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ABSTRACT

Despite the general acceptance of exponential smoothing, the choice of a specific
smoothing model is often a difficult problem. Previous research involving smoothing-
model comparisons and the penalties for selection of the wrong model has been limited.
This paper evaluates the performance of a representative group of smoothing models over
a variety of conditions in 9,000 simulated time series. Forecast-error results demonstrate
that a major disadvantage of adaptive smoothing models is their tendency to generate un-
stable forecasts, even during periods when mean demand itself is stable. Several trend-
adjusted smoothing models are shown to be robust forecasters, whether the time series ac-
tually display a trend or not.

Subject Areas: Forecasting and Production/Operations Management.

INTRODUCTION

Since the early research by Brown [2] {3], Holt [12], and Winters [20], fore-
casting models using exponential smoothing have gained widespread application
in industry. Exponential smoothing is simple and inexpensive, and there is no evi-
dence that the more complex and expensive forecasting models, such as Box-
Jenkins, consistently provide better short-range forecast accuracy (see [9], for ex-
ample, and the review in [1, ch. 7]).

Despite the general acceptance of exponential smoothing, the choice of a
specific smoothing model is often a difficult problem. As shown by the model
classifications in Figure 1, the decision maker must choose between models with
fixed smoothing constants and a class of adaptive models that vary smoothing
constants to shorten the response lag during periods of shifts in mean demand.
Each type of model can also be enriched with either fixed or adaptive trend ad-
justments.

Unfortunately, in large-scale applications of exponential smoothing, it may
not be feasible to make extensive model comparisons before selecting a specific
model. In most time series, it is certainly difficult to determine whether incipient
trends will actually develop or whether established trends will continue. Another
problem is that it may be impossible to predict whether shifts in mean demand or
trends will occur rapidly enough to require the use of adaptive smoothing models.
Previous research has not investigated the costs or forecast-error penalties asso-
ciated with selection of the wrong model. In particular, there appears to be a pre-
sumption in the literature that adaptive smoothing models are cost free (see [1]
and [5], for example).
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FIGURE 1
Classification of Exponential Smoothing Models

Smoothing Constant(s):
Fixed Adaptive

4. Trigg and Leach [18]

None 1. Simple Smoothing [3} 5. Whybark [19]

Trend
Adjustment:
6. Gilchrist [8]
Linear 2. Holt [12] 7. Montgomery [15]
3. Double Smoothing [3] | 8. Roberts and Reed [17]
9. Chow [4]

The purpose of this paper is to compare the performance of the nine smooth-
ing models in Figure 1 in order to establish some guidelines for model selection.
On the basis of tests using 9,000 simulated time series, the following conclusions
are offered. First, it is shown that adaptive smoothing models have a pronounced
tendency to generate unstable forecasts. The advantage of the adaptive models’
ability to react to sudden shifts in mean demand was offset by their tendency to
overreact to purely random fluctuations in demand. Second, the nonadaptive,
trend-adjusted models are shown to be robust forecasters under a variety of con-
ditions. On time series with a constant mean and no trend, they duplicate the per-
formance of the simple smoothing model. With appropriate smoothing con-
stants, they can also do as well as the adaptive models in reacting to sudden shifts
in demand.

MODELS TESTED

Although the models tested in this research are not a complete set of all
exponential-smoothing models that have been proposed, they are representative
of those most frequently encountered. The simple-smoothing, Holt, and double-
smoothing models were included since they appear to be widely used in practice.
The Whybark and the Trigg and Leach models were the two best performers in
Whybark’s comparison of adaptive models [19]. The four adaptive models with
linear trend adjustments are based on interesting concepts that deserve more re-
search to determine their suitability for practical applications. Other models were
excluded on the grounds that they deal with special cases or with seasonal de-
mand. In our opinion, exponential smoothing with seasonal demand deserves a
separate research effort because of the problems inherent in separating the sea-
sonal and trend components in many time series, the variety of types and
strengths of seasonal patterns that could be encountered, and the numerous
models that have been proposed [1] [2] [3] {8] [9] [12] [20]. The conclusions of the
present research do, however, apply to seasonally adjusted time series.
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The more complex models tested in this research are enrichments of the sim-
ple exponential smoothing model [3], a weighted-moving-average technique that
gives unbiased forecasts if the time series has a constant mean. The model is re-
peated below for reference:

A
Si=X+(1-a)S;_; 1)

where S; = estimate of the mean at period t and forecast for t+ 1,
X; =actual demand in t, and
o =smoothing constant, with Q<o <1.

For time series that display trend, the forecasts from the simple model will
respond to the trend, but with a lag. The Holt model [12] uses two fixed smooth-
ing constants to estimate the mean and slope, respectively, of the series at period
t, correcting for the lag. Equations (2), (3), and (4) below are followed in se-
quence each period to generate one-period-ahead forecasts:

S, = aXi+(1—a)S;_+R_)) Q)
Ry = BE;-S;_p+(1-BPR;_, 3)
Fii1 = S¢+Ry 4)

where S, is again an estimate of the mean of the series at period t, R, is an estimate
of the slope, and 3 is a separate smoothing constant for the apparent trend each
period, S;—S,_; F;, | adds the two estimates to obtain the forecast for t+ 1.

Another approach to forecasting a linear trend is the double-smoothing
model [3], which can be shown to be a special case of both the Holt model and the
method of discounted least squares [8]. Double smoothing requires only one fixed
smoothing constant and begins with equation (1) to generate the statistic S;. Next,
S, itself is smoothed to obtain S(:

SP=aS,+(1-a)s?, . )
The forecast is then

Ft+1=lzst—S§2>1+[l—°‘— S-S ©)
—

The first term in (6) is an estimate of the mean, and the second is an estimate of
the slope.

The two adaptive models without trend adjustments reflect different heuris-
tic approaches to the problem of shortening the response lag of the simple model
when rapid shifts in mean demand occur. The Trigg and Leach model [18] sets, in
each period, the value of « in equation (1) equal to the absolute value of a track-
ing signal:
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S thed Forecast Error
Tracking Signal = oo orecast rror . )
Smoothed Absolute Forecast Error

The two error values are smoothed with equations similar to (1). If the model is in
control, the value of (7), and hence «, will be small. If biased errors occur, o will
become larger, approaching 1 as a limiting case.

The Whybark model [19] also involves continuous evaluation of forecast er-
rors, but this model changes the smoothing constant only when errors exceed spe-
cified control limits. If the forecast error in a single period exceeds + 4 standard
deviations, or if two consecutive errors exceed + 1.2 standard deviations, then o
is increased from a base of .2 to .8 for one period, reduced to .4 for the next
period, and then reset to .2.

With both the mean and slope of the time series subject to rapid shifts, four
different approaches that have been suggested to the problem were tested. First,
Gilchrist [8] argues that adaptive control of both smoothing constants in the Holt
model can lead to unstable forecasts. He recommends adaptive control of the
smoothing constant for the mean only, perhaps using the Trigg and Leach ap-
proach, with a fixed smoothing constant for the slope. Hence the Gilchrist model
was formulated by using the tracking signal in (7) to generate « for the Holt
model in equation (2). Except for the adaptive a, the Gilchrist model is identical
to the Holt model.

Chow [4] has proposed a general methodology for adaptive control of
models with a single smoothing constant, such as the double-smoothing model.
In Chow’s methodology, we compute three forecasts each period for the double-
smoothing model. The first forecast is generated using a base value of «, and the
other using oy = +.05 and o =a—.05. If the smoothed mean absolute devia-
tion (MAD) of forecast errors using « is less than the MADs for ay and ¢, no
change is made. If the MAD from ay or o is lower, o is set to agy or . All
MAD:s are then reset to zero, new values of oy and ap are computed, and the
process begins anew.

Chow’s methodology was extended by Roberts and Reed [17], and later by
Montgomery [15], to include adaptive control of two or more smoothing con-
stants in the same model, in this case the Holt model. Both the Roberts and Reed
and the Montgomery models are special cases of orthogonal first-order experi-
mental designs. The Roberts and Reed model, also referred to as SAFT [17], is a
two-level factorial design that is initialized with a base combination of values for
a and 3, as well as high and low values (.05) around each base parameter. Each
period, five forecasts are computed—one for the base conbination and one for
each of the four possible combinations of high and low values. The base combi-
nation and high and low values are shifted together by fixed amounts (.05 is the
usual amount and was used in this research) whenever one of the forecasts for the
high and low values is significantly better than the base forecast.

The Montgomery model exploits the simplex experimental design technique
[15] to reduce the number of combinations of smoothing parameters evaluated
each period from five to three. The design matrix, D, containing the smoothing
parameter values is defined as a 3 x 2 matrix for the Holt model:
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D= an BZ (8)
ay B3

Each row of D is used to compute one forecast each period. The smoothing pa-

rameters in D are adjusted according to the following rules:

1. Denote by c; the current absolute forecast error for row i in D. Denote the jth
row of D vectorially by d;. Let the maximum value of ¢; occur for row d;.
Form a new matrix by deleting d{ from D and substituting the new row:

dj’*=(d1+d2+ d;)'—ZdJ, (9)

Calculate the forecast for the next period using the smoothing parameters

that are elements of the new row d{*.

2. Apply rule 1 unless a row has occurred in three successive matrixes without
being eliminated. Should this situation arise for the ith row, discard c; and
calculate the forecast for the next period using the smoothing parameters in
d;. Then apply rule 1.

3. Should c; be the maximum absolute current error in the nth matrix and c¥ be
the maximum absolute current error in the (n+ 1)s¢ matrix, do not return to
the nth matrix. Instead, move from the (n+ 1)st matrix by discarding the
second-largest absolute current error. This rule is designed to prevent oscilla-
tion.

Montgomery [15] reports some limited comparisons of the Roberts and Reed
model to his model. When the signal-to-noise ratio of the time series is relatively
small, the Roberts and Reed model seems to yield better forecasts. The Mont-
gomery model, however, appears t0 possess superior trend-following ability.
Both models can easily be extended to control three smoothing parameters, such
as those used for seasonal demand in the Winters model [20}].

RESEARCH DESIGN

Most previous research has dealt with empirical data [3] [4] [5] [7] or with a
small number of simulated time series {15] [16] [17] {18] [19]. Comparisons of
models with fixed smoothing constants to adaptive models have generally been
limited to the comparison of a simple smoothing model with an o value of .1 or .2
versus several adaptive models [4] [5] [15] [16] 1171 [19]. All time series used in
this research were simulated to control the characteristics of the series. All nine
models described were tested on all series, and a wide range of smoothing con-
stants was enumerated for the models with fixed smoothing constants.

Demand was generated by the following model:

X =a,+bt+e (10)
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where X, = demand for period t,
a, = level or mean of the series at period t,
b = slope, and
e, = independent observations on a population with a normal distribu-

tion, a mean of zero, and a constant variance of ¢2.

This model was used to generate 9,000 time series, each composed of seventy-five
observations, with the general characteristics shown in Table 1. The time series
can be divided into six categories. The time series in the first category had a con-
stant level (a,) and no trend (b=0). The group of 300 includes fifty replications
for each of six coefficients of variation (¢/a,): .01, .025, .05, .10, .20, and .30.
The second group is similar to the first, except that the level of the series was in-
creased by 25 percent at period 51.

In each of the next four groups, 2,100 time series were necessary to obtain
fifty replications of all forty-two combinations of the six coefficients of variation
above with the following ratios of trend per period as a fraction of the level at
time zero (b/ay): .005, .01, .02, .03, .04, .05, and .10. The coefficients of varia-
tion specified above hold at time zero only. The true coefficients of variation
become smaller each period as the trend is increased. Both the level and trend
were held constant in group three. The level was increased by 25 percent at period
fifty-one in group four while trend was held constant. Although it might be more
realistic to expect trend to change slowly over a period of time, the adaptive
models are designed to react to sudden changes in trend, which was investigated
in groups five and six. In group five, the level was held constant while the trend
was increased by 25 percent at period fifty-one. Finally, the level was held con-
stant in the last group while the trend changed sign in period fifty-one.

A variety of forecast-error information was collected for each model, includ-
ing the mean and variance of MAD, mean squared error (MSE), mean absolute
error, mean absolute percentage error, mean percentage error (bias), and the
number of tracking signal trips (the number of times each model’s forecast error
exceeded 95 percent probability limits). The first twenty-five periods of each time
series were used for initialization of all model parameters except smoothing con-
stants, which are discussed below. All models were started in period one with per-
fect knowledge of the mean at time zero, but with the assumption that the trend
was always zero regardless of the time series. After period twenty-five, all
forecast-error information was reset to zero to wash out the effects of initial con-
ditions, and forecast-error information was then collected for the next fifty
periods. This procedure also allowed twenty-five periods for the trend-adjusted
models to develop an estimate of the trend. A complete set of runs was made in
which the trend-adjusted models were started with perfect knowledge of the ini-
tial trend, but the forecast-error results were about the same as were obtained
with the twenty-five-period initialization.

Selection of smoothing constants for the nonadaptive models presented a
difficult problem in research design. Several alternatives were considered. One
common approach in forecasting research is to use the first portion of each time
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the table. As discussed below, the Holt model had nearly the same mean forecast
error as the simple-smoothing and Whybark models for the time series in these
two categories. Also, all the Whybark model successes were with coefficients of
variation of .01 and .025, which are perhaps unrealistically small.

Another perspective on the results is given by the MSE indices in Tables 2
and 3. To obtain this MSE index, the MSE of each model is divided by the MSE
of the expected-value model; this value is then multiplied by 100. Thus, an MSE
index value of 100 means that the MSE of the model in question is the same as the
MSE of the expected-value model. Each MSE-index value in the tables represents
the mean of fifty replications of time series with the coefficient of variation and
trend characteristics as shown. Tests for statistical significance were made using
standard analysis of variance procedures for differences among means. For each
category of time series (i.¢., row in the tabie), MSE-index values designated by as-
terisks are significantly smaller than those without asterisks in the same row at the
.01 probability level. Among each group of values with asterisks there is no sig-
nificant difference. Other comments about statistical significance in the discus-
sion below also refer to the .01 probability level.

In Table 2, under the conditions of a constant mean and no trend, there are
two important observations. First, there is a significant penalty in MSE for the
use of adaptive smoothing models. All models with fixed smoothing constants
gave significantly smaller MSE’s than the adaptive models, which tended to over-
react to purely random fluctuations in demand and gave unstable forecasts. Sec-
ond, there is little or no penalty for the use of models with trend adjustments on
time series without trend. The Holt model, for example, matched the perfor-
mance of both the simple-smoothing and the expected-value model. Double
smoothing was only marginally worse.

The relative standing of the models on the other measures of forecasting per-
formance (not reported herein) was about the same except for bias and the num-
ber of tracking signal trips. None of the models showed any significant bias, and
all models averaged less than one trip per time series. The relative performance of
the models was not sensitive to changes in the coefficient of variation of the time
series. As expected, the best smoothing constants were all low, in the .01 to .10
range, including the 3 parameter in the Holt model.

Table 2 shows that the models with fixed smoothing constants can do as well
or better than the adaptive models when there is a sudden step increase in mean.
Except for the Roberts and Reed model, there is no significant difference in MSE
among all models with the step increase in mean. The instability of the adaptive
models before and after the increase in mean offsets their advantage in reacting to
the increase.

The smoothing-constant values used by the nonadaptive models to follow
the increase in mean were moderate. The « values for the simple-smoothing and
Holt models were in the .20 to .40 range about 80 percent of the time with the
lower coefficient of variation. At the higher coefficient, they were in the .10 to
.30 range about 90 percent of the time. The Holt 3 value was always .01 or .0S.
The double-smoothing model used « values of .10 or .20 about 95 percent of the
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time at the lower coefficient of variation and always used values of .05 or .10 at
the higher,

Despite the increase in mean, the bias of most models was small at the lower
coefficient of variation, less than 1 percent for all models except the Montgomery
model. Curiously, the Montgomery model was biased high at + 1.6 percent. At
the higher coefficient, the nonadaptive models displayed significantly less bias
than the adaptive models. The simple-smoothing, Holt, and double-smoothing
models all had bias values around -1.5 percent. The Trigg and Leach and the
Whybark models were biased at -3.3 percent and -2.7 percent, respectively. The
Chow model was biased at -2.9 percent, the Roberts and Reed model at -3.7 per-
cent, and the Gilchrist model at --3.4 percent. The adaptive models were often un-
able to sort out the increase in mean from the purely random fluctuations in de-
mand, which caused their forecasts to lag the increase.

There was a slight advantage to the adaptive models in minimizing the num-
ber of tracking signal trips. The Trigg and Leach, Gilchrist, and Whybark models
averaged about .25 trips per series, or about 12.5 trips per fifty replications of
each coefficient of variation. The other models were all significantly larger than
this, although still in the range of .60 to 1.0 trips per time series.

Table 3 gives forecast errors in terms of the MSE index (as defined above)
for time series with linear trend. The adaptive models, with the exception of the
Chow model, again gave unstable forecasts. This instability was magnified when
the step changes in slope and intercept were introduced. Although only one ratio
of o to intercept is given, the relative positions of the models in MSE were about
the same under the other ratios tested as well. Relative model performances also
were not sensitive to the ratio of slope to intercept.

The best smoothing constant for the simple-smoothing model was always .50
or .75 to keep up with the trends. The Holt « value was usually in the .10 to .20
range, except when the step change in mean was introduced, where .30 was most
frequently used. The Holt 8 value was usually low, in the .05 to .10 range.
Double-smoothing « values ranged from .10 to .20.

No useful generalizations can be made about the performance of the models
on bias or tracking signal trips. The relative performance of all models varied
with the coefficient of variation and trend, although not in a consistent way. The
adaptive models definitely showed no significant advantage in reducing either
bias or the number of tracking signal trips in time series with linear trend.

CONCLUSIONS

For time series that display a reasonably stable mean, with no apparent
trend, the smoothing constant for the simple-smoothing model should be main-
tained in the .01 to .10 range. Higher values of the smoothing constant could be
used to hedge against the development of trends. A better alternative, however, is
to employ routinely one of the trend-adjusted models, since there is no apparent
penalty in forecast error if there is no trend. In cases of doubt about trend, a safe
course for the Holt model is to maintain both the « and 8 values in the .01 to .10
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range. With a definite trend, the recommended Holt o range is .10 to .20, with 8
set at .05 or .10. For double smoothing when there is doubt about trend, « should
be set at .05 or .10. Double smoothing with a definite trend should employ a
smoothing constant in the .10 to .20 range, the same values recommended by
Brown [3].

The best single-smoothing constant value in the ranges discussed above de-
pends on the stability of the time series for any model. The lower values should be
employed with the more unstable time series in order to filter out random fluctua-
tions in demand before generating forecasts.

The choice between the Holt and double-smoothing models is equivocal. Al-
though there was rarely any significant difference between the two models, the
Holt model was always by some margin better than the double-smoothing model.
This result is to be expected since the two models are quite similar, with the excep-
tion that the Holt model has the advantage of an additional parameter value to
forecast trend. The criterion of parsimony would favor double smoothing, how-
ever, since there is no need to bother with selection of a separate smoothing con-
stant for trend. Another advantage of the double-smoothing model is its prefer-
ence for a few « values, which considerably simplifies the problem of selecting the
best one.

For most time series in which some rapid shift in mean demand (and/or
trend) is predicted, we recommend against the use of adaptive smoothing models.
it is always difficult to predict that a rapid shift will occur. If the prediction is
wrong, the adaptive models will tend to mistake purely random fluctuations in
demand for shifts in the true mean demand. The result will be unstable forecasts
and forecast errors significantly higher than those of the nonadaptive models.
This conclusion contradicts previous research, particularly [1] and [5].

If the decision maker’s prediction that a rapid shift in demand will occur is
correct, the forecast-error penalty must be paid during periods of demand stabil-
ity both before and after the shift occurs. Another consideration is that the
double-smoothing model offers a simple and very effective alternative to hedge
against shifts in demand. With the smoothing constant set in the .05 to .20 range,
depending on the coefficient of variation of the time series, the double-smoothing
model is an extremely robust forecaster. The double-smoothing forecast errors
recorded in this research were never significantly higher than the adaptive
models, and they were usually significantly lower.

We cannot entirely rule out adaptive smoothing models on the basis of this
research. Especially perverse time series, such as the sequence of frequent, rapid
up and down shifts in mean demand tested by Whybark [19], were not investi-
gated. We do believe, however, that our conclusions will assist in the selection of
the proper smoothing model and parameters for time series likely to be encoun-
tered in practice. [Received: June 11, 1979. Accepted: December 12, 1979.]
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