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study provides  a  practical  guideline  for using  PLS  and  uses  examples  from  the  operations  management
literature  to demonstrate  how  the  specific  points  in  this  guideline  can  be  applied.  In addition,  our  study
reviews  and  summarizes  the  use  of  PLS  in  the  recent  operations  management  literature  according  to  our
guideline.  The  main  contribution  of this  study  is  to present  a practical  guideline  for evaluating  and  using
PLS  that  is  tailored  to the  operations  management  field.
perations management

. Introduction

Structural equation modeling (SEM) has been widely adopted in
ocial and psychological research. Operations management (OM)
esearchers have also used SEM to a great extent (Shah and
oldstein, 2006). To date, OM researchers have mainly adopted
ovariance-based SEM (CBSEM) methods, as exemplified by soft-
are such as LISREL, AMOS, and EQS. A less widespread technique

nown as partial least squares (PLS) has started to receive attention
rom OM researchers, as evidenced by the steady growth of PLS use
n the OM field.

As an SEM method, PLS has been subjected to much debate
ith respect to its pros and cons and under what circumstances

t should be adopted, if at all. Advocates of PLS claim that it has the
bility to estimate research models using small samples with no
trict distribution assumptions and can model both reflective and

ormative constructs within the same research model. PLS also sup-
osedly avoids the inadmissible solutions and factor indeterminacy
f CBSEM (Chin, 1998b). Researchers who oppose using PLS cite
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reasons such as bias in parameter estimates, its inability to model
measurement errors, and its piecemeal approach to estimating the
overall research model.

Despite the controversies and debate surrounding PLS, interest
in PLS among OM researchers seems to be growing. Although a
number of articles and book chapters have summarized PLS algo-
rithms, reviewed the use of PLS in a research field, or discussed
specific aspects of PLS applications such as sample size require-
ments and specifying formative constructs, we  are not aware of
any guideline for evaluating and using PLS that is tailored to the OM
audience. Empirical OM researchers face some unique challenges
such as relatively less developed empirical knowledge (Wacker,
1998), a lack of standardized measurement scales (Roth et al.,
2007), and the difficulty of obtaining large samples because OM
researchers typically examine phenomena at the firm or the sup-
ply chain level. These challenges may  limit the applicability of
CBSEM. Consequently, OM researchers should evaluate different
analysis techniques, particularly PLS if SEM is preferred. To help
OM researchers evaluate and use PLS, this study provides a practi-
cal guideline that outlines some of the important issues in using PLS.
We make this guideline specific to the OM field by using illustrative
examples from the OM literature.

We also summarize studies that use PLS to examine OM top-
ics in the fields of operations management, strategic management,

and organization theory from 2000 to 2011. We  review these arti-
cles with respect to their rationales for using PLS, sample sizes, the
use and assessment of formative constructs, bootstrapping proce-
dures, and the presentation of results. Our review provides a mixed
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icture of PLS use in the OM field, with some studies exhibiting
eficiencies or lack of familiarity with certain aspects of PLS and
thers demonstrating a reasonably good understanding of the PLS
ethod.
To the best of our knowledge, this study is the first to provide a

ractical guideline for using PLS that includes illustrative examples
rom the OM literature. This guideline can serve as a useful check-
ist for OM researchers in their evaluations regarding whether PLS
an meet their data analysis needs given their research objectives,
esearch model characteristics, sample sizes, and sample distribu-
ion. In addition, our study performs a thorough review of the use of
LS in the OM literature. This review highlights the common prob-
ems of using PLS and thus can help OM researchers avoid similar

istakes in future studies.

. A guideline for evaluating and using PLS

.1. PLS overview

PLS, originally introduced by Wold in the 1960s (Wold, 1966),
as recently revitalized by Chin in the information systems (IS)
eld (Chin, 1998a,b; Chin et al., 2003). In addition to OM,  PLS
as been used in management (e.g., Cording et al., 2008), market-

ng (e.g., Hennig-Thurau et al., 2006; White et al., 2003), strategic
anagement (Hulland, 1999), and other business research fields.

epresentative PLS software tools include PLS-Graph and SmartPLS,
mong others. Appendix 1 provides a non-technical introduction
o the PLS algorithm used by the most popular PLS software: PLS-
raph.  In-depth coverage of this PLS algorithm can be found in Chin
nd Newsted (1999).

One major difference between CBSEM and PLS is that the for-
er focuses on common factor variances and the latter considers

oth common and unique variances (i.e., overall variances). The
ifference between CBSEM and PLS is similar to that between com-
on factor analysis and principle component analysis (Chin, 1995).

BSEM specifies the residual structure of latent variables, whereas
n PLS, the latent variables are weighted composite scores of the
ndicator variables and lead directly to explicit factor scores.
PLS is also less well grounded in statistical theory than CBSEM to
he extent that it is considered statistically inferior (Chin, 1995). PLS
stimators do not have the precision of maximum likelihood (ML)
stimation (as used in CBSEM, such as LISREL) in achieving optimal

able 1
 guideline for evaluating and using PLS.

Issues to consider in the pre-analysis stage (2.2)
Should PLS be used as a data analysis method?

1.  Research objectives–exploratory study (2.2.1)
2.  Sample size and model complexity–Small sample sizes and highly complex resea
3.  Data property–data does not follow a multivariate normal distribution (2.2.3)
4.  Does the research model include formative constructs? (2.2.4)

If  PLS is used later in the data analysis stage:
5.  If formative constructs are involved:

•  Consider using items that summarize the meaning of the formative constructs 

•  Consider using reflective items that capture the essence of the formative constr
6.  Consider increasing the number of items per construct for reflective constructs (

Issues to consider in the analysis stage (2.3)
1.  Check the validity of formative constructs (2.3.1)
2.  Structural model estimation (2.3.2)

• Properly set up bootstrapping procedures that generate the significance level o
3.  Assess the research model (2.3.2)

• Check the model’s explanatory power and predictive validity (R2 , f2 , and Q2)
•  Perform power analysis and robustness check of the results

4.  Report results (2.3.3)
• Report software used to perform PLS analysis
•  Clearly state the rationales for using PLS (nature of the study, construct formula
•  Report item weights of formative indicators and item loading of reflective indic
•  Report statistical power of the analysis
• Report statistical significance and confidence interval of structural paths
Management 30 (2012) 467–480

predictions. When the multivariate normality assumption is met,
CBSEM estimates are efficient in large samples and support analyt-
ical estimates of asymptotic standard errors. In contrast, because
the construct scores of the latent variables in PLS are created by
aggregating indicator items that involve measurement errors, PLS
estimates of construct scores are biased and are only consistent
under the conditions of “consistency at large”, which refer to a large
number of items per construct, high communality, and large sample
sizes (Wold, 1982, p. 25). Because PLS lacks a classical parametric
inferential framework, parameters are estimated using resampling
procedures such as bootstrap and jackknife.

We suggest that OM researchers use CBSEM if its assumptions
are met. However, when the conditions for using CBSEM are not
met, researchers should evaluate the pros and cons of CBSEM and
PLS and should only use PLS if doing so proves more appropriate
overall. We  summarize our guideline for evaluating and using PLS in
Table 1 and discuss its specific points in detail in the rest of Section
2.

2.2. Issues to consider during the pre-analysis stage

Considerations of construct formulation and analysis tech-
niques should begin in the research design stage. To choose
between CBSEM and PLS, researchers should carefully consider the
objectives of their study, the state of the existing knowledge about
the research model to be tested, the characteristics of the research
model (i.e., is the research model extremely complex?), and the
conceptualization and formulation of the constructs (i.e., are con-
structs formative or reflective?).

2.2.1. Research objectives (confirmatory versus exploratory
studies)

PLS aims to assess the extent to which one part of the research
model predicts values in other parts of the research model. In
this sense, PLS is prediction-oriented (Fornell and Bookstein, 1982;
Vinzi et al., 2010). In contrast, CBSEM estimates the complete
research model and produces fit statistics that explain how well
the empirical data fits the theoretical model (i.e., minimizing

the discrepancy between the covariances of sample data and
those specified by the theoretical model). As such, CBSEM is
parameter-oriented because it seeks to create parameter estimates
that are close to population parameters. This difference suggests

rch models (2.2.2)

for subsequent construct validity analysis (2.2.4)
uct
2.2.5)

f parameter estimates

tion and data characteristics)
ators
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hat CBSEM is more appropriate when there are well-established
heories underlying the proposed research model. In such a circum-
tance, researchers can use CBSEM to obtain population parameter
stimates that explain covariances with the assumption that the
nderlying model is correct. However, if the overall nomological
etwork has not been well understood and researchers are trying
o explore relationships among the theoretical constructs and to
ssess the predictive validity of the exogenous variables, then PLS
an be considered.

An illustrative research model that can be tested using CBSEM
s the theory of quality management underlying the Deming man-
gement method, as described in Anderson and Rungtusanatham
1994).  The main tenets of Deming’s management methods are
ell accepted by both scholars and practitioners. Anderson and
ungtusanatham (1994) articulate the theoretical relationships
mong the constructs in the research model based on the relevant
iterature, an observation of industry practices, and the results of

 Delphi study that assembled a panel of industry and academic
xperts in quality management. Their research model has since
een subjected to empirical validation (Anderson et al., 1995). To
valuate whether their research model still holds from a theoret-
cal standpoint, a study should be confirmatory in nature because
he theory underlying the research model to be tested is well-
stablished. Thus, a main objective of the data analysis should be
o find out how well the data collected from the current business
nvironment fit the research model. CBSEM would be appropriate
or this end, assuming that the other requirements for CBSEM (e.g.,
ample sizes and sample distribution) are met.

An example of when PLS might be more appropriate for testing a
esearch model can be found in Cheung et al. (2010).  The objective
f their study is to explore the extent to which relational learn-
ng is associated with the relational performance of both the buyer
nd the supplier in a supply chain dyad. These relationships had
eldom been examined in the literature at the time, and there was
o well-established theory that could directly serve as the theo-
etical foundation of their hypothesized relationships. As such, a
ain objective of the analysis should be to identify the predic-

ive power of the exogenous variables (a list of proposed drivers
f relational performance) on the endogenous variables (relational
erformance), making PLS a potentially appropriate analysis tool.

.2.2. Sample sizes and model complexity

.2.2.1. Sample sizes. Sample sizes are an important consideration
n SEM because it can affect the reliability of parameter estimates,

odel fit, and the statistical power of SEM (Shah and Goldstein,
006). The literature proposes different sample size requirements
or CBSEM and PLS. Common sample size rules of thumb for CBSEM
uggest examining the ratio of the sample size to the total number
f parameters estimated, whereas sample size rules of thumb for
LS usually only suggest examining the ratio of the sample size to
he most complex relationship in the research model.

Commonly used rules of thumb for determining sample size
dequacy in CBSEM include “establishing a minimum (e.g., 200),
aving a certain number of observations per measurement item,
aving a certain number of observations per parameters estimated
Bentler and Chou, 1987; Bollen, 1989), and through conducting
a] power analysis (MacCallum et al., 1992)” (Shah and Goldstein,
006, p. 154). With respect to PLS, the literature frequently uses
he “10 times” rule of thumb as the guide for estimating the min-
mum sample size requirement. This rule of thumb suggests that
LS only requires a sample size of 10 times the most complex
elationship within the research model. The most complex relation-

hip is the larger value between (1) the construct with the largest
umber of formative indicators if there are formative constructs

n the research model (i.e., largest measurement equation (LME))
nd (2) the dependent latent variable (LV) with the largest number
Management 30 (2012) 467–480 469

of independent LVs influencing it (i.e., the largest structural equa-
tion (LSE)). Researchers have suggested that the “10 times” rule of
thumb for determining sample size adequacy in PLS analyses only
applies when certain conditions, such as strong effect sizes and high
reliability of measurement items, are met. Thus, the literature calls
for researchers to calculate statistical power to determine sample
size adequacy (Marcoulides and Saunders, 2006).

We use the theoretical framework underlying Deming’s man-
agement theory (Anderson et al., 1995) as an illustrative example
to explain the “10 times” rule of thumb for evaluating sample size
adequacy when using PLS. We are not suggesting that PLS is more
appropriate for testing the above theoretical model. Because the
research model includes only reflective constructs, the most com-
plex relationship is the dependent LV with the largest number of
independent LVs influencing it, which would be 2 in this research
model. Thus, the minimum sample size requirement can be as low
as 20 (10 × 2 = 20) when PLS is used to test the research model,
assuming certain conditions are met  (e.g., adequate effect sizes, a
sufficiently large number of items per construct, and highly reliable
constructs). However, if we follow the rules of thumb for CBSEM
sample size requirements, which typically range from 5 (Tanaka,
1987) to 20 (Bentler and Chou, 1987) times the number of param-
eters estimated, the sample size requirement for testing the same
model using CBSEM would be 370–1480 observations (the num-
ber of parameters estimated is 74 in the research model, such that
74 × 5 = 370 and 74 × 20 = 1480). We  note that the above methods
for determining sample size requirements are rules of thumb that
researchers can use in the pre-analysis stage to make a rough esti-
mate. Researchers still should perform a power analysis to formally
determine whether the sample size is adequate for using PLS or
CBSEM.

A point related to the sample size issue is the questionnaire
design. Because increasing the number of indicators per construct is
one way  to reduce the bias in the parameter estimate for reflective
constructs in PLS, researchers can consider including a large num-
ber of items for reflective constructs in the survey questionnaire if
they anticipate that PLS may  be used in the analysis stage. It should
be noted that researchers often face a tradeoff between response
rate and questionnaire length, and that increasing the number of
items per construct can adversely affect a survey’s response rate.
Nevertheless, we suggest that researchers take the number of items
per construct into consideration during the research design stage.

2.2.2.2. Model complexity. The overall complexity of the research
model has a direct impact on sample size adequacy in CBSEM,
but not necessarily in PLS. Considerations such as multi-level
analyses, multiple endogeneity, mediation analyses, moderation
analyses, and higher-order factors can increase the total number
of parameter estimates, possibly leading to model identification
and convergence issues in CBSEM. For instance, in a multi-level
analysis where group size is small and intra-cluster correlation is
low, the between-group part of the model may  yield an inadmissi-
ble solution in CBSEM (Hox and Maas, 2001). A moderation effect
in SEM is typically tested via a new construct that uses indicators
computed by cross-multiplying the standardized items of each con-
struct involved in the moderation effect (Chin et al., 2003). This
cross-multiplying can potentially generate a large number of indi-
cators, thus increasing the model complexity. Tests for mediation
effects can also potentially increase the sample size requirement
(Kenny et al., 1998).

Unlike CBSEM, PLS uses an iterative algorithm to separately
solve blocks of the measurement model and subsequently estimate

the structural path coefficients. This iterative method successively
estimates factor loadings and structural paths subset by subset. As
such, the estimation procedure employed by PLS allows researchers
to estimate highly complex models as long as the sample size is
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dequate to estimate the most complex block (relationship) in the
odel. The literature suggests that PLS is appropriate for testing

he magnitude of moderation effects (Helm et al., 2010) and for
erforming between-group comparisons (Qureshi and Compeau,
009). PLS is more likely to detect between-group differences than
BSEM when data are normally distributed, sample size is small,
nd exogenous variables are correlated. Thus, we suggest that
esearchers consider PLS when the research model is extremely
omplex and may  lead to estimation problems in CBSEM.

.2.3. Data properties
CBSEM generally requires a multivariate normal distribution

f the sample data. Non-normal data may  lead to underesti-
ated standard errors and inflated goodness-of-fit statistics in

BSEM (MacCallum et al., 1992), although these effects are less-
ned with larger sample sizes (Lei and Lomax, 2005). In social
cience research, data often do not follow a multivariate normal
istribution, thus limiting the applicability of CBSEM in some cir-
umstances. Compared with CBSEM, PLS generally places less strict
ssumptions on data distribution. PLS also does not require a mul-
ivariate normal data distribution. Because PLS is regression-based,
t generally only requires the data distribution assumptions of the
rdinary least squares (OLS) regression. PLS “involves no assump-
ions about the population or scale of measurement” (Fornell and
ookstein, 1982, p. 443) and consequently works with nominal,
rdinal, and interval scaled variables.

Therefore, if violations of data distribution assumptions could
otentially undermine CBSEM estimation, researchers should con-
ider using PLS. A close examination the results of both CBSEM and
LS provides a useful robustness check of the analysis.

.2.4. Specifying formative constructs
Although the presence of formative constructs does not pre-

lude the use of CBSEM, CBSEM generally lacks the ability to
stimate research models with formative constructs. Applying
BSEM to research models with formative constructs often results

n unidentified models (Jarvis et al., 2003). This is because using
ormative indicators in CBSEM implies zero covariance among
ndicators, and the model can only be solved when it includes a sub-
tantial number of additional parameters (MacCallum and Browne,
993). Because the algorithms performed in a PLS analysis generally
onsist of a series of ordinary least squares analyses (Chin, 1998b),
dentification is not a problem for recursive models (i.e., models

ithout feedback loops). This feature gives PLS an advantage in
stimating research models with formative constructs. PLS can esti-
ate research models with both reflective and formative constructs
ithout increasing model complexity (Chin, 1998a; Vinzi et al.,

010). Therefore, Diamantopoulos and Winklhofer (2001) suggest
sing PLS when formative indicators are present in the research
odel. Because the presence of formative constructs in the research
odel typically leads researchers to consider PLS, we  include spec-

fying and evaluating formative constructs as a part of our guideline
or using PLS.

The fundamental difference between reflective and formative
onstructs is that the latent variable determines the indicators for
eflective constructs whereas the indicators determine the latent
ariable for formative constructs (see Fig. 1). Researchers can refer
o Chin (1998b), Diamantopoulos and Winklhofer (2001) and Petter
t al. (2007) for in-depth coverage of reflective versus formative
onstructs.

If the research model includes formative constructs, researchers
hould carefully consider the conceptual domain of each forma-

ive construct and make sure that measurement items capture each
spect and the entire scope of the conceptual domain. Unlike reflec-
ive constructs, formative constructs “need a census of indicators,
ot a sample” (Bollen and Lennox, 1991, p. 307). “Failure to consider
Fig. 1. Reflective and formative constructs.

all facets of the construct will lead to an exclusion of relevant indica-
tors [and] thus exclude part of the construction itself, [therefore],
breadth of definition is extremely important to causal indicators
[i.e., formative indicators]” (Nunnally and Bernstein, 1994, p. 484).
Because content validity is particularly important for formative
constructs, Petter et al. (2007) suggest making content validity
tests a mandatory practice for assessing formative constructs. As
part of the effort to establish the content validity of formative
constructs, we recommend that researchers conduct a thorough lit-
erature review related to the construct’s conceptual domain. When
literature is not available or does not support the construct validity,
qualitative research methods such as expert interviews, panel dis-
cussions, and Q-sorting should be used to ensure content validity
(Andreev et al., 2009).

Another potential problem is misspecifying a formative con-
struct as a reflective construct. A review of SEM in OM research
suggests that 97% of all studies model latent constructs as reflective
(Roberts et al., 2010). The authors argue that the small proportion
(3%) of studies that model formative constructs under-represents
the true theoretical nature of OM constructs. Petter et al. (2007)
report that 29% of the studies published in MIS  Quarterly and
Information Systems Research, two  leading IS journals, have mis-
specification problems. When a formative construct is specified as
a reflective construct, it may  lead to either Type I or Type II errors. As
a result, the structural model tends to be inflated or deflated (Jarvis
et al., 2003). Jarvis et al. (2003) provide a four-point guideline for
determining whether a construct should be reflective or formative:
(1) direction of causality, (2) interchangeability of the indicators, (3)
covariation among the indicators, and (4) nomological network of
the indicators.

We use operational performance as an illustrative example of a
formative construct because it is a multi-dimensional concept that
typically includes cost, quality, delivery, and flexibility. In the OM
literature, operational performance is modeled as reflective con-
structs in some studies (e.g., Cao and Zhang, 2011; Inman et al.,
2011). However, it is more appropriate to model operational per-
formance as a formative construct if one follows the guidelines
set by Jarvis et al. (2003) and Diamantopoulos and Winklhofer
(2001). First, the direction of causality should be from the indi-
cators to the construct because a firm’s operational performance is
defined collectively by its cost, quality, delivery, and flexibility per-
formance rather than the opposite (Jarvis et al., 2003). Conceptually,
researchers cannot expect that an underlying latent construct of
operational performance causes cost, quality, delivery, and flexi-
bility performance to all change in the same direction and with
the same magnitude. Second, the measurement items of a partic-
ular operational performance dimension are not interchangeable
with items measuring other performance dimensions. For instance,
items measuring manufacturing flexibility cannot be replaced by
items measuring cost, quality, or delivery, and vice versa. Third, a
change in one performance indicator is not necessarily associated
with changes in other indicators. For instance, conceptually, an item

measuring flexibility does not have to correlate with an item mea-
suring manufacturing costs. Fourth, with respect to nomological
network, one cannot expect that different operational performance
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tems will be impacted by the same set of antecedents or lead to
he same set of consequences. Empirical evidence suggests that dif-
erent antecedents may  impact various operational performance
imensions to different extents (Swink et al., 2007). Similarly,
he effect of various operational performance dimensions on out-
ome variables such as business performance can vary considerably
White, 1996).

Because a formative construct by itself is under-identified,
esearchers should consider including two or more reflective indi-
ators in each formative construct. These reflective indicators are
ot usually a part of the research model to be tested, but rather
re used as an external criterion to assess the formative construct
alidity (Diamantopoulos and Winklhofer, 2001). The additional
eflective indicators and the set of formative items together allow
esearchers to estimate a multiple indicators and multiple causes
MIMIC) model (Bollen and Davis, 2009; Diamantopoulos and

inklhofer, 2001) to evaluate the external validity of formative
onstructs. More details about estimating a MIMIC  model are pro-
ided in Section 2.3.1.

.3. Issues to consider in the analysis stage

.3.1. Measurement validity assessment
CBSEM has a set of well-established procedures for evaluating

eflective constructs. Researchers can examine item loadings and

ross-loadings and assess various measures of construct reliability
nd validity. Typical measures of construct reliability include Cron-
ach’s alpha and composite reliability. Convergent validity can be
ssessed by checking whether the average variance extracted (AVE)

able 2
alidity tests of formative constructs.

Aspects of validity Description Test 

Item-level tests The contribution of
each item to the
formative
construct

Formative item
weights should be
large and significant

Check 

signific
averag
weight
2009)

Multicolinearity
between items

A high multicolinearity
suggests that some
indicators may  be
redundant

Check 

factor (

Construct-level tests Nomological
validity

The relationship
between the formative
construct and other
theoretically related
constructs in the
research model should
be strong

Check 

coeffici
format

External validity The formative index
should explain the
variance of alternative
reflective items of the
focal construct to a
large extent
(Diamantopoulos and
Winklhofer, 2001)

Check 

factor l
Estima
indicat
causes
(Bollen

Discriminant
validity

Compare item-to-own-
construct-correlations
with item-to-other-
construct-correlationsa

(Klein and Rai, 2009)

Format
correla
compo
to a gre
with th
of othe

a This method was  recently proposed in the literature (Klein and Rai, 2009) and is not a
2009)  do not provide detailed guidance on how to apply this test.
Management 30 (2012) 467–480 471

of the construct is greater than 0.50 (at the construct level) and
the item loadings are greater than 0.70 and statistically significant
(at the item level). Discriminant validity is usually examined by
comparing the square root of AVE with the correlations between
the focal construct and all other constructs. In PLS, researchers can
use similar procedures to evaluate the reliability and validity of
reflective constructs. Chin (1998b) recommends that researchers
examine Cronbach’s alpha, composite reliability, and AVE to assess
reflective construct properties. Because OM researchers who have
used CBSEM are generally familiar with techniques for assessing
measurement models that involve only reflective constructs, our
discussion below focuses on techniques for assessing formative
constructs.

Although widely accepted standard procedures for evaluating
formative construct properties have yet to emerge, researchers
generally agree that the criteria used to evaluate reflective con-
structs should not apply to formative constructs (Diamantopoulos
and Winklhofer, 2001). As Bollen (1989, p. 222) notes, “Unfortu-
nately, traditional validity assessments and classical test theory do
not cover cause [formative] indicators.” Likewise, Hair et al. (2006,
p. 788) suggest that “because formative indicators do not have to
be highly correlated, internal consistency is not a useful validation
criterion for formative indicators.”

We summarize various procedures for evaluating formative
constructs in Table 2. First, researchers should check multi-

collinearity of formative indicators (items). High multicollinearity
suggests that some items may  be redundant. To detect multi-
collinearity, researchers can examine the correlation matrix, the
condition index, and the variance inflation factor (VIF). Examining

Recommended criterion Note

the sign, magnitude,
ance, range, and
e of formative item
s (Klein and Rai,

When N orthogonal
formative items are
specified, the ceiling on
their average weight is sqrt
(1/N) – the average weights
should not be too far below
the ceiling

The weight, rather than
the loading of the
formative items should
be examined (Chin,
1998b)

variance inflation
VIF)

A VIF below 3.3 indicates
the absence of
multicollinearity
(Diamantopoulos and
Siguaw, 2006)

Researchers should be
careful about deleting
items because doing so
can change the
conceptual domain of
the construct

the structural path
ents related to the
ive construct

the reflective item
oadings
te a multiple
ors and multiple

 (MIMIC) model
 and Davis, 2009)

The reflective indicators
should have a significant
and large factor loading
The MIMIC model should
have a good model fit

Researchers need to
should develop
reflective items for the
formative construct,
mainly for checking
construct validity.
MIMIC  should be fitted
using CBSEM
(Diamantopoulos and
Winklhofer, 2001)

ive items should
te with their
site construct score
ater extent than
e composite score
r constructs

s well-established as the other validity tests listed in the above table. Klein and Rai
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Fig. 2. 

he VIF is a frequently used means of detecting multicollinearity.
General statistics theory suggests that multicollinearity is a con-
ern if the VIF is higher than 10; however, with formative measures,
ulticollinearity poses more of a problem” (Petter et al., 2007, p.

41). Diamantopoulos and Siguaw (2006) suggest a more conser-
ative criterion of VIF at 3.3. Most PLS software packages do not
rovide VIF outputs. Calculating the VIF of formative items involves
n OLS regression with the formative construct score as the depen-
ent variable and all of its formative items as the independent
ariables. Gefen and Straub (2005) demonstrate how to obtain con-
truct scores and Mathieson et al. (2001) provide a useful example
f reporting multicollinearity.

Petter et al. (2007) suggest that if some of the formative items
xhibit high multicollinearity, researchers can (1) model the con-
truct with both formative and reflective items in which highly
orrelated items are specified as reflective, (2) remove the highly
orrelated items, (3) collapse the highly correlated items into a
omposite index (e.g., Boßow-Thies and Albers, 2010), or (4) con-
ert the construct into a multidimensional construct, in which
ighly correlated items are specified as reflective indicators of a

atent variable that serves as a formative indicator of the origi-
al construct. Regarding the second method, researchers should be
ery careful in deleting formative items and ensure that the concep-
ual domain of the formative construct will not change if they delete
tems with high multicollinearity. We  suggest that OM researchers
heoretically and semantically assess whether the items exhibiting
igh multicollinearity are redundant, and then follow the guide-

ines provided by Petter et al. (2007) to deal with multicollinearity
mong formative items.

Second, researchers should evaluate each formative item’s con-
ribution or importance to the formative index (i.e., the formative
onstruct score). A formative index is a composite created by aggre-
ating the formative items of a construct using their respective item
eights. This assessment involves examining each formative item’s
eight, sign, and magnitude (Götz et al., 2010). For formative items,

esearchers should examine item weight rather than item load-
ng. The item weight should be statistically significant, the sign of
he item weight should be consistent with the underlying theory,
nd the magnitude of the item weight should be no less than 0.10

Andreev et al., 2009).

Third, researchers should check the external validity of forma-
ive constructs. To establish external validity, researchers should
ypically assess a MIMIC  model (Diamantopoulos and Winklhofer,
 tests.

2001). To conduct MIMIC, researchers should use at least two  reflec-
tive items that capture the essence of the formative index, as shown
in Fig. 2a (see example in Diamantopoulos and Winklhofer, 2001).
Alternatively, they can create a reflective construct that serves as
a “shadow” of the formative construct (i.e., the reflective construct
should capture the essence of the formative construct). The MIMIC
model can then be estimated using the formative and the shadow
construct (Fig. 2b, and see example in Cenfetelli and Bassellier,
2009). Note that the MIMIC  model should be estimated using
CBSEM for each formative construct and its related reflective items
or shadow constructs. This is because researchers should examine
overall model fit statistics to determine the validity of the formative
construct and such statistics are only available in CBSEM. However,
the complete research model may  still need to be estimated using
PLS if the model is under-identified in CBSEM.

Nomological validity is manifested in the magnitude and signif-
icance of the relationships between the formative construct and
other constructs in the research model, which are expected to
be strong and significant based on theory and previous research.
Several authors suggest testing the nomological validity of a for-
mative construct by correlating its formative items with variables
with which the formative construct should theoretically be corre-
lated (e.g., Bagozzi, 1994; Diamantopoulos and Winklhofer, 2001).
Ruekert and Churchill (1984) and McKnight et al. (2002) provide
examples of nomological validity analysis.

Finally, researchers can examine the discriminant validity of a
formative construct. Klein and Rai (2009) propose that for a for-
mative construct, the intra-construct item correlations should be
greater than the inter-construct item correlations. Furthermore,
formative items should have stronger correlations with their com-
posite construct score than with that of other constructs. We  note
that these methods for establishing the discriminant validity of for-
mative constructs are not yet well-established in the literature, and
therefore should be adopted at researchers’ discretion.

2.3.2. Structural model estimation and assessment
Because PLS does not assume a multivariate normal distribu-

tion, traditional parametric-based techniques for significance tests
are inappropriate. PLS uses a bootstrapping procedure to esti-

mate standard errors and the significance of parameter estimates
(Chin, 1998b). The default setting in the most popular PLS software,
PLS-Graph 3.0, is to resample 100 times. The default setting for boot-
strapping resampling in another popular PLS software, SmartPLS, is
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o resample 200 times. The number of bootstrap samples recom-
ended in the literature has increased. For instance, Chin (1998b)

ecommends resampling 500 times. Given the computing power
vailable today, as many bootstrapping samples as possible (>500)
hould be generated. Although increasing the number of bootstrap-
ing samples does not increase the amount of information in the
riginal data, it reduces the effect of random sampling errors that
ay  arise from the bootstrap procedure. Another issue pertaining

o bootstrapping is the sample size of each bootstrapped resam-
ling. The sample size of bootstrap resampling is usually set to
qual the sample size of the original data from which the boot-
trap samples are drawn (Chung and Lee, 2001). Some researchers
rgue that in certain circumstances the bootstrapping sample size
an be smaller than the sample size of the original data, especially
hen the original sample is large (Andreev et al., 2009, p. 8).

Researchers should consider performing bootstrapping using
ifferent resampling schemes to verify the results, as in Ahuja et al.
2003) and Rosenzweig (2009).  For instance, in Ahuja et al. (2003),
he authors used a default bootstrapping resampling setting of 100
imes in a PLS-Graph and verified the results using settings of 250
nd 500 times. After performing bootstrapping procedures, several
echniques are available for assessing the structural model in PLS.

First, researchers should check the sign, magnitude, and signifi-
ance of each path coefficient, all of which should be consistent with
heory. To evaluate the predictive power of the research model,
esearchers should examine the explained variance (R2) of the
ndogenous constructs. Using R2 to assess the structural model is
onsistent with the objective of PLS to maximize variance explained
n the endogenous variables. The literature suggests that R2 val-
es of 0.67, 0.33, and 0.19 are substantial, moderate, and weak,
espectively (Chin, 1998b).

Second, researchers can evaluate the effect size of the predictor
onstructs using Cohen’s f2 (Cohen, 1988). The effect size is com-
uted as the increase in R2 relative to the proportion of variance that
emains unexplained in the endogenous latent variable. According
o Cohen (1988),  f2 values of 0.35, 0.15, and 0.02 are considered
arge, medium, and small, respectively.

Third, researchers can assess the predictive relevance. Chin
1998b) argues “the prediction of observables or potential observ-
bles is of much greater relevance than the estimator of what are
ften artificial construct-parameters” (p.320). Stone–Geisser’s Q2

Geisser, 1975; Stone, 1974) is often used to assess predictive rele-
ance and can be calculated using the blindfolding procedure, which
s available in most PLS software packages. If Q2 > 0, then the model
s viewed as having predictive relevance.

Fourth, post hoc power analyses should be conducted to check
f the power of the research study is acceptable (>0.80). The effect
ize, reliability, the number of indicators, or other factors may  affect
he statistical power of a hypothesis test. Simply applying the “10
imes” rule of thumb may  lead researchers to underestimate the
ample size requirement in certain situations, such as small effect
izes and low reliability of measurement items. In other words,
pplying the “10 times” rule of thumb without performing a for-
al  power analysis may  lead to hypothesis tests with low power

Goodhue et al., 2006; Marcoulides and Saunders, 2006). Based
n the results of a simulation study, Goodhue et al. (2006) argue
hat the “10 times” rule of thumb for PLS sample size requirement
hould only be used when effect sizes are large and constructs are
ighly reliable. Another Monte Carlo simulation by Marcoulides
nd Saunders (2006) also shows that the sample size requirement
o achieve a 0.80 statistical power increases substantially as fac-
or loadings and item inter-correlations decrease. Considering that

M studies tend to have relatively small effect sizes (Verma and
oodale, 1995), a power analysis is particularly needed.

Fifth, although PLS does not provide overall fit statistics,
esearchers have recently begun to compute Goodness of Fit (GoF)
Management 30 (2012) 467–480 473

when using PLS (Tenenhaus et al., 2005), which considers the
quality of the complete measurement model in terms of average
communality (i.e., AVE) and the quality of the complete structural
model in terms of average R2. The average of communality is com-
puted as a weighted average of all of the communalities using
weights as the number of manifest variables in each construct with
at least two  manifest variables.

Finally, we  recommend that researchers conduct alternative
analyses to check the robustness of the results. Previous empirical
research has compared the parameter estimates of the alternative
analysis to evaluate whether the results are similar to those gener-
ated by the PLS analysis. For instance, Klein and Rai (2009) compare
the ordinary least squares (OLS) path analysis results with the PLS
results, and Barroso et al. (2010) and Vilares et al. (2010) compare
maximum likelihood CBSEM results with the PLS results. If PLS is
chosen mainly because the data distribution assumption is not met,
it is helpful for researchers to run CBSEM and compare the results of
CBSEM with those of PLS. Even with the violation of data distribu-
tion assumptions, the maximum likelihood estimation procedure
employed by CBSEM can be quite robust and may  still produce rea-
sonably good estimates of the population parameters (Chin, 1995).

2.3.3. Reporting and interpreting results
First, researchers should explain in detail their reasons for using

PLS. Rather than present the potential advantages of PLS in general,
researchers should explain how PLS can help them overcome spe-
cific challenges they face that may  render CBSEM inappropriate,
such as inadequate sample sizes or non-normal data. Researchers
should also be careful not to make generalized statements regard-
ing the ability of PLS to estimate research models using small
samples that may  violate the multivariate normality assumption.

Second, researchers should report the PLS software used. Explic-
itly reporting the PLS software used enables researchers to replicate
previous research, which is important for providing support to
worthwhile theories (Tsang and Kwan, 1999).

Third, researchers should adequately report the results needed
to assess the predictive power of the research model. Because PLS
emphasizes predictive ability, the explained variance (R2) for all
endogenous constructs in the research model should be reported
(Hulland, 1999). For the formative constructs, researchers should
report item weights, which represent each formative item’s con-
tribution to the formative index. “The interpretation of LVs [latent
variables] with formative indicators in any PLS analysis should be
based on the weights” (Chin, 1998b,  p. 307). We  also recommend
that researchers report not only the statistical significance, but
also the confidence interval of structural paths (Streukens et al.,
2010). Hypothesis tests using confidence intervals are advanta-
geous because they provide more information about the parameter
estimate (Henseler et al., 2009). Shaffer (1995, p. 575) notes, “If
the hypothesis is not rejected, the power of the procedure can
be gauged by the width of the interval.” The literature suggests
that researchers can use bias-corrected confidence intervals as an
appropriate means for testing the significance of the path coeffi-
cients estimated by PLS (Gudergan et al., 2008).

Finally, we suggest that researchers report the statistical power
of their studies. Although PLS is believed to have the ability to
estimate research models with a smaller sample, researchers still
should show that the statistical power of the hypothesis tests
are adequate, which is typically a concern for studies with small
samples.
3. An illustrative example of using PLS

In this section, we provide an illustrative example of using PLS
to estimate a research model that includes both reflective and
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Fig. 3. The illust

ormative constructs. The research model is presented in Fig. 3,
n which operational performance is modeled as a formative con-
truct, cross-functional integration and trust with suppliers are the
ntecedents, and customer satisfaction and market share are the out-
omes. We  use data from the third round of the High Performance
anufacturing (HPM) study (Schroeder and Flynn, 2001) to test the

esearch model. The sample size is 266. The measurement items are
resented in Tables 3 and 4.

We use SmartPLS 2.0.M3 to estimate our research model. Because
he criteria for assessing reflective and formative constructs are dif-
erent, we assess the two types of constructs separately. The item
oadings, composite reliability (CR), and average variance extracted
AVE) of the reflective constructs are shown in Table 3. All item
oadings are greater than 0.70 and significant at the 0.001 level,
ndicating convergent validity at the indicator level. All AVE values
re greater than 0.50, suggesting convergent validity at the con-
truct level. All CR values are greater than 0.70, indicting acceptable
eliability. The square root of each AVE (shown on the diagonal
n Table 5) is greater than the related inter-construct correlations

shown off the diagonal in Table 5) in the construct correlation

atrix, indicating adequate discriminant validity for all of the
eflective constructs.

able 3
easurement properties of reflective constructs.

Construct Indicator (label) Ite

Trust with
suppliers

We are comfortable sharing problems with our
suppliers (Tst1)

0.8

In  dealing with our suppliers, we are willing to change
assumptions in order to find more effective solutions
(Tst2)

0.7

We  emphasize openness of communications in
collaborating with our suppliers (Tst3)

0.7

Cross-
functional
integration

The functions in our plant work well together (Int1) 0.8
The  functions in our plant cooperate to solve conflicts
between them, when they arise (Int2)

0.8

Our  plant’s functions coordinate their activities (Int3) 0.8
Our  plant’s functions work interactively with each
other (Int4)

0.8

Customer
satisfaction

Our customers are pleased with the products and
services we provide for them (Sat1)

0.9

Our  customers seem happy with our responsiveness to
their problems (Sat2)

0.7

Our  customers have been well satisfied with the
quality of our products, over the past three years (Sat3)

0.9

Market share How large is the plant’s market share, relative to the
next largest competitor? For example, a response of
200% indicates your market share is twice that of the
next largest competitor (Mrkt)

1.0
 research model.

Regarding the formative construct, we examine the formative
item weights, multicolinearity between items, discriminant valid-
ity, and nomological validity of the formative construct. For each
formative item, we examine its weight (rather than its item load-
ing), sign, and magnitude. Each item weight is greater than 0.10
(Andreev et al., 2009) and the sign of the item weight is consis-
tent with the underlying theory (see Table 4). With the exception
of “unit cost of manufacturing (Opf1),” all other items are signif-
icant at the 0.01 level. In addition, all VIF values are less than
3.3 (Diamantopoulos and Siguaw, 2006), indicating that multi-
collinearity is not severe. Although Opf1 is not significant at the
0.01 level, this item should be included in the measurement model
because conceptually it is an indispensable aspect of operational
performance (Petter et al., 2007). To examine the discriminant
validity of the formative construct operational performance, we
compute the average of intra-construct item correlations for this
construct and the average of intra-construct item correlations
between this construct and other constructs. We  find that the aver-
age of intra-construct item correlations is greater than the average

of intra-construct item correlations.

We are unable to assess the external validity of the formative
construct by performing the MIMIC  because the research design

m loading T-Stat. Composite reliability Communality (AVE)

678 28.3379 0.8592 0.6709

851 16.4536

911 16.5213

829 45.7463 0.9180 0.7367
450 31.0738

550 38.1051
458 29.9594

273 78.6283 0.8998 0.7511

522 14.1533

072 44.6741

000 – – –



D.X. Peng, F. Lai / Journal of Operations Management 30 (2012) 467–480 475

Table  4
Measurement properties of formative constructs.

Construct Indicator Item weight T-stat. VIF

Operational Unit cost of manufacturing (Opf1) 0.1494 1.2695 1.078
(Opf2
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performance Conformance to product specifications 

On  time delivery performance (Opf3)
Flexibility to change product mix  (Opf4

f the HPM project does not include additional reflective items
r “shadow” reflective constructs that capture the overall opera-
ional performance. However, we are able to assess the nomological
alidity of the operational performance construct by examining
he structural paths of its antecedents and outcomes. As Table 6
hows, our results indicate positive and highly significant relation-
hips between operational performance and its two antecedents
nd two outcomes, indicating the nomological validity of opera-
ional performance measures.

The results of the structural model estimate are shown in
ables 6 and 7. We  run the structural model using the bootstrap
rocedure with 200, 500 and 1000 times of resampling and the
agnitude and significance of the structural paths are consistent.
As the t-statistics and 95% confidence intervals indicate, all path

oefficients are significant at the 0.01 level. The R2 of endogenous
onstructs are 0.129, 0.050 and 0.095 for operational performance,
arket share, and customer satisfaction, respectively, which do not

ppear to be very strong (Chin, 1998b).  Because the operational per-
ormance construct has more than one exogenous construct (i.e.,
rust and integration), the relative effect sizes (f2) of the exoge-
ous constructs are calculated using the equation f 2 = (R2

included −
2
excluded)/(1 − R2

included). The f2 of trust and integration are 0.034
nd 0.064, respectively, which are considered relatively small effect
izes (Cohen, 1988). Stone–Geisser’s Q2 for endogenous constructs
re 0.0416, 0.0316, and 0.0563 for operational performance, market
hare and satisfaction, respectively, indicating acceptable predic-
ive relevance.

Regarding the overall quality of the research model, we  com-
uted the Goodness of Fit (GoF) following Tenenhaus et al. (2005).
he GOF is calculated as:

OF =
√

communality × R2 =
√

0.0916 × 0.5793 = 0.2303

Our sample size of 266 is well above the minimum sample

ize requirement of 40 as determined by the “10 times” rule of
humb. The most complex block in our model is the formative con-
truct operational performance, which has 4 formative indicators.
lthough the sample size is deemed adequate using the “10 times”

able 5
onstruct correlations.

X1 X2 

Trust with suppliers (X1) 0.8191
Cross-functional integration (X2) 0.2846 0.8583
Operational performance (X3) 0.2659 0.3077
Market share (X4) 0.0435 -0.1039
Customer satisfaction (X5) 0.2793 0.2583

ote. The square root of average variance extracted (AVE) is shown on the diagonal of the

able  6
tructural estimates.

Path PLS result 

Coefficient T-sta

Trust with suppliers → operational performance 0.2043 3.344
Cross-functional integration → operational performance 0.2611 4.254
Operational performance → market share 0.2235 3.608
Operational performance → customer satisfaction 0.3199 5.639
) 0.3651 3.7948 1.152
0.5886 5.6621 1.208
0.3269 2.8544 1.118

rule of thumb, a statistical power analysis is needed to formally
determine if the sample size is adequate. We  run a power analy-
sis for each structural path and for the largest structural equation
(LSE), which is the dependent latent variable (LV) with the largest
number of independent LVs influencing it. As shown in Table 6,
the power of each path is much greater than 0.80. In our research
model, the LSE is the latent construct operational performance with
two predictors (i.e., trust and integration) in which the smallest
effect size (f2) is 0.034 (see Table 7). For this effect size, our sample
size of 266 can achieve a power of 0.768 at the significance level of
0.05 (˛), which is only slightly smaller than 0.80.

Finally, we check the robustness of the PLS results. Because
our research model includes both reflective and formative con-
structs, we  are unable to run CBSEM and compare PLS results with
CBSEM results. Instead, we  calculate the average of the items within
each construct and subject these average values to the OLS regres-
sion. The OLS regression results are largely consistent with the PLS
results (see Table 6).

4. A summary of PLS use in the OM literature

This section reviews PLS use in recent OM literature. This review
allows us to identity which aspects of PLS researchers should pay
attention to and also serves as the starting point for creating our
guideline for evaluating and using PLS. Because PLS is an empiri-
cal research method, we  consider OM journals that are recognized
as publishing relevant and rigorous empirical research. The Journal
of Operations Management (JOM), Management Science (MS), Deci-
sion Sciences Journal (DSJ), Production and Operations Management
Journal (POMS), the International Journal of Operations and Produc-
tion Management (IJOPM), the International Journal of Production
Economics (IJPE), the International Journal of Production Research
(IJPR), and IEEE Transactions on Engineering Management (IEEE) have

been cited as those whose missions involve publishing empirical
research examining OM topics (Barman et al., 2001; Goh et al.,
1997; Malhotra and Grover, 1998; Soteriou et al., 1998; Vokurka,
1996). Our review also covers several major journals in strategy,

X3 X4 X5

 –
 0.2237 –

 0.3088 0.0746 0.8667

 correlation matrix and inter-construct correlations are shown off the diagonal.

OLS regression result Power

t. 95% Confidence interval Coefficient T-stat.

7 (0.2007, 0.2079) 0.194 2.727 0.9238
6 (0.2574, 0.2648) 0.252 3.546 0.9926
9 (0.2196, 0.2273) 0.224 3.148 0.9613
8 (0.3165, 0.3233) 0.309 4.451 0.9998



476 D.X. Peng, F. Lai / Journal of Operations Management 30 (2012) 467–480

Table 7
R2 , communality, and redundancy.

Construct R2 Communality (AVE) Redundancy Q2 f2

Trust with suppliers – 0.6709 – – 0.034
Cross-functional integration – 0.7367 – – 0.064
Operational performance 0.1293 0.4115 0.0403 0.0416 –
Market share 0.0501 N/A 0.0501 0.0316 –
Customer satisfaction 0.0953 0.7511 0.0678 0.0563 –
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Average 0.0916 0.5793

a The average of communality is computed as a weighted average of all of the com
east  two manifest indicators.

anagement, and organization science that sometimes publish
esearch related to operations management, including Strategic
anagement Journal (SMJ), Academy of Management Journal (AMJ),

nd Organization Science.  Because the use of PLS among business
esearch communities is a relatively recent phenomenon and we
ant to focus on issues commonly observed in recent OM research,
e review articles published from 2001 to 2011. Because MS,  DSJ

nd IEEE Transactions are multi-disciplinary journals with a large
M component, we only review the PLS articles in these three jour-
als that examined OM-related topics.

We perform a key-word search of the titles, key words, abstracts
nd full texts of the articles in the targeted journals using the fol-
owing keywords: “partial least squares,” “partial-least-squares,”
PLS,” “formative,” “PLS Graph,” “PLS-Graph”, and “SmartPLS.” We
ocus our search on papers that use PLS as an SEM approach to test
mpirical research models. Next, each author individually examine
he search results to ensure that the articles using PLS are correctly
dentified and those not using PLS are not included in our review.
n total, we found 42 OM-related articles that use the PLS method

ithin the scope of our journal selection and time frame. Our lit-
rature review indicates that no articles using the PLS method
o examine OM topics were published in POM, AMJ, and Organi-
ation Science from 2001 to 2011. Thus, our summary excludes
hese three journals. The distribution of these articles by journal
nd year is presented in Table 8. It appears that the number of
M articles using PLS has increased in recent years, particularly

ince 2007.
We  summarize the papers we review in Table 9. Among the

2 articles, 30 explicitly provide a rationale for using PLS. How-
ver, the remaining 12 articles do not explain why PLS was chosen.
ot unexpectedly, small sample size is the most frequently cited

eason for using PLS (n = 14), followed by the exploratory or pre-
ictive nature of the study (n = 11), the use of formative constructs
n = 8), non-normal data (n = 6), and high model complexity (n = 4).

lthough a small sample size is cited most frequently as the reason

or using PLS, only two of the 42 articles perform a power analysis.
he median sample size is 126, with a range from 35 to 3926. Only
3 articles (31%) have a sample size greater than 200.

able 8
istribution of empirical OM articles that use PLS.

DSJ IEEE IJOPM IJPE IJPR JOM MS SMJ  Total

Year 2000 0 1 0 0 0 0 0 0 1
2001 0 1 0 0 0 0 0 0 1
2003 0 0 0 0 0 0 1 0 1
2004 1 0 0 0 0 1 1 0 3
2005 0 0 1 0 0 0 0 0 1
2006 1 0 0 0 0 0 0 0 1
2007 2 1 0 0 0 2 1 0 6
2008 0 0 2 0 0 0 1 0 3
2009 1 0 0 2 0 2 0 0 5
2010 3 2 2 2 3 1 0 1 14
2011 0 0 0 2 3 0 0 1 6

Total 8 5 5 6 6 6 4 2 42

he list of PLS articles we reviewed is available upon request.
0.0527 0.0432 –

alities using weights as the number of manifest variables in each construct with at

The presence of formative constructs is a commonly cited reason
for using PLS. Interestingly, although 19 articles use formative con-
structs, only eight articles state that the use of formative constructs
is the reason for using PLS. Among the 19 articles that use formative
constructs, three do not perform any analysis on the measurement
properties of the formative constructs, and five use techniques for
evaluating reflective constructs (e.g., Cronbach’s alpha, compos-
ite reliability, and AVE) to assess formative constructs, which is
considered inappropriate. Overall, many of the articles we  review
do not adequately assess the properties of the formative con-
structs. Seven articles examine formative construct item weights;
four evaluate the multicolinearity of the formative measurement
items, mostly using the variance inflation factor (VIF); three exam-
ine discriminant validity. None of the articles we review evaluates
the external validity of the formative construct because no study
includes additional reflective items or constructs to capture the
formative constructs.

We find that 26 out of the 42 articles report which PLS software is
used. PLS-Graph is the most popular PLS software, adopted by 19 of
the articles. SmartPLS, however, is gaining popularity, considering
that all six OM articles that use SmartPLS were published after 2009.
Only one article adopts Visual PLS.

Our review identifies 22 articles that report the details of their
bootstrapping procedures. We  observe that the number of boot-
strap samples generated ranges from 100 to 1500, with the most
common number of resampling being 500 (n = 11). Two of the arti-
cles perform bootstrapping procedures with different rounds of
resampling to check the robustness of the results (Ahuja et al.,
2003; Rosenzweig, 2009). This is a good practice for checking the
robustness of the significance of path coefficients.

With respect to reporting results, each of the articles we  review
reports the sign, magnitude, and statistical significance of path
coefficients. In general, all of the reviewed articles exhibit a good
understanding that the objective of PLS is not to estimate over-
all model fit, but rather to maximize the variance explained of the
endogenous variables. Thirty-six of the 42 articles report R2 of the
endogenous variables. However, other techniques for evaluating
predictive validity are underused. Only six articles report the effect
size (f2) and four report predictive relevance (Q2). Among the arti-
cles we review, Müller and Gaudig (2010) provide a good example
of reporting the predictive validity of the research model because
they report R2, f2 and Q2.

We note that some of the problems, particularly those related
to bootstrapping procedures, evaluating formative constructs and
reporting results, could have been avoided if stricter “quality con-
trol” mechanisms related to the use of PLS had been enforced during
the review process. We  recommend that editors and reviewers
request contributing authors to follow rigorous standards when
using PLS to help improve the rigor of PLS use.
5. Discussion and conclusion

Our study aims to provide a practical guideline that helps OM
researchers evaluate and use PLS. Our study also reviews PLS use
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Table 9
Summary of the OM articles that use PLS (n = 42).

Rationales for using PLS
30 articles specify the rationale for
using PLS

Breakdown of rationales
for using PLSb

Exploratory or predictive
nature of the study

Small sample size Model complexity Formative
constructs used

Non-normal data No rationale for
using PLS specified

11a 14 4 8 6 12

Sample size Sample size summary (n)c

Mean = 246 Median = 126 Min  = 35 Max  = 3926
Sample size distribution
n < 50 50 < n ≤ 100 100 < n ≤ 150 150 < n ≤ 200 200 < n ≤ 300 300 < n ≤ 500 n > 500
1  13 11 4 8 4 1

Formative  constructs
19 articles use formative constructs

Assessment of formative
constructs
Contribution of items to the
construct

Multicolinearity
between items

Nomological
validityd

External validity Discriminant
validity

Formative
constructs not
assessed

Formative
constructs assessed
as reflective
constructs

7  4 N/A 0 3 3 5

Bootstrapping
22  articles report details of
bootstrapping procedures

Number of bootstrapping
samples
n = 100 n = 200 200 < n < 500 n = 500 n > 500
1  4 2 11 5

PLS  software used
26 articles report PLS software used

PLS Graph SmartPLS Visual PLS
19  6 1

Report results Statistical power analysis
performed

Structural path
confidence interval
reported

R2 reported f2 reported Q2 reported Formative item
weights reported

2 0 36  6 4 14

a Each number in the above table indicates the number of articles that are classified in a given category.
b Some articles provide more than one rationale for using PLS.
c In cases where sample sizes can be counted differently depending on the level of observation, we  use the smaller sample size to be conservative.
d We  did not summarize nomological validity because each article reports some statistically significant structural paths, which to some extent demonstrates the nomological validity of formative constructs.
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n the recent empirical OM literature, which points to the need for
 practical guideline for using PLS tailored to the OM audience.

The use of PLS has been growing in the OM literature and will
ikely gain more popularity. Given the specific challenges empiri-
al OM researchers face, such as the difficulties of obtaining large
amples and a lack of well-established scales, PLS can be a poten-
ially useful approach to SEM. Because many OM researchers are
nfamiliar with PLS, an OM-specific guideline that focuses on prac-
ical applications rather than the technical details of PLS will be
articularly helpful.

The main contribution of our study is to provide a practical
uideline for using PLS with detailed illustrative examples from
he OM literature. This guideline is expected to help improve the

ethodology rigor of PLS use in the OM field. A second contribution
s that our study presents a review and summary of PLS use in the
M and related fields. Our review helps OM researchers learn from
ast PLS use and subsequently improve future PLS use.
Although PLS has been used in a variety of research fields, the
xtent to which it has been used is far less than that of CBSEM in
ost research fields. Goodhue et al. (2006) assert that it is only

n the IS field where PLS has become the dominant approach to

The structural  path weight  between tw o con nected  latent  variabl es is 
scores of  the tw o LVs.  
Item weights  are  estimat ed by simpl e regr ession  for  reflec tiv e items  (
scores) and by  multiple regressi on for  formative items  (LV scores are 
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SEM. The somewhat limited use of PLS relative to CBSEM in many
research fields seems to reflect researchers’ general concerns about
the weaknesses of the PLS method. Indeed, statistically, CBSEM is
superior to PLS in the sense that parameter estimates are unbi-
ased (Chin, 1995). Thus, if CBSEM assumptions are met, researchers
should strongly consider using CBSEM.

However, we  suggest that concerns about PLS should not pre-
clude it as a potential analysis technique because no empirical
methodology is perfect. If the assumptions of the PLS method are
met  and it is used appropriately, it can be a useful data analysis
technique. Our position is that OM researchers should consider PLS
when CBSEM is unobtainable due to the violations of some key
CBSEM assumptions (e.g., sample sizes and sample distribution)
or model identification problems. “PLS is not a competing method
to CBSEM. Depending upon the researcher’s objective and epis-
temic view of data to theory, properties of the data at hand, or level
of theoretical knowledge and measurement development, the PLS

approach may  be more appropriate in some circumstances” (Chin,
1998b, p. 295). In fact, “CBSEM and PLS are considered as comple-
mentary rather than competitive methods, and both have a rigorous
rationale of their own” (Barroso et al., 2010, p. 432).

 estima ted  as  the  correlatio n betw een the late nt variab le (LV) 

item  scores of  each  refl ective  item  are  regressed  on  LV 
 regressed  on the  se t of  formative  items) . 
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Although we argue that OM researchers should not preclude the
ossibility of using PLS, we oppose accepting PLS as the preferred
pproach to SEM without a careful assessment of its applicabil-
ty. OM researchers should be cautious in assessing their model
ssumptions and data requirements, especially the sample size
equirement because it is often cited as the main reason for using
LS. Because “PLS is not a silver bullet to be used with samples
f any size” (Marcoulides and Saunders, 2006, p. VIII), researchers
hould consider a variety of factors and perform power analyses
o determine whether the sample size is adequate to support the
tatistical inference.

As empirical OM researchers start to recognize the potential of
LS, we expect that more OM researchers will seriously consider
LS as a potential SEM method. We  hope our study can serve as

 useful guideline to help empirical OM researchers evaluate and
se PLS.

ppendix A. PLS algorithms (PLS-graph)

The basic idea behind the PLS algorithm is relatively straightfor-
ard. First, the PLS algorithm uses an iterative process to estimate

tem weights that link the items to their respective latent variable.
econd, once the final item weights are obtained, the latent vari-
ble (LV) scores of each LV are calculated as a weighted average of
ts items. Here the item weights estimated earlier are used as the

eights for aggregating item scores into the LV scores. Finally, the
V scores just estimated are used in a set of regression equations
o estimate the structural path weights (i.e., relationships between
Vs) (Fornell and Bookstein, 1982).

Central to the PLS algorithm is the estimation of item weights,
hich uses an iterative process that almost always converges to

 stable set of item weight estimates. The procedure for obtaining
tem weights is shown in Fig. 4. Each iteration involves a two-step
stimation. The two steps are called inside approximation and out-
ide approximation,  respectively. Inside approximation generates
V scores as a weighted average of item scores based on the item
eight estimates. Outside approximation generates LV scores as a
eighted average of the LV scores of the neighboring LVs based on

he structural path weights. In each iteration, the inside approxima-
ion first uses LV score estimates from the previous round of outside
pproximation to calculate structural path weights. The structural
ath weight between two LVs is equal to the correlation between
he two LV scores if the two LVs are structurally connected, and zero
therwise. Next, PLS uses these structural path weights to compute

 new set of LV scores. In the inside approximation, PLS uses the just
enerated LV scores to estimate a new set of item weights. Finally,
hese item weights are used to generate another set of LV scores
hat will be used in the next iteration. The method for determin-
ng item weights using factor scores is similar to simple regression
or reflective constructs (i.e., the item scores of each reflective item
re regressed on the LV scores) and similar to multiple regression
or formative constructs (i.e., LV scores are regressed on all of the
ormative items of the LV). PLS repeats the iteration until the per-
entage changes of each outside approximation of items weights
elative to the previous round are less than 0.001. Once the final
tem weights are obtained, PLS calculates the LV scores of each LV
s the weighted average of its items. PLS then uses the LV scores just
enerated to estimate the structural path weights using ordinary
east squares (OLS) regression. The LV scores of each dependent
V in the research model are regressed on the LV scores of the

espective independent LVs.

The structural path weight between two connected latent vari-
bles is estimated as the correlation between the latent variable
LV) scores of the two LVs.
Management 30 (2012) 467–480 479

Item weights are estimated by simple regression for reflective
items (item scores of each reflective item are regressed on LV
scores) and by multiple regression for formative items (LV scores
are regressed on the set of formative items).
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