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Abstract

Jumps in aggregate volatility has been established as an important factor affecting

the volatility dynamic, the market index price, and the index option price. However,

whether it affects the price of other assets is still an open question. This paper provides

supportive evidence in the individual equity market. We use a VIX option portfolio to

measure the volatility jump risk and test whether it is priced in the cross-section of

stock returns. We find a significant negative risk premium associated with the volatility

jump risk and it is robust after controlling for a bunch of systematic risk factors.



1 Introduction

While many studies have showed that jumps in aggregate volatility is an important

factor affecting the equilibrium asset price (Drechsler and Yaron (2011)), the volatility

dynamic (Corsi, Pirino, and Reno (2010), Jacod, Todorov et al. (2010), Todorov and

Tauchen (2011)), and the index option pricing (Eraker, Johannes, and Polson (2003),

Eraker (2004), Broadie, Chernov, and Johannes (2007)), its impact on the cross-section of

stock returns is less explored. This paper tries to fill the gap by constructing an empirical

measure about the volatility jump and test how the volatility jump affects the cross-section

of stock returns.

The cross-section of stock returns is important for at least two reasons. First, it reveals

the risk preference of market participants. Given the ample evidence of volatility jump on

the aggregate market level, it would be interesting to test its implication on the cross-section

of stock returns. Second, several recent studies have tested the role of price jumps on

the cross-section of stock returns. (see, for example, Babaoglu (2015), Bollerslev, Li, and

Todorov (2016), and Bollerslev, Li, and Zhao (2016)). Especially, Cremers, Halling, and

Weinbaum (2015) compare the impact of the aggregate price jump risk and the aggregate

volatility risk on the cross-section of stock returns. We would like to see whether the

aggregate volatility jump risk would affect their conclusion.

However, estimating the volatility jump risk is not easy. Previous papers usually employ

a fully specified model to filter out the volatility jumps. Thus the estimation results depend

on the model specification. In contrast, this paper uses a non-parametric method to estimate

the volatility jump risk. Our measure relies on few model assumptions and reflects the

market expectation about the future volatility jump risk.

Specifically, we use the return of a Delta-neutral, Vega-neutral, and Gamma-positive

VIX option portfolio to track the daily volatility jump risk. We treat VIX as a proxy for the

future expected market volatility. Although this proxy has a disadvantage because of the

embedded risk premium, it benefits us in the sense that we can observe market prices of
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various traded derivatives on VIX. Moreover, VIX options are especially informative about

the higher moments so we use them to construct the volatility jump measure.

The volatility jump portfolio is a Delta-neutral, Vega-neutral, and Gamma-positive VIX

option strategy. We rely on the key insight proposed by Coval and Shumway (2001) and

Cremers, Halling, and Weinbaum (2015), which is different option Greeks reflect different

risks. In our case, Delta of VIX option measures the sensitivity of option price to the VIX

levels, thus it reflects the volatility risk. Vega measures the sensitivity of option price to

the volatility of VIX, thus it reflects the volatility of volatility risk. Gamma is the second

order derivative of VIX option price to the VIX level thus it captures the effect of large

VIX movements, i.e. the volatility jump risk. Because our portfolio is Delta-neutral and

Vega-neutral, so its return is immune to small changes of the volatility and the volatility of

volatility. The positive Gamma creates the exposure to large volatility movements. Thus the

price of this VIX option portfolio is mainly driven by the market expectation about future

large movements of the volatility. If the market expects more significant volatility jumps in

the future, the price would be high and otherwise it would be low.

We use this strategy to construct a daily volatility jump risk measure and test whether

it affects the cross-section of stock returns. We conduct both the sort exercise and the

Fama-MacBeth regression. Both methods show that the volatility jump risk is negatively

priced in the cross-section of stock returns. The return difference between the portfolio that

has lowest sensitivity to the volatility jump and the portfolio that has highest sensitivity is

about -7.9% per year. Fama-MacBeth regression estimates the risk premium is about -6.5%

per year. Furthermore, our results are robust after controlling for the volatility risk, the

volatility risk, the price jump risk, the idiosyncratic volatility, the idiosyncratic skewness,

the realized volatility, the co-skewness, the co-kurtosis, the upside beta, as well as the

downside beta. Our results are also robust for different sample periods as well as different

stock portfolios. Thus we provide supportive evidence that the volatility jump risk is indeed

priced in the cross-section of stock returns.
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Our paper is related with several strands of literature. First, our paper is related with the

large literature which examines what are the systematic risk driving the cross-section of stock

returns. (see, for example, Fama and French (1993), Carhart (1997), Pástor and Stambaugh

(2003), Ang, Chen, and Xing (2006), Ang et al. (2006), Chang, Christoffersen, and Jacobs

(2013), and Cremers, Halling, and Weinbaum (2015)) We contribute by examining whether

the volatility jump risk is another systematic risk factor. Our paper also relates with the

recent literature which focuses on the higher moments of the volatility (Lin and Chang

(2009), Huang and Shaliastovich (2014), Agarwal, Arisoy, and Naik (2015), Song (2012),

Mencía and Sentana (2013), Lin (2013), Bakshi, Madan, and Panayotov (2015), Amengual

and Xiu (2016), Park (2016), Song and Xiu (2016)). We contribute by examining the

implication of volatility jump risk in the cross-section of stock return. Finally, our paper

is related with the paper which uses non-parametric method to estimate the jumps in the

volatility (Andersen, Bollerslev, and Diebold (2007), Jacod, Todorov et al. (2010), Corsi,

Pirino, and Reno (2010), Todorov and Tauchen (2011), Todorov, Tauchen, and Grynkiv

(2014), and Bandi and Reno (2016)). We contribute by proposing a volatility jump measure

using the VIX options.

This paper proceeds as follows. Section 2 describes the data and section 3 reports the

empirical methodology. Section 4 discusses the main results. Section 5 presents the robust

tests and section 6 concludes.

2 Data Description

Our main data, VIX futures options, is from OptionMetrics. For each day, we collect all

the VIX options maturing in the next calendar month and the month after that. We drop

the observation if it meets any one of the following criteria, (1) the bid price, ask price,

implied volatility, or any Greeks is missing, (2) the trade volume or open interest is zero,

(3) the bid price is greater than the offer price. In addition, we drop the data in the early
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sample period because VIX options are not very liquid in the first several months.1 Our final

sample ranges from April 2nd, 2007 to August 31st, 2015, yielding to 2037 days in total.

As for other data, VIX futures are from the official website of CBOE. We collect the

daily close prices of VIX futures of all maturities and match them with the corresponding

options based on the option expiration date. We exclude the observation if the close price

of VIX futures is either zero or missing. Individual equity data is from CRSP. We clean it by

dropping all missing values and deleting all non-financial firms and non-common shares.

Daily and monthly Fama-French factors are from Prof. French’s website.

3 Empirical Methodology

In this section, we will first introduce the volatility jump risk measure and then the

empirical methodology.

3.1 Construct the Volatility Jump Risk Measure

Our volatility jump risk measure is the return of a Delta-neutral, Vega-neutral, and

Gamma-positive VIX option portfolio, which is constructed as follows. On each day, we

first rank all VIX calls and puts based on their moneyness, which is defined as the strike to

the underlying price ratio. Then we choose the closet ATM call and put pair to formulate a

ATM straddle. The weights of call and put are calculated as follow.

θCall,t + θPut,t = 1

θCall,t∆Call,t + θPut,t∆Put,t = 0
(1)

where ∆Call,t is the market Delta of the call option at time t and ∆put,t is the market Delta

of the put option at time t. We conduct the above procedure for VIX options maturing in 1

1This is consistent with the existing literature such as Jackwerth and Vilkov (2015), Park (2015), and
Song and Xiu (2016).
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month and 2 months respectively, yielding to a 1 month straddle and a 2 month straddle

every day. The straddle returns are calculated as follows.

ret i
St raddle,t = θ

i
Cal l,t ret i

Cal l,t + θ
i
Put,t ret i

Put,t i = 1,2 (2)

where ret i
Cal l,t is the return of the Call option maturing in month i and ret i

Put,t is the return

of the put option maturing in month i. Next we short 1 contract of 2 month straddle and

long δt contract of 1 month straddle. δt is solved by the following equation to make the

portfolio Vega-neutral.

δtν
1
t − ν

2
t = 0 (3)

ν1
t denotes the Vega of the 1 month straddle at time t and ν2

t denotes the Vega of the 2

month straddle at time t. Because short term options have larger Gamma than long term

options, the Gamma of this position is positive. On each day, we construct the position and

hold it for one day. On the next day, we sell the outstanding position formed on previous

day and reconstruct a new position using the same methodology. Thus, we can get a daily

measure of the volatility jump risk using the daily return of this portfolio, which can be

calculated as follows.

retVol Jump,t = δt ret1
St raddle,t − ret2

St raddle,t (4)

retVol Jump,t would be high if market expects a high probability of the volatility jump and

would be low otherwise.

3.2 Test whether the Volatility Jump Risk is Priced

To prove the volatility jump risk is a priced systematic risk factor, we need to show a

contemporaneous relationship between the volatility jump beta and the portfolio returns.

We follow the empirical procedure in Ang et al. (2006) and Cremers, Halling, and Weinbaum

(2015) to detect the empirical relationship. The procedure is as follows.
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For each individual stock i, on the end of each month, we regress its daily excess returns

on the daily excess returns of the market portfolio and the daily returns of the volatility

jump portfolio over the past 12 months.

Ri
t = α

i + β i
MKTMKTt + β

i
Vol JumpVol Jumpt + ε

i (5)

where Ri
t is the excess return of stock i on time t, MKTt is the excess return of the market

portfolio on time t, and Vol Jumpt is the return of the volatility jump portfolio at time t.

We don’t control the SMB and HML factor in equation 5 to be consistent with Ang et al.

(2006), but our main results are robust for adding those two factors.

Then we sort the stocks into 5 portfolios based on the estimated β i
Vol Jump and calculate

the value-weighted and equal-weighted holding-period returns of each portfolio over the

same period, i.e. the past 12 months. Then we move to the next month and repeat the

exercise. As a result, we get a time-series of monthly returns for every portfolio. We

calculate Fama-French 3 factor α for each portfolio as follows.

R j
t = α

j + β j
MKTMKTt + β

j
SMBSMBt + β

j
HMLHMLt + εt , j = 1,2, ..., 5 (6)

where R j
t is the holding-period return calculated in month t, MKTt is the holding-period

return of the market portfolio in month t, SMBt is the holding-period return of the SMB

portfolio in month t, and HMLt is the holding-period return of the HML portfolio in month

t.

We also run the Fama-Macbeth regression to estimate the risk premium. At each month,

we regress the excess return of each individual stock on the estimated β i
MKT and β i

Vol Jump

over the past 12 months as follows.

Ri
t = γ0 + γVol Jump,t β̂

i
Vol Jump,t + γMKT,t β̂

i
MKT,t + ε

i (7)
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γVol Jump,t are averaged across time to get the final estimate. So does the t-stats. All the

standard errors are adjusted using Newey and West (1987) method with 12 lags.

4 Empirical Results

This section discusses our main results. We first check whether the volatility jump risk

measure that extracted from VIX options is consistent with the realized jump in VIX, then

we test whether the volatility jump risk is priced in the cross-section of stork returns by

using both the sorting exercise and cross-sectional regression exercise.

4.1 Volatility Jump Measures

To test whether the portfolio return tracks the large movement of volatility, we compare

it with the realized jumps of the volatility. We expect to see the portfolio return spikes

whenever a physical volatility jump occurs. Figure 1 plots the daily return of the volatility

jump portfolio (the solid line) and the days when jumps of VIX occurred (the vertical

dashed line). The realized jumps of VIX are identified by the Lee and Mykland (2008)

non-parametric method. The method procedure is given in the 6. In general, we find the

return peaks when VIX jumps occur, suggesting the volatility jump portfolio the volatility

jump risk.

Table 1 reports the statistical property of the volatility jump measure. Panel A reports

the summary statistics and Panel B reports the correlation coefficients of volatility jump

with other systematic factors.

The third column in Panel A shows the average return of the volatility jump portfolio is

negative, about -0.02% per year or -5.04% per year, suggesting a negative risk premium

for the volatility jump return. The negative return is consistent with the fact that the VIX

options are used as a hedge tool against the market downside drops, so investors are willing

to pay for holding the volatility jump portfolio. The fourth to sixth columns reports the
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standard deviation, the daily minimum return and the maximum return. Large magnitudes

of those numbers suggest the volatility jump measure is time-varying and quite volatile.

The last two columns presents the skewness and kurtosis. Both number suggest that the

volatility jump measure is non-normal and follows a highly leptokurtic distribution.

Panel B shows the correlation coefficient between the volatility jump measure and other

related systematic risk factors. We find the coefficients are moderate except for the volatility

of volatility and the aggregate jump of S&P 500. This suggests that the volatility jump is

closely correlated with the volatility of volatility and the price jump.

4.2 Portfolio Sorting Results

Table 2 reports average returns of the equal-weighted portfolios sorted by the βVolJump.

It reports the raw return as well as the return in the CAPM model, in the Fama-French

3-factor model, as well as in the Cahart 4-factor model. Given the negative risk premium

of volatility jump which is shown in Table 1, we should observe a decreasing relationship

between the βVolJump and the portfolio returns, i.e. the higher the βVolJump, the lower the

portfolio return. More importantly, the difference between the return of the portfolio that

has the highest βVolJump with the portfolio that has the lowest βVolJump should be negative

and significant. And this difference should not be explained by other existing risk factors.

This is exactly what we find in Table 2. First we find that on average, there is a decreasing

pattern between the portfolio return and the Table 2. The portfolio with a higher sensitivity

to the volatility jump risk earns a lower return, consistent with the hedging story. Moreover,

we find the difference between the portfolio 5 and 1 is about -7.9% per year and significant

on the 1% percent level. Furthermore, the negative alpha persists across in the CAPM

model, the FF3 model, as well as the Carhart 4 model. Overall, we find our results provide

strong evidence showing that the volatility jump risk is negatively priced in the cross-section

of stock returns. The return of value-weighted portfolio are in the Table A.1.
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4.3 Controlling for Other Related Risks

In this section, we test our previous results while controlling for the volatility risk, the

volatility of volatility risk (vol of vol) and the price jump risk. The volatility risk is measured

as the change of daily VIX, following Ang et al. (2006). The volatility of volatility risk

measure is the return of a Delta-neutral, Gamma-neutral, but Vega-positive VIX option

portfolio. The price jump risk measure is the return of a Delta-neutral, Vega-neutral,

but Gamma-positive S&P 500 option portfolio. Both portfolios are constructed following

Cremers, Halling, and Weinbaum (2015).

Our first exercise is to control the related risks when we calculate the βVolJump. Specif-

ically, we re-run equation 5 with one related risk measure each time. Then we test the

relationship between the βVolJump and the portfolio return. Table 3 reports the equal-

weighted portfolio results. For each control variable, it reports the raw portfolio return

as well the one in the Carhart 4 factor model. We find that for all three control variables,

the decreasing pattern remains. In addition, the return difference between two extreme

portfolio is still negative and significant. Thus Table 3 shows that the volatility jump risk is

a different systematic risk factor than the volatility risk, the volatility of volatility risk, and

the price jump risk. The value-weighted results are similar and reported in Table A.2.

4.4 Double Sorts with Other Related Risks

Our next exercise is the double sort exercise. Particularly, we double sort the portfolio

with respect to βVolJump and β∆V IX and βVolJump and βPriceJump. Table 4 and 5 report the

equal-weighted results and Table A.3 and A.4 reports the value-weighted results.

Table 4 shows that the volatility jump risk and the volatility risk are different. For each

β∆V IX quintile, the decreasing pattern remains for the βVolJump and the return difference

is negative and significant. Thus this shows that the volatility risk cannot explain the

volatility jump risk. The volatility jump risk doesn’t fully explain the volatility risk neither.
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We find the volatility risk is also priced for each volatility jump risk quintile. This shows

that the volatility risk contains another component, which is consistent with the fact that

the volatility of volatility risk is also priced.

Table 5 shows that the volatility jump risk and the price jump risk are somewhat

correlated. For example, the Carhart 4 alpha of βVolJump portfolio are only significant in the

first two quintiles of βPriceJump. This could be due to the fact that there is a strong co-jump

structure of the S&P 500 and the VIX.

4.5 Fama-Macbeth Regression

In this section, we estimate the risk premium associated with the volatility jump using

the Fama-Macbeth regression. Table 6 reports the results in the CAPM model as well as

the Carhart 4 factor model. We find that the coefficient of volatility jump is significantly

negative. The magnitude is about -0.5% per month, or -6% per year. The coefficient cannot

be explained by other market variables. Table 7 shows that the coefficient controlling for a

bunch of stock characteristics. We find the stock characteristics affect the magnitude of

estimated coefficients, they cannot explain the significance level. So the volatility jump risk

is both different from the market factors and the firm characteristics.

5 Robust Test

This section investigates whether different regression specification alter our conclusion.

We re-examine our results using different estimation periods, in different samples, and

with different portfolios.
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5.1 Different Estimation Periods

First we alter the estimation periods for getting the βVolJump. We change the estimation

period to 3 months, 6 months, as well as 24 months. Table 8 shows both the equal-weighted

and value-weighted results. We find the results hold for all three specifications.

5.2 Different Sample Periods

We also find that our results hold for different sample periods. Table 8 reports the

equal-weighted and value-weighted portfolio returns in 2007 to 2011 and 2012 to 2015.

The same pattern shows in both periods. Particularly, the return difference is larger and

more significant in the first sample period. This is consistent with the fact that the effect of

volatility jump risk is stronger when the market is more volatile.

5.3 Different Portfolios

Finally, we test whether the volatility jump risk can explain the other portfolio returns.

We repeat our exercise with the Fama-French 25 portfolios sorted on size and book-to-

market as well as the 49 industry portfolio. Table 10 shows the average return as well as

the Carhart 4 alpha. We find for both portfolios, the alphas are significant and robust for

the other market risk factors.

6 Concluding Remarks

In summary, this paper studies the impact of market volatility jump risk on the cross-

section of stock returns. We measure the volatility jump risk using the VIX options and find

it’s priced in the individual equity market. We show that the volatility jump risk carries a

negative risk premium. The risk premium is robust for different empirical specifications,

different sample periods, and different stock portfolios. Our results imply that the volatility
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jump risk is another important risk factor and it’s independent of the volatility risk, the

volatility of volatility risk, and the price jump risk.
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Table 1
Summary Statistics of Daily Returns of the Volatility Jump Portfolio

This table reports the summary statistics of daily returns of the volatility jump portfolio
(Vol Jump). Panel A reports the number of observations, the daily average return, the
daily median return, the standard deviation, the minimum, the maximum, the skewness,
the kurtosis, and the autocorrelation coefficient. Panel B reports the Pearson correlation
coefficients of Vol Jump with the level of VIX, the change of VIX (∆V IX ), the return of a
VIX portfolio tracking the change of volatility of volatility (Vol of Vol), the return of a SPX
portfolio tracking the change of jumps in S&P 500 (Price Jump), the market excess return
(MKT), the SMB factor (SMB), the HML factor (HML), and the momentum factor (UMD).
The sample period is from April, 2007 to August 2015.

Panel A: Summary Statistics

N Mean Median Std Deviation Min Max Skewness Kurtosis AR(1)

Vol Jump 2077 -0.02% -0.56% 4.04% -19.77% 45.07% 2.18 14.32 -0.04

Panel B: Pairwise Correlation Coefficients

Vol Jump VIX ∆VIX Vol of Vol Price Jump MKT SMB HML UMD

Vol Jump 1.00

VIX 0.04 1.00

∆VIX 0.29 0.10 1.00

Vol of Vol −0.68 −0.01 −0.13 1.00

Price Jump 0.48 0.09 0.40 −0.28 1.00

MKT −0.19 −0.13 −0.84 0.10 −0.25 1.00

SMB 0.01 −0.02 −0.07 0.04 −0.01 0.17 1.00

HML −0.04 −0.08 −0.29 0.03 −0.09 0.43 −0.02 1.00

UMD −0.05 −0.01 0.23 0.04 −0.01 −0.41 −0.01 −0.59 1.00
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Table 2
Equal-weighted Returns of Sorted Portfolios

This table reports the average return, CAPM alpha, Fama-French 3 factor alpha, and
Carhart4 factor alpha of the equal-weighted portfolio sorted on βVolJump. On each month,
we regress the excess returns of each individual stock over the next 12 months on the
returns of the volatility jump portfolio, controlling for the market excess returns. Then
we sort the stocks in to 5 portfolio based on the βVolJump loading and calculate the
equal-weighted average return in the 12 months. Portfolio 1 has the lowest βVolJump

loadings and Portfolio 5 has the highest βVolJump loadings. Returns are annualized and
standard errors are adjusted by Newey and West (1987) method with 12 lags. T-statistics
are reported in the parenthesis. The sample period is from April, 2007 to August 2015.

EW Portfolio Average Return CAPM Alpha FF 3 Alpha Carhart4 Alpha

1 Low βVol Jump 21.85 11.65 6.04 9.11

(3.38) (1.73) (3.12) (7.65)

2 16.89 8.96 5.44 6.95

(3.27) (2.39) (4.70) (13.87)

3 15.66 8.18 4.58 6.21

(3.13) (2.09) (3.59) (11.17)

4 16.49 8.49 3.91 6.05

(3.09) (1.63) (2.93) (7.76)

5 High βVol Jump 13.95 4.21 -1.70 1.28

(2.05) (0.56) (-0.79) (1.53)

5-1 -7.90*** -7.44*** -7.74*** -7.83***

(-4.94) (-5.98) (-11.25) (-13.81)
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Table 3
Equal-weighted Returns of Sorted Portfolios Controlling for Other Risk Factors

This table reports the average return and Carhart4 factor alpha of the equal-weighted
portfolio sorted on βVolJump, while controlling for other risk factors. The empirical
procedure is the same as in Table 2, but we control other risk factors in the time series
estimation. Specifically, we control the change of VIX (∆V IX ), the return of a VIX option
portfolio tracking the volatility of volatility risk (Vol of Vol), and the return of a SPX
option portfolio tracking the aggregate price jump risk (Price Jump). Portfolio 1 has the
lowest βVolJump loadings and Portfolio 5 has the highest βVolJump loadings. Returns are
annualized and standard errors are adjusted by Newey and West (1987) method with 12
lags. T-statistics are reported in the parenthesis. The sample period is from April, 2007 to
August 2015.

X = ∆V IX X = Vol of Vol X = Price Jump

EW Portfolio Average Return Carhart4 Alpha Average Return Carhart4 Alpha Average Return Carhart4 Alpha

1 Low βVol Jump 20.13 7.75 19.23 6.52 19.93 6.64

(3.19) (5.86) (2.86) (9.44) (2.99) (8.42)

2 17.49 7.52 17.52 8.14 16.50 6.47

(3.42) (13.46) (3.53) (16.13) (3.15) (13.43)

3 15.74 6.19 16.75 7.43 16.83 7.25

(3.13) (11.19) (3.46) (13.48) (3.51) (13.39)

4 16.17 5.74 16.08 5.52 15.77 5.26

(3.00) (11.61) (3.03) (6.48) (2.95) (7.42)

5 High βVol Jump 15.06 2.33 14.81 1.60 15.69 3.67

(2.16) (2.84) (2.23) (1.44) (2.37) (2.58)

5 -1 -5.07*** -5.42*** -4.42*** -4.92*** -4.24** -2.96***

(-2.90) (-5.83) (-3.75) (-5.02) (-2.52) (-2.85)
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Table 4
Equal-weighted Returns of Double Sorted Portfolios on βVolJump and β∆V IX

This table reports the Carhart4 factor alpha of the equal-weighted portfolio double sorted
on βVolJump and β∆V IX . On each month, we regress the excess returns of each individual
stock over the next 12 months on the returns of the volatility jump portfolio and the
change of VIX, controlling for the market excess returns. Then we double sort the stocks in
to 5 portfolio based on the βVolJump loading and on the β∆V IX loading. We calculate the
equal-weighted average return in the 12 months for each of the 25 portfolios and the
Carhart4 factor alpha. Portfolio 1 has the lowest βVolJump loadings and Portfolio 5 has the
highest βVolJump loadings. Returns are annualized and standard errors are adjusted by
Newey and West (1987) method with 12 lags. T-statistics are reported in the parenthesis.
The sample period is from April, 2007 to August 2015.

Carhart4 Alpha 1 Low β∆VIX 2 3 4 5 High β∆VIX 5-1

1 Low βVol Jump 10.62 10.57 8.72 7.05 2.58 -8.04***

(8.12) (10.25) (9.46) (5.84) (1.10) (-3.56)

2 10.10 9.97 7.37 6.87 4.90 -5.20***

(8.40) (12.50) (8.61) (8.51) (3.74) (-5.42)

3 9.01 9.10 7.56 5.74 1.87 -7.14***

(8.67) (10.72) (8.79) (10.54) (3.30) (-7.85)

4 8.49 7.39 6.78 5.37 0.30 -8.19***

(10.61) (8.13) (9.39) (9.63) (0.38) (-7.35)

5 High βVol Jump 2.93 5.94 2.75 0.62 -1.64 -4.57**

(1.64) (4.45) (2.97) (0.70) (-1.21) (-2.34)

5 - 1 -7.70*** -4.63*** -5.97*** -6.43*** -4.22**

(-6.15) (-2.91) (-4.96) (-5.04) (-2.59)
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Table 5
Equal-weighted Returns of Double Sorted Portfolios on βVolJump and βPriceJump

This table reports the Carhart4 factor alpha of the equal-weighted portfolio double sorted
on βVolJump and βPriceJump. On each month, we regress excess returns of each individual
stock over the next 12 months on returns of the volatility jump portfolio and returns of
the price jump portfolio, controlling for the market excess returns. Then we double sort
the stocks in to 5 portfolio based on the βVolJump loading and on the βPriceJump loading.
We calculate the equal-weighted average return in the 12 months for each of the 25
portfolios and the Carhart4 factor alpha. Portfolio 1 has the lowest βVolJump loadings and
Portfolio 5 has the highest βVolJump loadings. Returns are annualized and standard errors
are adjusted by Newey and West (1987) method with 12 lags. T-statistics are reported in
the parenthesis. The sample period is from April, 2007 to August 2015.

Carhart4 Alpha 1 Low βPrice Jump 2 3 4 5 High βPrice Jump 5-1

1 Low βVol Jump 12.23 11.05 6.20 4.04 0.59 -11.64***

(7.65) (10.73) (9.74) (4.00) (0.28) (-4.55)

2 10.27 8.73 7.64 6.95 2.06 -8.22***

(8.19) (12.39) (19.09) (11.17) (2.63) (-6.43)

3 10.26 9.23 7.85 7.18 2.41 -7.85***

(6.34) (10.65) (11.86) (21.16) (4.20) (-4.67)

4 7.26 8.01 7.30 4.71 1.15 -6.11***

(4.02) (8.08) (10.02) (8.14) (1.37) (-3.12)

5 High βVol Jump 2.31 5.03 4.88 2.65 -2.93 -5.24

(1.18) (2.86) (3.24) (2.60) (-1.11) (-1.57)

5 - 1 -9.92*** -6.02*** -1.32 -1.38 -3.52

(-4.43) (-4.02) (-1.00) (-0.94) (-1.51)
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Table 6
Fama-MacBeth Regression Controlling for ∆VIX, Vol of Vol, and the Price Jump

This table reports the Fama-Macbeth regression results. On each month, we regress excess
returns of each individual stock over the next 12 months on returns of the volatility
jump portfolio, while controlling for different factors. Then we conduct Fama-Macbeth
regression on each month. Standard errors are adjusted by Newey and West (1987)
method with 12 lags. T-statistics are reported in the parenthesis. The sample period is
from April, 2007 to August 2015.

CAPM Model Carhart4 Factor Model

Vol Jump −0.55∗∗∗ −0.48∗∗∗ −0.33∗∗ −0.47∗∗∗ −0.50∗∗∗ −0.49∗∗∗ −0.34∗∗ −0.39∗∗

(−5.57) (−4.25) (−2.15) (−2.88) (−4.83) (−4.19) (−2.30) (−2.58)

MKT 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02

(1.11) (1.12) (0.97) (1.37) (1.41) (1.30) (1.41) (1.58)

∆VIX −2.14∗∗ −2.40∗∗

(−1.76) (−2.28)

Vol of Vol 0.00 0.00

(1.15) (1.15)

Price Jump −0.15∗∗∗ −0.11∗∗∗

(−3.39) (−2.88)

SMB 0.00 0.01 0.00 0.00

(0.98) (1.08) (1.07) (0.98)

HML 0.00 (0.00) (0.01) (0.00)

(−0.03) (−0.20) (−0.72) (−0.54)

UMD 0.03∗ 0.03∗ 0.03∗ 0.03∗

(1.93) (1.95) (1.82) (1.94)

Constant 0.05∗ 0.05∗ 0.05∗∗ 0.05∗ 0.05∗ 0.05∗ 0.05∗ 0.05∗

(1.92) (1.92) (2.01) (1.75) (1.85) (1.93) (1.91) (1.74)
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Table 7
Fama MacBeth Regression with Other Control Variables

This table reports the Fama-Macbeth regression results with other control variables. We
control the idiosyncratic volatility, idiosyncratic skewness, realized volatility, coskewness,
cokurtosis, upside beta, and downside beta. Standard errors are adjusted by Newey and
West (1987) method with 12 lags. T-statistics are reported in the parenthesis. The sample
period is from April, 2007 to August 2015.

CAPM Model Carhart4 Factor Model

βVol Jump βVol Jump

Idio. Vol -0.18∗∗∗ -0.11∗∗

(-3.75) (-2.16)

Idio. Skew -0.16∗∗∗ -0.10∗∗

(-4.57) ( -2.17)

Realized Vol -0.18∗∗∗ -0.11∗∗

(-3.76) (-2.17)

CoSkew -0.23∗∗∗ -0.17∗∗∗

(-4.53) (-3.16)

CoKurt -0.20∗∗∗ -0.14∗∗

-4.24 -2.43

Upside Beta -0.21∗∗∗ -0.14∗∗

(-4.59) (-2.75)

Downside Beta -0.26∗∗∗ -0.21∗∗∗

(-7.82) (-4.31)
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Table 8
Robust Results with Different Estimation Length

This table reports the Carhart4 factor alpha of both equal-weighted and value-weighted
portfolio with different estimation length. Portfolio 1 has the lowest βVolJump loadings and
Portfolio 5 has the highest βVolJump loadings. Returns are annualized and standard errors
are adjusted by Newey and West (1987) method with 12 lags. T-statistics are reported in
the parenthesis. The sample period is from April, 2007 to August 2015.

3 Months 6 Months 24 Months

EW Carhart4 Alpha VW Carhart4 Alpha EW Carhart4 Alpha VW Carhart4 Alpha EW Carhart4 Alpha VW Carhart4 Alpha

1 Low βVol Jump 5.60 0.21 6.15 2.26 6.55 13.06

(1.64) (0.06) (2.42) (0.99) (4.79) (13.16)

2 3.79 3.49 7.13 5.97 10.30 8.23

(1.97) (2.06) (5.51) (6.66) (20.38) (33.23)

3 4.67 5.67 5.45 4.89 8.10 8.07

(3.36) (3.70) (4.42) (3.68) (20.36) (52.38)

4 1.57 2.40 2.75 2.18 5.69 2.97

(1.01) (1.22) (1.79) (1.65) (14.62) (10.02)

5 High βVol Jump 0.07 -1.15 1.25 -3.02 -1.08 -3.28

(0.02) (-0.38) (0.64) (-1.68) (-1.12) (-3.87)

5 - 1 -5.54** -1.35 -4.90*** -5.27* -7.63*** -16.34***

(-2.59) (-0.26) (-3.349) (-1.85) (-11.89) (-42.11)
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Table 9
Robust Results with Sub-samples

This table reports the estimated Carhart4 factor alpha in subsamples. The first sample
is from April 2007 to December 2011. The second is from January 2012 to December
2015. For each period, we report the Carhart4 factor alpha of both the equal-weighted
portfolio and the value-weighted portfolio. Portfolio 1 has the lowest βVolJump loadings and
Portfolio 5 has the highest βVolJump loadings. Returns are annualized and standard errors
are adjusted by Newey and West (1987) method with 12 lags. T-statistics are reported in
the parenthesis. The sample period is from April, 2007 to August 2015.

2007 - 2011 2012 - 2015

EW Portfolio Average Return CAPM Alpha FF3 Alpha Average Return CAPM Alpha FF3 Alpha

1 8.61 8.38 4.44 9.35 3.96 2.31

Low βVol Jump (1.01) (1.91) (1.56) (1.90) (1.32) (1.36)

2 6.55 6.27 3.46 8.05 3.63 2.66

(1.02) (2.31) (2.06) (2.20) (2.01) (2.83)

3 5.88 5.59 2.74 7.48 3.34 2.37

(0.97) (2.08) (1.91) (2.24) (1.97) (3.19)

4 5.14 4.87 1.37 6.77 2.32 1.26

(0.77) (1.57) (0.88) (1.86) (1.22) (1.64)

5 4.85 4.63 0.35 7.02 1.50 0.16

High βVol Jump (0.56) (1.03) (0.13) (1.40) (0.51) (0.10)

5 - 1 −3.76∗∗∗ −3.76∗∗∗ −4.10∗∗∗ −2.33∗∗∗ −2.45∗∗∗ −2.14∗∗

(−9.40) (−9.66) (−8.65) (−2.85) (−2.82) (−2.56)
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Table 10
Robust Results with Fama-French 25 Portfolios and Industry 49 Portfolios

This table reports the average return and the Carhart 4 alpha of Fama-French 25 Size and
Book-to-Market portfolios and the 49 industry portfolios. Portfolio 1 has the lowest βVolJump

loadings and Portfolio 5 has the highest βVolJump loadings. Returns are annualized and
standard errors are adjusted by Newey and West (1987) method with 12 lags. T-statistics
are reported in the parenthesis. The sample period is from April, 2007 to August 2015.

25 FF Portfolios 49 Industry Portfolios

EW Portfolio Average Return CAPM Alpha FF3 Alpha Average Return CAPM Alpha FF3 Alpha

1 6.30 1.96 1.90 6.63 2.62 2.26

Low βVol Jump (1.85) (1.98) (3.08) (2.07) (2.76) (2.28)

2 5.54 1.43 1.16 6.42 2.61 2.11

(1.69) (1.14) (1.87) (2.09) (2.87) (3.54)

3 5.41 1.34 0.97 5.34 1.34 0.97

(1.71) (1.19) (2.22) (1.66) (1.26) (1.43)

4 4.78 0.85 0.48 4.99 0.84 0.58

(1.53) (0.67) (0.99) (1.51) (0.86) (0.94)

5 3.74 −0.40 −0.80 3.29 −1.05 −1.35

High βVol Jump (1.13) (−0.36) (−1.85) (0.94) (−0.86) (−1.88)

5 - 1 −2.56∗∗∗ −2.37∗∗∗ −2.71∗∗∗ −3.35∗∗∗ −3.67∗∗∗ −3.61∗∗∗

(−3.29) (−3.16) (−3.73) (−3.23) (−3.23) (−3.46)
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Appendix

A.1 Lee and Mykland (2008) Non-Parametric Method

Following Lee and Mykland (2008), we calculate the statistics L(i) as follows.

L(i) =
logV IX (t i)/V IX (t i−1)

σ̂(t i)
(8)

where

σ̂(t i) =
1

K − 2

i−1
∑

j=i−K+2

|logV IX (t j)/V IX (t j−1)|logV IX (t j−1)/V IX (t j−2)| (9)

V IX (t i) is the closing price of VIX at time t i and K is the length of the rolling window.

Because we use daily observations, we let K = 16 as suggested by the original paper. The

threshold for |L(i)−Cn|
Sn

is β , where

Cn =
(2logn)0.5

c
−

logπ+ log(logn)
2c(2logn)0.5

(10)

and

Sn =
1

c(2logn)0.5
(11)

.

n is the number of observations, β = −log(−log(1− Significance Level)).
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Table A.1
Value-weighted Returns of Sorted Portfolios

This table reports the average return, CAPM alpha, Fama-French 3 factor alpha, and
Carhart4 factor alpha of the value-weighted portfolio sorted on βVolJump. On each month,
we regress the excess returns of each individual stock over the next 12 months on the
returns of the volatility jump portfolio, controlling for the market excess returns. Then
we sort the stocks in to 5 portfolio based on the βVolJump loading and calculate the
value-weighted average return in the 12 months. Portfolio 1 has the lowest βVolJump

loadings and Portfolio 5 has the highest βVolJump loadings. Returns are annualized and
standard errors are adjusted by Newey and West (1987) method with 12 lags. T-statistics
are reported in the parenthesis. The sample period is from April, 2007 to August 2015.

VW Portfolio Average Return CAPM Alpha FF 3 Alpha Carhart4 Alpha

1 Low βVol Jump 16.00 8.28 6.08 6.66

(2.82) (5.01) (5.56) (6.26)

2 12.92 6.76 6.21 6.48

(2.55) (12.41) (10.87) (11.00)

3 13.16 7.52 6.32 7.10

(3.17) (6.01) (9.70) (12.22)

4 11.75 4.54 1.96 3.45

(2.56) (1.37) (1.71) (2.78)

5 High βVol Jump 9.82 0.26 -5.55 -3.62

(1.51) (0.04) (-2.84) (-1.80)

5 - 1 -6.18 -8.02* -11.63*** -10.27***

(-1.58) (-1.80) (-5.49) (-4.83)

29



Table A.2
Value-weighted Returns of Sorted Portfolios Controlling for Other Risk Factors

This table reports the average return and Carhart4 factor alpha of the value-weighted
portfolio sorted on βVolJump, while controlling for other risk factors. The empirical
procedure and the control variables are the same as in Table 3. Portfolio 1 has the
lowest βVolJump loadings and Portfolio 5 has the highest βVolJump loadings. Returns are
annualized and standard errors are adjusted by Newey and West (1987) method with 12
lags. T-statistics are reported in the parenthesis. The sample period is from April, 2007 to
August 2015.

X = ∆V IX X = Vol of Vol X = Price Jump

VW Portfolio Average Return Carhart4 Alpha Average Return Carhart4 Alpha Average Return Carhart4 Alpha

1 Low βVol Jump 16.15 7.86 16.49 7.81 14.29 4.83

(3.29) (6.03) (3.18) (8.93) (2.61) (8.20)

2 12.62 5.64 12.53 6.52 12.73 5.97

(2.41) (7.78) (2.48) (9.64) (2.43) (8.31)

3 13.07 6.84 12.23 5.50 13.23 7.18

(2.87) (8.53) (3.06) (8.56) (3.15) (10.86)

4 12.43 4.97 12.87 4.41 13.29 5.39

(2.79) (6.98) (2.83) (3.60) (3.06) (4.83)

5 High βVol Jump 10.94 (1.65) 10.05 (3.50) 11.14 -1.24

(1.69) (-1.10) (1.54) (-1.42) (1.90) (-0.56)

5 - 1 -5.21 -9.51*** -6.45* -11.31*** -3.15 -6.07***

(-1.32) (-8.19) (-1.82) (-5.82) (-0.93) (-3.19)
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Table A.3
Value-weighted Returns of Double Sorted Portfolios on βVolJump and β∆V IX

This table reports the Carhart4 factor alpha of the value-weighted portfolio double sorted
on βVolJump and β∆V IX . On each month, we regress the excess returns of each individual
stock over the next 12 months on the returns of the volatility jump portfolio and the
change of VIX, controlling for the market excess returns. Then we double sort the stocks in
to 5 portfolio based on the βVolJump loading and on the β∆V IX loading. We calculate the
value-weighted average return in the 12 months for each of the 25 portfolios and the
Carhart4 factor alpha. Portfolio 1 has the lowest βVolJump loadings and Portfolio 5 has the
highest βVolJump loadings. Returns are annualized and standard errors are adjusted by
Newey and West (1987) method with 12 lags. T-statistics are reported in the parenthesis.
The sample period is from April, 2007 to August 2015.

Carhart4 Alpha 1 Low β∆VIX 2 3 4 5 High β∆VIX 5-1

1 Low βVol Jump 9.02 11.58 6.07 1.58 -0.71 -9.73**

(3.38) (9.60) (4.23) (0.96) (-0.17) (-2.39)

2 11.28 8.40 6.05 3.61 -3.89 -15.17***

(8.71) (10.04) (5.79) (3.00) (-3.33) (-7.98)

3 10.76 9.59 6.68 5.33 -0.66 -11.42***

(7.18) (9.11) (7.80) (6.35) (-0.71) (-4.92)

4 9.26 7.20 4.89 -0.73 -4.54 -13.80***

(7.26) (6.41) (6.28) (-0.45) (-3.76) (-7.08)

5 High βVol Jump 6.17 2.29 -2.01 -0.15 -8.53 -14.70***

(2.45) (1.26) (-0.77) (-0.10) (-8.39) (-5.26)

5 - 1 -2.85 -9.29*** -8.07*** -1.74 -7.82*

(-0.72) (-5.96) (-2.93) (-0.98) (-1.78)
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Table A.4
Value-weighted Returns of Double Sorted Portfolios on βVolJump and βPriceJump

This table reports the Carhart4 factor alpha of the value-weighted portfolio double sorted
on βVolJump and βPriceJump. On each month, we regress excess returns of each individual
stock over the next 12 months on returns of the volatility jump portfolio and returns of the
price jump portfolio, controlling for the market excess returns. Then we double sort the
stocks in to 5 portfolio based on the βVolJump loading and on the βPriceJump loading. We
calculate the value-weighted average return in the 12 months for each of the 25 portfolios
and the Carhart4 factor alpha. Portfolio 1 has the lowest βVolJump loadings and Portfolio 5
has the highest βVolJump loadings. Returns are annualized and standard errors are adjusted
by Newey and West (1987) method with 12 lags. T-statistics are reported in the parenthesis.
The sample period is from April, 2007 to August 2015.

Carhart4 Alpha 1 Low βPrice Jump 2 3 4 5 High βPrice Jump 5-1

1 Low βVol Jump 18.78 9.27 1.62 -0.47 -1.08 -19.85***

(4.04) (5.92) (1.16) (-0.38) (-0.46) (-4.61)

2 11.71 6.20 6.09 6.93 2.50 -9.21***

(7.57) (6.21) (7.82) (9.43) (3.05) (-5.53)

3 11.79 8.01 7.67 6.19 -0.36 -12.15***

(8.58) (7.96) (11.13) (8.68) (-0.35) (-6.98)

4 8.48 6.51 5.84 2.76 -1.34 -9.82***

(3.91) (5.58) (7.81) (1.99) (-0.53) (-2.86)

5 High βVol Jump 0.75 3.00 0.76 -3.66 -6.39 -7.13**

(0.33) (0.97) (0.52) (-1.58) (-2.56) (-2.51)

-18.03*** -6.27* -0.86 -3.19 -5.31***

(-3.44) (-1.98) (-0.42) (-1.57) (-2.78)
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