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Abstract

This paper builds a real-options, term structure model of the firm to shed new light

on the value premium, financial distress, momentum, and credit spread puzzles. The

model incorporates stochastic volatility in the firm productivity process and a negative

market price of volatility risk. Since the equity of growth firms and financially distressed

firms have embedded options, such securities hedge against volatility risk in the market

and thus command lower volatility risk premia than the equities of value or financially

healthy firms. Abnormal risk-adjusted momentum profits are concentrated among low

credit-rating firms for similar reasons. Conversely, since increases in volatility generally

reduce the value of debt, corporate debt will tend to command large volatility risk

premia, allowing the model to generate higher credit spreads than existing structural

models. The paper illustrates that allowing for endogenous default by equityholders

is necessary for the model to account for the credit spreads of both investment grade

and junk debt. The model is extended to include rare disasters and multiple time

scales in volatility dynamics to better account for the expected default frequencies and

credit spreads of short maturity debt. Finally, the paper uses a methodology based on

asymptotic expansions to solve the model.
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1 Introduction

An enormous body of work in financial econometrics has documented that volatility in

market returns is time-varying and has attempted to model its dynamics.1 Chacko and

Viceira (2005) and Liu (2007) point out that this time-varying volatility implies long-term

investors will value assets for their ability to hedge against market volatility risk in addition

to their expected returns and other hedging properties. In market equilibrium, then, assets

which hedge against persistent volatility risk should require lower average returns, all else

equal.2 Campbell, Giglio, Polk, and Turley (2012) formally model this point, constructing

an intertemporal capital asset pricing model (ICAPM) incorporating stochastic volatility

and documenting the existence of low-frequency movements in market volatility.

This paper builds on these insights by constructing a real options, term-structure model

of the firm that includes persistent, negatively priced shocks to volatility. In contrast to

Campbell et al. (2012), the primary focus is to understand how differences in financing, pro-

ductivity, and investment options across firms and their relationship with volatility generate

cross-sectional variability in asset prices. The paper makes two key contributions. I first

demonstrate that the model’s qualitative asset pricing predictions offer new insights on the

value premium, financial distress, and momentum puzzles in cross-sectional equity pricing

and generate new testable predictions.3 I then calibrate key parameters and analyze the

model’s quantitative implications for debt pricing. The model, when calibrated to match

historical leverage ratios and recovery rates, can generate empirically observed levels of credit

spreads and default probabilities across ratings categories if and only if equityholders are

allowed to optimally decide when to default. Thus, the model quantitatively delivers a

resolution of the credit spread puzzle documented by Huang and Huang (2003) that ex-

isting structural models with only a single sourced price of risk significantly underpredict

credit spreads, especially for investment grade debt, when matching historical recovery rates,

leverage ratios, and empirical default frequencies.

To fix ideas and elucidate the key intuitions at work in the model, consider a firm with

1Much of the literature provides models similar to the ARCH/GARCH models of Engle (1982) and
Bollerslev (1986) in which volatility is function of past return shocks and its own lags. More recent literature
has used high-frequency data to directly estimate the stochastic volatility process. Papers include Barndorff-
Nielsen and Shephard (2002), Bollerslev and Zhou (2002), and Andersen et al. (2003).

2This will be the case if, in particular, asset prices are priced according to the first-order conditions of a
long-term, Epstein-Zin representative investor with a coeffi cient of relative risk aversion greater than one.

3The value premium puzzle, due to Basu (1977,1983) and Fama and French (1993), refers to the greater
risk-adjusted return of high book-to-market stocks over low book-to-market stocks. The momentum puzzle,
attributed to Jagadeesh and Titman (1993), is the finding that a portfolio long winners and short losers
generates positive CAPM alpha. The financial distress puzzle, uncovered by Dichev (1998) and Campbell,
Hilscher, and Szilagyi (2008), refers to the positive CAPM alpha on a portfolio long financially healthy firms
and short firms close to default.
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debt and suppose that the equityholders can optimally choose to either default on the firm’s

obligations or to continue financing the firm by issuing new equity. Then part of the value

of the firm is the equityholders’default option. By the standard logic of option theory,

an increase in volatility should raise the value of this embedded option. For example,

if uncertainty about demand for the firm’s product increases, the potential downside to

equityholders is capped by limited liability, while there is substantial upside potential.4

However, an increase in volatility has an offsetting effect. Since the firm maintains

a stationary capital structure, it is exposed to rollover risk. At every point in time, the

firm retires a given quantity of principal and issues new debt with principal exactly equal

to this amount. Given that new debt must be issued at market value, the firm will then

either face a cash shortfall or windfall as part of its flow dividend depending on the current

price. Increases in volatility amplify this risk and lower the expected present value of

future dividends accruing to equityholders.5 Therefore, an increase in volatility affects

equityholders negatively as well as positively.

If the firm is currently in financial distress, i.e close to default, then most of the equity

value is comprised of the default option. At these high levels of default probability, the

increased option value from higher volatility dominates the exacerbated rollover risk and

financially distressed firms serve as a hedge against volatility in the market, rising in mar-

ket value when volatility increases. Conversely, the default option only constitutes a small

fraction of the equity value of a healthy firm, such that the effect on rollover risk dominates

and increases in volatility lower the equity value. According to the logic of the ICAPM, this

implies that healthy firms should have higher variance risk premia than financially distressed

firms. Empirically, this mechanism would manifest itself as a positive CAPM alpha in a

portfolio which is long healthy firms and short financially distressed firms, hence resolving

the financial distress puzzle.

In a similar fashion, the model also predicts a positive CAPM alpha of a portfolio which is

long recent winners and short recent losers, consistent with the momentum anomaly. More

specifically, the model predicts that abnormal risk-adjusted momentum profits should be

concentrated among firms with low credit ratings, which has been empirically confirmed by

Avramov, Chordia, Jostova, and Philipov (2007). Intuitively, if a firm in financial distress

experiences a string of positive returns, then the variance beta of the equity falls as the firm’s

health improves and the importance of the equityholders’default option decreases. On the

other hand, the variance beta of a firm with low credit rating experiencing a string of negative

4Limited liability has been studied in the corporate finance literature in papers such as Hellwig (1981),
Innes (1990), Laux (2001), and Biais et al. (2012).

5Increases in volatility decrease the expected present value of future dividends since the value of newly
issued debt, and hence the flow dividend of the firm, are concave in the firm’s productivity level.
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returns should increase as it is likely the firm is becoming more financially distressed. Since

shocks to volatility are negatively priced, the variance risk premium and hence risk-adjusted

returns of low-credit-rating winners are higher than those of low-credit-rating losers.

The model’s cross-sectional predictions for firms which differ in their book-to-market

ratios are more nuanced. In the model, firms can have different book-to-market ratios

in a variety of ways. I focus on two.6 First, consider two firms and suppose their book

leverage ratios and ratios of growth options to book value are the same. Then, by scale

invariance, the firm with lower productivity will have the higher book-to-market ratio. If

this firm is also financially distressed, then the firm with the lower book-to-market ratio, i.e.

higher productivity, should earn greater risk-adjusted returns since its variance beta would

be lower.

However, if both firms are healthy and the average maturity of their debt is short, then

it is the firm with lower productivity and higher book-to-market ratio that earns greater

risk-adjusted returns. To see this, note that among healthy firms, exposure to volatility

is largely due to rollover risk, which becomes more important as a component of equity

valuation as the average maturity of the firm’s debt falls. But since the market value of

debt is more sensitive to volatility at lower productivities, increases in volatility exacerbate

rollover risk more at lower productivities. Therefore, among two healthy businesses, the

firm with lower productivity and higher book-to-market ratio has greater negative exposure

to volatility and thus commands higher risk premia. In this fashion, the model can generate

both a value premium and a growth premium.

Second, firms within the model having the same book leverage ratios and productivity

can still differ in their book-to-market ratios if one, the growth firm, has a higher ratio of

investment options to book value. These embedded options operate in a similar manner

for growth firms as does the default option for financially distressed firms. Since the values

of the growth options increase with volatility, all else equal, a firm with a higher ratio of

growth options to book value will serve as a better hedge against volatility risk in the market

and should earn a lower variance risk premium. This channel therefore generates a value

premium.

Turning to fixed income, note that while equity is long the option to default, debt is

short. An increase in volatility raises the probability of default, which decreases the value of

debt. As a result, the required return on debt should be higher in a model with stochastic

volatility than a model in which volatility remains constant. This effect lowers prices and

increases credit spreads. However, while this intuition is strong and important, quantitative

6In addition to the mechanisms discussed, book-to-market ratios can also differ if firms have different
levels of asset volatility or different book leverage ratios.
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calibration of the model illustrates that it is itself insuffi cient to match empirical credit

spreads across ratings categories. If the default barrier is set exogenously, then the model

simply creates a credit spread puzzle in the other direction. It is able to better explain the

credit spreads on investment grade debt, but ends up substantially overpredicting the credit

spreads on junk debt. This result is a reflection of the fact that existing structural models

with constant volatility actually do a reasonably good job predicting the credit spreads of

junk debt.

The paper demonstrates that it is exactly the interaction of stochastic volatility and

endogenous default which allows the model to quantitatively match credit spreads across

credit ratings and therefore resolve the credit spread puzzle. The reasons are twofold.

First, as has been discussed, when volatility increases, it raises the value of the equityholders’

default option. If equityholders optimally decide when to default, they respond to an increase

in volatility by postponing default. This channel ameliorates the adverse effects of higher

volatility on debt value and, in fact, can reverse the sign if the firm is suffi ciently financially

distressed. That is, the debt of a firm extremely close to default actually benefits from an

increase in volatility and thus hedges volatility risk.7 In a precise sense to be made clear,

the price of junk debt reflects these hedging properties such that the model generates lower

credit spreads than a model with exogenous default.

Second, the simple fact that volatility is stochastic raises the value of the default option

such that at all volatility levels, the endogenous default barrier is lower than in a model with

constant volatility. This once again tends to raise debt values, but the effect of the shift is

strongest for junk debt since it is closest to default and the future is discounted. With these

two effects present, the calibrated model is able to quantitatively match well the target credit

spreads and historical default probabilities across all ratings categories for intermediate and

long maturity debt, holding fixed the market price of variance risk.

The model is less successful at shorter maturities. While still providing a substantial

improvement over a model with constant volatility, it accounts for less of the empirically

observed credit spreads than at longer maturities. The calibration further demonstrates,

though, that some of this underprediction is due to the model significantly understating

credit risk at these maturities. In two extensions, I consider additions to the model which

allows it to generate higher credit risk at short maturities, while only marginally affecting

credit risk at longer maturities. In the first, I include a fast-moving volatility time scale in

addition to the slow one. In the second, I include rare disasters in the form of low-frequency

jumps in the firm productivity process.

7This result implies that the value of the firm increases with volatility close to the default boundary, since
the equity of financially distressed firms also increases with volatility.
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That stochastic volatility has not received much attention in structural credit modeling is

likely due to the considerable technical diffi culties involved, a fact pointed out by Huang and

Huang (2003). To overcome the technical hurdles, I employ novel perturbation techniques

from mathematical finance and physics to construct accurate, approximate asymptotic series

expansions of contingent claim valuations. The fundamental assumption which makes this

methodology operative in the primary model is that volatility is slowly-moving and per-

sistent. While the econometric literature has uncovered multiple time scales in volatility

dynamics, note that it is exactly these persistent fluctuations which long-run investors should

care about and should therefore be significantly priced in equilibrium. The key advantages

of this approach are twofold. First, it provides analytic tractability by transforming the

solution of diffi cult partial differential equations problems with an unknown boundary to

recursively solving a standard sS problem, and then a straightforward ordinary differential

equations problem involving key comparative statics of the model in which volatility remains

constant. Second, an application of the Feynman-Kac formula provides a useful probabilistic

interpretation of the first-order correction terms which allows one to cleanly see the various

mechanisms at work in the model.

The paper proceeds as follows. Section 2 briefly reviews the relevant literature. Section 3

introduces the baseline model and provides characterizations of contingent claims valuations

as solutions to appropriately defined partial differential equations problems. Section 4

discusses the perturbation methodology used to solve the problems. Section 5 considers the

qualitative implications of the model for the equity puzzles and provides testable predictions.

Section 6 calibrates the model and demonstrates how it quantitatively resolves the credit

spread puzzle. Section 7 considers extensions to the baseline model. Finally, Section 8

concludes.

2 Literature Review

In addition to the ICAPM of Campbell et al. (2012), this paper is connected to a broader

literature recognizing the asset pricing implications of stochastic volatility. The long-run

risks model of Bansal and Yaron (2004) incorporates time-varying consumption volatility

into a consumption-based asset pricing framework. Later calibrations of the model by

Beeler and Campbell (2012) and Bansal, Kiku, and Yaron (2012) emphasize the importance

of this feature in delivering empirically reasonable results. Coval and Shumway (2001), Ang,

Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008), and Carr and Wu (2009)

provide empirical evidence that innovations in market volatility are priced risk factors in the

cross-section of stock returns. This paper differs from those above by explicitly constructing
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a structural model of the firm to understand how differences across firms can explain cross-

sectional asset pricing patterns observed in the data for both equity and debt.

Previous papers have offered non-behavioral explanations for the equity puzzles consid-

ered in this paper. Gomes, Kogan, and Zhang (2003) construct a model in which book-to-

market serves as a proxy for the systematic risk of assets in place. Zhang (2005) demonstrates

how a model with both idiosyncratic productivity and convex capital adjustment costs can

generate a value premium. Cooper (2006) is similar but includes non-convex adjustment

costs. Carlson, Fisher, and Giammarino (2004) generate book-to-market effects in a model

with operating leverage. Garlappi and Yan (2011) argue that the financial distress puzzle

can be accounted for by a model of partial shareholder recovery.

One consistent feature in all of this work is that there is a single source of priced risk.

Therefore, in explaining the value premium puzzle, for instance, the models generate higher

conditional market betas of value firms than growth firms, contradicting empirical evidence.

This paper differs by including a second source of priced risk, such that abnormal risk-

adjusted returns can be explained by variance betas rather than market betas. In this

fashion, the study is similar to Papanikolaou (2011), which includes investment shocks as a

second source of priced risk to explain the value premium puzzle.

The paper is part of a large literature on structural credit modeling. Important con-

tributions are Merton (1974), Black and Cox (1976), Leland (1994a,1994b), Longstaff and

Schwartz (1995), Anderson, Sundaresan and Tychon (1996), Leland and Toft (1996), Leland

(1998), Duffi e and Lando (2001), and Collin-Dufresne and Goldstein (2001). Features of

these models include stochastic interest rates, endogenous default, shareholder recovery, in-

complete accounting information, and mean-reverting leverage ratios. Yet, as Huang and

Huang (2003) show, these models cannot jointly produce historical default probabilities and

realistic credit spreads. My work is most similar to Hackbarth, Miao, Morellec (2006),

Chen, Collin-Dufrsene (2009), and Chen (2010) in analyzing how business cycle variation in

macroeconomic conditions impacts credit spreads. My work differs from these in allowing

for both independent diffusive movements in volatility as well as endogenous default and,

moreover, analyzing the credit spreads on junk debt in addition to the Aaa-Baa spread.

3 Structural Model of the Firm

In this section, I develop a continuous-time, real options model of the firm incorporating both

stochastic volatility of the firm productivity process and strategic default by equityholders.

The model will allow for an analysis of equity pricing as well as the full term structure of

credit spreads. In later sections, I enrich this base framework by including multiple time
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scales in the volatility dynamics and rare disasters in the productivity process. Table 1

defines the model’s key variables for convenient reference.

3.1 Firm Dynamics - Physical Measure

Set a probability space (Ω,F ,P) and let Wt be a Wiener process or standard Brownian

motion in two dimensions under P, which I will call the physical measure. Associated

with this Brownian motion is a filtration Ft satisfying the usual properties.8 Firms are

value-maximizing and operate in a perfectly competitive environment. The productivity of

a representative firm’s capital is assumed to follow a stochastic process given by

dXt/Xt = µdt+
√
YtdW

(1)
t , (1)

whereW (1)
t is a standard Brownian motion and µ is the expected growth rate of productivity

under the physical measure P.9 ,10 The variance of this process Yt is itself stochastic and

follows a mean-reverting Cox-Ingersoll-Ross (CIR) process under the physical measure given

by11:

dYt = κY (θY − Yt) + νY
√
YtdW

(2)
t . (2)

Here, κY is the rate of mean reversion, θY is the long-run mean of variance, and νY controls

the volatility of variance. The process W (2)
t is a Brownian motion which has correlation ρY

with the process W (1)
t In particular, I have that(

W
(1)
t

W
(2)
t

)
=

(
1 0

ρY
√

1− ρ2Y

)
Wt, (3)

whereWt is the Wiener process defined above.

8In particular, for 0 ≤ s < t, Fs ⊆ Ft. For each t ≥ 0, the process Wt is Ft-measurable. Finally, for
0 ≤ t < τ , the incrementWτ −Wt is independent of Ft. See definition 3.3.3. of Shreve (2004).

9The assumption of stochastic cash flows differs from Leland (1994) and many other models of corporate
debt which directly specify a stochastic process for the value of the unlevered firm. As discussed by
Goldstein et al. (2001) this assumption has several advantages with regards to the modeling of tax shields
and calibration of the risk neutral drift. It is also easier to incorporate growth options into such a framework.
10For technical reasons, I actually require the diffusion for cash flow to be given by:

dXt/Xt = µdt+ f (Yt) dW
(1)
t ,

where f (·) is a smooth, positive function which is bounded and bounded away from zero. Set f (Yt) =
√
Yt

over a suffi ciently large compact interval and use bump functions (also known as mollifiers) to guarantee
smoothness at the boundaries.
11I could have alternatively considered a mean-reverting Ornstein-Uhlenbeck process in which the volatility

of variance does not scale with the current level. I choose a CIR process to be consistent with much of the
empirical literature on index options.
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Table 1: Variables in Structural Model of the Firm

Variable Description
State Variables

Xt Asset productivity
Yt Asset variance

Contingent Claims
Ua, U Value of assets in place
Ea, E Equity values
d̃a, d̃ Value of newly issued debt
Da, D Total debt values
V a, V Total debt value plus equity value
ua, u Cumulative survival probabilities

Parameters
r Riskfree rate
µ, g Expected productivity growth rates
κY , κZ CIR rates of mean-reversion
θY , θZ Long-run variances
νY , νZ Volatility of variance
ρY , ρZ Correlations between productivity and variance
ρY Z Correlation between variance shocks
K,K

a Capital stocks of mature, young firms
λ Arrival rate of rare disasters
I Cost of investment
φ Corporate tax rate
ξ Bankruptcy costs
P Total principal
C Total coupon
m Rollover rate of debt

πX (Yt) Asset risk premium
Γ (Yt) Market price of variance risk

Note: This table defines the key variables, parameters, and notation used throughout the paper. A subscript
a refers to young firms. The subscript Y refers to the slow-moving volatility factor and the subscript Z
refers to the fast-moving volatility factor. The parametric specification for the market price of volatility risk
is given by Γ (Yt) = Γ0

√
Yt.
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The firm has initial capital Ka < 1 and can irreversibly expand its productive capacity

to K = 1 at the discretion of the equityholders. Exercising the growth option costs I > 0.12

I define firms with capital Ka to be “young”or “growth”firms and those with capital K as

“mature”firms. Finally, firms pay taxes on their income at the corporate rate φ so that the

flow of after-tax profits of the unlevered firm at time t is given by

(1− φ)XtKt. (4)

As is standard, this profit function reflects optimal choices by the firm in all other variable

inputs such as labor and raw materials.

3.2 Firm Dynamics - Risk Neutral Measure

I assume the existence of an equivalent martingale measure P∗ under which contingent claims
will be priced. In particular, I suppose there exist processes γ1 (Ys) , γ2 (Ys) ∈ L2 such that
the process

W∗
t = Wt +

∫ t

0

(
γ1 (Ys)

γ2 (Ys)

)
ds (5)

is a martingale under P∗. I define the market price of risk as γ1 (Yt) > 0 and the market

price of variance risk as

Γ (Yt) = ρY γ1 (Yt) +
√

1− ρ2Y γ2 (Yt) . (6)

These definitions are motivated by the fact that due to Girsanov’s theorem, under the risk-

neutral measure, the dynamics of productivity and variance are given by

dXt =
(
µ− γ1 (Yt)

√
Yt

)
Xtdt+

√
YtXtdW

(1)∗
t (7)

dYt =
(
κY (θY − Yt)− Γ (Yt) νY

√
Yt

)
dt+ νY

√
YtdW

(2)∗
t , (8)

where W (i)∗
t is defined as in (3) replacingW withW∗.

Since I am considering the setting of random, non-tradeable volatility, I am not in a

complete markets framework and therefore the equivalent martingale measure is not unique.

In fact, there exists a family of pricing measures parameterized by the market price of variance

risk. Note that the market price of variance risk will not be zero if there is correlation between

movements in variance and movements in productivity. That is, the first term in (6) will

12The choice of K = 1 is simply a normalization reflecting the scale invariance of the model. Investment
occurs discretely, which allows me to solve for the contingent claims of mature and young firms recursively.
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be nonzero and have the same sign as ρY . However, theory suggests that independent

fluctuations in variance may also be priced. As discussed in the introduction, if long-term

investors see increases in volatility as deteriorations in the investment opportunity set, then

the price γ2 (Yt) will be negative.

I define the asset risk premium to be πX (Yt) = γ1 (Yt)
√
Yt and assume it to be indepen-

dent of current variance Yt. This allows me to define g = µ − πX as the expected growth
rate of productivity under the risk-neutral measure. Finally, I will refer to the expression

νY
√
YtΓ (Yt) as the variance risk premium.13 As this object will be of central importance

in the paper, it therefore warrants further discussion. The variance risk premium is the ex-

pected excess return over the riskfree rate on any asset with zero market beta and a variance

beta equal to one, where these betas are respectively defined as14

βX = x
∂ log (·)
∂x

(9)

βY =
∂ log (·)
∂y

. (10)

For instance, it gives the expected excess return on a portfolio of delta-neutral straddles or

a portfolio of variance swaps constructed to have a unit variance beta. Coval and Shumway

(2001) estimate the expected excess returns on delta-neutral straddles and find them to be

negative. Carr and Wu (2009) document a similar fact for variance swaps. These empirical

findings are supportive of a negative variance risk premium as predicted by the ICAPM.

For my calibration and quantitative analysis, I will adopt the following parametric spec-

ification for the market price of variance risk:

Γ (Yt) = Γ0
√
Yt, (11)

which leads to a variance risk premium that is affi ne in the current variance Yt. Beginning

with Heston (1993), this has been the standard assumption in both the option pricing and

financial econometrics literature. Its appealing feature is it implies the variance dynamics

follow a Cox-Ingersoll-Ross (CIR) process under both the risk-neutral and physical measures.

The only difference is the rate of mean-reversion. Note, however, that the theory which

follows will not rely at all on this parameterization and holds for any arbitrary specification

Γ (Yt).

The value of the assets in place is given by the discounted present value under the risk-

13The distinction between prices of risk and risk premia are confused in the literature. I take care here
to be explicit about their definitions.
14These definitions reflect the use of Ito’s lemma in calculating the required excess return of an asset under

the physical measure.
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neutral measure of future after-tax profits generated by installed capital. Denoting this

value by Ut for mature firms and letting expectations under P∗ conditional on Ft be denoted
by E∗t (·) , I have

Ut (x) = E∗t
[∫ ∞

t

e−r(s−t) (1− φ)Xsds | Xt = x

]
=

(1− φ)x

r − g , (12)

which is simply the Gordon growth formula given that after-tax profits grow at the rate g

under the risk-neutral measure. From this I can see that

dUt/Ut = gdt+
√
YtdW

(1)∗
t , (13)

so that the value of assets in place and productivity share the same dynamics under P∗.
Finally, one can show that

dUt + (1− φ)Xt

Ut
= rdt+

√
YtdW

(1)∗
t , (14)

which implies that the expected risk-neutral total return on the assets in place, including the

dividend payment, is equal to the riskless rate as required by the existence of an equivalent

martingale measure. The value of assets in place for young firms, denoted by Ua
t , is calculated

similarly and is provided in Appendix B.

3.3 Capital Structure

Firms are financed with both debt and equity issues. I employ the exponential model

of Leland (1994a) and Leland (1998) to describe the capital structure of the firm. This

modeling device will allow me to analyze the full term structure of credit spreads, while at

the same time will maintain tractability.15 The firm adopts a stationary debt structure with

total principal P and total coupon C. The firm continuously rolls over debt at the fractional

rate m. That is, at every point in time, debt with principal equal to mP matures and is

replaced with new debt of equal coupon, principal, and seniority to maintain stationarity.

Let p denote the principal on newly issued debt and c the coupon. Moreover, let p (s, t)

and c (s, t) be the principal and coupon outstanding at time t for debt issued at date s ≤ t.

Since the firm retires the principal of all vintages at fractional rate m, the principal and

15An alternative term structure model is given by Leland and Toft (1996). However, such a model would
require me to solve partial differential equations for the debt and equity values. A significant advantage
of the exponential model is that, as will be shown, approximate equity and debt values can be derived by
solving only ordinary differential equations.
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coupon of each vintage declines exponentially with time:

p (s, t) = e−m(t−s)p (15)

c (s, t) = e−m(t−s)c. (16)

Integrating over all vintages at time t gives the total principal and coupon of the firm:

P =

∫ t

−∞
p (s, t) ds = p

∫ t

−∞
e−m(t−s)ds = p/m (17)

C =

∫ t

−∞
c (s, t) ds = c

∫ t

−∞
e−m(t−s)ds = c/m. (18)

Thus, the principal and coupon of newly issued debt is always equal to a fraction m of the

total principal and coupon in the capital structure of the firm.

Now, note that for a time s vintage, the fraction of currently outstanding debt principal

retired at time t > s is given by me−m(t−s). This implies that the average maturity of debt

M is given by

M =

∫ ∞
s

t
(
me−m(t−s)

)
dt = 1/m. (19)

In other words, the inverse of the fractional rollover rate is a measure of the average maturity

of the firm’s debt. Note that the limiting case m = 0 corresponds to the Leland (1994b)

model of consol debt.

Of course, the price of newly issued debt will reflect current state variables in the market.

This exposes the equityholders of the firm to rollover risk. The firm will face either a

cash windfall or shortfall depending on whether debt is currently priced above or below par.

Additional equity must be issued if there is a cash shortfall. Since interest payments provide

a tax shield, the total flow payment to equityholders of mature firms is therefore given by

(1− φ) [Xt − C] + d̃ (Xt, Yt)− p, (20)

where d̃ (Xt, Yt) is the value of newly issued debt. The first term reflects the flow operating

profits generated by the the firm as well as the corporate tax rate and the tax shield, while

the final two terms reflect the rollover risk faced by the equityholders.

Equityholders optimally decide when to default on their debt obligations and may issue

additional equity to finance coupon payments if current cash flow is insuffi cient to meet their

obligations. In the event of default, equityholders receive nothing and the value of their

claims is zero. Debtholders receive the assets of the firm according to their vintage; however,
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a fraction ζ of the total value of assets in place is lost due to bankruptcy costs.16

Finally, I will assume for simplicity that investment spending is financed entirely with

equity. I now turn to the valuation of the firm’s contingent claims.

3.4 Equity Valuation

Contingent claims are priced according to the risk-neutral measure. Given equation (20),

the value of equity for a mature firm is given by

E (x, y) = sup
τ∈T

E∗t
[∫ τ

t

e−r(s−t)
{

(1− φ) (Xs − C) + d̃ (Xs, Ys)− p
}
ds

]
, (21)

where T is the set of {Ft}-stopping times. I denote the optimal stopping time, i.e. time

of default, by τB. Intuitively, the equity value of a mature firm is simply the risk-neutral

expected discounted present value of all future dividends accruing to equityholders given

that the point of default is chosen optimally.

Note that simple Monte-Carlo computation of this value is not feasible due to the un-

known optimal stopping time. Additionally, one cannot implement the recursive least-

squares Monte-Carlo (LSM) procedure of Longstaff and Schwartz (2001) since there is no

terminal date.17 Instead, I will seek a partial differential equations characterization of the

equity valuation. Specifically, I show that the equity value of the mature firm (21) can be

given as the solution to a Dirichlet/Poisson free boundary problem.

16Bankruptcy costs include the direct costs of the legal proceedings, but also indirect costs such as losses of
specialized knowledge and experience, reductions in trade credit, and customer dissatisfaction. In practice,
the indirect costs of bankruptcy may be of an order of magnitude larger than the direct costs.
17Essentially, the methodology uses recursive Monte-Carlo simulation backwards in time along with least-

squares regression to compute conditional expectations and compares the expected continuation value against
the intrinsic value at each discrete time step to approximate the exercise boundary.
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Theorem 1 The equity value of a mature firm E (x, y) is the solution to

(1− φ) (x− C) + d̃ (x, y)− p+ LX,YE = rE for x > xB (y) (22a)

(1− φ) (x− C) + d̃ (x, y)− p+ LX,YE ≤ rE for x, y > 0 (22b)

E (x, y) = 0 for x < xB (y) (22c)

E (x, y) ≥ 0 for x, y > 0 (22d)

E (xB (y) , y) = 0 (22e)

lim
x→∞

E (x, y) = U (x)− C +mP

r +m
+
φC

r
(22f)

∂E

∂x
|x=xB(y) = 0 (22g)

∂E

∂y
|x=xB(y) = 0, (22h)

where LX,Y is the linear differential operator given by:

LX,Y = gx
∂

∂x
+

1

2
yx2

∂2

∂x2
+(κY (θY − y)− Γ (y) νY

√
y)

∂

∂y
+

1

2
ν2Y y

∂2

∂y2
+ρY νY yx

∂2

∂x∂y
, (23)

and xB (y) is a free boundary to be determined.

Proof. See Appendix A.
Here xB (y) is the point at which equityholders optimally default on their debt. That is,

the optimal stopping time τB = min {t : (Xt, Yt) = (xB (Yt) , Yt)} , which is clearly adapted
to the filtration Ft and is thus well-defined. Crucially, note that the boundary at which

default occurs can depend on the current volatility.

The other conditions in the above system are intuitive. By the multidimensional Ito’s

formula, I can write equation (22a) as

(1− φ) (x− C) + d̃ (x, y)− p
E

+
E∗ [dE]

E
= r, (24)

which simply says that the expected return on equity, given by the dividend yield plus the

expected capital gain, must be equal to the risk-free rate under the risk-neutral measure

if the firm is not in default. Equation (22b) implies that in the stop region the expected

return from continuing operations must be less than or equal to the riskless rate. Otherwise,

stopping would not be optimal. Equation (22e) is the usual value-matching equation which

states that at the point of default the value of equity must be equal to zero. If the value, for

instance, were positive then the continuation value of equity would be larger than the value

of equity under default, and thus default should be optimally postponed. As Xt → ∞, the
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probability of default in finite time approaches zero, and therefore the equity value is simply

given by the present value of the assets in place Ut, minus the present value of future debt

obligations (C +mP ) / (r +m ), plus the present value of the tax shield φC/r. This logic

yields the limiting condition (22f).

Finally, equations (22g) and (22h) provide the smooth-pasting conditions for the problem.

These are standard for optimal stopping problems in which the stochastic process follows a

regular diffusion. To see why this should be the case, note that if the equity value were not

smooth across the free boundary in both variables, there would be a kink in the valuation at

the point of default. The nature of diffusion is such that this kink would imply defaulting

slightly earlier or later would be optimal. For instance, suppose that the kink were convex.

Loosely speaking, within a short period of time the diffusion would be equally likely to be

on either side of the kink and since the slope into the continuation region is positive, there is

positive expected value to waiting. The payoff from stopping immediately is zero and thus

it would be optimal to postpone default.

Similarly, letting Ea (x, y) denote the equity value of young firms, it solves the optimal

stopping problem:

Ea (x, y) = sup
τ ′,τ ′′∈T

E∗t

[ {∫ τ ′∧τ ′′
t

e−r(s−t) (1− φ) (KaXs − C) d̃ (x, y)− p
}
ds

+1 [τ ′ < τ ′′] (E (Xτ ′ , Yτ ′)− I)

]
, (25)

where τ ′∧τ ′′ = min (τ ′, τ ′′). Here τ ′ is a stopping time which indicates exercising the growth

option and τ ′′ is a stopping time which indicates default. If the firm exercises its growth

option prior to default, then the value of the equity becomes E (Xτ ′ , Yτ ′)−I , which gives the
second term in the expression above. The equity value of a young firm can be described as

the solution to an appropriate free boundary problem just as with mature firms. Basically,

the limiting condition (22f) is removed and there are value-matching and smooth-pasting

conditions at the boundary for exercise of the growth option. It is characterized explicitly

in Appendix B.

3.5 Debt Valuation

As is evident from the equations above, solving the equityholders’problem requires the value

of newly issued debt. This is due to the assumptions on the capital structure of the firm and

the rollover risk inherent in the flow dividend to the equityholders. Let d (t) be the value at

date t of debt issued at time 0 for a mature firm.18 Then according to risk-neutral pricing,

18Note that we could have considered any vintage of debt. Analyzing the date 0 vintage is without loss
of generality.
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this valuation is given by

d (t) = E∗t

 ∫ τB
t

{
e−r(s−t)e−ms (c+mp)

}
ds

+e−r(τ
B−t)

(
e−mτ

B
p/P

)
(1− ξ)UτB

 . (26)

Note that the payments to the debtholders are declining exponentially and are therefore

time dependent. Furthermore, the debtholders’claim on the assets of the firm will also

depend on the point in time at which bankruptcy occurs. In general, this time-dependency

would indicate that a partial differential equation involving a time derivative would need to

be solved to find d (t). Instead multiply both sides of the equation above by emt. Noting

that p/P = m yields

emtd (t) = E∗t

[ ∫ τB
t

{
e−(r+m)(s−t) (c+mp)

}
ds

+e−(r+m)(τ
B−t)m (1− ξ)UτB

]
. (27)

Applying Feynman-Kac, I then have the following result:

Theorem 2 The value of the date 0 debt vintage at time t is given by d (t) = e−mtd̃ (Xt, Yt)

where d̃ (Xt, Yt) is the value of the newly issued debt and satisfies

c+mp+ LX,Y d̃ = (r +m) d̃ for x > xB (y) (28a)

d̃ (xB (y) , y) = m (1− ξ)U (xB (y)) (28b)

lim
x→∞

d̃ (x, y) =
c+mp

r +m
. (28c)

The value of newly issued debt is therefore the solution to a partial differential equation

that does not involve a time derivative. Rather, the exponential decline in the flow payments

to the debtholders is reflected in a higher implied interest rate r + m. This is the key

advantage of employing the Leland (1994a) model of capital structure. To find the total

value of debt at any point in time, simply integrate over the value of all outstanding debt

vintages:

D (t) =

∫ t

−∞
e−m(t−s)d̃ (Xt, Yt) ds =

d̃ (Xt, Yt)

m
. (29)

Thus, the total value of the firm’s aggregate debt is a function only of the current productivity

and volatility and does not depend on time, which is consistent with the stationarity of the

overall debt structure.

The debt of young firms is characterized similarly and is discussed in Appendix B.
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4 Methodology

The analysis up until this point has provided time-stationary partial differential equation

(PDE) characterizations of the debt and equity values. In particular, the equity value is

the solution to a two-dimensional free boundary problem. It is the higher dimensional

counterpart to the usual sS problem well known in economics and similar to the obstacle

problem and the Stefan problem in physics.19. While it is often possible to obtain closed form

solutions to sS problems with only one state variable, this is usually not feasible when the free

boundary is of a higher dimension. I could attempt to directly solve the problem numerically

using an appropriate discretization scheme and projected successive over-relaxation (PSOR)

methods. Such techniques have been successfully applied to the solution of American option

problems and involve a variant of the Gauss-Seidel method for the solution of systems of linear

equations in which the relevant inequality constraint is enforced at each iteration. However,

these numerical procedures can be computationally burdensome and, more importantly,

would not allow me to analytically grasp the intuition and economics underlying the results.

Instead, I utilize a semi-analytic methodology based on asymptotic expansions which

allows me to generate accurate approximations to the values of the contingent claims. The

method relies on making assumptions on the rate of mean-reversion of the stochastic volatil-

ity process and then using either regular or singular perturbations around the appropriate

parameter in the partial differential equations to recursively solve for the formal power series

expansions of the debt and equity values, as well as the default boundary. I will confine

myself to first-order expansions, although higher-order terms can be calculated in a straight-

forward manner.

The basic principles of this method have been developed recently in the mathematical

finance literature for the pricing of options under stochastic volatility.20 Lee (2001) develops

an approach for the pricing of European options under slow-variation asymptotics of the

stochastic volatility process.21 In a sequence of papers, authors Fouque, Papanicolaou,

Sircar, Sølna have considered fast-variation asymptotics in a variety of option pricing settings

(European, barrier, Asian, etc.) and have developed perturbation procedures for stochastic

volatility processes with both slow and fast variation components.22 My baseline setting will

19The classic Stefan problem studies phase changes in homogenous mediums and the resulting temperature
distributions. The obstacle problem considers elastic membranes and solves for their equilibrium position
given a fixed boundary and the constraint that they lie above a certain geometric obstacle.
20More broadly, these methods are based on the use of perturbation theory to solve differential equations,

which has a rich history in both mathematics and physics. Perturbation methods, for instance, are widely
used in the modern study of quantum mechanical models.
21Precisely, Lee (2001) considers the cases of both slow-variation and small-variation stochastic volatility.

22Contributions by these authors include Fouque et al. (2003a, 2003c, 2004a, 2004b, 2006, 2011). In
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use an adaptation of the method proposed by Lee (2001) for small variation asymptotics to

a free boundary problem. I will be able further extend this approach in a novel manner to

allow for rare disasters in the firm productivity process. Finally, I will adapt the multiscale

methods of Fouque, Papanicolaou, Sircar, Sølna, which are significantly more complicated,

to consider a setting with both slowly-varying and fast-varying components of volatility.

To the best of my knowledge, the use of this methodology is novel in the economics

literature outside of mathematical finance, and as I will argue below, is particularly well-

suited for use by economists in a variety of economic settings. I now turn to the discussion

of the existence of volatility time scales, which is important for justifying the asymptotic

expansions considered, and how they are to be modeled.

4.1 Time Scales in Volatility Modeling

A substantial number of empirical studies have shown that market volatility appears to evolve

on multiple time scales and to exhibit forms of long-run dependencies, often termed long

memory. This has led to a number of important econometric developments that attempt to

move beyond the standard one-component ARCH/GARCH/EGARCH specifications. An-

dersen and Bollerslev (1997) and Baillie et al. (1996) introduce the Fractionally Integrated

ARCH (FIGARCH) model in which autocorrelations have hyperbolic decline rather than

geometric decline. Beginning with Engle and Lee (1999), a body of papers has argued that

two-dimensional volatility models with both a short-run component and a long-run compo-

nent show significantly better performance in matching the data.23 Building on this work

further, Calvet and Fisher (2001, 2004) have developed the Markov-switching multifractal

(MSM) stochastic volatility model, allowing for an arbitrary number of time scales on which

volatility can evolve. Here, volatility is the product of a large but finite number of factors,

each of which are first-order Markov and have identical marginal distributions but differ in

their switching probabilities. The authors find that a specification with ten time scales fits

the volatility of exchange rates well, with the highest frequency component on the order of

a day and the lowest component on the order of 10 years.

I adopt this perspective in my modeling of asset variance. In my primary specification,

though, I will only model low frequency movements. One reason for this is that high fre-

particular, Fouque et al. (2006) shows how defaultable bond prices can be calculated using asymptotic
expansions in a Black-Cox first passage model with multiscale stochastic volatility. This paper differs by
discussing the economic intuitions, including endogenous default and a stationary capital structure with
rollover risk, analyzing the implications of stochastic volatility for both equity and debt, and examining the
credit spread puzzle.
23Other papers include Engle and Rosenberg (2000), Alizadeh, Brandt, and Diebold (2002), Bollerslev and

Zhou (2002), Fouque et al. (2003), Chernov et al. (2003), and Adrian and Rosenberg (2008).
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quency fluctuations are likely to be less important in the actual dynamics of asset volatility

than market volatility, since changes in asset volatility should be driven largely by fundamen-

tals rather than market sentiment and other transient factors. More importantly, though,

it is exactly those persistent, low frequency movements in volatility which long-run investors

should care about and which should be priced in equilibrium.

Rather than directly calibrating the parameter κY to be small, I instead slightly modify

the process for variance under the physical measure as

dYt = δκY (θY − Yt) dt+ νY
√
δYtdW

(2)
t , (30)

where δ > 0 is a small parameter. Note that this is again a CIR process exactly the

same as in equation (2) except that the drift term is now multiplied by δ and the diffusion

term is multiplied by
√
δ. This parameter directly controls the rate of mean-reversion

of the process for volatility. Since I am assuming it is small, I will say that variance is

slowly mean-reverting. Specifically, δ scales the spectral gap of the process for Yt, or the

distance between the zero eigenvalue and the first negative eigenvalue. Using eigenfunction

expansions, it is possible to show that it is exactly this spectral gap which determines the rate

of mean-reversion for the process. However, denoting the invariant or long-run distribution

of Yt by ∆Y , one can show that

∆Y ∼ Gamma

(
2κY θY
ν2Y

,
ν2Y
2κY

)
,

which is in fact independent of δ. This indicates that in the long run, the level of variability

in the volatility of asset productivity does not depend on the parameter δ , even though

its square root multiplies the diffusion term in (30). It is in this sense that movements

in volatility are indeed slow, but not necessarily small.24 Appendix C provides further

technical details on this modeling of volatility time scales.

In an extension of the model, I will construct a model in the spirit of Calvet and Fisher

(2001, 2004) in which volatility is the product of both a low frequency component and a high

frequency component.

24To model the implications of small variation in asset volatility, I would specify:

dYt = δκ (θ − Yt) dt+ δν
√
YtdW

(2)
t .

Lee (2001) considers the implications of such a stochastic volatility model for the pricing of European options.
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4.2 Asymptotic Approximation

Given this model of volatility dynamics, I can now write the partial differential equations in

(22a) and (28a) as:

(1− φ) (x− C) + d̃δ (x, y)− p+
(
Lyr +

√
δMy

1 + δMy
2

)
Eδ = 0 (31)

c+m+
(
Lyr+m +

√
δMy

1 + δMy
2

)
d̃δ = 0, (32)

where Eδ and d̃δ are the values of equity and newly issued debt respectively given the choice

of δ and the operators Lyr ,M
y
1,M

y
2 are given by

Lyr = gx
∂

∂x
+

1

2
yx2

∂2

∂x2
− r (·) (33)

My
1 = ρY νY yx

∂2

∂x∂y
− Γ (y) νY

√
y
∂

∂y
(34)

My
2 = κY (θY − y)

∂

∂y
+

1

2
ν2Y y

∂2

∂y2
. (35)

Here, Lyr is the time-invariant Black-Scholes operator with volatility y and riskfree rate r,
My

2 is the infinitesimal generator of the CIR process, andM
y
1 is an operator which accounts

for correlation between the processes for asset productivity and asset volatility, as well as

the Girsanov transformation between the physical and risk-neutral measures.25

To solve for the contingent claims of mature firms by regular perturbation, I expand the

equity value, the value of newly issued debt, and the free default boundary in powers of
√
δ:

Eδ (x, y) = Ey
0 (x) +

√
δEy

1 (x) + δEy
2 (x) + ... (36)

d̃δ (x, y) = d̃y0 (x) +
√
δd̃y1 (x) + δd̃y2 (x) + ... (37)

xB (y) = xyB,0 +
√
δxyB,1 + δxyB,2 + ... (38)

I then plug these asymptotic expansions into equations (31) and (32), as well as equations

(22e)-(22h) and (28b)-(28c). Taylor expansions centered around xB,0 (y) are used to appro-

priately expand value-matching and smooth-pasting conditions. The system is solved by

collecting terms in the powers of δ and using the method of undetermined coeffi cients, where

here I understand the coeffi cients to be functions.
25Note that the dynamics of volatility under the risk-neutral measure are given by:

dYt =
(
δκ (θ − Yt)− Γ (Yt) ν

√
δYt

)
dt+ ν

√
δYtdW

(2)∗
t

for a given choice of parameter δ.
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4.2.1 Principal Order Terms

I begin by computing the principal order terms in the asymptotic expansions. Collecting

the order one terms for newly issued debt yields the problem:

c+mp+ Lyr+md̃y0 = 0 for x > xyB,0 (39a)

d̃y0
(
xyB,0

)
= m (1− ξ)U

(
xyB,0

)
(39b)

lim
x→∞

d̃y0 (x) =
c+mp

r +m
. (39c)

Under closer inspection, I see that this principal order term is simply the value of newly

issued debt under constant return variance y in the firm productivity process, given the fixed

boundary xyB,0. As such, it can be solved using standard single variable ODE techniques. I

obtain

d̃y0 (x) =
c+mp

r +m
+

[
m (1− ξ)U

(
xyB,0

)
− c+mp

r +m

]{
x

xyB,0

}γ1

, (40)

where γ1 is the negative root of the following quadratic equation:

gγ1 +
1

2
yγ1 (γ1 − 1)− (r +m) = 0. (41)

This expression is consistent with that derived in Leland (1994a). The first term in the

valuation reflects the present value of future coupon and principal payments assuming no

default. The latter term takes into account the risk of default. The term
(
x/xyB,0

)−γ1
is akin to a probability of default although this is not exactly correct. If default occurs,

debtholders receive a fraction of the value of the assets of the firm but lose any future coupon

and principal payments remaining. More precisely, the second component of the valuation

is a perpetual digital option which pays off the term in brackets the first time the process

Xt crosses the boundary xB,0.

Intuitively, the principal order term reflects the value of newly issued debt in the limiting

case δ = 0. Of course, this is simply a model in which volatility is fixed at its current value.

This intuition then carries over to computing the principal order terms for both the equity

value and the default boundary. That is, I simply need to compute the value of equity and

the default boundary in the case where volatility is fixed in time at its current level
√
y.
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These are given by

Ey
0 (x) = U (x)− C +mP

r +m
+
φC

r

+

[
C +mP

r +m
− (1− ξ)U

(
xyB,0

)]{ x

xyB,0

}γ1

−
[
φC

r
+ ξU

(
xyB,0

)]{ x

xyB,0

}γ2

(42)

xyB,0 = −(C +mP ) γ1/ (r +m)− φCγ2/r
1− (1− ξ) γ1 − ξγ2

r − g
1− φ, (43)

where γ2 is the negative root to the quadratic equation:

gγ2 +
1

2
yγ2 (γ2 − 1)− r = 0. (44)

These expressions are once again consistent with Leland (1994a) and are derived in Appendix

A. The equity value incorporates the value of the assets in place, the present value of future

debt payments, the present value tax shield, and two perpetual digital options which account

for the equityholders’default option.

4.2.2 First-Order Correction Terms

Continuing with the recursive approach, collecting terms of order
√
δ now yields the problems

to solve for the first-order correction terms. For the value of newly issued debt, this is given

by

Lyr+m
√
δd̃y1 = −

√
δMy

1d̃
y
0

=

(
Aδy

∂d̃y0
∂y
−Bδyx

∂2d̃y0
∂x∂y

)
for x > xyB,0 (45a)

√
δd̃y1
(
xyB,0

)
=
√
δxyB,1

[
m (1− ξ) (1− φ)

r − g − ∂d̃y0
∂x

(
xyD,0

)]
(45b)

lim
x→∞

√
δd̃y1 (x) = 0, (45c)

where the constants Aδ, Bδ are defined by

Aδ =
√
δνY Γ0 (46)

Bδ =
√
δνY ρY . (47)
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Note that this is a one-dimensional inhomogeneous second-order boundary value problem in

which y operates as a parameter. The source term is a function of comparative statics or

Greeks of the debt principal order term. In particular, it is a function of the vega and the

vanna of the debt value when volatility is held constant at the level
√
y.26 Note also that

the default boundary correction term xyB,1 appears in the boundary condition of the problem

above, given by equation (45b). The problem for the first-order equity correction term takes

a similar form and is given by

Lyr
√
δEy

1 = −
√
δ
(
My

1E
y
0 + d̃y1

)
=

(
Aδy

∂Ey
0

∂y
−Bδyx

∂2Ey
0

∂x∂y
−
√
δd̃y1

)
for x > xyB,0 (48a)

√
δEy

1

(
xyB,0

)
= 0 (48b)

lim
x→∞

√
δEy

1 (x) = 0. (48c)

Once again, this is a one-dimensional second-order boundary value problem with a source

term. Different from the problem for the debt value correction above, the Black-Scholes

operator here has for its riskfree rate r instead of r+m as in equation (48a). Furthermore,

the source term for the problem involves the debt correction term, due to the rollover risk in

the original problem, in addition to the vega and vanna of the equity value in the constant

volatility case.

Finally, the Taylor expansion of the equity value smooth-pasting condition in x, equation

(22g), gives the correction to the default boundary as:

√
δxyB,1

∂2Ey
0

∂x2
(
xyB,0

)
= −
√
δ
∂Ey

1

∂x

(
xyB,0

)
. (49)

Equations (45a)-(45c), (48a)-(48c), and (49) form a system of equations which can be jointly

solved to determine the first-order corrections for the debt value, the equity value, and the

default boundary. While I am unable to give closed-form solutions to these corrections, it

is now very straightforward to solve for them numerically since the differential equations are

one-dimensional and the problems have fixed rather than free boundaries. The MATLAB

function bvp4c, which implements a finite elements scheme, is used to solve the boundary

value problems while searching over
√
δxyB,1 to satisfy equation (49). Note that I have not

used condition (22h) at all; however, it is easy to show that the approximation E0 (x, y) +

Ẽδ
1 (x, y) is smooth across the boundary xB,0 (y) as required.

To summarize, by making an assumption on the rate of mean-reversion of the process for

26Here, I define vega to be the comparative static with respect to variance y.
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volatility, this method reduces the solution of two-dimensional partial differential equation

problems, in which one has a free boundary, to a recursive sequence of one-dimensional

problems. The principal order terms simply reflect the contingent claims valuations and

default boundary in the limiting case where volatility is fixed at its current level. The

first-order correction terms are solved as a system of equations in which the contingent

claims corrections are the solutions to one-dimensional, fixed boundary problems and the

source terms are functions of the comparative statics or Greeks of the principal order terms.

This method is tractable and will provide intuitive expressions demonstrating the effects of

stochastic volatility on debt and equity valuation.

Moreover, a significant advantage of the methodology is that it reduces the number

of parameters which need to be calibrated to generate quantitative results. Given the

parametric assumption on the market price of variance risk, the only further calibration

required beyond the baseline constant volatility model is that of two constants: Aδ =
√
δνY Γ0

and Bδ =
√
δνY ρY . Essentially, the variance risk premium needs to be calibrated as well

as a constant which has the same sign as the correlation between volatility shocks and

productivity shocks. The rate of mean-reversion κY and the long-run mean of variance θY
do not appear at all.27 This is especially useful in a structural model of credit incorporating

stochastic volatility, as there are not good empirical estimates for the structural parameters

of the asset volatility process.

Finally, I believe that this methodology is particularly well suited for use in a variety of

other economic settings. Indeed, the approach offers a general framework for introducing ad-

ditional state variables into either deterministic or stochastic dynamic models, including but

certainly not limited to volatility. First, one constructs a baseline framework in which this

additional state variable is a fixed parameter and then calculates the appropriate compara-

tive statics. If one is able to make limiting assumptions on the dynamics of this additional

state variable, such as slow, small, or fast, then approximate solutions to the full model can

be derived by calculating correction terms as the solutions to differential equations whose

source terms are functions of the comparative statics. For example, in the context of credit

modeling, one could use this approach to develop a model which includes both stochastic

volatility and stochastic interest rates.

4.3 Cumulative Default Probabilities

Given that I would like to study the credit spread puzzle, it is crucial that I am able to

calculate cumulative default probabilities as well as valuations. As Huang and Huang

27This is because the operatorM2 does not appear in the derivation of either the principal order term or
the first-order correction term.
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(2003) point out, it is this computation in particular which has been one of the primary

stumbling blocks in the construction of structural credit models which include stochastic

volatility. My methodology, however, provides an effective means of overcoming this hurdle.

The key, just as with the contingent claims valuations, is to find a suitable partial differential

equations characterization of the probability and then utilize a perturbation to simplify the

solution of the problem. Letting u (l, x, y) denote the cumulative survival probability within

l years, by the backwards Kolmogorov equation:

(
− ∂
∂l

+ L0+
√
δνY ρyx

∂2

∂x∂y
+ δMy

2

)
u = 0 (50a)

u (l, xB (y) , y) = 0 (50b)

lim
x→∞

u (l, x, y) = 1 (50c)

u (0, x, y) = 1, (50d)

where xB (y) is the optimal default boundary from the equityholders’problem.28 Impor-

tantly, note that the cumulative survival probabilities are calculated with respect to the

dynamics of Xt and Yt under the physical measure rather than the risk-neutral measure.

Now expand this survival probability in powers of
√
δ:

u (l, x, y) = uy0 (l, x) +
√
δuy1 (l, x) + δuy2 (l, x) + · · · , (51)

substitute into equations (50a)-(50d), and expand the boundary conditions using Taylor

expansions. Once again, the principal order term reflects the cumulative survival probability

in the limiting case where volatility is fixed at the current level. I do not reproduce the

expression here, but it can be looked up in any standard textbook treatment on the hitting

times of geometric Brownian motion.

The correction term is an inhomogeneous partial differential equation with y as a para-

meter: (
− ∂
∂l

+ L0
)√

δuy1 = −Bδyx
∂2uy0
∂x∂y

(52a)

√
δuy1

(
l, xyB,0

)
= −

√
δxyB,1

∂uy0
∂x

(
l, xyB,0

)
(52b)

lim
x→∞

√
δuy1 (l, x, y) = 0 (52c)

√
δuy1 (0, x, y) = 0. (52d)

28Recall that L0 is the Black-Scholes operator with a riskfree rate set equal to zero. Cumulative default
probabilities are simply given by 1− u (l, x, y) .
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As expected, the source term is a function of a comparative statics of the survival probability

in the constant volatility case; however, contrary to the expressions above, the vega of the

principal order term and the variance risk premium do not appear in equation (52a). The

correction term can be calculated in MATLAB using the function pdepe, which implements

a finite-difference scheme.

4.4 Debt Valuation under Exogenous Default

Finally, I will want to compare my results to a model in which the default trigger is specified

exogenously, rather than determined endogenously. Let this exogenous boundary be given

by xB. A perturbation approach can be used in a similar fashion as above to determine the

approximate value of debt in the stochastic volatility model. As should be familiar by now,

the principal order term reflects the constant volatility case and is simply given by equation

(40) with xyB,0 replaced by xB. It turns out that in the case of ρY = 0, a relatively simple

explicit expression can be derived for the first-order correction term.

Theorem 3 If the default boundary is set exogenously at xB and the correlation between
productivity shocks and volatility shocks is equal to zero, then the first-order correction term

in the asymptotic expansion of newly issued debt is given by

√
δd̃y1 (x) =

ln (x/xB)

2
(
g + γ1y − 1

2
y
)Aδy [∂d̃y0

∂y
+

1

2
(
g + γ1y − 1

2
y
)2yx2∂2d̃y0∂y2

]
, (53)

where γ1 is the negative root of equation (41).

Proof. See Appendix A.
Thus, the first-order correction term involves both the vega and gamma of the value

of newly issued debt in the constant volatility model. These are provided explicitly in

Appendix A. In fact, an explicit expression can be computed for the case of ρY 6= 0 as

well, but it and its derivation are particularly cumbersome. Moreover, it is not needed in

subsequent work and I therefore omit it. Note, however, that the method of derivation is

very similar to that described in the proof of the expression above.

While the primary focus of this paper is on debt which allows for endogenous default

by equityholders, this result is interesting and useful in its own right from an asset pricing

perspective. There are forms of debt in which the exogenous trigger is in fact more appro-

priate. For instance, the debt may have certain covenants which enforce a zero net worth

requirement as discussed in Leland (1994b).29 Alternatively, default may occur once there is
29Leland specifically discusses the example of a contractual arrangement in which the firm has access to

a continuously renewable line of credit. Debt is rolled over at each instant at the fixed interest rate if and

27



insuffi cient cash flow to meet the debt servicing obligations and new equity cannot be raised

to make up the shortfall, a scenario which likely most accurately describes municipal debt.

The expression above, along with the principal order term, allow for a closed-form solution

to the pricing of such debt in a setting of stochastic volatility.

5 Equity Valuation

I begin my analysis by examining the model’s qualitative predictions for equity pricing.

Applying Ito’s formula, substituting in equation (22a), and taking expectations shows that

the required return of a firm’s equity at time t under the physical measure is given by

(1− φ) (x− C) + d̃ (x, y)− p+ Et
[
dEδ

]
Eδ

− r = πX (y) βX +
√
δyνY Γ (y) βY , (54)

where the market and variance betas βX , βY are respectively defined in equations (9) and

(10). The excess expected return of equity over the riskfree rate is the sum of a risk

premium due to its exposure to productivity risk and a risk premium due to its exposure to

volatility risk. The exposures are priced according to the asset risk premium and variance

risk premium, respectively. The first term is standard, while the second is novel. Note

that the qualitative nature of expected returns will largely be driven by the comparative

statics of the principal order terms. The model potentially resolves a number of empirical

puzzles which have been documented in cross-sectional equity pricing and generates testable

predictions.

5.1 Financial Distress and Momentum

Dichev (1998) and Campbell et al. (2008) find that the equity of financially distressed firms,

i.e. those close to default, have lower returns on average than healthy firms, despite having

higher market betas. That firms close to default have higher market risk is not surprising;

indeed, this is the usual leverage effect. Then, according to a model in which market

fluctuations are the only source of priced risk, financially distressed firms should, on average,

earn higher returns. Hence, there is a puzzle.

If stochastic volatility is an additional source priced source of risk, though, then a firm’s

exposure to volatility risk also affects expected returns. An increase in volatility has both

a positive and negative impact on the equity value. First, an increase in the volatility

raises the value of the equityholders’default option, thereby positively impacting the equity

only if the firm’s asset value is suffi cient to cover the loan’s principal. If not, default occurs.
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valuation. Intuitively, since the equityholder’s downside is capped by limited liability, while

the upside potential is unlimited, an increase in uncertainty is beneficial.

However, the effect of higher volatility on rollover risk presents an offsetting negative

channel. Debt is a concave function of productivity, reflecting the fact that the probability

of default is most sensitive to movements in productivity near the default barrier. Since the

flow dividend accruing to equityholders depends on the market value of newly issued debt,

it too is concave in firm productivity. This concavity implies that an increase in volatility

decreases the expected present value of future dividends.

The equity value of a financially distressed firm is largely comprised of its default option.

For such firms, the first effect dominates, indicating that the value of equity rises with

volatility. That is, a financially distressed firm’s equity hedges against volatility risk in the

market, or ∂
(
logEδ

)
/∂y > 0. If the variance risk premium is negative, reflecting a view

by investors that persistent increases in volatility represent deteriorations in the investment

opportunity set, then investors will be willing to accept a lower return on such equities due to

their hedge value. On the other hand, the default option is less important in the valuation of

healthy firms. For these firms, it is the exacerbating effect of volatility on rollover risk which

dominates and equity values fall when volatility increases. Given this exposure to volatility

risk, the required return on a suffi ciently healthy firm will be higher than in a model with

constant volatility.

Panel A of Figure 1 illustrates these points. It shows the variance betas of mature firms

with the same book leverage as a function of financial distress and the average maturity

of their debt. As expected, averaging across maturities, the variance betas of financially

distressed firms are higher than those of healthy firms. Thus, the model offers a mechanism

potentially resolving the financial distress puzzle. Furthermore, the figure generates new,

testable predictions. First, note that variance betas decline as the average debt maturity

of the firm decreases. The shorter the maturity structure, the greater the fraction of total

principal which has to be rolled over at any point in time. Consequently, as the maturity

structure shortens, rollover risk becomes a greater component of the present value of future

dividends accruing to equityholders, which in turn implies that firms with shorter maturity

debt are more adversely impacted by increases in volatility. In terms of returns, by equation

(54), this pattern of betas indicates that once market risk has been controlled for, firms with

shorter maturity debt should have higher average returns than firms with longer maturity

debt.

Panel B of Figure 1 also shows that for firms with shorter debt maturity, there is a

clear hump-shaped relationship between financial distress and the equity vega.30 That is,

30There is a hump-shaped relationship at longer maturities as well, but it is harder to detect.
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a decrease in the probability of default will increase the variance beta (towards zero) if the

firm is suffi ciently healthy. This is due to the fact that the effect of volatility on rollover

risk is ameliorated as the health of the firm continues to increase. To understand this,

note that the value of newly issued debt asymptotes to (c+mp) / (r +m) as x → ∞. In

other words, debt becomes approximately flat as a function of productivity when the firm

is very healthy. But in the region in which the debt valuation is flat, the firm faces little

rollover risk and thus increases in volatility have little impact on the expected present value

of future dividends. Equation (54) therefore indicates that variance risk premia should be

maximized at intermediate probabilities of default. In fact, Garlappi and Yan (2011) find

evidence supportive of this in their empirical work, documenting that average equity returns

are hump-shaped as a function of the KMV distance to default.

Finally, consider forming a portfolio of financially distressed firms which is long recent

winners and short recent losers. It is likely that, on average, the financial health of the

winners has improved while that of the losers has deteriorated further. Then, by Figure

1, the variance betas of the losers should, on average, be higher than that of the winners.

Thus, the winners should require higher variance risk premia than the losers, indicating that

the portfolio should earn a positive CAPM alpha. This is consistent with the empirical

evidence provided by Avramov et al. (2007) that the profits of momentum strategies are

highly concentrated among a small subset of firms with low credit ratings. In fact, another

empirical prediction of the model is that the momentum relation should reverse among

healthy firms with a short debt maturity structure due to the hump-shaped nature of variance

betas. Specifically, a portfolio which is long losers and short winners should earn a positive

CAPM alpha.

5.2 Book-to-Market Effects

The implications of the model for the value premium puzzle are somewhat more subtle.

The first channel I highlight is intimately related to the effects of financial distress discussed

above. Consider two financially distressed, mature firms with the same book leverage and

maturity structure. Suppose, though, that one firm has a higher productivity, and thus lower

book-to-market ratio, than the other. This is similar to Gomes, Kogan, and Zhang (2003)

in that differences in the book-to-market ratio can be driven by cross-sectional variation in

productivity across firms. Note then, however, that a growth premium actually emerges

as a consequence of the explanation above for the financial distress puzzle. On the other

hand, if the two firms are both healthy and one has a higher productivity, then the figure
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above shows that it is the firm with the higher book-to-market ratio that has the greater

risk-adjusted return if the average maturity of debt is low. In this fashion, the model is

capable of generating both a value premium and a growth premium depending on the level

of financial distress.

Alternatively, two firms in the model with the same book leverage, productivity, and

maturity structure can differ in their book-to-market ratios if they vary in the ratio of

growth options to book value. As with financially distressed firms, much of the value of the

young/growth firm in the model is comprised of its option to expand its installed capital.

By the same logic as before, since volatility increases raise the value of this embedded option,

growth firms should hedge against volatility risk in the market, more so than mature firms

of similar default risk which have already exercised their growth options. If variance risk

carries a negative price in the market, then investors will demand a higher variance risk

premium to hold value stocks than growth stocks, all else equal.

6 Debt Valuation

I now move beyond qualitative considerations and turn to my primary quantitative analysis

of the model’s implications for debt pricing. I confine myself to analyzing the debt of

mature firms. In order to study the debt valuations and default probabilities generated by

the model, I must first articulate a suitable calibration of the key parameters.

6.1 Calibration

Given that my interest is in studying the credit spread puzzle, I will use a calibration

procedure consistent with those previous studies which have demonstrated the puzzle, with a

few notable exceptions. Most importantly, I will not calibrate the asset volatility to force the

model to match historical default probabilities, but rather set the asset volatility according to

model-free empirical estimates and then ask if the model is able to jointly generate reasonable

credit spreads and default rates by credit rating.31 This is in marked contrast to Huang and

Huang (2003) who require the models they analyze to match historical default frequencies.

The problem with the Huang and Huang approach, as I will demonstrate, is that the implied

asset volatilities can be unreasonably high given the empirical estimates, especially at short

maturities. For computational reasons, I also do not set the bankruptcy cost ξ to match

recovery ratios by rating category, as does Huang and Huang (2003), but instead set this

parameter directly and verify ex-post that recovery rates are approximately equal to the

31Recall that asset volatility is the same as the volatility of productivity.
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Table 2: Calibration of Model Parameters

r φ g πX
.08 .15 .02 .04

Note: This table provides the calibration values for those parameters which do not vary by credit rating:

interest rate r, tax rate φ, risk-neutral productivity growth g, and asset risk premium πX .

historical average of 51%.32 This approach is consistent with Leland (2004).

Table 2 summarizes those parameters which do not vary by credit rating. These include

the interest rate, the corporate tax rate, the rate of productivity growth under the risk-

neutral measure, and the asset risk premium. The riskfree rate is set equal to 8% as in

Huang and Huang (2003) and Leland (2004), the historical average of Treasury rates between

1973-1998. The tax rate is equal to 15% as in Leland (2004), reflecting the corporate tax

rate offset by the personal tax advantage of equity returns.33 I set the rate of productivity

growth equal to 2%. This indicates that the expected return on the value of assets in place

is equal to 2% by equation (13), reflecting a payout rate of 6%. Finally, I set the asset risk

premium equal to 4% such that the asset beta is equal to approximately 0.6 for all credit

ratings. This is once again consistent with Leland (2004) and is slightly less than the asset

risk premia in Huang and Huang (2003). Note that the asset risk premium does not affect

the pricing of corporate debt and only impacts cumulative default probabilities.

Table 3 details those parameters of the model which do vary by credit rating, including

leverage ratios, bankruptcy costs, average maturity of debt, and finally asset volatility. Tar-

get leverage ratios are from Standard & Poors (1999) and are consistent with both Huang

and Huang (2003) and Leland (2004). As discussed previously, bankruptcy costs are set such

that ex post recovery rates are approximately equal to 51%. Fractional costs of ξ = 30%

works well for all credit ratings except for Caa, which has a slightly higher cost of ξ = 35%.

Average maturities and average asset volatilities are from Schaefer and Strebulaev (2008).

Their estimation of the asset volatilities warrants further discussion. Importantly, these

estimates are model free, to the extent discussed below, and are therefore not dependent

on assuming a particular structural model of credit, which would make them ineligible for

use. Specifically, the authors estimate asset volatility of a firm j at time t, denoted as σ2Aj,t ,

32Specifically, Huang and Huang (2003) set bankruptcy costs by credit rating so that the models generate
recovery rates of exactly 51.31%.
33Specifically, as shown in Leland (2004), given a corporate tax rate of 35%, a personal tax on bond income

of 40%, and a tax rate on stock returns of 20%, the effective tax advantage of debt can be calculated as
1-(1-.35)(1-.20)/(1-.40)=.133.
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Table 3: Calibration of Model Parameters by Credit Rating

Parameter Credit Rating
Aaa Aa A Baa Ba B Caa

Target Leverage 13.1% 21.1% 32.0% 43.3% 53.5% 65.7% 80.0%
Avg. Asset Vol. 22% 22% 22% 22% 23% 28% 28%
Bankruptcy Costs 30% 30% 30% 30% 30% 30% 30%
Avg. Maturity (yr.) 10.16 9.45 10.13 9.14 7.11 7.39 2.48

Note: This table provides calibration values for the target leverage ratio, average asset volatility, fractional

bankruptcy costs, and average maturity of debt by credit rating.

according to

σ̂2Aj,t = (1− Lj,t)2 σ2Ej,t + L2j,tσ
2
Dj,t

+ 2Lj,t (1− Lj,t)σEDj,t , (55)

where Lj,t is the market leverage of firm j at time t, σEj,t is the equity volatility at time t,

σDj,t is the debt volatility at time t, and σEDj,t is the covariance between debt and equity

returns at time t. The volatilities and covariances are calculated directly from the time

series of equity and debt returns. While this estimation procedure is indeed ostensibly

independent of a specific model, the authors do implicitly assume that movements in the

asset value are the only source of fluctuations in the debt and equity values. This is, of

course, not the case in a model with stochastic volatility, as movements in the volatility

level also constitute a source of fluctuations in debt and equity values. However, given

my assumption that movements in asset volatility are in fact slow in the manner described

above, these estimates are accurate to principal order.34

Finally, I initially set ρY = 0; that is, productivity shocks and variance shocks are

uncorrelated. The variance risk premium, i.e. the constant Aδ, is set to generate the target

credit spread on 10-year Baa debt, but then the implied specification for the market price of

variance risk is then held constant for all other credit ratings and at other maturities. I set

the current productivity level X0 = 7.0588 such that the current value of assets in place is

equal to 100. For each credit rating, I set the total principal P equal to the target leverage

ratio multiplied by 100 and then solve for the coupon such that newly issued debt, and the

total current value of debt, is priced at par. This will imply that the credit spread can be

calculated as the coupon rate C/P .

34Given a regime of slowly mean-reverting asset volatility, the estimates of Schaefer and Strebulaev (2008)
will slightly overestimate the true average asset volatilities.
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6.2 Credit Spreads on Intermediate/Long Maturity Debt

I begin my quantitative analysis by examining the credit spreads of 10-year and 20-year

maturity debt. The second column of Table 4 reports the target historical credit spreads

for 10-year maturity debt by rating category. The targets for investment grade through

speculative grade debt (Aaa-Baa) are from Duffee (1998) while the targets for speculative

grade through junk debt (Ba-Caa) are from Caouette, Altman, and Narayanan (1998). The

questions I seek to answer are twofold. Is it possible to match historical credit spreads on

intermediate to long maturity debt with a reasonable variance risk premium and can a single

specification for the market price of variance risk explain credit spreads across credit ratings

and maturities?

First, consider the performance of the model for 10-year maturity debt in which volatility

is constant. The results are reported in the third and fourth columns of Table 4. As is

evident, I recover the credit puzzle in this baseline model, especially for investment grade and

speculative debt. For all credit ratings between Aaa-Baa, the model is never able to account

for more than 30% of the target credit spread, although the performance is increasing as the

rating worsens. On the other hand, the table illustrates that there is significantly less of

a credit puzzle for junk debt. The baseline model performs much better at these ratings,

explaining approximately 61% of the historical B credit spread and 87% of the historical Caa

credit spread. This observation highlights one of the key challenges that a model needs to

overcome to fully resolve the credit spread puzzle. In other words, it is important not to

create a credit spread puzzle in the other direction, whereby the new model is able to better

explain the credit spreads of investment grade debt, but then overpredicts the credit spreads

of junk debt.

This is essentially what happens in the model incorporating stochastic volatility but in

which the default boundary is specified exogenously As can be seen from columns 5 and 6

of the table, the model is now able to explain a substantially higher proportion of the target

credit spread for investment grade and speculative debt than the baseline model. However,

the model significantly overpredicts the credit spreads on junk debt. The credit spread

on the B-rated debt is overpredicted by 30% and the credit spread on Caa-rated debt is

substantially overpredicted by 70%. This is not a particularly compelling resolution of the

credit spread puzzle.

Conversely, the model incorporating stochastic volatility in which the default boundary is

determined endogenously performs much better. The model now only slightly overpredicts

the spreads on junk debt. B-rated debt is overpredicted by only 8% and Caa-rated debt

by only 15%, a substantial improvement. Not only that, but the endogenous default model

outperforms the exogenous default model for investment grade debt as well, especially Aaa
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Table 4: Credit Spreads on 10-Year Maturity Debt (bps)

Target Baseline Exog. Default Endog. Default
Model % Explained Model % Explained Model % Explained

Aaa 47 2 4.3% 14 29.8% 19 40.4%
Aa 69 6 8.7% 37 53.6% 46 66.7%
A 96 19 19.8% 84 87.5% 90 93.8%
Baa 150 43 28.7% 150 100.0% 150 100.0%
Ba 310 93 30.0% 260 83.87% 242 75.6%
B 470 286 60.9% 607 129.2% 508 108.1%
Caa 765 663 86.7% 1307 170.9% 879 114.9%

Note: This table provides target and model-generated 10-year credit spreads by ratings category. Calibra-

tion parameters are provided in Tables 2 and 3. There is zero correlation between productivity shocks and

variance shocks. The variance risk premium is set to match the 10-year historical Baa credit spread. His-

torical target credit spreads for Aaa-Baa debt are from Duffee (1998) while those for lower ratings categories

are from Caouette, Altman, and Narayanan (1998). The baseline model holds volatility constant. The

exogenous default model incorporates stochastic volatility, but sets the default barrier to be equal to that of

the baseline model. The endogenous default model is the full stochastic volatility model.

an Aa debt. While the exogenous default model accounts for approximately 30% and 54%

of the target credit spreads for Aaa and Aa debt respectively, the endogenous default model

can explain 40% and 67%. The only rating category that the exogenous default model wins

in is Ba-rated debt. It explains 84% of the target credit spread relative to 76% for the

endogenous default model, a slight improvement.

The calibration yields a parameter of Aδ = −.2264, which in turn implies a variance risk

premium of -1.1% for an asset volatility of 22% and a premium of -1.77% for an asset volatility

of 28%. This result for Aδ is significantly lower than most estimates reported in the empirical

literature using market returns and market volatility. This is to be expected and, indeed,

it would be worrisome if the calibrated parameter were equal to or higher than empirical

estimates. The reasons are twofold. First, since I am operating under the assumption of

slowly-moving asset volatility, the volatility of asset variance should be significantly lower

than the volatility of market variance. Second, innovations in the asset variance of an

individual firm are likely only partially correlated with innovations in aggregate market

variance, indicating that only a fraction of the volatility in asset variance can be accounted

for by exposure to market variance risk. In other words, the Wiener process W (2)
t is only

partially correlated with the process driving movements in market variance, which I denote

by W (m)
t . Thus, the price of W (2)

t risk should be lower in magnitude than the price of W (m)
t

risk. This too will lead to a lower Aδ. Both of these explanations are consistent with
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Table 5: Credit Spreads on 20-Year Maturity Debt (bps)

Target Baseline Exog. Default Endog. Default
Model % Explained Model % Explained Model % Explained

Aaa 59 3 5.1% 28 47.5% 35 59.3%
Aa 87 8 9.2% 63 72.4% 70 80.4%
A 117 22 18.8% 121 103.4% 131 112.0%
Baa 198 46 23.2% 202 102.0% 194 98.0%
Ba N/A 91 N/A 326 N/A 282 N/A
B N/A 258 N/A 692 N/A 513 N/A
Caa N/A 535 N/A 1256 N/A 716 N/A

Note: This table provides target and model-generated 20-year credit spreads by ratings category. Calibra-

tion parameters are provided in Tables 2 and 3. There is zero correlation between productivity shocks and

variance shocks. The variance risk premium is set to match the 10-year historical Baa credit spread. His-

torical target credit spreads for Aaa-Baa debt are from Duffee (1998) while those for lower ratings categories

are from Caouette, Altman, and Narayanan (1998). The baseline model holds volatility constant. The

exogenous default model incorporates stochastic volatility, but sets the default barrier to be equal to that of

the baseline model. The endogenous default model is the full stochastic volatility model.

the results of Carr and Wu (2009) who find that the expected returns on variance swaps of

individual equities is well-explained by the stocks’volatility betas.

Using this value of Aδ, I next look at the credit spreads of 20-year debt in Table 5.

While I unfortunately do not have target credit spreads for junk debt at this maturity, it

is clear that there once again exists a significant credit puzzle for investment grade debt.

A model without stochastic volatility is unable to explain more than 25% of the historical

credit spreads at any rating. Adding stochastic volatility greatly improves the pricing of

investment grade debt, with the endogenous default model once again outperforming the

exogenous default model for Aaa and Aa debt by a substantial amount. I also report the

credit spreads for junk debt and it is apparent that the exogenous default model yet again

produces significantly higher credit spreads at these ratings categories than a model with

endogenous default.

Finally, given that I do not force the model to match historical default rates, it is im-

portant to see what cumulative default probabilities the model is actually generating. In

particular, I need to make sure that I am not delivering higher credit spreads by simply

overstating the credit risk. The targets are given by the average cumulative issuer-weighted

global default rates from 1970-2007 as reported by Moody’s. The model is quite successful

at matching long-maturity historical default rates for A, Baa and B rated debt as Table 6

demonstrates. It underpredicts the default probabilities in the Ba category somewhat and
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Table 6: Cumulative Default Probabilities - Long Maturity

10yr 15yr 20yr
Target Model Target Model Target Model

Aaa 0.53% 0.01% 1.00% 0.08% 1.20% 0.22%
Aa 0.52% 0.15% 1.09% 0.58% 1.88% 1.14%
A 1.31% 1.08% 2.40% 2.54% 4.08% 3.91%
Baa 4.35% 4.16% 7.60% 7.13% 10.51% 9.41%
Ba 18.43% 13.40% 27.53% 18.40% 34.85% 21.73%
B 40.92% 38.33% 50.21% 45.34% 52.38% 49.75%

Note: This table reports historical and model-generated cumulative default probabilities of firms within

10, 15, and 20 years by ratings category. Target expected default frequencies are the average cumulative

issuer-weighted global default rates from 1970-2007 as reported by Moody’s. Calibration parameters are

provided in Tables 2 and 3. There is zero correlation between productivity shocks and variance shocks.

substantially so in the Aaa and Aa categories. Note, though, that the model-generated

default probabilities for Aaa and Aa debt are much closer to reported historical rates from

1983-2007.35

6.3 Intuition

These quantitative results naturally lead to two essential questions. How does the inclusion

of stochastic volatility increase credit spreads and why is endogenous default important

in matching credit spreads across ratings categories? The answer to the first question is

intuitive. The negative market price of volatility risk indicates that investors see an increase

in volatility as a deterioration in the investment opportunity set. Therefore, investors require

a premium in the form of higher expected returns to hold assets which do poorly when

volatility increases. In general, debt is such an asset since an increase in volatility raises

the probability of default which lowers the value of the claim. Consequently, the discount

rates on debt should be higher in a structural credit model with stochastic volatility and a

negative market price of volatility risk than in a specification in which volatility is constant.

These higher discount rates then lead to lower debt prices and higher credit spreads.

To see this explicitly, I apply Feynman-Kac to the boundary value problem defining the

first-order correction for debt to derive a probabilistic interpretation. This gives:

35Moody’s reports a global default rate of only 0.19% for Aaa debt between the years 1983-2007 at all
maturities of 8 years and above. The rates for Aa-rated debt are also substantially lower in this period than
between 1970-2007.
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√
δd̃y1 (x) = E∗t

 ∫ τB(y)
t

e−(r+m)(s−t)
{
−
(
Aδy

∂d̃y0
∂y
−Bδy

∂2d̃y0
∂x∂y

)}
ds

+e−(r+m)(τ
B(y)−t)√δxyB,1

{
mU ′

(
XτB(y)

)
− ∂d̃y0

∂x

(
XτB(y)

)}
 , (56)

where the expectation is taken over the process dXs = gXs +
√
yXsdW

(1)∗
s with Xt = x and

the stopping time defined by:

τB (y) = min
{
s : Xs = xyB,0

}
.

In words, the correction term is an average discounted present value of comparative statics

in the constant volatility model over all possible sample paths of productivity given an initial

value of x, taking into account the stopping time and in which the process for productivity is

a geometric Brownian motion with drift g and constant volatility
√
y. At the stopping time,

the payoff is the correction to the debt value at the default boundary. The fact that the

averaging holds volatility constant reflects the assumption of a slow-moving variance process.

The first term in the expression captures the intuition described above. Recall that Aδy is

the variance risk premium and ∂d̃y0/dy is the debt vega in the constant volatility model. So

the correction term takes into account the extent to which debt in the constant volatility

model covaries with variance, prices this risk according to the variance risk premium, and

averages over all possible sample paths for productivity going forward. Since the vega should

in general be negative for debt and the variance risk premium is negative, this constitutes

a negative contribution to the correction term, raising credit spreads beyond the constant

volatility baseline model.

The second term was not operative in the quantitative results previously since I set

ρY = 0, which implies Bδ = 0. However, in a model with nonzero correlation, this term

would capture the skewness effect of stochastic volatility. A negative correlation between

productivity and volatility shocks means that bad times for the firm are more volatile times.

This increases the credit risk of debt, i.e. the probability of default, which increases credit

spreads. Technically, the cross partial ∂2d̃y0/∂x∂y is generally positive and with negative

correlation the contribution to the debt correction term is negative
(
Bδ < 0

)
. Note that

while the previous effect was one of discount rates, the skewness effect is a statement about

expected cash flows.

The mechanisms underlying the improved performance of the endogenous default model

are more subtle. There are two driving forces. First, while the debt vega is indeed

usually negative in the constant volatility model, it is actually positive when the firm is

38



close to default if the barrier is chosen endogenously. This does not occur in the exogenous

default model, as shown in Figure 2. When volatility increases, the option value of the

equityholders increase and they respond, if able to, by postponing default. That is, xyB,0
is a decreasing function of y. Increasing volatility therefore has two effects on the value

of debt. The increased riskiness raises the probability of default directly, but the shifting

boundary lowers it indirectly. Near the default barrier, the latter effect dominates and the

increased volatility actually increases the value of debt. This can be seen mathematically.

Differentiating equations (39a)-(39c) gives the problem to solve for the debt vega of the

principal order term in the endogenous default model:

Lyr+m
∂d̃y0
∂y

+
1

2
x2
∂2d̃y0
∂y2

= 0 (57a)

∂d̃y0
∂y

(
xyB,0

)
= −∂d̃

y
0

∂x

(
xyB,0

) dxyB,0
dy

(57b)

lim
x→∞

∂d̃y0
∂y

(x) = 0 (57c)

Since the value of debt is increasing at the default boundary and the boundary is decreasing

with volatility, the debt vega at the boundary is positive. The result follows by continuity.

The second effect comes from the fact that in the probabilistic representation of the debt

correction term, the payoff at the stopping time is positive. That is,

√
δxyB,1

{
mU ′

(
xyB,0

)
− ∂d̃y0

∂x

(
xyB,0

)}
> 0. (58)

Intuitively, even the prospect of future movements in volatility increases the value of the

equityholders’ default option, leading to a lower default boundary than in the constant

volatility case. Debtholders benefit from this because it lowers the probability of default.

Technically, the term in brackets in equation (58) is negative. To see this, note that:

∂d̃y0
∂x

(
xyB,0

)
=

∂V y
0

∂x

(
xyB,0

)
− ∂Ey

0

∂x

(
xyB,0

)
=

∂V y
0

∂x

(
xyB,0

)
= U ′

(
xyB,0

)
− γ2

[
ξU
(
xyB,0

)
+
φC

r

]
≥ U ′

(
xyB,0

)
,

where V y
0 is the principal order term of total shareholder value as defined in Appendix A.
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Table 7: Credit Spreads on 4-Year Maturity Debt (bps)

Target Baseline Exog. Default Endog. Default
Model % Explained Model % Explained Model % Explained

Aaa 46 0.5 1.1% 2 4.4% 2 4.4%
Aa 56 3 5.4% 13 23.2% 14 25.0%
A 87 12 13.8% 38 43.7% 42 48.3%
Baa 149 36 24.2% 91 61.1% 96 64.4%
Ba 310 94 30.3% 189 61.0% 193 62.3%
B 470 344 73.2% 541 115.1% 520 110.6%
Caa N/A 1072 N/A 1570 N/A 1445 N/A

Note: This table provides target and model-generated 4-year credit spreads by ratings category. Calibra-

tion parameters are provided in Tables 2 and 3. There is zero correlation between productivity shocks and

variance shocks. The variance risk premium is set to match the 10-year historical Baa credit spread. His-

torical target credit spreads for Aaa-Baa debt are from Duffee (1998) while those for lower ratings categories

are from Caouette, Altman, and Narayanan (1998). The baseline model holds volatility constant. The

exogenous default model incorporates stochastic volatility, but sets the default barrier to be equal to that of

the baseline model. The endogenous default model is the full stochastic volatility model.

The second inequality follows from smooth-pasting at the default boundary in the constant

volatility model, the third inequality follows from differentiating the expression provided in

Appendix A, and the final inequality follows from γ2 < 0.

Crucially, note that these two effects are more significant in the pricing of junk debt

than investment grade debt. When considering investment grade debt, default is far away

and so most sample paths from the initial point will not hit the default boundary or the

region near it for an extended period of time. As such, these two effects, which only occur

near or at the default boundary, are heavily discounted among most sample paths. Thus

they do not contribute much to the pricing of the correction term for investment grade debt,

leading to similar pricing in both the endogenous and exogenous default models given a

particular variance risk premium. On the other hand, it is exactly junk debt that is at risk

of moving into the default region in the near future. Consequently, these effects are not

discounted heavily in many of the sample paths from the initial point. Since these effects

contribute positively to the value of debt, this indicates that the exogenous default model

can significantly overpredict credit spreads.

It is now apparent why the endogenous default model is more successful. Since the

variance risk premium is calibrated to the speculative grade Baa-rated credit spread, the

implied variance risk premium is higher in the endogenous default model than the exogenous

default model. However, the effects highlighted above are even stronger for junk debt than
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speculative grade debt. Therefore, the endogenous default model generates lower credit

spreads at these ratings categories. On the other hand, since the effects are quite weak for

investment grade debt and the implied variance risk premium is higher in the endogenous

default model, it generates higher credit spreads at these categories as desired.

7 Short Maturity Debt and Extensions

Having quantitatively analyzed long maturity debt and discussed the mechanisms underlying

the results, I now turn to a study of short maturity debt. As Table 7 illustrates, the credit

spread puzzle is still present at short maturities and has familiar features. A model with

constant volatility is unable to explain more than a third of the historical credit spread

for Aaa-Ba debt, but accounts for a significantly greater fraction of junk credit spreads.

Moreover, while the model with stochastic volatility and endogenous default certainly does

improve on this baseline by a substantial amount, the performance is not as good as for

long maturity debt. The model is never able to account for more than two-thirds of the

historical credit spreads on investment and speculative grade debt. The performance for

Aaa and Aa debt is particularly disappointing, with the model only accounting for 4.4% and

25.0% respectively of observed credit spreads.

One reason for this is that the effects of stochastic volatility are weaker at short maturities.

In other words, the first-order correction term for total debt is smaller. This is because the

vega of the principal order term is declining with maturity, as shown in Figure 3. Loosely

stated, since productivity follows a diffusion, it can only move so far within a short period

of time. Thus, increases in volatility do not significantly raise the riskiness of the firm.

Since debt is not as sensitive to volatility fluctuations at short maturity, the discount rate

correction in the stochastic volatility model is not as large.

This is not the whole story, however. Examining Table 8 indicates that the model is

underpredicting the cumulative default probabilities of short-maturity Aaa-Baa debt. That

is, the model is not only underpredicting credits spreads, but also credit risk. A key question,

therefore, is how well the model could match historical prices if it more accurately reflected

empirical default frequencies.

The approach of Huang and Huang (2003) and other studies to this question has been

to set the asset volatility to match this moment. As discussed, though, this method is

somewhat unsatisfactory since the implied asset volatility is then significantly higher than

model-free empirical estimates. A more appropriate approach is to ask whether the model as

currently structured is missing some element of realism which, if included, could increase the

credit risk of short maturity debt. One possibility would be to include negative correlation
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between volatility shocks and productivity shocks, i.e. set ρY < 0. This does not work

as well as one would like though, since under the assumption of slow-moving volatility, the

skewness effects are weak at especially short maturities.

Instead, I consider two extensions to the baseline model. In the first, I add a second,

high-frequency factor in the volatility dynamics specification. In the second, I allow for

rare disasters in the firm productivity process. In both cases, I will be able to extend the

perturbation methodology to solve the model.

7.1 Multiscale Stochastic Volatility

Let Wt now be a Wiener process or standard Brownian motion in three dimensions under

P. The dynamics of productivity and volatility are given by

dXt/Xt = µdt+
√
YtZtdW

(1)
t (59)

dYt = δκY (θY − Yt) dt+ νY
√
δYtdW

(2)
t (60)

dZt =
1

ε
κZ (θZ − Zt) dt+ νZ

√
1

ε
ZtdW

(3)
2 , (61)

where both δ > 0 and ε > 0 are small parameters andW
(1)
t

W
(2)
t

W
(3)
t

 =

 1 0 0

ρY
√

1− ρ2Y 0

ρZ ρY Z
√

1− ρ2Z − ρ2Y Z

Wt. (62)

As in Calvet and Fisher (2004), the variance of productivity shocks is now a product of

multiple factors. The first factor Yt mean-reverts slowly just as before.36 However, there

now is an additional factor Zt which mean-reverts quickly. The correlation between shocks

to productivity and Yt is given by ρY , while the correlation between shocks to productivity

and Zt is given by ρY Z . The parameter ρY Z denotes the correlation between shocks to the

high and low frequency components of volatility.

To price contingent claims, the dynamics under the risk neutral measure P∗ need to be
specified. The dynamics of Xt and Yt are given in equations (7) and (8). I assume that the

dynamics of Zt under the risk-neutral measure are the same as under the physical measure.

This assumption is equivalent to saying that innovations in the high-frequency component to

volatility are not priced. Long-run investors should not view highly transitory, independent

36Note that the parameter values κY , θy, and νy may be different than before. However, under the
assumption that δ > 0 is small, the perturbation approach means that they will not need to be calibrated.
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Table 8: Cumulative Default Probabilities - Short Maturity

2yr 4yr 6yr
Target Model Target Model Target Model

Aaa 0.00% 0.00% 0.03% 0.00% 0.17% 0.00%
Aa 0.02% 0.00% 0.11% 0.00% 0.26% 0.01%
A 0.09% 0.00% 0.34% 0.03% 0.61% 0.21%
Baa 0.48% 0.01% 1.36% 0.43% 2.32% 1.48%
Ba 3.02% 0.53% 7.65% 3.70% 11.77% 7.42%
B 10.20% 8.33% 20.33% 20.39% 28.74% 28.48%

Note: This table reports historical and model-generated cumulative default probabilities of firms within 2,

4, and 6 years by ratings category. Target expected default frequencies are the average cumulative issuer-

weighted global default rates from 1970-2007 as reported by Moody’s. Calibration parameters are provided

in Tables 2 and 3. There is zero correlation between productivity shocks and variance shocks.

innovations in volatility as deteriorations in the investment opportunity set. However, if

shocks to high-frequency volatility are partially correlated with either innovations in asset

productivity or innovations in low-frequency volatility, then they would carry a price. I

ignore this effect since the goal at hand is to see how to increase the credit risk of short

maturity debt, which the price of high-frequency volatility shocks would not affect.

The assumptions on capital structure and bankruptcy remain unchanged. The equity

value E (x, y, z) can again be characterized as the solution to a free boundary problem and

the value of newly issued debt d̃ (x, y, z) as the solution to a PDE boundary value problem.

These are provided in the online appendix.37 To use the asymptotic expansion approach,

equity values, debt values, and the default boundary are expanded in powers of both
√
δ and

√
ε:

Eδ,ε (x, y, z) = Ey,z
0 (x) +

√
δEy,z

1,0 (x) +
√
εEy,z

0,1 (x) +
√
δεEy,z

1,1 (x) + · · · (63)

d̃δ,ε (x, y, z) = d̃y,z0 (x) +
√
δd̃y,z1,0 (x) +

√
εd̃y,z0,1 (x) +

√
δεd̃y,z1,1 (x) + · · · (64)

xB (y) = xy,zB,0 +
√
δxy,zB,1,0 +

√
εxy,zB,0,1 + ..

√
δεxy,zB,1,1 + · · · (65)

A close adaptation of calculations in Fouque et al. (2003) based on both regular and singular

perturbations derives the systems of equations which solve for the principal order terms and

first-order correction terms. The derivation is quite complicated and can be found by the

interested reader in the online appendix. I summarize the results here.

Principal order terms once again reflect the equity/debt valuations and endogenous de-

37The online appendix can be found at http://www.scholar.harvard.edu/mcquade
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fault boundary in the constant volatility model. However, the volatility plugged into these

expressions is no longer
√
y, the current value of the slow-moving factor, but

σ (y) =
√
y

∫ √
zdΛZ (z) , (66)

where ΛZ is the invariant distribution of Zt as defined in Appendix C. That is, the volatility

is set equal to the product of the slow-moving factor and the long-run average of the fast-

moving factor. Note, therefore, that the principal order terms do not depend on the current

level of Zt.

First-order corrections are again the solutions to ordinary differential equations with a

source term reflecting comparative statics of the constant volatility model. The slow-moving

equity correction term is given by the same problem as before:

Lσ2(y)r

√
δEy,z

1,0 =

(
Aδy

∂Ey,z
0

∂y
−Bδyx

∂2Ey,z
0

∂x∂y
−
√
δd̃y,z1,0

)
for x > xy,zB,0 (67a)

√
δEy,z

1,0

(
xy,zB,0

)
= 0 (67b)

lim
x→∞

√
δEy,z

1,0 (x) = 0, (67c)

except that the operator Lσ
2(y)
r now reflects volatility σ (y) instead of

√
y. The fast-moving

equity correction term is found according to

Lσ2(y)r

√
εEy,z

0,1 =

(
Cε

[
x3
∂3Ey,z

0

∂x3
+ 2x2

∂2Ey,z
0

∂x2

]
−
√
εd̃y,z0,1

)
, for x > xy,zB,0 (68a)

√
εEy,z

0,1

(
xy,zB,0

)
= 0 (68b)

lim
x→∞

√
εEy,z

0,1 (x) = 0, (68c)

where the constant Cε is provided in the online appendix and has the opposite sign of ρZ .
38

Solving for the fast-moving correction term requires the gamma and speed of the constant

volatility model. Both correction terms are independent of the current level of the fast-

moving factor Zt. The correction terms for debt are similarly found with Taylor expansions

providing the boundary conditions for the differential equations. Finally, to complete the

38If innovations to the high-frequency component of volatility were priced, there would be an additional
parameter in the coeffi cient multiplying gamma.
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Table 9: Baa-Rated Credit Spreads with Multiscale Stochastic Volatility

Target Cε= 0 Cε= .0005 Cε= .0010 Cε= .0015 Cε= .0020
20yr 195 194 200 207 212 218
10yr 150 150 155 161 168 174
4yr 149 95 102 108 115 120
1yr N/A 28 35 41 46 52
3mo N/A 3 5 5 7 8

Note: This table provides target and model-generated Baa-rated credit spreads at 20yr, 10yr, 4yr, 1yr, and
3mo maturities in a model with multiscale stochastic volatility. The parameter Cε has the opposite sign
of the correlation between shocks to the high-frequency volatility factor and productivity. Other calibration
parameters are provided in Tables 2 and 3. Aδ = −.2264 and Bδ = 0. Historical target credit spreads are
from Duffee (1998).

system of equations, the corrections to the default boundary must satisfy

√
δxy,zB,1,0

∂2Ey,z
0

∂x2
(
xy,zB,0

)
= −

√
δ
∂Ey,z

1,0

∂x

(
xy,zB,0

)
(69a)

√
εxy,zB,0,1

∂2Ey,z
0

∂x2
(
xy,zB,0

)
= −

√
ε
∂Ey,z

0,1

∂x

(
xy,zB,0

)
. (69b)

Like the contingent claims, the endogenous default boundary is independent of the current

Zt. Cumulative survival probabilities can also be approximated using perturbation and are

discussed in the online appendix.

7.1.1 Quantitative Results and Discussion

I examine the credit spreads and default probabilities of Baa-rated debt as I vary the pa-

rameter Cε. The choice of this rating category is for illustrative purposes only. The key

intuitions and quantitative results carry over to other ratings. All other parameters in the

model remain as before. In particular, I set Aδ = −.2264 and Bδ = 0. Table 9 shows that

a increasing Cε from zero to 0.002 raises credit spreads at all maturities. For instance, the

spreads on 4-year maturity debt are raised from 95bps to 120bps, or from explaining 64.4%

of the target spread to 80.5%.

Credit spreads rise because the model-generated cumulative default probabilities are in-

creasing, as Table 10 illustrates. This is a reflection of the skewness effect described in

Section 6. Recall that a positive Cε indicates negative correlation between productivity

shocks and shocks to fast-moving volatility. This means that bad times for the firm are also

the most volatile times, which increases the probability of default.

The model achieves the stated goal of proportionally increasing credit spreads and default
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Table 10: Baa-Rated Cumulative Default Probabilities with Multiscale Stochastic Volatility

Target Cε= 0 Cε= .0005 Cε= .0010 Cε= .0015 Cε= .0020
20yr 10.51% 9.41% 10.64% 11.75% 12.86% 14.00%
10yr 4.35% 4.16% 5.14% 6.04% 6.95% 7.88%
4yr 1.36% 0.43% 0.77% 1.11% 1.46% 1.82%
2yr 0.48% 0.01% 0.05% 0.08% 0.12% 0.16%

Note: This table reports historical and model-generated cumulative default probabilities of Baa-rated firms
within 20, 10, 4, and 2 years in a model with multiscale stochastic volatility. Target expected default
frequencies are the average cumulative issuer-weighted global default rates from 1970-2007 as reported by
Moody’s. The parameter Cε has the opposite sign of the correlation between shocks to the high-frequency
volatility factor and productivity. Other calibration parameters are provided in Tables 2 and 3. Aδ= −.2264
and Bδ= 0.

probabilities more at short maturities than at long maturities. As Cε increases from 0

to 0.002, the credit spreads of 20-year and 10-year maturity debt increase by 11.8% and

16.0% respectively. The 4-year credit spread increases by 26.3%. Increases at shorter

maturities, for which I do not have target credit spreads, are even more stark. The credit

spreads on 1-year and 3-month debt increase by 85.7% and 166.7% respectively. Similarly,

while the baseline model is only able to explain 31.6% of the probability of default within

four years, setting Cε= .0015 allows the model to match relatively well this target, while

only overpredicting the probability of default within 20 and 10 years by 22.4% and 38.9%

respectively.

The intuition behind this result is that periods of increased volatility correlated with

negative market movements are highly transitory due the fast mean-reversion of the Zt
factor. Debt with long maturity will be averaging sample paths evolving over many years in

which these skewness episodes will be brief and of small measure. Thus, they do not greatly

impact the probability of default or valuation. Conversely, such a skewness episode may

coincide with the lifetime of especially short maturity debt despite the fast mean-reversion.

This accounts for the large proportional increases observed at shorter maturities.

7.2 Rare Disasters

In my second extension to the baseline model, I allow for jumps in the firm productivity

process:
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dXt/Xt = µtdt+
√
YtdW

(1)
t + d

N(t)∑
i=1

(Qi − 1)

 (70)

dYt = δκY (θ − Yt) + νY
√
δYtdW

(2)
t , (71)

where N (t) is a Poisson process with rate λ > 0 and {Qi} is a sequence of independent,
identically distributed random variables which take values between zero and one. Note that

a jump in this model always corresponds to a negative event, although this could easily be

modified. Jumps have been included in structural modeling previously by Hilberink and

Rogers (2002) and Chen and Kou (2009). My contribution is to include jumps, stochastic

volatility, and endogenous default in a unified model and to describe a tractable method for

solving it.

I will assume that the jump risk premium is zero to maintain my focus on increasing the

credit spreads of short maturity debt. Then, the risk-neutral dynamics are given by

dXt/Xt = gdt+
√
YtdW

(1)∗
t + d

N(t)∑
i=1

(Qi − 1)

 (72)

dYt =
(
κY (θY − Yt)− Γ (Yt) νY

√
Yt

)
dt+ νY

√
YtdW

(2)∗
t . (73)

In the online appendix, I provide the free boundary problem which characterizes the equity

valuation. The key innovation is that the equity value must now satisfy an integro-partial

differential equation, instead of a partial differential equation, to account for the jumps. The

value of newly issued debt also satisfies an integro-partial differential equation.

The key assumption of the model is that the jumps are rare, i.e. λ > 0 is small. This

allows me to utilize regular perturbation and expand the contingent claims and default

boundary in powers of
√
δ and λ:

Eδ,λ (x, y, z) = Ey
0 (x) +

√
δEy

1,0 (x) + λEy
0,1 (x) +

√
δλEy

1,1 (x) + · · · (74)

d̃δ,λ (x, y, z) = d̃y0 (x) +
√
δd̃y1,0 (x) + λd̃y0,1 (x) +

√
δλd̃y1,1 (x) + · · · (75)

xB (y) = xyB,0 +
√
δxyB,1,0 + λxyB,0,1 + ..

√
δλxyB,1,1 + · · · (76)

As should be familiar by now, the principal order terms will reflect the model with constant

volatility and no jumps. The first-order correction terms accounting for the slow-moving

stochastic volatility will also be the same as before. The equity correction term accounting
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Table 11: Baa-Rated Credit Spreads with Multiscale Stochastic Volatility

Target λ = 0 λ = .001
[.50, .75] [.25, .75] [.25, .50]

20yr 195 194 216 236 253
10yr 150 150 165 180 196
4yr 149 95 109 124 138
1yr N/A 28 37 50 66

Note: This table provides target and model-generated Baa-rated credit spreads at 20yr, 10yr, 4yr, 1yr
maturities in a model with rare disasters. The parameter λ controls the arrival rate of the disasters and
the intervals reflect the uniform distribution of the jump sizes. Other calibration parameters are provided
in Tables 2 and 3. Aδ= −.2264 and Bδ= 0. Historical target credit spreads are from Duffee (1998).

for the jumps is:

LyrλE
y
0,1 = −

λ 1∫
0

[Ey
0 (yx)− Ey

0 (x)] fQ (y) dy − λd̃y,z0,1

 , for x > xy,zB,0 (77)

λEy,z
0,1

(
xyB,0

)
= 0 (78)

lim
x→∞

λEy
0,1 (x) = 0, (79)

where fQ (y) is the density of the jump size distribution. A similar correction term is

derived for debt and, together with the corrections to the default boundary, form a system

of equations.

7.2.1 Quantitative Results and Discussion

To calibrate the model, I set λ = .001 such that the probability of a disaster event in

any given year is 1%. I assume the jump size distribution to be uniform over an interval

[Qmin, Qmax] ⊂ [0, 1]. Note that this implies the firm will lose between Qmin and Qmax

percent of its asset value in the event of a jump. Table 11 displays the credit spreads for

Baa-rated debt for jump size intervals of [.50, .75], [.25, .75], and [.25, .50]. Clearly, as the

magnitudes of the jumps increase, the credit spreads rise as well.

This model also achieves the goal of proportionally increasing short-maturity credit

spreads more than long-maturity credit spreads. There is a 30.4% increase in the 20-year

credit spread and 30.7% increase in the 10-year credit spread as one moves from a model

with no jumps to a model with λ = .001 and Q ∼ U ([.25, 50]). Credit spreads on 4-year

debt increase by 45.3%, while those on 1-year debt increase by 135.7%.

The reason behind this pattern is that credit risk is increased more proportionally at
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shorter maturities. The intuition is that the model allows for jumps to default. Since it

is diffi cult for pure diffusions to reach the default barrier within a short period of time, the

majority of the default probability for especially short maturity debt comes from this risk.

This leads to large proportional increases in credit risk as one moves beyond a pure diffusion

model. However, at longer maturities it is possible to both diffuse to default as well as jump

to default. Therefore, the inclusion of jump risk does not proportionally increase credit risk

as much.

8 Conclusion

This paper has constructed a real-options, term structure model of the firm incorporating

stochastic volatility. Shocks to variance carry a negative price of risk in the market to

reflect the view of long-term investors that a persistent increase in volatility constitutes a

deterioration in the investment opportunity set. The stocks of financially distressed firms are

long the default option and hedge against volatility risk in the market, thus requiring lower

variance risk premia than healthy firms. Risk-adjusted momentum profits are concentrated

among the stocks of low credit-rating firms and results from changing conditional variance

betas. The model is capable of generating both a growth premium and a value premium

among firms depending on the level of financial distress. A firm with growth options hedges

volatility risk and, all else equal, requires smaller variance risk premia than firms without

growth options, generating a value premium.

Firm debt is short the option to default such that if volatility is stochastic and shocks

are negatively priced, discount rates are higher than in a model with constant volatility.

This effect in turn lowers prices and raises credit spreads. However, it is the interaction of

stochastic volatility and endogenous default which resolves the credit spread puzzle. Under

a setting of endogenous default, extremely distressed junk debt hedges volatility risk in the

market and the default threshold is lower at all levels of volatility than in the model with

constant volatility. This prevents the model from overpredicting the credit spreads on junk

debt and also improves the performance of the model at higher ratings categories.

The paper has demonstrated a novel solution methodology from mathematical finance

and physics which should have applicability in other areas of economics. Principal or-

der terms in the asymptotic expansion reflect contingent claims valuations in the constant

volatility setting, while correction terms are the solutions to ODEs involving key comparative

statics of the constant volatility model. The approach yields tractability, reduces the num-

ber of parameters which need to calibrated, and provides clean mathematical expressions to

guide understanding of the mechanisms at work in the model.
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Finally, the paper has considered an additional high-frequency volatility time scale and

rare disasters as extensions to the primary model. These additional elements allow the

model to increase credit risk at short maturities and improve the model’s performance at

matching empirical default frequencies and credit spreads at short maturities.
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A Derivations and Proofs

A.1 Proof of Theorem 1

I prove Theorem 1 in a sequence of lemmas. Let

DIV (x, y) = (1− φ) (x− C) + d̃ (x, y)− p (80)

denote the flow dividend which accrues to the equityholders and set:

E∗ (x, y) = sup
τ∈T

E∗t
[∫ τ

t

e−r(s−t)DIV (Xs, Ys) ds

]
. (81)

The goal is to show that the solution E (x, y) to equations (22a)-(22h) satisfies E (x, y) =
E∗ (x, y) for all x, y > 0. Let C = {(x, y) : x > xB (y)} denote the continuation set and
D = {(x, y) : x ≤ xB (y)} the stopping set. Finally, define the stopping time:

τB = min {t ≥ 0 : (Xt, Yt)} ∈ D. (82)

The first result is as follows:

Lemma 4 The flow dividend to equityholders must be nonpositive in the stopping region;
that is, DIV (x, y) ≤ 0 for all (x, y) ∈ D.

Proof. The proof is very simple. Recalling equation (22b), we must have:

DIV (x, y) + LX,YE ≤ rE

for all (x, y) ∈ D. But equation (22c) says that E (x, y) = 0 for all (x, y) ∈ D. Substituting
this into the equation above immediately gives the desired result.
This result is intuitive. Since equityholders receive nothing in the event of default, it

can never be optimal for them to default when they are still receiving positive dividends.
Now define:

Zt = e−rtE (Xt, Yt) +

∫ t

0

e−rsDIV (Xs, Ys) ds. (83)

Lemma 5 The process Zt satisfies:∫ t

0

e−rsDIV (Xs, Ys) ds ≤ Zt ≤ Z0 +Mt (84)

where Mt is a continuous local martingale. The stopped process Zt∧τB satisfies:

Zt∧τB = Z0 +Mt∧τB . (85)

Proof. The first inequality in equation (84) follows directly from the fact that E (x, y) ≥
0 for all x, y. For the second inequality, note that the Ito-Doeblin formula applies to
functions whose second derivatives are discontinuous on measure zero sets as long as the
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first-derivatives are everywhere continuous, which itself is a consequence of smooth-pasting.
Therefore, under the risk-neutral measure P∗:

dZt = e−rt
[
{−rZt + LX,YZt +DIVt} dt+

√
YtXt

∂E

∂x
dW

(1)∗
t + νY

√
Yt
∂E

∂y
dW

(2)∗
t

]
. (86)

By equation (22a), this is:

dZt = e−rtDIVtI [Xt ≤ xB (Yt)] dt+ e−rt
[√

YtXt
∂E

∂x
dW

(1)∗
t + νY

√
Yt
∂E

∂y
dW

(2)∗
t

]
. (87)

However, by the previous lemma I know that DIVt ≤ 0 for all Xt ≤ xB (Yt), which implies
that:

Zt ≤ Z0 +Mt (88)

where:

Mt =

∫ t

0

e−rs
√
YsXs

∂E

∂x
dW (1)∗

s +

∫ t

0

e−rsνY
√
Ys
∂E

∂y
dW (2)∗

s (89)

is a local continuous martingale by property of the Ito integral.
For the stopped process Zt∧τB , it is the case that Xt > xB (Yt) for all t < τB, which

means that the indicator function in the drift term is equal to zero. Therefore:

Zt∧τB = Z0 +Mt∧τB (90)

as desired.
To complete the proof, I finally show:

Lemma 6 The solution E (x, y) to equations (22a)-(22h) satisfies E (x, y) = E∗ (x, y)

Proof. Let X0 = x and Y0 = y. Then for every stopping time τ and n ∈ N :∫ τ∧n

0

e−rsDIV (Xs, Ys) ds ≤ E (x, y) +Mτ∧n. (91)

By the optional sampling theorem, E∗0 [Mτ∧n] = 0, so that:

E∗0
[∫ τ∧n

0

e−rsDIV (Xs, Ys) ds

]
≤ E (x, y) . (92)

Taking limits as n→∞ and applying Fatou’s lemma yields:

E∗0
[∫ τ

0

e−rsDIV (Xs, Ys) ds

]
≤ E (x, y) . (93)

Taking the supremum over all stopping times gives E∗ (x, y) ≤ E (x, y) .
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For the other direction, by considering the stopped process Zt∧τB and once again using
the optional sampling theorem, I have that:

E∗0

[
e−r(τ

B∧n)E (XτB∧n, YτB∧n) +

∫ τB∧n

0

e−rsDIV (Xs, Ys) ds

]
= E (x, y) . (94)

Taking limits as n→∞ and noting that e−rτ
B
E (XτB , YτB) = 0 gives:

E (x, y) = E∗0

[∫ τB

0

e−rsDIV (Xs, Ys) ds

]
. (95)

This show that τB is optimal and that E (x, y) = E∗ (x, y) for all x, y > 0 as desired.

A.2 Derivation of Equation (42)

The problem for the principal order equity term is given by:

(1− φ) (x− C) + d̃y0 (x)− p+ LyrE
y
0 = 0 for x > xyB,0 (96a)

Ey
0

(
xyB,0

)
= 0 (96b)

lim
x→∞

Ey
0 (x) = U (x)− C +mP

r +m
+
φC

r
(96c)

∂Ey
0

∂x
|x=xyB,0 = 0 (96d)

To solve this problem I will introduce V y
0 as the solution to:

(1− φ)x+ φC + LyrV
y
0 = 0 for x > xyB,0 (97a)

V y
0

(
xyB,0

)
= (1− ξ)U

(
xyB,0

)
(97b)

lim
x→∞

V y
0 (x) = U (x) +

φC

r
(97c)

Note that V y
0 is value of debt plus equity in the case of constant volatility. It is not equal to

total firm value since the government is a residual claimant on a portion of the firm’s cash
flows. I now prove the following lemma:

Lemma 7 The principal equity value term Ey
0 (x) = V y

0 (x)− d̃y0 (x) /m.

Proof. Recalling that P = p/m and C = c/m, it is straightforward to check that:

V y
0

(
xyB,0

)
− d̃y0

(
xyB,0

)
/m = 0 (98)

lim
x→∞

V y
0 (x)− d̃y0 (x) /m = U (x)− C +mP

r +m
+
φC

r
(99)
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It therefore remains to check that V y
0 (x) − d̃y0 (x) /m satisfies the appropriate differential

equation. To this end:

(1− φ) (x− C) + d̃y0 (x)− p+ Lyr
(
V y
0 − d̃

y
0/m

)
= −C + d̃y0 − p− (1/m)Lyr d̃

y
0

= −C + d̃y0 (x)− p+ (1/m)
(
c+mp−md̃y0 (x)

)
= 0, (100)

where here I used the fact that c+mp+ Lyr+md̃y0 = 0. This completes the proof.
Standard ODE techniques for the Cauchy-Euler equation give:

V y
0 (x) = U (x) +

φC

r
−
[
ξU
(
xyB,0

)
+
φC

r

](
x

xyB,0

)γ2

, (101)

where γ2 is the negative root of the following polynomial equation:

gγ2 +
1

2
yγ2 (γ2 − 1)− r = 0. (102)

The expression for d̃y0 (x) is provided in equation (40). Computing V y
0 (x)− d̃y0 (x) /m then

gives equation (42). Differentiating this equation with respect to x and evaluating at xyB,0
to solve the smooth-pasting condition gives the endogenous default boundary (43).

A.3 Proof of Theorem 3

Let xB denote the exogenous default boundary. The problem for the principal order term
d̃y0 (x) is the same as before, replacing xyB,0 with xB. Likewise, the solution to the problem
is simply equation (40) with xyB,0 replaced by xB. I begin with a preliminary useful lemma.

Lemma 8 The following identity holds:

Lyr+m
{

1

g + γ1y − 1
2
y

ln

(
x

xB

)(
x

xB

)γ1}
=

(
x

xB

)γ1
(103)
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Proof. By direct computation, I show that:

Lyr+m
{

1

g + γ1y − 1
2
y

ln

(
x

xB

)(
x

xB

)γ1}

=
1

g + γ1y − 1
2
y


g
(

x
xB

)γ1 [
1 + γ1 ln

(
x
xB

)]
+1
2
y
(

x
xB

)γ1 [
2γ1 − 1 + γ1 (γ1 − 1) ln

(
x
xB

)]
− (r +m)

(
x
xB

)γ1
ln
(

x
xB

)


=

(
x

xB

)γ1 g + γ1y − 1
2
y

g + γ1y − 1
2
y

+ ln

(
x

xB

)
gγ1 + 1

2
yγ1 (γ1 − 1)− (r +m)

g + γ1y − 1
2
y

(
x

xB

)γ1
=

(
x

xB

)γ1
,

due the definition of γ1.
I next compute an explicit expression for the gamma and vega of the principal order

term, that is the vega in the constant volatility model with exogenous default boundary.

Lemma 9 The gamma of the debt principal order term in the exogenous default model is
given by:

∂2d̃y0
∂x2

=

[
m (1− ξ)U (xB)− c+mp

r +m

]
γ1 (γ1 − 1)

{
x

xB

}γ1−2
. (104)

The vega of the principal order term is given by:

∂d̃y0
∂y

= −
[
m (1− ξ)U (xB)− c+mp

r +m

]
γ1 (γ1 − 1)

2
(
g + γ1y − 1

2
y
) ln

(
x

xB

)(
x

xB

)γ1
. (105)

Proof. The gamma of the principal order term can be calculated directly by differentiating
equation (40) with respect to x. By the symmetry of partial derivatives, If I differentiate
the ODE and boundary condition for d̃y0 with respect to y, I get the following problem to
solve for vega:

Lyr+m
∂d̃y0
∂y

+
1

2
x2
∂2d̃y0
∂y2

= 0 (106a)

∂d̃y0
∂y

(xB) = 0 (106b)

Since the gamma remains bounded as x → xB, equation (105) clearly satisfies the bound-
ary condition. It remains to check that it satisfies the differential equation. This is a
consequence of the lemma above. Define:

A (xB) = m (1− ξ)U (xB)− c+mp

r +m
. (107)
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Then I can show:

Lyr+m

{
−A (xB)

γ1 (γ1 − 1)

2
(
g + γ1y − 1

2
y
) ln

(
x

xB

)(
x

xB

)γ1}

= −1

2
A (xB) γ1 (γ1 − 1)Lyr+m

1

g + γ1y − 1
2
y

ln

(
x

xB

)(
x

xB

)γ1
(108)

= −1

2
A (xB) γ1 (γ1 − 1)

(
x

xB

)γ1
= −1

2
x2
∂2d̃y0
∂y2

, (109)

as desired.
Note that I could have simply calculated the vega of the principal order term directly

through differentiation, recognizing that:

∂

∂y

(
x

xB

)γ1
=

(
x

xB

)γ1
ln

(
x

xB

)
dγ1
dy

= −1

2

γ1 (γ1 − 1)

g + γ1y − 1
2
y

ln

(
x

xB

)(
x

xB

)γ1
, (110)

where dγ1/dy is computed through implicit differentiation of equation (41). However, the
proof given above illustrates the usefulness of the first lemma, which I will now further
exploit.

Lemma 10 The first-order debt correction term in the exogenous default model with ρY = 0
is given explicitly by:

ln (x/xB)

2
(
g + γ1y − 1

2
y
)Aδy [∂d̃y0

∂y
+

1

2
(
g + γ1y − 1

2
y
)2yx2∂2d̃y0∂y2

]
(111)

Proof. I will break the calculation into parts. First, note that:

Lyr+m
ln (x/xB)

2
(
g + γ1y − 1

2
y
)Aδy∂d̃y0

∂y

= −1

2
A (xB)

γ1 (γ1 − 1)

2
(
g + γ1y − 1

2
y
)2AδyLyr+m ln

(
x

xB

)2(
x

xB

)γ1
(112)
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Then:

Lyr+m ln

(
x

xB

)2(
x

xB

)γ1
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(
x
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)γ1 [
2 ln

(
x
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)
+ γ1 ln

(
x
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)2]

+
1

2
y

(
x
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)γ1 [
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(
x
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)
+ γ1 (γ1 − 1) ln

(
x
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)2]

− (r +m) ln

(
x
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)2(
x
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(
x
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(
x
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)(
x
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)γ1 (
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1

2
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)
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(
x
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)2
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(
x
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(113)

= y

(
x

xB

)γ1
+ 2 ln

(
x

xB

)(
x

xB

)γ1 (
g + γ1y −

1

2
y

)
(114)

Therefore:

Lyr+m
ln (x/xB)

2
(
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2
y
)Aδy∂d̃y0
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(115)

Finally, I show that:

Lyr+m
ln (x/xB)

2
(
g + γ1y − 1

2
y
)3Aδy1
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yx2

∂2d̃y0
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=
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2
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. (116)

This completes the proof since:

Lyr+m
ln (x/xB)

2
(
g + γ1y − 1

2
y
)Aδy [∂d̃y0

∂y
+

1

2
(
g + γ1y − 1

2
y
)2yx2∂2d̃y0∂y2

]
= Aδy

∂d̃y0
∂y

(117)
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Note that an explicit expression can be derived for the case where ρY 6= 0 as well.
However, the computations and ultimate expression are quite messy and not very intuitive.
I therefore omit them.

B Contingent Claims of Growth Firms

In this appendix, I provide the problems to solve for the equity and debt values of growth
firms and provide the details of how to solve for them by regular perturbation.

B.1 Value of Assets in Place

The value of assets in place for a growth firm is given by:

Ua
t (x) = E∗t

[∫ ∞
t

e−r(s−t) (1− φ)KaXsds | Xt = x

]
=

(1− φ)Kax

r − g . (118)

This is simply the Gordon growth formula for an unlevered firm with tax rate φ.

B.2 Equity Valuation of Growth Firms

The equity valuation of the growth firm is given by the following optimal stopping problem
under the risk-neutral measure:

Ea
δ (x, y) = sup

τ ′,τ ′′∈T
E∗t

[ ∫ τ ′∧τ ′′
t

e−r(s−t)
{

(1− φ) (KaXs − C) + d̃aδ (x, y)− p
}
ds

+I [τ ′ < τ ′′] (Eδ (Xτ ′ , Yτ ′)− I)

]
, (119)

where τ ′ is the stopping time which denotes investment and τ ′′ is the stopping time which
denotes default. Upon defaulting, equityholders again receive nothing. At the investment
threshold however, the equity value equals to the equity value a mature firm minus the
cost of investment. Recall that by assumption, the cost of investment must be borne by
equityholders, i.e., the firm cannot issue new debt to finance the purchase of additional
capital.
By the same logic used to prove Theorem 1, we can characterize the equity valuation as

a free boundary problem.
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Theorem 11 The equity value of a growth firm Ea
δ (x, y) is the solution to:

DIV a
δ (x, y) +

(
Lyr +

√
δMy

1 + δMy
2

)
Ea
δ = 0 for x ∈

(
xaB,δ (y) , xaI,δ (y)

)
(120a)

Ea
δ (xaB (y) , y) = 0 (120b)

Ea
δ (xaI (y) , y) = Eδ (xaI (y) , y)− I (120c)
∂Ea

δ

∂x
|x=xaB,δ(y) = 0 (120d)

∂Ea
δ

∂y
|x=xaB,δ(y) = 0 (120e)

∂Ea
δ

∂x
|x=xaI,δ(y) =

∂Eδ
∂x
|x=xaI,δ(y) (120f)

∂Ea
δ

∂y
|x=xaI,δ(y) =

∂Eδ
∂y
|x=xaI,δ(y) (120g)

where
DIV a

δ (x, y) = (1− φ) (Kax− C) + d̃aδ (x, y)− p (121)

and xaB (y) and xaI (y) are free boundaries to be determined and

Proof. The proof follows the same logic as the proof of Theorem 1.
The free boundary problem is similar to the one specified for the equity value of mature

firms. At the default boundary, the equity value must be equal to zero and the derivatives
must be continuous. However, now there is no limiting condition as x→∞. Instead, there
are additional value-matching and smooth-pasting conditions. At the investment threshold,
the equity value must be equal to the equity of a mature firm minus the cost of investment.
Once again, optimality in conjunction with the nature of a regular diffusion requires that
the derivatives of the valuation be continuous across this barrier. Finally, the dividend to
the equityholders now reflects the lower level of capital and the valuation of newly issued
debt for young firms.

B.3 Debt Valuation of Growth Firms

Let τ I denote the optimal stopping time for investment and τD the optimal stopping time
for default:

τ I = min
{
t : (Xt, Yt) =

(
xaI,δ (Yt) , Yt

)}
(122)

τB = min
{
t : (Xt, Yt) =

(
xaB,δ (Yt) , Yt

)}
(123)

Existing debt is simply rolled over when the firm invests in capital. Therefore, the value
of a vintage of debt at time t issued at date 0 is given by:

daδ (t) = E∗t


∫ τI∧τD
t

{
e−r(s−t)e−ms (c+mp)

}
ds

+I
[
τD < τ I

]
e−r(τ

D−t)
(
e−mτ

D
p/P

)
(1− ξ)UτD

+I
[
τ I < τD

]
e−r(τ

I−t)dδ
(
τ I
)

 (124)
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Upon default, debtholders receive a fraction of the value of the assets in place (minus bank-
ruptcy costs) according to their vintage. At the investment threshold, the debt value equals
the value of debt of identical vintage in a mature firm.
Noting that p/P = m and dδ

(
τ I
)

= e−mτ
I
d̃δ (XτI , YτI ), it follows that:

emtdaδ (t) = E∗t


∫ τI∧τD
t

{
e−(r+m)(s−t) (c+mp)

}
ds

+I
[
τD < τ I

]
e−(r+m)(τ

D−t)m (1− ξ)Ua
τD

+I
[
τ I < τD

]
e−(r+m)(τ

I−t)d̃δ (XτI , YτI )

 , (125)

so that by Feynman-Kac the following theorem holds.

Theorem 12 The value of the date 0 debt vintage at time t for a young firm is given by
da (t) = e−mtd̃a (Xt, Yt) where d̃a (Xt, Yt) is the value of the newly issued debt and satisfies:

c+mp+
(
Lyr+m +

√
δMy

1 + δMy
2

)
d̃aδ = 0 for x ∈

(
xaB,δ (y) , xaI,δ (y)

)
(126a)

d̃aδ (xaB (y) , y) = m (1− ξ)Ua (xaB (y)) (126b)

d̃aδ (xaI (y) , y) = d̃δ (xaI (y) , y) (126c)

The total value of debt Da = d̃a/m.

I now expand the contingent claims and default boundaries in powers of
√
δ:

Ea
δ (x, y) = Ea,y

0 (x) +
√
δEa,y

1 (x) + δEa,y
2 (x) + ... (127a)

d̃aδ (x, y) = d̃a,y0 (x) +
√
δd̃a,y1 (x) + δd̃a,y2 (x) + ... (127b)

xaB (y) = xa,yB,0 +
√
δxa,yB,1 + δxa,yB,2 + ... (127c)

These are substituted into the problems above. Boundary conditions are expanded with
Taylor series. Finally, contingent claims of mature firms are also written using asymptotic
expansions.

B.4 Principal Order Terms

The principal order terms reflect the valuations and default boundary in the constant volatil-
ity case. The problem for debt is:

c+mp+ Lyr+md̃a,y0 = 0 for x ∈
(
xa,yB,0, x

a,y
I,0

)
(128a)

d̃a,y0
(
xa,yB,0

)
= m (1− ξ)Ua

(
xa,yB,0

)
(128b)

d̃a,y0
(
xa,yI,0
)

= d̃y0
(
xa,yI,0
)

(128c)
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and the problem for equity is:

(1− φ) (xKa − C) + d̃a,y0 (x)− p+ LyrE
a,y
0 = 0 or x ∈

(
xa,yB,0, x

a,y
I,0

)
(129a)

Ea,y
0

(
xa,yB,0

)
= 0 (129b)

Ea,y
0

(
xa,yI,0
)

= Ey
0

(
xa,yI,0
)
− I (129c)

∂Ea,y
0

∂x
|x=xa,yB,0 = 0 (129d)

∂Ea,y
0

∂x
|x=xa,yI,0 =

∂Ey
0

∂x
|x=xa,yI,0 (129e)

I follow an indirect approach to solve for Ea,y
0 as in appendix A.2. I introduce the sum of

debt and equity values V a,y
0 , which is the solution to:

(1− φ)Kax+ φC + LyrV
a,y
0 = 0 for x ∈

(
xa,yB,0, x

a,y
I,0

)
(130a)

V a,y
0

(
xyB,0

)
= (1− ξ)Ua

(
xyB,0

)
(130b)

V a,y
0

(
xyI,0
)

= V y
0

(
xyI,0
)

(130c)

Then Ea,y
0 = V a,y

0 − d̃a,y0 /m and the default/investment boundaries are found by applying
the two smooth-pasting conditions.

B.5 First-Order Correction Terms

Finally, the first-order corrections once again reflect comparative statics in the constant
volatility case as well as boundary corrections. The first-order correction for debt is:

Lyr+m
√
δd̃a,y1 =

(
Aδy

∂d̃a,y0
∂y
−Bδyx

∂2d̃a,y0
∂x∂y

)
for x ∈

(
xa,yB,0, x

a,y
I,0

)
(131a)

√
δd̃a,y1

(
xa,yB,0

)
=
√
δxa,yB,1

[
m (1− ξ) (1− φ)

r − g − ∂d̃a,y0
∂x

(
xa,yB,0

)]
(131b)

√
δd̃a,y1

(
xa,yI,0
)

=
√
δxa,yI,1

[
∂d̃y0
∂x

(
xa,yI,0
)
− ∂d̃a,y0

∂x

(
xa,yI,0
)]

+
√
δd̃y1
(
xa,yI,0
)

(131c)

The first-order correction for equity is:

Lyr
√
δEa,y

1 =

(
Aδy

∂Ea,y
0

∂y
−Bδyx

∂2Ea,y
0

∂x∂y
−
√
δd̃a,y1

)
for x ∈

(
xa,yB,0, x

a,y
I,0

)
(132a)

√
δEa,y

1

(
xa,yB,0

)
= 0 (132b)

√
δEa,y

1

(
xa,yI,0
)

=
√
δEy

1

(
xa,yI,0
)

(132c)

Note that I used the smooth-pasting condition of the principal order term at the default
and investment boundaries to derive the final two equations. Finally, the corrections in the
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default/investment barriers must satisfy:

√
δxa,yB,1

∂2Ea,y
0

∂x2
(
xa,yB,0

)
= −

√
δ
∂Ea,y

1

∂x

(
xa,yB,0

)
(133)

√
δxa,yI,1

∂2Ea,y
0

∂x2
(
xa,yI,0
)

= −
√
δ
∂Ea,y

1

∂x

(
xa,yI,0
)

(134)

All of this together solves a system of equations which can be solved numerically in MATLAB.

C Volatility Time Scales

This technical appendix elaborates on the discussion of volatility time scales in section 4.1
and specifically on the role of δ in controlling the rate of mean-reversion. The discussion
follows closely the textbook treatment provided in Fouque, Papanicolaou, Sircar, and Solna
(2011). I define the infinitesimal generator of a time-homogenous, ergodic Markov process
Yt to be:

Lh (y) = lim
t→0

Pth (y)− h (y)

t
, (135)

where:
Pth (y) = E [h (Yt) | Y0 = y] . (136)

For example, the infinitesimal generator of the Cox-Ingersoll-Ross process of equation (2) is
given by:

My
2 = (θY − y)

∂

∂y
+

1

2
ν2Y y

∂2

∂y2
. (137)

In general, the infinitesimal generator of a regular diffusion can be found by considering Ito’s
formula and the backwards Kolmogorov equation. To find the invariant distribution of the
process Yt, which exists by ergodicity, I look for a distribution Λ for Y0 which satisfies for
any bounded h:

d

dt

∫
E [h (Yt) | Y0 = y] dΛ (y) = 0, (138)

where the integral is taken of the state space on which the Markov process is defined. By
the backward Kolmogorov equation for a time-homogenous Markov process:

d

dt
Pth (y) = LPtg (y) , (139)

it follows that:

d

dt

∫
E [h (Yt) | Y0 = y] dΛ (y) =

∫
d

dt
Pth (y) dΛ (y)

=

∫
LPth (y) dΛ (y)

=

∫
Pth (y)L∗dΛ (y) , (140)
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where L∗ is the adjoint operator of L defined uniquely by:∫
α (y)Lβ (y) dy =

∫
β (y)L∗α (y) dy (141)

for test functions α, β. The invariant distribution, therefore, is the solution to the equation:

L∗Λ = 0, (142)

since the relation above must hold for all h. I denote integration with respect to the invariant
distribution by 〈h〉 and suppose that the invariant distribution has a mean.
Now define the process Y δ

t according the infinitesimal generator δL. For a CIR process,
this procedure then gives a new process which is given explicitly in equation (30). The
adjoint of the operator δL is clearly given by δL∗. Therefore, it is immediately clear that
the invariant distribution of the process Y δ

t is independent of the choice of δ, as described in
section 4.1. This indicates that, in the long-run, the choice of δ does not affect the degree
of variability in the process Y δ

t .
Now I suppose that the process Yt is reversible, or that the operator L has a discrete spec-

trum and that zero is an isolated eigenvalue. This allows the formation of an orthonormal
basis of L2 (Λ) and to consider the eigenfunction expansion of a function h (y) by:

h (y) =
∞∑
n=0

dnψn (y) (143)

where each ψn satisfies:
Lψn = λnψn (144)

and where 0 = λ0 > λ1 > · · ·. Each constant satisfies dn = 〈hψn〉 and in particular d0 = 〈h〉,
since the eigenfunction associated with the zero eigenvalue is simply ψ0 = 1. Next consider
the backwards Kolmogorov equation:

d

dt
Pth (y) = LPth (y) (145)

and look for a solution of the form:

Pth (y) =
∞∑
n=0

zn (t)ψn (y) . (146)

Substituting this expression into the backwards Kolmogorov equation and using equation
(144) gives an ODE for each zn (t):

z′n (t) = λnzn (t) , (147)
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with initial condition zn (0) = dn. Solving, this implies that:

Pth (y) =

∞∑
n=0

cne
λntψn (y) . (148)

From this, it is possible to show that:

|Ptg (y)− 〈h〉| ≤ Ceλ1t, (149)

for some constant C. In words, the spectral gap, defined as the magnitude of the first negative
eigenvalue, controls the rate of mean reversion of the process to the invariant distribution.
Finally, it is trivial to see that the eigenfunctions/eigenvalues of the infinitesimal gener-

ator δL are given by:
Lδψn = λnδψn. (150)

That is, the spectrum of δL is simply a scaling of the spectrum of L according to the
parameter δ. But this implies that the spectral gap of the process Y δ

t is proportional to
δ and, therefore, that δ controls the rate of mean-reversion of the process.
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Figure 2: Debt Vegas: Endogenous and Exogenous Default

Note: This figure illustrates how debt vegas vary with productivity in the constant volatility model under

endogenous and exogenous default assumptions. Firms are mature. The riskless rate, corporate tax rate,

risk-neutral rate of productivity growth, and asset risk premium are set according to Table 2. Total principal

equals 43.3 and the coupon rate equals 8.168%. Current volatility of the productivity process equals 22%.

Figure 3: Total Debt Vegas and Average Debt Maturity

Note: This figure illustrates how total debt vegas in the constant volatility model vary with the average debt

maturity and productivity of the firm. Firms are mature. The riskless rate, corporate tax rate, risk-neutral

rate of productivity growth, and asset risk premium are set according to Table 2. Total principal equals

43.3 and the coupon rate equals 8.168%. Current volatility of the productivity process equals 22%.
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