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ABSTRACT

This paper cvaluates a varicty of automatic monitoring schemes to detect
biased forecast errors. Backward cumulative sum (cusum) tracking signals
have been recommended in previous research to monitor exponential
smoothing models, This research shows that identical performance can be
had with much simpler tracking signals. The smoothed-error signal is
recommended for & = 0.1, although its performance deteriorates badly as a is
increased. For higher « values, the simple cusum signal is recommended. A
tracking signal based on the autocorrelation in errors is recommended for
forecasting models other than exponential smoothing, with one exception. If
the time series has a constant variance, the backward cusum should give
better results,
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In most forecasting systems, it is highly desirable to automatically monitor forecast errors to
ensure that the system remains in control. For example, if a non-seasonal forecasting model is
applied to a time series with unsuspected seasonality, biased errors will occur. When a trend
developsin a time series being forecasted by simple exponential smoothing, the forecasts will lag. If
the trend remains constant, the simple exponential smoothing model will lag the time series to
infinity. Most forecasting models with fixed parameters will lag step changes in the mean, trend, or
scasonality components of a time series. These problems need to be detected as quickly as possible
to enable the forecasting model to be refitted to the data or changed to a more appropriate model.

There are at least three warning signs when a forecasting system goes out of control. The first
indicator is the cumulative sum (cusum) of the forecast errors, which can be computed and tested
in several different ways. The cusum should fluctuate around zero when the system is in control. If
biased errors occur, the cusum will depart from zero. The second indicator is an estimate of the
mean forecast error, which will alsrs depart from zero when biased errors occur. The third indicator
is the first-order autocorrelation i1 forecast errors. Since biased errors tend to have the same sign,
the existence of any significant positive autocorrelation indicates lack of control.

Readability: The Gunning fog index for this paper is about 13.
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This paper evaluates tracking signals to monitor each of these warning signs. ‘Two of the signals
are based on cusums—Brown’s simple cusum and the sophisticated backward cusum system
developed by Harrison and Davies. Trigg's smoothed-error signal, which is widely used in practice,
and an autocorrelation signal developed in this paper are also evaluated. One section of the paper
is devoted to an analysis of each signal, including updating equations, probability distributions,
and response rates to biased errors.

Detailed performance comparisons among these signals are deferred to the last section of the
paper. Comparisons are made on the basis of the number of time periods required to detect biasin
two types of errors: the errors from simple exponential smoothing, and randomly gencrated
N(0, 1) deviates. Exponential smoothing errors are autocorrelated by the nature of the forecasting
process. This distortion has a significant effect on the ability of each tracking signal to detect bias.
The N(0, 1) errors are independent and represent the type of errors which should be expected from
other forecasting models. ;

This rescarch can be replicatec. Details of the simulation work are discussed in the Appendix.

THE SIMPLE CUSUM TRACKING SIGNAL
The first tracking signal for forecast control was proposed by Brown (1959). This signal compares

the cumulative sum of the errors at the end of each period to the smoothed MAD. The updating
equations as each new error is observed are:

e=X,—F )
SUM, =¢, +SUM, _, 1))
MAD, = ale,| + (1 — )MAD, _, 1))
C,=|SUM,/MAD}| @

The forecast error, ¢,, is the actual time series value, X,, minus the forecast, F,. As usual, the
smoothing parameter is restricted to 0 < a < 1. If C, exceeds a significant multiple of the smoothed
MAD, forecasts may be biased.

There are two approaches to the problem of selecting control limits for C, as well as othex
tracking signals. First, we can use a control limit that yields some desired probability of getting a
‘false trip’, defined as a Type 1 error, or a case where the control limit is exceeded due to chance
rather than biased forecasts. Second, we can base the control limit on the number of time periods
required to detect biased forecast errors of any given size.

Using probabilitics to select control limits for the simple cusum

In the first approach, the normal distribution is often used to find the probability of a false trip. For
example, Brown (1963, pp. 288-289) shows that the simple cusum for exponential smoothing is
approximately normally distributed, with standard deviation equal to

=0.884 /()" )

Extensive tables in Montgomery and Johnson (1976) can be used to find control limits based on
similar approximations for a variety of other forecasting models.

The validity of a normal approximation for C, based on (5) was tested by simulation. Table 1
gives the simulated distributions of C, from simple exponential smoothing forecasts (one-ahead)
for a=0.,1, 0.2, and 0.3. The distributions were compiled using 1000 time series. Each series was
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Table 1. Cumulative distribution of the simple cu-
sum tracking signal (exponential smoothing)

Cumulative C,
probability
a=01 =02 =03

0.80 3.6 2.6 2.1
0.90 4.7 29 2.8
0.95 5.6 4.1 3.5
0.96 5.9 43 37
0.97 6.3 4.6 3.9
0.98 6.8 5.0 4.3
0.99 1.5 5.6 49

120 periods in length, with a constant mean and random normal noise about the mean. The
tracking signal was started with SUM, = 0. MAD,, was set equal to its expected value, given the
noise in the series and the smoothing parameter used. The smoothing parameter in the forecasting
model was set equal to the parameter used to smooth the MAD. Comparisons showed there was no
advantage to using different parameters. A frequency distribution was compiled of the value of C,
at the end of periods 21-120, giving 100,000 observations on C, across all series. The first 20
periods were used as a ‘run-in’ to wash out the effects of initial conditions.

A normal approximation for C, with standard deviation equal to (5) agrees very well with the
simulated distribution for @ =0.1 in Table 1. However, there are some differences at higher «
values, This should. be expected, since the assumptions used to develop (5) hold only for small «
values. For example, at & =0.2, the 90 per cent control limit (double sided) should be 1.65¢ or
about 3.3 using the approximation. However, Table 1 gives a control limit of 2.9. Since Table 1 is
based on a large sample size, it should be a better tool for estimating probabilities.

Notice that the control limits at any probability level decrease as « is increased. An obvious
reason for this effect is that the increase in o increases the MAD. A more subtle reason is that
exponential smoothing models have a tendency to induce negative autocorrelation in the errors
from one-ahead forccasts. To illustrate, suppose a time series has a constant mean with random
noise about the mean. The autocovariance of successive errors from simple exponential smoothing
in this case is (Brown, 1963, p.310):

ol —
2—
where ¢ is the variance of the time series. R decreases as « increases, ranging from about —0.0502

at 0=0.1 to —0.1702 at o =0.3. Thus exponential smoothing errors tend to alternate in sign,
which helps reduce the sum of errors.

R=

:)Uﬁll—(2—a)(l—a)"] )

Using average run lengths to select control limits for the simple cusum

The second approach to the problem of selecting control limits is based on the concept of the
average run length (ARL) to detect biased forecast errors. The run length is defined by convention
in industrial quality control as the number of periods required to detect a change in the process
being monitored. It is computed as the period number in which a quality control scheme first
bre=Xs its control limit minus the period number immediately before a change occurred. Hence,
the minimum run length is one period. This definition of the run length should not be confused
with the theory of runs in non-parametric statistics (Siegel, 1956).
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Figure 1 illustrates the ARL approach. The response curves show the ARL to detect a step
change in the time series mean, again using the simple exponential smoothing model. ARLs are
plotted on a log scale versus step changes (expressed as a multiple of the standard deviation of the
time series) on a lincar scale,

The response curves were generated by simulation, using a sample of 1000 time series similar to
those described above. The first step in the simulation was to use an iterative search procedure to
find control limits yielding ARLs of 25, 50, and 100 periods on unbiased errors (no change in the
mean) at « =0.1,0.2, and 0.3. These ARLs estimate the run length until the first trip at the control
limits shown. They were computed after a run-in of twenty periods. The second step in the
simulation was to measure the run lengths at those control limits to detect step changes at period 21
in the time series mean. Step changes ranged from 0.5 to 3.0¢ in increments of 0.5.

Toillustrate how the table of control limits in Figure 1 is used to select a response curve, suppose
we want a target ARL on unbiased errors of 50 periods. The smoothing parameter is 0.10. The

100
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25 45 3.7 33

50 54 a4 39
100 63 5.1 46
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Figure 1. Simple cusum ARL performance (exponential smoothing)
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control limit on C,should be set at 5.4, which yields the middle response curve. A target ARL of
100 periods corresponds to a control limit of 6.3 and the upper response curve.

Several generalizations are important in interpreting Figure 1. First, only one set of response
curves is given, since response rates to biased errors were about the same at each « value tested.
Second, the control limits in Table 1 cannot be used to predict ARLs on unbiased errors. For
example, the 95 per cent control limit at « = 0.1 is 5.6, which might be expected to give a run length
of about twenty periods of unbiased errors. But the control limits in Figure 1 show that C,will run
for more than fifty periods at a limit of 5.6.

The reason for this difference is that the distribution of C,on unbiased errors in Table 1 is based
on uninterrupted sequences of observations—the runs were not stopped when any control limit
was broken. In Figure 1, the runs were stopped when the control limits shown were broken. As
should be expected, successive values of C, are highly autocorrelated when the signal is
uninterrupted. The behaviour of the signal includes some extremely long runs between trips at any
given control limit. Once the signal breaks a control limit, it tends to stay outside that limit for a
number of periods.

Another gencralization is that the ARLs on unbiased errors in Figure 1 are highly variable.
Standard deviations of the ARLs on unbiased errors are roughly equal to the ARLs. (Standard
errors, of course, are negligible due to the sample size.) Standard deviations decline exponentially
as bias is introduced, to about 50 per cent of the ARL at a 1.5¢ step and 30 per cent at 3.00. These
results are consistent with Golder and Settle’s simulation study (1976), and hold for every tracking
signal tested in this research. Because of this variability, control limits yielding ARLSs less than
about twenty-five periods on unbiased errors are not reccommended. Otherwise, the number of
false trips could be unmanageable.

Interpolation in Figure 1 should produce control limits suitable for most practical applications
of the simple exponential smoothing model. For other types of smoothing models, the control
limits shown will give comparable ARLs on unbiased crrors, provided that the same « values are
used to smooth the mean. Response rates to bias vary according to the type of model and the other
smoothing parameters used. However, any desired response curves can easily be established by
simulation, using Figure 1 as a starting point.

Advantages and disadvantages of the simple cusum

Compared to other tracking signals, the simple cusum has two advantages. The most important is
that the simple cusum performance is independent of the smoothing parameter used. As discussed
below, the performance of tracking signals based on the smoothed error or autocorrelation
deteriorates badly as the smoothing parameter is increased. This surprising problem with the
smoothed-error signal is also discussed by Brown (1982a), who recommends the simple cusum
over the smoothed error.

Unlike the more complex cusum schemes discussed below, the performance of the simple cusum
is also independent of the variance of the time series. If the variance of the series changes, this is
estimated implicitly by MAD,. Both SUM, and MAD, will change proportionately, leaving the
ARL performance unchanged. This conclusion was confirmed by simulation tests.

The simple cusum also has some disadvantages. As Trigg (1964) and numerous others have
pointed out, the simple cusum never forgets large errors. To see the effect of this memory, suppose
that an isolated random error moves the signal from near-zero to a point close to the control limit.
From then on, suppose that the forecast errors are small for a long period of time. The signal will
wiggle back and forth around the level of the isolated error. Perhaps much later, a second isolated
error in the same direction as the first can finally trip the signal, although the system is in perfect
control.
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Another disadvantage is ironic. If the forecasting system starts to give exceptionally accurate
forecasts, the signal may trip. Suppose that near-perfect forecasts begin to occur. This will cause
the MAD to tend to zero, leaving the cusum unchanged. Thus C, will tend to infinity.

The final disadvantage may also be ironic. The discussion above is concerned only with
exponential smoothing, since other tracking signals give better resuits when the forecast crrors are
independent. This point is illustrated in the section on performance comparisons below.,

Modifications to the simple cusum

The simple cusum signal can be used with a smoothed estimate of the standard deviation of the
forecast errors in the denominator rather than the MAD. Brown (1982a) recommends this
procedure, since the standard deviation of the errors is needed to compute safety stocks in
inventory control applications. The standard deviation is often estimated by 1.2SMAD, but this is
correct only for normally distributed errors (as in this research). In applications where an estimate
of the standard deviation of the errors is nceded, the safest course is to replace equation (3) by

MSE, = ae? + (1 —@)MSE, _, ™

The square root of (7) can then be used in place of MAD, in (4). Control limits in Table 1 and
Figure 1 can be adjusted by multiplying each limit by 1,25,

For time series with a long history, the variance of the forecast errors can be estimated and used
as a fixed quantity in the denominator of the simple cusum signal. If the variance remains
unchanged, this procedure improves the performance of the signal. ARLs to detect any level of
bias above .00 are reduced by 1-2 periods, while maintaining the same ARL on unbiased errors.
Control limits to use the simple cusum in this fashion are given in the Appendix. The limits are
biased on the expected value of MAD as a fixed quantity in the signal.

Whether this procedure is advisable for any given time series is a difficult question. If the true
variance excecds the estimate, ARLs to detect bias generally increase (the entire response curve
shifts upward). If true variance is less than the estimate, the number of false trips increases, since
the entire response curve shifts downward.

BACKWARD CUSUM CONTROL SYSTEMS

More elaborate cusum control systems based on industrial quality control theory have been
proposed by numerous researchers. Examples include the work of Barnard (1959), Brown (1971),
Coutic et al. (1966), Ewan (1963), Ewan and Kemp (1960), Harrison and Davies (1963), Van
Dobben De Bruyn (1968), and Woodward and Goldsmith (1964). The control system developed
by Harrison and Davies appears to be the most practical for routine forecasting applications, since
itis simpler and requires less data storage than the other systems. The Harrison and Davies system
is outlined and extended below.

Basic calculations
The theory of backward cusums is based on the following idea. If we could guess when a past
change in the time serics occurred, then the sum of all the errors since the change would be the best
tracking signal available today. If a change in the series occurred in period 50, and the current
period is number 55, then the sum of the errors from periods 50-55 would be more sensitive to the
change than the sum from periods 1-55.

Since we have no way of knowing the number of past periods to sum in advance, it appears to be
necessary to maintain a battery of all possible cusums. The first is just the last error, The second is
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the sum of the last two errors, and so on to the beginning of the series. Each of these sums should be
the most sensitive signal available to detect a change in the time series that occurred i periods ago,
where i is the number of periods used in each cusum.

The number of cusums required to implement this idea quickly gets out of hand in any time
series, but the basic idea can be modified to a more practical scheme. Gne modification is to
maintain only the last six to twelve cusums since information on older changes is not likely to be of
much value at present.

An example of a six period backward cusum control system is shown in Table 2. Control limits
are set up in linear form, as

Li=aw(i+h). (8)

L, is the limit (+ or —) on the ith backward cusum, ¢ is the standard deviation of forecast errors,
computed during a period when the system is in control, and w and /i are constants selected by
simulation, In this case, ¢ = 10, w = 1, and / = 2. Linear limits are used to allow for larger random
cusums as more errors are summed.

Table 2. Example of the backward cusum method: L,=aw(i + /) = 10(i + 2)

Period Forecast S, S, S, Sy Ss Se
error

| -10 —10

2 20 20 10

3 15 15 35 25

4 5 5 20 40 30

§ -25 —25 -20 -5 15 5

6 -25 =25 —50* —45 -30 -10 -20
Control Limits: L, to L, +30 +40 +50 +60 +70 +80

The cusums are computed backward in time as follows:
S, =¢,
Sy=e+e,_,
Sy=e,+e,_,+e_,, ctc.

In the example, the sixth error causes S, to break its lower control limit, signalling apparent
negative bias in forecast errors.

Implicit tests for bias
The storage requirements for six cusums and their control limits would still be burdensome in most

forecasting systems. To reduce the storage requirements, Harrison and Davies (1964) devised a
system whereby all cusums can be implicitly tested against their control limits by storing only four
quantities. Proof of this result may be found in Harrison and Davies (1964) or Coutie et al. (1966).
The proof given by Harrison and Davies contains an error in notation, so Coutie’s is
recommended.

Two of the four quantities stored are constants: gw and L, = gwh. Since the limits increase by
aweach period, these two quantities are sufficient to compute each L,. The other two quantities are
moving parameters. The parameter used to check for positive bias is the minimum of the
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differences between the positive control limits and their corresponding cusums, L; — §;, from the
last period. The other parameter, used to check for negative bias, is the maximum of the differences

between the negative control limits and their cusums, —L; - S;.
An example shows that testing these two differences each period is equivalent to testing all

cusums, The test for positive bias uses:

D} =MIN[DY |, Lo] + ow—e, )
D¢ is set equal to L,. If D,;* <0, lack of control is signalled. The test for negative bias is:
D =MAX|D_,,—Lo]l —aw—e¢, (10)

Dy is set equal to —L,. If D, > 0, lack of control is signalled.

Table 3. The implicit test for bias: Ly =20,

ow=10
Period Forccast D} D;
error

| —-10 40 -20
2 20 10 -50
3 5 S —45
4 5 10 -35
5 =25 45 -5
6 -25 55 10+

Table 3 repeats the example in Table 2 using these tests. The control system is started with
D¢ =20 and Dg = --20. The equations below demonstrate that each value of D may be
traced back to Table 2 as the minimum or maximum difference between the control limits and their
corresponding cusums:

Minimum difference Maximum difference
Df=L,-S8, Dy =-L, -5,
D}=L,-8§, Dy =-L,—S,or—-L,-8§,
Df =L,-S, Dy =-L; -8,

D} =L,-8, Di=-L,—S,
Dy=L,-8, Dy =—-L,-S,
D¢ =L,-S, Dg =-L,-S,

Control limits for the backward cusum system

Finding control limits (w and /) for the backward cusum system is a tedious process. The only
published control limits for forecast errors that are based on a large sample size, with a run-in
period to wash out initial conditions, are those given by Golder and Settle (1976). Unfortunately,
Golder and Settle’s control limits were not very useful in this research. Their limits do not yield
even multiples of ARLs on unbiased errors, making it difficult to compare the backward cusum to
other tracking signals. For reasons explained in their paper, Golder and Settle show different sets
of control limits to detect different levels of bias, making it impossible to study the effects of
varying the w and /s parameters. Their results were replicated in this research, however, and no
significant differences in ARLs were found.
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Tablc4. Backward cusum response comparisons,
exponential smoothing, « =0.1

Control ARL: ARL to detect
limits unbiased bias
(v, ) CIrors
1.5¢ 300
0.1,52.4 50 39 1.9
0.2,21.2 50 3.7 1.8
0.3,11.7 50 3.7 1.7
04, 7.6 50 4.0 1.6

Table 4 illustrates the search process used to find control limits in this research. The w parameter
was varied by increments of 0.1, starting at 0.1, since Golder and Settle’s control limits indicate
that the best w values are usually fractional. At each value of w, the / parameter was varied to find
the limits yielding an ARL = 50 periods on unbiased errors. Using those w and /st values, the ARLs
to detect 1.5¢ and 3.0 step changes in the mean were measured. This procedure was continued
until the ARL at 1.50 passed through a minimum. If there was a tic for the best limits at 1.50, the tie
was broken with the minimum ARL at 3.00. Given the best w value using these criteria, /1 was
varied to find control limits for ARL =25 and 100 periods on unbiased errors.

The final control limits are given in Table 5 for independent errors and for exponential
smoothing at & = 0.1 and 0.2, The procedure used to generate bias in the N(0, 1) errors was similar
to that used in other quality control studies (Goldsmith and Whitfield, 1961). The mean error was
shifted from zero in increments of 0.5, while holding the variance constant.

Although choosing the control limits in this fashion was somewhat arbitrary, it seemed to be the
best way to deal with the complexities of the response rates. Biasequal to 1.50 is about the smallest
level that any tracking signal can detect in a reasonable number of periods. Since the ARL at 3.0¢
was always two periods or less for virtually any set of limits, it scemed best to minimize the ARL at
1.5¢ rather than 3.00. In view of the prodigious amount of computer time necessary to conduct
these searches, no attempt was made to estimate ARLs at other levels of bias or at higher « values.

Given the ¢ of the forecast errors, ow and Ly = owh can be computed directly from Table 5. If

Table 5. Backward cusum control limits and average run lengths

Type of errors o Control ARL: ARL to detect bias
limits unbiased —_—
(w, hr) errors 1.5¢ 3.00

Independent N(O, 1) — 0.6,3.4 25 2.8 1.3
0.6,4.2 50 3.2 1.5

0.6,5.1 100 38 1.7

Exponential smoothing 0.1 0.3, 9.7 25 29 14
03,117 50 3.7 1.7

0.3,13.9 100 5.0 1.9

0.2 0.1,37.9 25 31 1.5

0.1,44.1 50 4.0 1.7

0.1,50.0 100 5.3 2.0
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the limits in Table 5 are compared to Golder and Settle’s limits, it should be emphasized that they
are expressed differently. Golder and Settle show aw and / for exponential smoothing of N(0, 1)
time series. One must divide ow by the expected value of ¢ to get w suitable for use with any other
time series.

Advantages and disadvantages of the backward cusum system

Although the backward cusum is the most thorough tracking signal available, it has not been
widely used in practice for a number of reasons. The first reason is the lack of published control
limits. The sccond is the lack of comparisons to other tracking signals. Third, although the
backward cusum system can be operated by storing four quantities, the other tracking signals
considered in this research require storage of only two quantities. The additional storage
requirements for the backward cusum are a considerable disadvantage in large forecasting
systems. Fourth, the backward cusum requires the assumption of a constant variance in the time
series. This is a disadvantage in setting up a control system for a time series with a short history.
Also, as discussed above for the simple cusum, the performance of the backward cusum can be
erratic if the true variance of the serics differs significantly from the estimated variance.

THE SMOOTHED-ERROR TRACKING SIGNAL

The smoothed-error tracking signal is widely used in practice. This signal was developed by Trigg
(1964) in an attempt to overcome the disadvantages of the long memory of the simple cusum. The
updating equations each period are

E,=ae,+(1 ~&)E,_, (n
MAD, =aje +(1 -- ) MAD, _, 3)
T, =|E/MAD)| (12)

Simplifications

These cquations are standard in the literature and in practice, but they can be simplified by
recognizing that exponential smoothing recurrence relations are basically approximations to exact
discounted averages (Gilchrist, 1967, 1976). The exact discounted form for (11) is

-1 t—1
E = Z p'el—(/ Z ﬂ’ (13)
i=0 =0
The exact form for (3) is
=1 -1
MAD, = ¥, flle,.| / i (14)
i=0 =0

f is the discount factor, restricted to 0< < 1.
After some uninteresting algebra, these forms reduce to new recurrence relations:

Et::et'l'ﬂEl—l (15)
MAD, = le| + SMAD, _, (16)
T,=|E/MAD| (12)
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Surprisingly enough, the exact discounted averages turn out to be simpler than the exponential
smoothing approach. The value of T, is cxactly the same using either exponential smoothing or
discounted averages, provided that the same starting values are used and ff=1—a.

Control limits for the smoothed-error signal

A great deal of conflicting analytical and simulation work has been done on the probability
distribution of T,. Trigg's original distribution (1964) is strictly applicable only to forecasting
models other than exponential smoothing, since he ignores the autocorrelation in errors caused by
exponential smoothing. Brown (1967) took this autocorrelation into account in developing
distributions for exponential smoothing. Batty (1969), working independently of Brown,
developed somewhat different distributions for exponential smoothing. The tables given by
Montgomery and Johnson (1976) extended Brown’s work.

The simulated distributions in this research gencrally agree with Trigg for independent errors
and Batty for exponential smoothing. Differences are small enough to attribute to chance. Good
correspondence was obtained with Brown’s results at o« = 0.1, but there were significant differences
at higher « values. Table 6 gives probability distributions computed like those for the simple
cusum. The distribution for independent errors is given only for « = 0.1. No advantage was found
for higher « values. The distributions for exponential smoothing set « in the forecasting model
equal to «=1—f in the tracking signal, since there was no advantage for doing otherwise.
Response curves and control limits for « = 0.1 with exponential smoothing are shown in Figure 2.

Table 6. Cumulative distribution of the smoothed-error tracking

signal

Cumulative T,

probability
N, 1) Exponential smoothing
errors

a=0.1 «=0.1 a=0.2 a=0.3

0.80 0.37 0.28 0.40 0.51
0.90 047 0.36 0.49 0.61
0.95 0.54 0.42 0.57 0.69
0.96 0.56 0.44 0.59 0.71
0.97 0.59 0.46 0.61 0.73
0.98 0.62 0.50 0.65 0.77
0.99 0.67 0.55 0.69 0.81

Advantages and disadvantages of the smoothed-error signal

Figure 3 shows why the smoothed-error signal is not recommended for higher « values. Three
response curves are plotted in Figure 3, originating at ARL = 50 periods on unbiased errors. The
curves correspond to o =0.1, 0.2, and 0.3. The ARLs at o = 0.2 are significantly larger than at
o =0.1 for levels of bias up to 2.0¢. The curve for a =0.3 is useless for error detection.

The reasons for deterioration in performance are complex. Increasing « causes the smoothed
error to increase faster than the smoothed MAD. This effect can be seen most clearly in Table 6,
where the distribution of 7, expands as « increases. The result is that the tracking signal finds it
harder to distinguish between bias and purely random fluctuations in the time series, Control limits
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Figure 2. Smoothed-error signal ARL performance (exponential smoothing, ¢ =1-— f=0.1)

must be expanded to allow for larger random fluctuations, but this delays the reaction to bias.

These conclusions support Brown (1982a).
Response curves arc not given for independent errors. Although the smoothed-error signal

works well on independent errors, the autocorrelation signal is a better choice. Like the simple
cusum, the performance of the smoothed-error signal based on the smoothed MAD is independent
of the variance of the time series. Control limits to use the expected value of MAD as a fixed
quantity in the smoothed-error signal are listed in the Appendix.

THE AUTOCORRELATION TRACKING SIGNAL

The easiest autocorrelation pattern to track is the first-order autoregression on successive errors,
e, = ¢e, .y, where ¢ is the true autoregressive parameter. Letting r be the estimate of ¢, ordinary
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Figure 3. Effects of increasing a on the smoothed-crror signal

least squares gives

,=Zt’.¢'.-. an

Z":z~1

The sums in(17)are equally weighted. To turn rintoa tracking signal, the sumscan be discounted
with . Following a similar development to that for the discounted version of 7, the discounted
least squares estimate of ¢ is

COV,=ee,_, +$COV,_, (18)
MSE, =e2_, + MSE, _, (19)
r, = COV,/MSE, (20)
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Table 7. Cumulative distribution of the auto-
correlation tracking signal: N(0,1) errors,

a=1-f=0.1.
Cumulative r,
probability
0.80 0.17
0.90 0.27
0.95 0.35
0.96 0.37
0.97 0.39
0.98 0.43
0.99 0.48
100
75
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Figure 4. Autocorrelation signal ARL performance [N(0, 1) errors, ¢ =1—f=0.1]
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Control limits for the autocorrelation signal

Table 7 lists the simulated probability distribution of r, on independent errors. The distribution is
symmetric about zero. Thus control limits can be set for both positive and negative autocor-
relation or for positive autocorrelation only, which corresponds to bias. Response curves to detect
bias in independent errors are shown in Figure 4 for « =1— f=0.1. Again, there was no
advantage for higher « values. Control limits based on the expected value of MSE as a fixed
quantity are given in the Appendix. If the MSE is smoothed, r, is independent of the variance of the
series.

Advantages and disadvantages of the autocorrelation signal

The autocorrelation signal is the only signal which can be used to track both positive and negative
autocorrelation in forecast errors. This ability is usefulin fitting adaptive filtering (Makridakis and
Wheelwright, 1978) or adaptive estimation procedure [AEP] (Carbone and Longini, 1977) models
to historical data. The parameters in these forecasting models are usually trained on historical data
until the MSE is minimized or the change in MSE between training cycles is less than some
minimum. If the autocorrelation signal is used to track the errors during each training cycle, it
provides an alternative criterion for stopping the training. The auto correlation signal gives a
good indication of the fit of the model to the last part of the time series. This may be a better
criterion for stopping the training than the MSE or autocorrelation computed with equal weights
over all the data.

The autocorrelation signal is not recommended for exponential smoothing models because of
the autocorrelation induced by the forecasting process. r, spends most of its time below zero on
exponential smoothing errors, uselessly chasing negative autocorrelation. If r, is negative when a
step change in the time series occurs, it will lag behind other signals in sounding the alarm unless
the step is quite large.

Another disadvantage of the autocorrelation signal applies to independent forecast errors as
well as errors from exponential smoothing. The product ee, _, is in the numerator of r,. Suppose e,
is the first in a run of large biased crrors and ¢, _, has an opposite algebraic sign. r, will not begin to
track the positive autocorrelation until the second error with the same sign has been obscrved.

PERFORMANCE COMPARISONS

All tracking signals were compared at control limits yielding ARLs of 25, 50 and 100 periods on
unbiased errors, both independent and from simple exponential smoothing. Comparisons were
made using both smoothed and fixed values of the variance (MAD, MSE, or ¢) of forecast errors.
Parametric tests for differences between means were used to test the ARLs at bias equal to 1.5 and
3.00. A simple non-parameteric test, the sign test (Siegel, 1956) on the direction of differences
between matched pairs of the ARLs, was also used. Both the parametric and the non-parametric
tests gave the same conclusions, It is unnecessary to review all the comparisons, since the ranking
of each signal was the same at all the ARLs on unbiased errors. Comparisons are given in Table 8
only for an ARL =50 periods on unbiased errors.

All differences are statistically significant at the 0.01 level in Table 7 except among those marked
with an asterisk. The signals are identified using the notation above, except that B indicates the
backward cusum. Control limits not available in the tables above may be found in the Appendix.

In category I of the table, the autocorrelation signal is the best choice if the errors are
independent and tracking signals must rely on a smoothed variance. If all signals use the expected
value of the variance of errors, the backward cusum is superior. Notice the effects of using the
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Table 8. Performance comparisons at ARL = 50 periods on unbiascd crrors (n = 1000 time scries)

Type of errors Variance Signal' ARL to detect bias?
1.5¢ 3.00
L. Independent N(0, 1) Smoothed r 42 2.1
T 4.8 2.9
C 8.6 6.6
I1. Expected value r 3.7 2.0*
T 39 2.0*
C 5.6 31
B 3.2 1.5
II.  Exponential smoothing Smoothed r 1.5 2:2¢
a=0.1 T 4.4 2.3*
C 49 3.0
V. Expected value T 1.7 2.0*
T 3.6** 1.8**
C 3.9 2.0*
B 3.7+ 1.7+
V. Exponential smoothing Smoothed r 26.0 5.1
a=0.2 T 1.7 24
C 4.9 33
VI Expected value r 17.5 2.
T 5.5 1.6*
C 3.5 1.8*
B 4.0 1.7*

! Signal definitions: r = Autocorrelation Signal; T = Smoothed Errur; C = Simple Cusum; B = Backward

Cusum.
2 All ARL differences are statistically significant at the 0.01 level, except among those marked with a *.

expected value of variance. The performance of the smoothed-error signal improves to a point
where it is identical to the autocorrelation signal at 3.00. Although the difference between the
autocorrelation and smoothed-crror signals is only 0.2 periods at 1.5a, this is still significant due to
the sample size.

Categorics I11 and 1V compare the signals for exponential smoothing at « = 0.1. The smoothed-
crror signal is the best choice with a smoothed variance. With the expected value of variance, there
is no difference between the smoothed error and backward cusum at cither level of bias. The
asterisks should be interpreted to mean that the simple cusum and the autocorrelation signal are
tied at 3.00, and that both significantly exceed the smoothed-error and backward cusum.

Categorics V and VI show the cffects of increasing a to 0.2, The simple cusum is almost three
periods better than the smoothed-error at 1.5¢ with a smoothed variance. But the smoothed-error
is almost one period better at 3.0¢. The large difterence at |.5¢ would probably be more important
to most users, making the simple cusum the best choice. The difference at 1.5¢ increases as «
increases. Although not shown, with « = 0.3 the simple cusum is thirteen periods better at 1.50.

Using the expected value of variance at « = 0.2, the simple cusum is superior at 1.5¢. Thereis no
significant difference among the three contenders at 3.0¢. The advantage of the simple cusum at
1.5aisillogical, since the simple cusum is a special case of the backward cusum. The difference may
be due to chance or the procedare used to find control limits. More precise limits would probably
reduce the difference.
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It is interesting to contrast these results to the only previous research involving tracking signal
comparisons, by Golder and Settle. They compared the backward cusum to the smoothed-error
signal for exponential smoothing. They concluded that the backward cusum should produce
smaller ARLs at all levels of bias than the smoothed-error signal. However, they used a fixed
expected value of variance in the backward cusum, while using the smoothed variance in the
smoothed-error signal. This is an unfair comparison. If both signals are based on the expected
value of variance, there is no difference at & =0.1 at any level of bias.

CONCLUSIONS

On the basis of ARL performance, the most convincing conclusion from this research is that
backward cusums do not appear to be worth the additional complexity and storage to monitor
exponential smoothing models. Identical performance can be had with such simpler tracking
signals. The simpler tracking signals can also be used without being forced to assume that the
variance of the time series is constant.

Less convincing is the conclusion that the smoothed-error signal is better than the simple cusum
ata = 0.1, Regardless of the statistical significance of the comparisons, the differencesin AR Ls are
still fess than one period. The stability of the simple cusum over all smoothing parameters is an
important advantage. This stability may persuade some forccasters to use the simple cusum at
a=0.1.

At higher « values, the performance of the smoothed-error signal deteriorates badly. Ata =0.2,
the smoothed-error signal is at best a marginal choice. At a = 0.3, the smoothed-error signal is
useless. These results are surprising, since the smoothed-error signal is widely used in practice.
Users of the smoothed-error signal at higher o values should consider switching to the simple
cusum.

If the time series has a constant variance, backvard cusums should be the best choice for
monitoring independent forecast errors. However, the advantage of the backward cusum over the
autocorrelation signal is only about 1/2 period at all levels of bias. Furthermore, the
autocorrelation signal is simpler and can be used without assuming a constant variance.

IMPLEMENTATION SUGGESTIONS

The simple cusum, smoothed-error, and autocorrelation signals are cheap and easy to use. The
only implementation problem is in determining starting values. Numerators should logically be
started at zero; denominators must never be started at zero. Estimates of the MAD or MSE,
however rough, should be used to start denominators. Otherwise, simulation results show that the
signals misbehave, giving numerous false trips until denominators build up to a reasonable value.
This observation supports Montgomery and Johnson (1976).

Once the tracking signals get under way and a trip occurs, numerators should be reset to zero
after adjusting the forecasting model. Unless numerators are reset, the signals will tend to stayin a
tripped position. It seems best to leave denominators alone after a trip and allow the smoothing or
discouniing process to wash out any bias.

FURTHER RESEARCH

A follow-on study is planned to evaluate several other quality control models for forecasting,
including the parabolic mask control system developed by Brown (1971, 1982a). Although this
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system requires storage of at least eight data points (previous simple cusum values), it uses a more
powerful statistical test for bias than the simpler tracking signals. Whether the additional storage
and complexity will pay off in improved ARL performance is an important question.
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APPENDIX: SIMULATION DETAILS

The random number generator used was the ‘RANDN’ function, a standard multiplicative con-
gruential generator supplied with the UNIVAC 1100 series computers. This generator has given
excellent results on benchmark tests for independence and uniformity of random numbers.
Documentation for this generator is available from Sperry UNIVAC, Systems Publications
Department, Post Office Box 500, Blue Bell, Pennsylvania 19422,

The probability distributions were tabulated using 1000 time series of N(0, 1) deviates. Each
series was 120 periods in length. All signals were started with numerators equal to zero and
denominators equal to expected values. The first forccast (for period 1) was set equal to zero for the
exponential smoothing distributions. Tracking signal values were recorded at the end of periods
21-120 and summed across all series. The random number generator was reseeded every 100 time
series or 12,000 observations. Seeds were obtained from the ‘IRAND' random integer generator,
also available on the UNIVAC 1100 series.

Average run lengths were computed using the same type of series, except cach was 500 periodsin
length. Starting values and the run-in period were the same as above. A constant bias was added to
periods 21-500 of each series. Run lengths were computed as the period number when the signal
first exceeded its control limit minus 20, giving a minimum run of 1 period and a maximum of 480.
Some signals occasionally ran for more than 400 periods on unbiased errors (at an ARL = 100),
although none ran up to the maximum. The random number generator was reseeded cvery 20
series or 10,000 observations,

The control limits for each tracking signal were searched until ARLs on unbiased errors within
1/2 period of 25, 50, and 100 periods were found. This was a conservative policy for stopping the
search. Comparisons showed that the ARL's on unbiased errors could vary by up to 3 periods with
little effect on the ARL's to detect bias.
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Table 9. Control limits based on expected values of MAD or MSE

Type of errors o ARL: unbiased crrors Control limits for

r T C
Independent N(O, 1) 0.1 25 0.17 045 7.2
50 0.29 0.54 9.5
100 0.40 0.62 13.0
Exponential smoothing 0.1 25 — 0.37 4.5
50 0.38 0.43 5.3

100 — 0.49 6.1
0.2 25 — 0.61 15

50 0.22 0.69 4.1
100 — 0.78 4.7

The run-in length of 20 periods was selected in order to replicate Golder and Settle’s results.
Samples using a run-in of 30 periods produced no significant differences in ARL's.

The expected values needed to start each tracking signal or to use a fixed variance in the signals
can be computed from Batty's work (1969). The expected values of MAD for exponential
smoothing of N(0, 1) deviates are 0.818, 0.841 and 0.865 for « =0.1, 0.2 and 0.3, respectively.
Expected values of the standard deviation of forecast errors are 1.026, 1.054, and 1.085. Control
limits based on expected values are given in Table 9.
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REFEREES' COMMENTS

Editor's note: When this paper was sent for review, we asked the referces if they would be willing to be listed as referees for
the paper and, in addition, would they be willing to have comments from their review published along with the paper. Five
refcrees were contacted. Four referces completed the review by the time deadline. All rated the paper highly, all were willing
10 list their names, and all were agreeable to having some of their comments published. Everctte Gardner was able to usc
many of the referees’ comments to revise the paper. From the remaining comments I have listed some that may be helpful to
the readers in assessing this study. The referees’ comments are presented here in alphabetical order. (JSA)

Everett Adam, Jr., School of Business, University of Missouri, Columbia, Missouri, 65211, U.S.A.

The author correctly judges the importance of the issue of changing forecasting model parameters once underlying demand
conditions change. Automatic monitorin3 of forecast crrors is an approach to this issuc and is most useful in computerized
forccasting systems where the technology of forecasting is well understood by management and operations rescarch
specialists. There are, however, many simple forccasting applications when forecast errors will not be automatically
monitored—a point the author fails to recognize. This research has important implications for suck users as they can be
encouraged to use the simplicity of a cumulative sum error measure, a mcasure that could be readily understood by most
users regardless of their forecasting and statistical sophistication.

The strength of this paper lies in (1) the relationship of this rescarch to previous studies in formulating the experimental
design and (2) the attention given to proper simulation design. The author carefully stated the main research hypotheses:
the evaluation of a varicty of automatic forecasting monitoring schemes for detecting biased forecasting errors. The
independent variables of interest are forecasting tracking signals, shown in Table 8. Various dependent variables are used,
but most primary results are interpreted using the average run length (ARL), such as in Table 8.

The details of the computer simulation—as well as side issues of a technical nature—can casily detract the reader from
the main hypotheses: selection of the ‘better’ tracking signal. The author is to be commended in the reporting of such
detail for those i 1 in technical issues and replication. However, this also detracts from the main purpose of the
manuscript. The author does pause for interpretation—as in comparison to Golder and Settle’s simulation and discussion
of advantages and disadvantages of each tracking signal—a nice feature of the paper.

This paper is well thought out in design, properly conducted and clearly written. Statistical analysis is appropriate for the
study and is correctly applied. The results favour simplicity in automatic monitoring of forecast errors—results that are
intuitively appecaling to managers.,

Robert G. Brown, Materials Management Systems, P. O. Box 332, Norwich, Vt. 05055, U.S.A.

‘The paper is similar to work that 1did a few years ago, but never polished for publication, so 1am happy to see these results.
Ienclose a few non-published papers to forward to the author and to supplement some of his work, which is quite a bit more
thorough than mine was,

"The importance of fast detection is that it takes some lead time to react to a detection. If it takes a long time to detect a
change, that delays the response.
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One problem of coupling the forecast revisions with the tracking signal is that when there is a step or ramp change in the
data, the forecasting process will increase the standard deviation quite rapidly.

Salcha B. Khumawala, College of Business, U. of Houston, Houston, Texas 77004, U.S.A,

The objective of the paper is to evaluate tracking signals and the author has accomplished this objective by doing
simulation. In doing so, he has done a good survey of the literature.

Carlos A. Valenzuela, Management Sciences Section, Air Products and Chemicals, Inc., P.O. Box 538, Allentown, Pa.
18105, U.S.A.

The papes met the standard of replicability. We managed to replicate part of the si tion work to pare two of the
tracking signals analysed by the author, i.c. the simple cusum and smoothed-crror tracking signals for vatues of alpha in the
range 0.1 t0 0.3 in the case of exponential smoothing and using the expected value of the variance. Our results were in close
agreement with those of the author. As a practitioner, I found this paper to be highly valuable.
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