the inventory. Constraints of $1,115,000 in investment and 4000 annual
replenishment orders were imposed. The last ten iterations of the algorithm reduce
backordered sales by only 0.02%, indicating that the response surface is rather flat
near the optimum solution. This is characteristic of the solutions obtained with the
model to date. In most cases, there is very little change in backordered sales after
about ten iterations. Thus, it is reasonable to use a stopping rule for the algorithm
based on some minimum change in backordered sales rather than on exact fulfillment
of the constraints.

5. INTERPRETATION OF THE LAGRANGIAN MULTIPLIERS

The discussion in Gardner [9-11] indicates that it is virtually impossible to measure
marginal inventory costs. However, most decision-makers can at least specify rea-
sonable levels of constraints for aggregate inventory investment and replenishment
workload. The Lagrangian multipliers can then be interpreted as imputed cost infor-
mation to assist in finding a good balance among customer service, investment, and
workload.

To see this equivalence, suppose that C, is the shortage or penalty cost per dollar
backordered. Let C, be the annual inventory carrying cost expressed as a percentage

Table 1. Convergence of the backordered sales model.

Total %
investment Total Backordered

Iteration ($000’s) workload N Aw sales
1 950.4 1431 1.093 173.935 9.53
2 981.3 1731 0.909 70.283 7.40
3 1036.0 2004 0.763 44.566 5.75
4 1073.6 201 0.678 37.323 4.81
5 1093.4 2405 0.632 32,288 428
10 1113.5 3139 0.572 16.059 3.60
20 1115.0 3783 0.558 8.658 3.34
30 1115.0 3990 0.555 7.356 3.32
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of dollar value and C, be the marginal ordering cost. Then the total costs for any
single item are

7C; = C—é?—' + C,,(% + S,-) + C—SS,LE—' (16)
Differentiating with respect to Q; and S;, we obtain
12
0, = (wi(cszé,.h+ co)) ’ an
and
D,P{Q; = C,/C,. (18)

Thus, the decision rules for the cost-based, single-item model are equivalent to those
for the constrained model, provided that

C/Cs = My, (19)

and

CJ/C, = \. (20)

For example, in Table 1 the investment constraint of $1,115,000 imputes C,/C, = 0.6.
The workload constraint of 4000 orders imputes C,/C, = 7.4. That is, the cost to hold
one dollar in stock for one year is 60% of the cost of incurring one dollar in backorderts.
The cost to place one order is 7.4 times the cost to incur one dollar in backorders.

6. THE SHORTAGE OCCURRENCES MODEL

Another popular measure of customer service in inventory control is the number of
times each year that a shortage condition or an out-of-stock situation occurs. This
measure is appropriate in inventory systems where the occurrence of a shortage can
be mitigated by expediting action until the next routine order arrives to replenish
supplies. In these systems, total expediting effort will usually be proportional to the
number of shortage occurrences.

The objective function to minimize the approximate number of shortage occurrences
in an inventory is

min Z = Y, DP/Q.. 21

Constraints (5) and (6) also apply to this model.
After forming the Lagrangian, differentiating, and solving the first-order conditions,

we obtain:
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The Lagrangian multipliers can be interpreted in a manner similar to the backordered
sales case.

Compared with the backordered sales model, the shortage occurrences model usually
results in a radically different set of safety stocks for each item. The risk of a shortage
condition tends to be concentrated in the high-dollar-value segment of the inventory,
where the tradeoff between shortage occurrences and additional safety stock investment
is relatively poor. More shortage protection is usually given to the middle-to-lower-
value segments of the inventory, where this tradeoff is improved. The result can be
arelatively high dollar value of backordered sales in order to obtain minimum shortage
occurrences.

With appropriate substitutions, the general-solution algorithm in Section 4 can be
used for the shortage occurrences model. One note of caution is in order, however.
As Gerson and Brown [13] point out, the objective function is not convex in S;. In
practical terms, this means that (23) has no solution if the right-hand side turns out
to be more than 0.398942, which is the maximum value of the density of the normal
distribution (at zero safety stock). This problem can occur if the investment constraint
is extremely tight, yielding a relatively large A;. The solution algorithm must be
modified to restrict f(x) = 0.398942. This does not interfere with convergence to a
stationary point of the Lagrangian.

A great deal of trial-and-error experimentation has been done with test problems to
determine whether a stationary point with restricted f(x) values could be improved.
In no case could a better solution be found. Graphical analysis of several response
surfaces also showed no irregularities which would confound the algorithm.

7. THE REQUISITIONS BACKORDERED MODEL

A third important measure of customer service is the annual number of customer
requisitions or demand transactions that cannot be filled immediately from stock. One
requisition is equivalent to one line on a customer’s order. This criterion is appropriate
in many repair parts or maintenance inventories, where repair work cannot be completed
until the total number of units of stock demanded on each requisition becomes available.
The requisitions short measure may also apply in some multiwarehouse distribution
systems where attempts are made to satisfy requisitions for items not in stock by
shipping from distant warehouses. Expediting effort and costs should then be propor-
tional to the number of requisitions short. Military inventories, where requisitions are
often filled from stock in the order of indexes of criticality of need, are another case
in which the number of requisitions short is useful as a measure of customer service
[12].

One drawback to this measure is that like the shortage occurrrences measure, it may
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result in a high dollar value of backordered sales. Again, relatively more shortage
protection is usually given to the lower-value segments of the inventory, where there
is a good tradeoff between requisitions short and additional safety stock investment.

The objective function to minimize the approximate annual number of requisitions
backordered in an inventory is defined as

D.(E,
Z= 25(‘) 26)

i i\

where m; is the customer requisition size in dollars. We assume that the requisition
size is constant for each line item and that it is independent of the level of demand.
This is a reasonable assumption in the inventory system studied by Gardner and
Dannenbring [12].

Using the same constraints as above, the first-order conditions for this model are

12
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The Lagrangian multipliers can be interpreted as above. With appropriate substitutions,
the general-solution algorithm also applies to this model.

8. OBJECTIVE FUNCTION COMPARISONS

Table 2 compares the values of all three shortage measures, when each objective
function is minimized with identical workload and investment constraints. The inven-
tory is the same as in Table 1. As discussed above, both the shortage occurrences and
the requisitions short models lead to relatively high dollar values of backorders. To
reduce the dollar value of backorders, a significant penalty must be paid in both
increased numbers of shortage occurrences and requisitions short. If an acceptable
objective function cannot be selected from the information in Table 2, and if sufficient
resources are available, the decision-maker may want to consider increasing the levels
of the investment and/or workload constraints to reduce shortages.

Table 2. Shortage values for alternative objective functions.

Number of Dollar Number of
Objective function shortage value of requisitions
minimized occurrences backorders backordered

Number of shortage occurrences 112 $346,232 297
Dollar value of backorders 281 146,320 641
Number of requisitions backordered 163 308,119 222
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9. CONCLUSIONS

Constraints on inventory investment and reordering workload are pervasive in prac-
tice. This article presented approximate decision rules and an efficient solution pro-
cedure for several common objective functions under constraints. The alternative so-
lution procedure to meet constraints is tedious trial-and-error experimentation with
different sets of cost parameters.

Another application for the results in this article is in cases where it is difficult to
measure marginal inventory costs. If the decision-maker can specify reasonable levels
of aggregate investment and workload, these impute marginal cost information in the
form of Lagrangian multipliers. The imputed costs can be used to help select the best
tradeoff among investment, workload, and customer service.

The decision rules proposed are based on the same assumptions used in numerous
inventory systems in practice, which should help minimize implementation problems.
The general-solution algorithm is capable of handling large-scale applications, using
demand information already available in most inventory systems.
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