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Abstract

Algorithms to solve Facility Location Problems (FLP) optimally suffer from combinatorial explosion and resources

required to solve such problems repeatedly as required in practical applications become prohibitive. In these cases heuristic

methods are the only viable alternative. We compare the relative performance of Tabu Search (TS), Simulated Annealing

(SA) and Genetic Algorithms (GA) on various types of FLP under time-limited, solution-limited, and unrestricted

conditions. The results indicate that TS shows very good performance in most cases. The performance of SA and GA are

more partial to problem type and the criterion used. Thus, in general we may conclude that TS should be tried first to the

extent that it always yields as good or better results and is easy to develop and implement.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Decision makers have a natural desire to find
optimal solutions to the various operations manage-
ment problems they face every day. Unfortunately,
there is a class of common problems that are
extremely difficult to solve optimally. Such pro-
blems include assembly line balancing, lot sizing,
project scheduling, job and flow-shop scheduling,
facilities location and layout. Although algorithms
to solve such problems optimally exist, they suffer
from combinatorial explosion. These problems
e front matter r 2006 Elsevier B.V. All rights reserved
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belong to the class of problems known as NP-hard,
and in most cases, the time and computing resources
required to solve such problems repeatedly in
practical applications become prohibitive. In these
cases heuristic methods are the only viable alter-
native. Van Laarhoven and Aarts (1987) classify
heuristics into ‘‘tailored’’ and ‘‘general’’. While
tailored heuristics have a limited applicability to a
specific problem, general algorithms define a strat-
egy for obtaining approximate solutions and thus
are widely applicable to various forms of combina-
torial optimization problems.

The most well known of the general heuristic
methods are Tabu Search (TS), Simulated Anneal-
ing (SA), and Genetic Algorithms (GA). The
popularity of these heuristics has flourished in
.
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recent years and several published studies can be
found in the literature where they outperform the
tailored counterparts. However, only a few studies
provided comparisons of these three heuristics in
depth. In this paper, we compare the relative
performance of TS, SA and GA on various
Facilities Location Problems (FLP). The choice of
FLP is made due to its strategic importance in the
design of the supply chain network. Our motivation
is to contribute further to the understanding of
which of these three heuristics may be more effective
under different circumstances.

We assume the reader is familiar with (1) The
FLP, its importance and its pertinent literature, (2)
The three heuristics, TS, SA and GA and therefore
for brevity we abstain from their basic descriptions.
For the interested reader, there are several articles
and texts that provide a good introduction to TS
(Glover, 1989, 1990a, b, 1993), SA (Kirkpatrick
et al., 1983; Cerny, 1985), and GA (Goldenberg,
1989).

In the remainder of the paper, we briefly provide
the references to the pertinent FLP literature. Then
we discuss the results from the few previous studies
that have compared the three general heuristics.
This is done to establish the need for our research.
In Section 3, we present the formulation of three
versions of the FLP selected for this research and
the details of our implementation of TS, SA and
GA. The details of the empirical comparison are
described in Section 4 and the results and conclu-
sions are discussed in Section 5.

2. Background

Facilities location decisions have attracted a great
deal of attention from researchers in the last couple
of decades (Harkness and ReVelle, 2003; Drezner
et al., 2002; Canel and Das, 2002; Nozick, 2001;
Canel et al., 1996, 2001; Melkote and Daskin, 2001;
Giddings et al., 2001; Canel and Khumawala, 1996,
2001; Hinojosa et al., 2000; Tragantalerngsak et al.,
2000; Avella et al., 1998; Owne and Daskin, 1998;
Volgenant, 1996). Consequently, there is now a
variety of approaches for solving these problems.
These include 0-1 MIP (Haug 1985; Cohen and Lee
1989), dynamic programming (Pomper, 1976),
breakeven analysis (Jucker and Carlson, 1976),
quadratic programming (Hodder and Jucker,
1985, Hodder and Dincer, 1986), and fuzzy set
theory (Naik and Chakravarthy, 1993). Variations
of the FLP are solved by Hakimi (1983), Drezner
(1994) and by Drezner et al. (1998, 2002) using
various ‘‘tailored’’ heuristic methods. Independent
of the methodology used, it is a well-known fact
that facilities location decisions significantly influ-
ence profitability and productivity. With the current
trend in globalization and the associated complex-
ities in supply chain practices, the FLP is now
taking on even greater importance (Porter, 1998;
Shaver, 1998; Bartmess et al. 1994; Bartmess and
Cerney, 1993).

The earliest comparison of TS, SA, and GA is due
to Sinclair (1993) who used the quadratic assign-
ment problem as a test domain. Although he also
included the Great Deluge and the Record-to-
Record Travel techniques, we will limit our discus-
sion to the three heuristics of interest. Sinclair
developed the application of these heuristics and
their comparisons on the hydraulic turbine runner-
balancing problem. Sinclair (1993) developed basic
implementations of each heuristic and selected the
parameters that resulted in the best performance in
terms of solution quality and computation time.
Sinclair’s study (1993) found that GA performed
significantly worse than the other heuristics even
while requiring more computation time. Between
SA and TS, TS provided better solutions in 28 out
of 37 cases. However, the computation times for
both of these heuristics were comparable.

Lee and Kim (1996) applied the TS, SA and GA
heuristics to the resource-constrained project-sche-
duling problem. They found that, in general, SA
and TS had nearly the same performance, with GA
lagging slightly behind, especially as the number of
activities is increased. However, they found that GA
had the least variability overall.

The results of Sinclair (1993) and Lee and Kim
(1996) suggest that GA might not perform as well as
TS or SA. Kincaid (1992) compared TS and SA for
a location problem of noxious facilities and
concluded that TS outperformed SA. However,
other papers have found SA to outperform TS for
the lot sizing problem (Kuik, et al., 1993) and the
flow shop problem (Marett and Wright, 1996). Tian
et al. (1996) conducted a study applying SA to the
Quadratic Assignment Problem (QAP), more speci-
fically to the facility location problem. Their results
suggest that SA is an effective approach. Drezner
et al. (2002) compared the effectiveness of five
heuristics in solving the p-median problem (a
variant of FLP) and reported that SA (in discrete
space) combined with an ascent algorithm (in
continuous space) gave the most satisfactory results.
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More recently, Syarif et al. (2002) and Zhou et al.
(2002) have used GA in solving problems involving
facilities location and allocation of customers to
facilities and reported satisfactory results. Chaudry
et al. (2003) applied GA to the relatively large-sized,
constrained p-median problem. They reported that
GA was able to obtain optimum results for most of
the problems, however, in a few cases the computa-
tional burden was in excess of an hour. A study by
Ghosh (2003), reported that TS when compared to
Complete Local Search (CLM) algorithm returned
better quality solutions for the un-capacitated
facility location problem—although both heuristics
gave results very close to optimum. Wang et al.
(2003) applied TS to the budget-constrained loca-
tion problem where opening and closing of facilities
were considered simultaneously. They compared TS
to greedy interchange and Langrangian relaxation
approximation, and reported that solutions gener-
ated by TS were the most satisfactory in terms of
solution quality. The authors also confirmed the
suitability and desirability for utilizing such heur-
istics as they perform very well for large problems.
Corinthal and Captivo (2003), similarly, reported
very satisfactory results with TS. Finally, Chamber-
land (2004) proposed a heuristic based on the TS
principle to solve the network subsystem expansion
problem and found that TS provides good solu-
tions.

This evidence suggests that for a given problem
domain, one of the heuristics may be preferable to
others, thus justifying the need for further experi-
mentation in other problem domains such as the
FLP. This is in line with the recommendation in
Table 1

Representation selection and parameter values

CFLP matrix representation MPFLP

Tabu search

LTM 10 5

STM 3000 3000

TLSIZE 5 7

Simulated annealing

Rate .90 .90

Accept 2500 2500

Factor 2 3

Genetic algorithm

POP 40 30

GENS 2000 2000

XOVER .85 .80

MUTATE .05 .05
Drezner et al. (2002) as the authors proposed the
application of meta heuristics such as TS, GA and
SA as future research.

3. Problem domains

We use three variations of the FLP to compare
the performance of TS, SA, and GA. These three
variations are (1) the capacitated FLP (CFLP), (2)
the multi-period FLP (MPFLP), and (3) the multi-
commodity FLP (MCFLP).

It is important to note that representation
selection (matrix vs. vector) as well as the parameter
values for TS, SA and GA—described below in
detail—are determined based on the results of
extensive pilot experiments and testing for the three
variations of the FLP. In these experiments, the
effect of various parameter settings on solution
quality and computation time is assessed for each of
the heuristics and parameter values are set accord-
ingly. The details of pilot experiments and the
statistical tests are given in Arostegui (1997).The
representation selection and parameter values used
for the three FLP are shown in Table 1. In this
section, we describe the solution procedure of each
FLP with the three heuristics.

3.1. Capacitated facilities location problem (CFLP)

For CFLP, the problem is to determine which of
N capacity-constrained facilities should be used to
satisfy the demand for M customers at the lowest
sum of fixed and variable costs. The problem is
formulated as in Khumawala (1974).
matrix representation MPCFLP vector representation

5

50

2

.90

50

3

40

150

.95

.10
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For all three heuristics, this problem is repre-
sented in the form of an N �M matrix, where each
cell in the matrix represents the demand of a
customer j (j ¼ 1yM) served from a facility i

(i ¼ 1 . . .N). For TS and SA, a neighbor solution is
defined as a solution where a single allocation of
customer demand is moved from its original
supplier to another supplier with some positive
capacity. The size of this neighborhood, typically a
very large number, varies depending on the number
of positive allocations in the incumbent solution.

For TS only a subset of the total neighborhood is
evaluated at each iteration. The subset consists of
randomly selecting an existing allocation of demand
for each of M customers, and reallocating as much
as possible to a different, randomly selected supplier
with some positive remaining capacity. Since only
one reallocation is made per customer, the resulting
neighborhood is of size m. Two parameters are
defined: Long-term Memory iterations (LTM) and
Short-term Memory iterations (STM). Each LTM
consists of a restart with a randomly generated
solution and an empty tabu list. For each LTM, a
number of the normal TS algorithms are executed.
For tabu list size (TLSIZE) we use a random tabu
list size as in Taillard (1991). TLSIZE represents the
maximum number allowed for the TLSIZE at any
time. The values of these parameters are given in
Table 1. The TS procedure is terminated when a
certain number of iterations have been completed.
Further details on termination procedures are given
in Section 4.

For SA, the neighborhood structures for SA are
the same as those for TS as described above.
However, instead of evaluating all or part of an
incumbent solution’s neighborhood, we only evalu-
ate a randomly selected neighbor. We randomly
select a customer. For this customer we randomly
select an existing positive allocation of demand to
some supplier. We then randomly select a different
supplier with some positive capacity and reallocate
as much of the demand as possible from the old
supplier to the new supplier.

For SA, the cooling schedule consists of an initial
temperature, a probability function, and a tempera-
ture adjustment function. The initial temperature is
selected so that the resulting probability of accept-
ing non-improving solutions is 95%. To find this
initial temperature, we take the difference in
cost function between the incumbent solution and
the first 100 non-improving solutions and get the
average cost. Using this average we compute the
required temperature parameter to achieve the 95%
acceptance rate. Finally, the temperature adjust-
ment function is a simple decay function of the
‘‘Rate’’ parameter. The function is applied at the
end of each epoch.

The length of an epoch is controlled by two
parameters: Accept and Factor. An epoch consists
of evaluating enough solutions such that at least
some number of solutions are accepted (improving
or non-improving). This number of solutions is
controlled by the ‘‘Accept’’ parameter. Since the
rate at which the solutions accepted decreases as the
temperature parameter is lowered, the total number
of solutions evaluated should be limited to prevent
lengthy epochs at lower temperatures. The max-
imum number of solutions that may be evaluated
per epoch is a factor of the ‘‘Accept’’ parameter
controlled by the ‘‘Factor’’ parameter. Thus, en
epoch will end when ‘‘Accept’’ solutions have been
accepted or when ‘‘Factor�Accept’’ solutions have
been evaluated, whichever comes first. Values for
the ‘‘Rate’’, ‘‘Accept’’ and ‘‘Factor’’ parameters are
given in Table 1. The algorithm will terminate
whenever the system is deemed frozen. In our
implementation, frozen is defined as an acceptance
rate of less than 1% during any one epoch. Further
details on termination procedures are given in
Section 4.

In the GA implementation, the fitness function
assigns a ‘‘goodness’’ value to each chromosome or
solution at each generation. In our case, the
goodness value is represented by the objective
function value, which is the total cost of the
solution. Using this value, we assign to each
chromosome a probability of selection as a parent
for next generation. Our probability assignment,
taken from Murata et al. (1996). The probability of
selection computed as in Murata et al. (1996) is
actually used in selecting only the first parent for a
crossover operation. The second parent is selected
at random with all chromosomes having an equal
probability of selection. This selection procedure is
described in Holland (1975).

The crossover operation is applied probabilisti-
cally to a set of two parents from which two
offsprings are generated for the new generation.
With probability XOVER, the crossover operator is
applied to the parents to generate the first offspring.
With complementary probability, the offspring is a
copy of the first parent. With probability XOVER,
the crossover operator is applied to the parents (in
reverse order) to generate the second offspring.
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With complementary probability, the offspring is a
copy of the second parent. In the implementation of
GA a single crossover point operation is used. This
crossover point is randomly selected as one of the M

customers. The first offspring will receive the
columns to the left of the crossover point from the
first parent matrix and the remaining columns from
the second parent. The operation is the same for the
second offspring with the roles of the parents
reversed. Unfortunately, there is no guarantee that
the resulting offspring solutions derived in this
manner will be feasible, thus requiring a repair
operation. The repair operation is applied to each
row in the matrix (i.e., each potential facility),
whenever the assigned allocations exceed the
corresponding capacity. The repair operation con-
sists of randomly selecting the allocations and
moving them to other randomly selected facilities
with available capacity. This is done until the total
demand supplied from a facility is less than its
capacity, and until the solution is feasible for each
facility.

The mutation operator is applied probabilistically
to each gene (column) in each chromosome with
MUTATE probability. The mutation consists of
selecting a random allocation for the customer, and
reallocating from the current supplier with some
positive capacity. The smaller of the existing
allocation or the available capacity in the new
supplier is reallocated. The results are always
feasible.

The GA is terminated whenever a fixed number of
generations (GENS) have elapsed, or if the algo-
rithm converges to a single solution (i.e., all of the
chromosomes in a generation represent the same
solution). Convergence only tends to happen when
the mutation rate MUTATE is small (e.g. 1%).
Further details on termination procedures are given
in Section 4. Values for the ‘‘Rate’’, ‘‘Accept’’ and
‘‘Factor’’ parameters are given in Table 1.

3.2. Multiple-period facilities location problem

(MPFLP)

The MPFLP consists of determining which of the
N capacity-constraint facilities to be used over a
planning horizon of V periods, given the fixed
and variable costs in the CFLP; while simulta-
neously considering the costs of opening and
closing facilities in different time periods. This
problem is formulated as in Hormozi and Khuma-
wala (1996).
For all three heuristics, the MPFLP problem is
again represented by a matrix with rows represent-
ing the facilities at N locations and M � V columns
representing the customers in the V time periods.
Thus, the matrix representation has a direct con-
nection to the xtij’s in the problem formulation. The
first M columns represent the customers in the first
period; the second M columns represent the
customers in the second period, and so on. The
matrix is filled by assigning values to each element
such that the sum of each column matches the
corresponding customer’s demand, and the sum of
each row (by groups of M columns) does not exceed
the corresponding facility’s capacity. A matrix thus
filled represents a solution. The yti’s can be easily
determined by examining the values in the matrix to
determine which facilities have been assigned some
demand in any period.

For TS and SA, a neighbor solution is defined as
a change to two of the matrix elements within a
column while maintaining the demand/capacity
constraints. This change amounts to a reallocation
of demand from one facility to another for a single
customer in a single period. This is a very large and
variable neighborhood since there may be as
many reallocations possible as there are positive
elements in the matrix, and each reallocation can
be by as little as a quantity of one or as much as
the value of the source element. Accordingly, for
TS we only evaluate a subset of this neighborhood
at each iteration. The subset consists of making
one reallocation for each column in the matrix
for a neighborhood size of nv. The two elements
involved in the reallocation are randomly selected,
and the quantity of demand reallocated is the
minimum of the source element’s value or the
destination element’s remaining capacity. This
procedure always results in feasible solutions. For
SA, only one neighboring solution is considered at a
time.

For the GA, we again implemented a single-point
crossover. We select a crossover point xA{1,y, V},
and the first offspring consists of the matrix
columns from the first parent representing customer
demand allocations for periods less than x and the
columns from the second parent representing
customer demand allocations for periods x and
above. For the second offspring, the roles of the
parents are reversed. The resulting offsprings are
always feasible. The crossover operation is applied
probabilistically in the same manner as was done for
the CFLP.
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3.3. Multiple-commodities facilities location problem

(MCFLP)

For MCFLP, M customers have demand for one
or more W commodities. The objective of MCFLP
is to determine which of N capacity-constrained
potential facilities should supply which commodities
to the M customers, such that each facility supplies
only one kind of commodity while minimizing the
overall sum of fixed and variable costs. We used a
capacitated version of Warszawski’s (1973) formu-
lation. See Arostegui (1997) for details.

MPFLP is best represented by vector representa-
tion due to the special constraint that each location
may only supply a single commodity. This parti-
cular constraint makes it defining neighbor moves
impractical for a matrix representation. As vector
representation requires solving transportation pro-
blems, the solution space is smaller than for a
matrix representation. As we did for CFLP and
MPFLP, we conducted pilot experiments to get a
clear picture of how parameter settings affect
solution quality and computation time. The details
of these pilot experiments are provided in detail in
Arostegui (1997). The solution representation and
parameter settings are given in Table 1.

A particular solution is represented by a vector
s ¼ {y1, y2,y, yN}, where yiA{0, 1,y, W} indicates
what commodity, if any, is supplied by facility at
location i (a zero value indicates the facility in
location i is not in operation). Using this vector
solution, the problem is partitioned into W single-
commodity facility location problems. The xrij’s are
determined by solving the corresponding transporta-
tion problems for each single-commodity problem.

For TS and SA, a neighbor solution is defined as
a solution where the commodity assignment of one
of the vector elements is changed to some other
commodity or to a closed status (no commodity
assigned). The complete neighborhood for an
incumbent solution then is the set of all solutions
resulting from changing the commodity assignment
of each potential facility from its current assignment
to one of the other commodities in turn or to no
commodity assignment. For a problem with w

commodities and n potential facilities, the neighbor-
hood size is wn. Although this is not a very large
neighborhood, having to solve transportation pro-
blems for each neighbor is a slow process, especially
as the problems grow in size. Therefore, for TS only
a portion of this neighborhood is evaluated. At each
iteration, we only evaluate the n neighbor solutions
resulting from changing the current assignment of
each potential facility in turn to some other
commodity (or no commodity). The new commod-
ity assignment is selected at random. In some cases,
this operation will result in neighbor solutions that
are not feasible due to insufficient capacity assigned
to a particular commodity to meet all demand. In
such cases, the resulting neighbor solution is
ignored (i.e., no attempt is made to evaluate n

feasible solutions, just n neighbor solutions, feasible
or not).

For SA, given an incumbent solution, we
randomly select one of the wn neighboring solutions
to evaluate next. The neighbor solution is selected
by randomly choosing one of the potential facilities
and changing its current commodity assignment to
some other, randomly selected, commodity (or no
commodity). If the resulting neighbor solution is
not feasible, another one is tried. Although neigh-
bor solutions that are not feasible are ignored, they
do count toward the total number of solutions
considered. This is a necessary condition to avoid
lengthy searches for feasible solutions in highly
constrained problems, especially toward the end of
the SA algorithm, when the probability of accepting
solutions becomes rather small.

4. Empirical comparison

In this study, specifically, we addressed the
following research questions: Is there a dominant
heuristic for all three types of facilities location
problems? If not, is there a dominant heuristic for
each type of facilities location problems? For each
of the heuristics, what is the relationship between
time allowed for computation and quality of
solutions?

To address the research questions above, the
performance of the three heuristics was evaluated
along three dimensions: time-limited, solutions-
limited, and unrestricted. We used these three
dimensions for the following reasons: (1) Computa-
tional time limitation is a common criterion for
evaluating heuristics as has been employed by many
researchers. (2) We included the solution-limited
dimension because it is possible that the rate of
improvement in solution quality, after a while,
becomes negligible and therefore may not be worth
the additional computational resources. (3) We
included the unrestricted dimension to allow the
heuristics to fully run to their completion as
described in Section 3.
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Table 2

CFLP test problems

Problem Sizea Capacity Fixed cost

CAP301 25� 200 50,000 7500

CAP302 25� 200 50,000 17,500

CAP303 25� 200 100,000 7500

CAP304 25� 200 100,000 17,500

CAP305 25� 250 50,000 7500

CAP306 25� 250 50,000 17,500

CAP307 25� 250 100,000 7500

CAP308 25� 250 100,000 17,500

CAP309 50� 200 25,000 7500

CAP310 50� 200 25,000 17,500

CAP311 50� 200 50,000 7500

CAP312 50� 200 50,000 17,500

CAP313 50� 250 25,000 7500

CAP314 50� 250 25,000 17,500

CAP315 50� 250 50,000 7500

CAP316 50� 250 50,000 17,500

CAP317 100� 250 12,500 7500

CAP318 100� 250 12,500 17,500

CAP319 100� 250 25,000 7500

CAP320 100� 250 25,000 17,500

aSize ¼ facilities� customers.

Table 3

MP-FLP test problems

Problem Sizea Capacity Demand Open Close

MP301 20� 15� 38 2500 Increasing 4937 3702

MP302 20� 15� 38 2500 Increasing 2370 1777

MP303 20� 15� 38 5000 Increasing 4937 3702

MP304 20� 15� 38 5000 Increasing 2370 1777

MP305 25� 10� 25 2500 Decreasing 3113 2335

MP306 25� 10� 25 2500 Decreasing 1494 1121

MP307 25� 10� 25 5000 Decreasing 3113 2335

MP308 25� 10� 25 5000 Decreasing 1494 1121

MP309 25� 15� 38 5000 Concave 7646 5734

MP310 25� 15� 38 5000 Concave 3670 2752

MP311 25� 15� 38 10000 Concave 7646 5734

MP312 25� 15� 38 10000 Concave 3670 2752

MP313 30� 10� 25 2500 Convex 1660 1245

MP314 30� 10� 25 2500 Convex 797 598

MP315 30� 10� 25 5000 Convex 1660 1245

MP316 30� 10� 25 5000 Convex 797 598

MP317 30� 15� 38 2500 Seasonal 3777 2832

MP318 30� 15� 38 2500 Seasonal 1813 1360

MP319 30� 15� 38 5000 Seasonal 3777 2832

MP320 30� 15� 38 5000 Seasonal 1813 1360

aSize ¼ periods� facilities� customers.
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For the time-limited evaluation, all of the three
heuristics were allowed a fixed amount of computa-
tion time (300 s) at which point the best solution
they had achieved was noted. In the solutions-
limited evaluation, of the three heuristics, the
genetic algorithm evaluates the fewest solutions
for the given parameters. Therefore, the TS and SA
were limited to 76,040, the number of candidate
solutions the GA evaluated for the CFLP and
similarly to 56,030 for MPFLP. For MCFLP, the
use of a vector representation means the GA is no
longer the heuristic with the fewest solutions
explored. Accordingly, to determine this limit we
looked at the number of solutions evaluated by each
heuristic during the unrestricted runs. Then, for
each group of four problems representing a specific
size, we picked a lower bound. For example, for the
first four problems, TS evaluated the fewest solu-
tions. Therefore, we set the solution limits for all the
heuristics to this lower bound. In this manner, we
established limits for the four problem size groups
as 1522, 2016, 3536, or 5740 candidate solutions.
This procedure allows comparisons based on the
ability of the heuristics to make the most out of the
same amount of information.

For the unrestricted dimension, the heuristics
were allowed to complete their run according to
their parameter settings. The above parameters for
each heuristic were established following several
pilot studies in which several experiments were
conducted with different settings. For details see
Arostegui (1997).

For each variation of FLP, a set of 20 test
problems were generated using our database of 250
US cities and 1990 census population, for a total of
60 test problems. Each problem is considered
‘‘large’’ in terms of the computational requirements;
in general, none of the problems could be solved to
optimality within any reasonable amount of time.
For each type of FLP, The 20 problems represent
various combinations of the problem size, capacity
and fixed costs consistent with those used by several
researchers, including the original Kuehn and
Hamburger data. The problems for each type of
FLP are shown in Tables 1–4. Following the
method proposed by Dudewicz and Dalal (1975)
as fully described in Law and Kelton (1991), we
used a P*

¼ .90 (probability of being correct) and
n*
¼ 20 (number of replications generated with

different random number streams). Subsequently,
we used Friedman’s Fr test to assess the difference in
performance among the three heuristics across all
types of FLP. To determine which heuristics are
in fact different from each other, we used Wicoxon’s
signed rank test for paired differences. For
brevity, we do not provide the statistical tables
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Table 4

MC-FLP test problems

Problem Sizea Capacity Fixed Costs

MC201 5� 10� 50 120,000 90,000

MC202 5� 10� 50 120,000 180,000

MC203 5� 10� 50 240,000 90,000

MC204 5� 10� 50 240,000 180,000

MC205 5� 30� 100 80,000 90,000

MC206 5� 30� 100 80,000 180,000

MC207 5� 30� 100 160,000 90,000

MC208 5� 30� 100 160,000 180,000

MC209 7� 15� 50 110,000 90,000

MC210 7� 15� 50 110,000 180,000

MC211 7� 15� 50 220,000 90,000

MC212 7� 15� 50 220,000 180,000

MC213 7� 20� 100 160,000 90,000

MC214 7� 20� 100 160,000 180,000

MC215 7� 20� 100 320,000 90,000

MC216 7� 20� 100 320,000 180,000

MC217 10� 30� 100 150,000 90,000

MC218 10� 30� 100 150,000 180,000

MC219 10� 30� 100 300,000 90,000

MC220 10� 30� 100 300,000 180,000

aSize ¼ commodities� facilities� customers.
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here. For detailed statistical results the interested
reader can refer to Arostegui (1997).
5. Results and conclusions

5.1. Time-limited results

For the time-limited evaluation, all of the three
heuristics were allowed a maximum time of 300 s
and the best solutions from each heuristic were
noted. This approach evaluates the efficiency with
which the three heuristics reach quality solutions
over time. Figs. 1–3 illustrate the performance of the
heuristics for CFLP, MPFLP, and MCFLP, respec-
tively, for a sample problem. (Note that the figures
show performance over time well past the 300 s limit
at which the heuristics were compared.) Fig. 1
clearly shows that for CFLP, TS is the first to reach
the lowest-cost solution. SA does not have as steep a
descent, but eventually reaches the same quality
solutions as TS. The GA has an initially steep
descent, but slows down well before reaching
solutions as good as the other two heuristics and
would take significantly more computation time to
reach the same solutions. For CFLP, TS gives best
results in terms of rapidly reaching low-cost
solutions, followed by SA and GA, respectively.
The performance of TS is again superior to the
other heuristics for MPFLP as illustrated by Fig. 2.
Statistically, TS shows the best performance in
terms of rapidly reaching low-cost solutions, fol-
lowed by SA and GA, respectively.

For MCFLP, however, as illustrated by Fig. 3,
the results are significantly different. GA shows a
much faster descent—reduction in cost—than TS,
before TS catches up. Statistically, however, the
performance of GA and TS are similar. The SA
algorithm does not perform well at all for this class
of problems.

Overall, given the same amount time, for the
parameters used in this experiment, TS gave, in
general, the best results. The improvement in the
performance of GA for the MCFLP may be
attributed to the vector representation used for this
type of FLP. The vector representation requires
parameters that result in fewer solutions to be
evaluated and GA appears to perform well in this
environment, when information is limited.

5.2. Solutions-limited results

Figs. 4–6 show the performance of the heuristics
over the number of candidate solutions evaluated
on the three variations of FLP for a sample
problem. (Note that the figures show performance
of the heuristics over candidate solutions evaluated
well past the limit at which the heuristics were
compared.) Statistically, SA performs similar or
better, i.e. reaches a similar or better solution, than
TS in many cases. However, for all three FLPs, it is
evident that the GA is quicker than TS or SA in
initially finding low-cost solutions. However, it
begins to level off early, and is surpassed by TS
and SA.

Statistically, SA is the best performer for the
CFLP, followed by TS and GA. For the MPFLP,
GA is the clear winner. There is not a signi-
ficant difference in performance between TS and
GA. Similarly, for MCFLP, GA is very efficient.
In this case there is no statistically significant
difference between the performance of GA and that
of TS. SA does not perform well at all for the
MCFLP.

5.3. Unrestricted results

When all the heuristics were allowed to finish
their run according to their parameters, the
statistical tests showed significant differences among
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their performance. TS performed best for CFLP
and MCFLP while SA performed best for MPFLP.
GA performed just as well as TS for the MCFLP.
The unrestricted results are not illustrated due to
space considerations; however, details are available
from Arostegui (1997).
6. Conclusions

In general, we can conclude that the performance
of TS, SA and GA for the different types of FLP is
situational principally based on the measure of
comparability. For the CFLP, TS provides the best
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performance under time-limited evaluation, while
SA provides the best performance under solution
limited evaluation. TS shows superior performance
when no restrictions were imposed for the CFLP.
For the MPFLP, under time-limited evaluation TS
and SA performed similarly (superior to GA),
however, under solution-limited evaluation GA
was superior. For the unrestricted evaluation case
SA performed best with TS a close second for the
MPFLP. For the MCFLP, under time-limited
evaluation TS and GA give best results. Under
solution-limited and unrestricted evaluation TS was
the best performer.

Overall, it appears that TS shows very good
performance for all types of FLP under the time-
limited evaluation. Also, and the longer the solution
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time, the better the chances that TS will show
superior performance. The performance of SA and
GA are more partial to problem type. GA can
extract more information from fewer solutions than
TS and SA. It seems to improve solution quite
rapidly. The advantage TS and SA over GA depends
on the number of candidate solutions they are
allowed to evaluate and the extent of the informa-
tion they can extract from those solutions for a given
problem type. Thus, in general we may conclude that
TS should be tried first to the extent that it gives
robust results and is easy to develop and implement.
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It is important to note that the parameters of the
three heuristics used in the study may affect its results
and the conclusions. Similarly, the selection of time
limit and the number of solutions allowed may affect
the results. Therefore, even though using several
forms of FLP gives significant breadth to our
conclusions, it is important to not over-generalize
the results. However, our study has significant
contributions to the FL research; it is—to our
knowledge—the first to compare TS, GA and SA
using more than one problem type. More impor-
tantly, it is the first known attempt to apply TS, SA
and GA to several classical facility location problems.
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