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Do Macroeconomic Variables Predict Aggregate

Stock Market Volatility?

Abstract

The paper considers regressions of “realized variance” measures on macroeconomic predic-
tors. The main contribution of the paper is to show that several well known inference issues
documented in the literature on stock return predictability are also serious concerns in models
that attempt to link aggregate stock return variance to macroeconomic factors. Specifically, we
illustrate that spurious regression bias, finite sample bias due to lagged endogenous regressors,
and omitted variables bias in a dynamic context are all potential sources of inference problems
in realized variance regressions. We advocate a richly specified dynamic model for variance to
minimize the impact of these inference problems. Empirically, the paper assesses the strength
of evidence that macroeconomic variables forecast stock return variance using over a century
of quarterly data. While there is limited evidence of predictive power in the latter portion of
our sample period, our overall conclusion is that the extent to which common macroeconomic
forecasting variables enhance our understanding of time-variation in volatility is rather limited.



Introduction

Recent empirical research suggests that many of the same variables that forecast expected

stock returns also forecast the conditional volatility of stock returns. Campbell (1987), Breen,

Glosten and Jagannathan (1989), Shanken (1990), Glosten, Jagannathan and Runkle (1993),

Whitelaw (1994), Harvey (2001), Lettau and Ludvigson (2003) and Marquering and Verbeek

(2005) all present evidence suggesting that some of the same variables popular in forecasting

regressions for stock returns also forecast conditional volatility. This paper considers ‘realized

volatility regressions,’ in which squared daily returns are used to build a proxy for unobserved

volatility that is then subjected to time series regression analysis. A number of papers, includ-

ing Schwert (1989a), Lettau and Ludvigson (2003) and Marquering and Verbeek (2005) have

explored whether macroeconomic variables predict aggregate volatility within the context of

realized volatility regressions.1

The question of whether macroeconomic variables predict volatility is an important issue in

empirical finance. From an asset allocation perspective, variables that forecast either expected

returns or volatility (or both) become state variables in the investor’s portfolio optimization

problem. From a risk-management perspective, understanding how future aggregate stock

market volatility responds to changing macroeconomic conditions is critical to value-at-risk

and stress-testing analysis at longer horizons. Finally, evidence of a strongly countercyclical

Sharpe ratio is a challenge for modern asset pricing models. Understanding the appropriate

conditioning instruments and functional specifications for both expected returns and volatility

is thus critical for constructing the empirical ‘stylized facts’ against which asset pricing models

are evaluated.

A large and active literature probes inference issues in the context of regressions of excess

stock returns on lagged macroeconomic variables. This paper shows that several of the notable

inference issues raised in the stock return predictability literature are also serious concerns in

predictive regressions for (realized) variance. In particular, the spurious regression bias studied

by Ferson, Sarkissian and Simin (2003a,b), the finite-sample bias studied by Stambaugh (1999),

1Another strand of literature examines the links between stock market volatility and the volatility of macroe-
conomic variables. See, for example, Schwert (1989a) and Beltratti and Morana (2002b). This paper focuses on
the apparent forecasting power of the level of macroeconomic variables on return volatility.
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and the omitted variables bias addressed in Butler, Grullon and Weston (2006) all have direct

analogs in models that attempt to link macroeconomic variables to variation in stock return

volatility.

A large existing literature documents the potential of spurious regression problems when

both the dependent variable and regressor exhibit high ‘persistence,’ where such persistence

may reflect unit root behavior, long memory, or even stationary, short memory dynamics that

are difficult to distinguish from long memory in finite samples.2 It is not surprising, then, that

spurious regression is a concern in realized variance regressions since both variance and many

macroeconomic forecasting variables are quite persistent.

In a set of Monte Carlo simulations, we demonstrate the less obvious result that standard

hypothesis tests of the null of no predictability are likely to be significantly oversized in realized

variance regressions if the dynamic model for variance is not sufficiently rich, even if the true

variance process is stationary, and even if popular kernel-based HAC estimators are employed

in constructing t-statistics. This finding is fairly invariant over sample sizes ranging from 100

to 500, which at the quarterly frequency reflect the size of datasets of practical interest.

The empirical evidence indicates that a number of popular variables in the macro-finance

forecasting literature are contemporaneously correlated with stock return variance, and there-

fore these predictors are only weakly exogenous instruments. First, this immediately implies

that slope coefficients are biased in finite samples as shown in the return regression setting

by Stambaugh (1999). Furthermore, if the regression model for (log) variance is dynamically

misspecified and incorporates a weakly exogenous macroeconomic forecasting variable, then

the OLS slope coefficient on this forecasting variable is generally biased and inconsistent. In

large samples, this slope coefficient will converge in probability to a value that minimizes the

mean-square error in the population regression. Intuitively, when a macroeconomic predictor

is correlated with volatility innovations, this variable provides useful forecasting information

regarding omitted dynamic components. Thus, a spurious forecasting relationship will be un-

covered, in the sense that under a correctly specified model the OLS coefficient would instead

converge to its true population value of zero (under the null of no predictability). In our Monte

2Examples of papers that consider such situations include Ferson, Sarkissian and Simin (2003a,b), Granger,
Hyung and Jeon (2001), Granger and Newbold (1974), Kirby (1997), Marmol (1998), Phillips (1986), Phillips
(1988), Tsay and Chung (2000) and Valkanov (2003).
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Carlo simulation analysis, we show that bias issues can be severe when insufficient dynamics

are included in the predictive model for variance.

In addition to documenting inference issues in models linking stock return variance to

macroeconomic factors, the paper also presents a reasonably comprehensive set of empirical

results regarding predictive ability. This analysis is in the spirit of Goyal and Welch (2007),

although we focus on in-sample, rather than out-of-sample, predictive ability. Our results illus-

trate that support for the predictive ability of macroeconomic variables, in both a statistical

and economic sense, is fragile with respect to the assumed dynamics. For richer dynamic spec-

ifications that are less susceptible to the inference problems we document, we find significant

evidence of predictability ability for relatively few variables, particularly when the sample period

extends into the first half of the twentieth century. When we look at the sub-period following

the Treasury Accord of 1951, the evidence for predictability is stronger. However, we illustrate

that the economic significance of this predictability is weak, in the sense that: 1.) the fitted

values from models that include the macroeconomic predictors differ little from those obtained

under a pure univariate time series model; and 2.) the slope estimates for many forecasting

variables translate to relatively little predictive power.

In addition to univariate models (in the sense of a single macroeconomic variable included),

we also explore the predictive ability of specifications that include a number of macroeconomic

variables together. This produces little substantiative change in the nature of our findings. As

in the univariate case, there is only modest statistical support for predictive ability, and the

economic significance of macro-predictors appears quite limited. Our main empirical findings

are robust to a number of alternative schemes for computing realized variance and to using the

level, as opposed to the logarithm, of realized variance as the dependent variable in the models.

Schwert (1989a) explores a variety of explanations for time-variation in volatility, including

the potential that volatility may fluctuate with the level of economic activity. Schwert (1989a)

does not find strong post-Treasury accord evidence of a relation between aggregate stock market

volatility and dividend yields, price-earnings ratios and the default premium.3 Subsequent

research has identified what appear to be stronger relations between volatility and these and

3Interestingly, Schwert includes 12 lags of realized volatility in the regression specification, suggesting a
keen sensitivity to the spurious regression danger highlighted in this paper. Schwert finds stronger evidence of
predictability for the default premium over a longer sample period which includes pre-Treasury accord data.
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other macroeconomic variables. The results in this paper largely concur with Schwert’s findings,

with the caveat that we do find some evidence of predictive ability in the post-Treasury Accord

period.

Recent theoretical work by Antonio Mele (2005a,b) suggests that business-cycle variation

in stock return volatility may be related to asymmetric variation in risk premia. In short, risk

premia that move more violently in down times (recessions) relative to good times (expansions)

can generate cyclical variation in volatility. This theory suggests that variables which forecast

the degree of variation in risk premia related to business cycle fluctuations should forecast

volatility over longer horizons.

To reconcile our empirical results with this theory, we first note that a number of the

variables that do appear to have some predictive ability are ‘real’ economic variables such as

Cochrane’s investment to capital ratio. Such variables may proxy for the unobserved state of

the economy. In terms of the relatively weak economic forecasting power that we document,

the quarterly horizon we consider may not be of sufficient length to capture low-frequency

predictable variation in volatility over the business cycle. Both Lettau and Ludvigson (2003)

and Mele (2005b) find empirical evidence that macroeconomic variables forecast volatility over

longer horizons of one or two years. Of course, for longer horizon regressions, the persistence

issues addressed in this paper are compounded with strong induced serial correlation due to

the use of overlapping data so that statistical inference is far from straightforward. Finally,

we explore only a limited set of specifications in this paper. Other specifications, possibly

permitting nonlinearities (as in Harvey (2001)) or time- variation in the effects of macroeconomic

variables on volatility might yield substantially stronger economic effects.

The remainder of the paper proceeds as follows. Section 1 describes our data, the re-

alized variance measures we employ, and characterizes the persistence of both volatility and

macroeconomic variables. Section 2 describes the various distinct inference problems relevant

in regressions of variance proxies on macro-factors. Section 3 presents our Monte Carlo simula-

tion analysis. Section 4 presents empirical evidence regarding predictability in both univariate

and multivariate linear regression models. Section 5 considers robustness issues associated with

our results. Section 6 provides a summary discussion of the paper and potentially fruitful areas

for future research.
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1 Data Sources, Volatility Proxies, and Persistence in Variance

and Macroeconomic Predictors

1.1 Data Sources

We collect daily total returns (capital gain plus dividends) on the S&P500 Index for the years

1885 - 2005. Daily returns for the period 1926-2005 are obtained from CRSP, while daily returns

prior to 1926 are based on Schwert (1990).

Our macroeconomic predictors are sourced from Goyal and Welch (2007).4 The book to

market ratio (b/m) is the ratio of book value to market value for the Dow Jones Industrial

Average. The consumption-wealth-income ratio (cay), proposed by Lettau and Ludvigson

(2003), is the residual obtained from estimating a cointegrating relation between aggregate

consumption, wealth, and labor income. The default return spread (dfr) is the difference

between long-term corporate bond and long-term government bond returns. The default spread

(dfy) is the difference between AAA and BAA-rated corporate bond yields. The dividend-price

ratio (dp) is the log of dividends less the log of prices, while the dividend yield (dy) is the log of

dividends less the lag of log prices. The earnings-price ratio (ep) is the log of earnings less the

log of prices. The investment-to-capital ratio (i/k) proposed by Cochrane (1991) is the ratio of

aggregate investment to aggregate capital for the entire economy. The rate of inflation (infl) is

measured as the Consumer Price Index (All Urban Consumers). The long-term return (ltr) and

long-term yield (lty) on government bonds are from Ibottson’s Stocks, Bonds Bills and Inflation

Yearbook. Net equity expansion (ntis) is defined as the ratio of the twelve-month moving sums

of net issues by NYSE listed stocks divided by total end-of-year market capitalization of NYSE

stocks. The short interest rate (tbl) is the secondary rate on the three-month bill. Finally, the

term spread (tms) is defined as the difference between the long term yield on government bonds

and the T-bill rate.5

Table ?? presents descriptive statistics for these variables, including the sample period over

4We thank Amit Goyal for making the Goyal and Welch (2007) data available for download from his website.
Similarly, we downloaded stock returns prior to 1926 from William Schwert’s website.

5Early in the sample period, some bond data are taken from alternative sources. Readers are referred to Goyal
and Welch (2007) for additional details regarding data sources. The variable ntis is similar, but not identical, to
the net payout measure considered by Boudoukh, Michaely, Richardson and Roberts (2005).
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which each variable is available. Many of the ‘financial ratio’ variables such as dp and ep are

available from 1885:1 onward, while other variables such as ik and cay are not available until

significantly later.

1.2 Volatility Measurement

The conditional variance of a portfolio return is based on ex ante expectations and is funda-

mentally unobservable. The regression-based approach to modeling the conditional volatility

of portfolio returns relies on an ex post measurement of variance. The time series of ex post

volatility measurements is then amenable to standard time series regression and modeling tech-

niques.

Following the approach of Taylor (1986), French, Schwert and Stambaugh (1987) and Schw-

ert (1989a) we use squared daily returns on the Standard and Poor’s (S&P) composite portfolio

to construct an ex post measurement for the variance of excess returns on the S&P 500 portfolio.

A simple measure of the volatility of excess returns on the S&P 500 portfolio is constructed

as

rvart =

√√√√ Nt∑
i=1

R2
i,t (1)

where Nt denotes the number of trading days in the t-th period (month or quarter in our

empirical application) and Ri,t indicates the daily excess return on the S&P 500 portfolio on

the i-th trading day of the t-th period. We refer to the volatility measure rvart computed in

equation (1) as “realized variance.” 6

Recent research by Andersen, Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen

and Shephard (2002) provides a theoretical underpinning for the use of volatility measures such

as that described in equation (1). These studies show that the realized variance is a consistent

and theoretically error-free estimator of the integrated variance of a frictionless, arbitrage-free

asset price process. In practice, microstructure effects combine with fundamental limitations

in sampling ability to limit the accuracy of realized variance. When daily squared returns

6The daily risk-free rate is computed by converting the 90 day Treasury bill rate for the corresponding month
into a daily rate based on the number of trading days. Hence, we implicitly assume a constant risk-free rate
within each quarter.
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are summed at the quarterly horizon, the latent increment in integrated variance is certainly

estimated with non-trivial error. Thus, the measure described by equation (1) is best described

as a volatility “proxy.” In this paper we abstract from measurement issues and implicitly treat

the time series rvart as observed volatility, although we do consider the robustness of our main

findings to alternative realized variance proxies that incorporate the possibility of time-varying

expected returns.

Table 1 presents summary statistics for rvar and for the logarithm of realized variance, de-

noted lrvar. The motivation for the logarithmic transformation stems from the heavily skewed

and leptokurtotic nature of the realized variance. As Table ?? reveals, the logarithmic trans-

formation removes most of the skewness and excess kurtosis in the series. As previously noted

by Andersen, Bollerslev, Diebold and Labys (2003), the distribution of log realized volatility is

approximately Gaussian. The plots in Figure 1 illustrate that the transformation dampens the

influence of extremely large (absolute) return observations, such as the quarter associated with

October 1987. Finally, the logarithmic transformation averts the potential of negative volatility

forecasts. For these reasons, we focus on models with (lrvar) as the dependent variable in our

empirical work. Nevertheless, in the robustness section of the paper we also use the level of

variance as an alternative dependent variable and obtain qualitatively similar results.

1.3 Time Series Properties of Realized Variance and Macroeconomic Fore-

casting Variables

Inspection of the time series plots in Figure 1 suggest that both realized variance and the log

of realized variance are persistent. Figure 2 displays correlograms for both lrvar and rvar.

Autocorrelations appear to drop off rather quickly at first and then tend to stabilize around

a positive value for longer lags. The fact that the autocorrelations at long lags remain sub-

stantially greater than zero suggests the possibility of long-range dependence or ‘long memory’

in (log) realized volatility. Loosely speaking, long memory processes exhibit a high degree of

persistence, i.e., of autocorrelations that do not die out even at very long lags.7

7Ding, Engle and Granger (1993) document the slow decay rates in the correlogram for daily time series
of absolute returns. Andersen, Bollerslev, Diebold and Ebens (2001) find evidence of long memory in realized
volatility for stock returns at the daily horizon, where daily realized volatility estimates are constructed from
high-frequency intradaily returns data.
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In the time domain, a stationary discrete time series exhibits long memory if

lim
j→∞

ρj
cj−α

= 1 (2)

for some constants c and α such that α ∈ (0, 1). The definition in (2) implies that the au-

tocorrelations of the process decay hyperbolically to zero, rather than exponentially as in, for

example, a stationary AR(1) time series process.

As an intermediate between I(0) and I(1) and processes, Granger(1980), Granger and Joyeux

(1980) and Hosking (1981) introduced fractionally integrated time series, notated as

(1− L)d Yt = εt

where L (·) is the lag operator and εt is a white noise series, and d is a potentially fractionally

valued quantity that captures the memory of the time series. A time series Yt with zero mean

follows an autoregressive fractionally integrated moving average process (ARFIMA) if

Φ(L)(1− L)dYt = Θ(L)εt (3)

The process Yt is stationary and invertible if the roots of Θ (L) and Θ(L) lie outside the unit

circle and the long memory parameter d satisfies d < |0.5|. The series displays long memory for

positive d while the case of negative d was described by Mandlebrot as antipersistence. When

d ≥ 0.5, the time series is nonstationary. Obviously, unit root processes may be viewed as a

special case of nonstationary ARFIMA processes for which d = 1.

1.4 Univariate Time Series Model Selection for (Log) Realized Volatility

We compare the fit of several standard univariate time series models for lrvar. Each of the

models is a special case of (3). Table 2 reports parameters estimates, the adjusted-R2 value,

Akaike and Bayesian information criteria (‘AIC’ and ‘BIC,’ respectively) and Box-Pierce (Q)

statistics for residual correlation based on 12 lags for each specification. Panel A reports results

for the over the full sample (1885:2 - 2005:4) while Panel B restricts attention to the sub-period

following the Treasury Accord (1951:2 - 2005:4). The latter sub-period is of interest both since

US monetary and interest rate policy shifted following the Treasury Accord, and because the
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period excludes the late 1800s and Great Depression years, where Schwert (1990) argues that

volatility differs.

The results in Table 2 illustrate that the richer dynamic specifications offered by the

ARMA(1,1) and ARFIMA(0,d,0) models are strongly preferred to the AR(1) and AR(2) alter-

natives. The latter models achieve a higher adjusted-R2 and are preferred by both information

criteria. This is true over both sample periods examined and is therefore not driven by volatility

behavior in the late 1800s or Great Depression. Estimates for the long memory parameter d

are close to 0.5, suggesting that log realized volatility displays a degree of long memory that is

near the borderline of stationary and nonstationary behavior.8

The univariate model selection results illustrate that the correlations implied by fitted AR(1)

and AR(2) models inadequately capture the slower decay of the empirical autocorrelations for

lrvar. The richer ARMA(1,1) and ARFIMA(0,d,0) specifications, by contrast, provide fairly

good approximations.9

Analyzing the relative performance of the ARMA(1,1) and ARFIMA(0,d,0) specifications

is more difficult, as these models perform comparably based on adjusted-R2. The information

criteria are split in terms of the favored model, with the more conservative BIC measure favoring

the long-memory specification while AIC prefers the ARMA(1,1) model. We do not take a

strong stand regarding which specification is superior. Indeed, in the sequel we will address both

possibilities, which helps to illustrate that the main arguments of the paper do not explicitly

depend upon the formal existence of long memory in variance.

2 Inference Issues in Predictive Regressions for Variance

A large and active literature probes inference issues in the context of regressions of excess stock

returns on lagged macroeconomic variables. This literature is not easy to digest, in part because

a number of distinct inference issues have been raised. In this section, we demonstrate that a

8Andersen, Bollerslev, Diebold and Ebens (2001) estimate a slightly lower value using daily realized volatilities
constructed using high-frequency intradaily returns.

9These results are of course in-sample. West and Cho (1995) and Christoffersen and Diebold (2000) find
that out-of-sample predictability of volatility for asset returns is limited to short horizons of roughly one to ten
days. Recent papers such as Brandt and Jones (2002) and Guidolin and Timmermann (2005) find evidence of
out-of-sample predictability at significantly longer horizons (up to two years).
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number of the inference issues raised with respect to predictive regressions for stock returns are

also relevant concerns in predictive regressions for variance. In particular, we discuss spurious

regression bias (e.g., Ferson, Sarkisian and Simin (2003)), finite-sample bias (e.g., Stambaugh

(1999)), and bias and inconsistency due to omitted variables in a dynamic context (e.g., Butler,

Grullon and Weston (2006)). 10

All of the inference issues we address may be illustrated in a simple dynamic regression

model. Consider the model

Yt = Xt−1β0 + εt, (4)

where for simplicity we assume that Yt and Xt are scalar, zero-mean variables. Interest typically

attaches to the null of ‘no predictability,’ that is, the null hypothesis that β0 = 0 in the model

(4). The OLS estimate of β is equal to

β̂ =

(
t=T∑
t=1

X2
t−1

)−1(t=T∑
t=1

Xt−1Yt

)
. (5)

We first summarize standard asymptotic results for the dynamic regression model. Subse-

quently, we describe potential inference problems in the dynamic regression model and point

out how these inference issues are relevant in predictive regressions for variance.

2.1 Standard Inference Results

Prior to understanding what can go wrong in predictive regressions for variance, we briefly

summarize a set of standard econometric results for dynamic regressions. Suppose that the

model in (3) is correctly specified, the vector stochastic process {Yt, Xt} is jointly stationary

and ergodic, Xt−1 is predetermined in the sense that E(Xt−1εt = 0), and E(X2
t ≡ σ2

X) is finite

and positive. Then the OLS estimator β̂ is consistent:

β̂
p→ β0 = 0. (6)

When Xt is additionally strictly exogenous for Yt, in the sense that E(εt| {Xt}T1 ), then the OLS

10Although we do not specifically address long-horizon regressions using overlapping observations (e.g.,
Boudoukh et al (2005)) in this paper, similar inference issues exist in variance regressions, possibly exagger-
ated due to the persistence of variance if the regression model is dynamically misspecified.
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estimator β̂ is also unbiased for β0.

If additional regularity conditions are satisfied such that the series Xt−1εt obeys a central

limit theorem, then the following asymptotic distribution and hypothesis testing results also

hold:

√
T (β̂ − β0) d→ N

(
0,
(
σ2
X

)−1
S
(
σ2
X

)−1
)

(7)

tβ̂ =
β̂√

1
T

(
σ̂2
X

)−1
Ŝ
(
σ̂2
X

)−1

d→ N(0, 1), (8)

where S ≡
∑∞
−∞E(εtXtXt−jεt−j), Ŝ is a consistent estimator for S and σ̂2

X is a consistent

estimator of σ2
X , e.g., the sample variance of Xt. In practice, the nonparametric heteroskedas-

ticity and autocorrelation consistent (‘HAC’) estimator Ŝ proposed by Newey and West (1987)

is often used to construct t-statistics.

2.2 The Danger of Spurious Regressions for Variance

As is apparent from the autocorrelations displayed in Table ??, the macroeconomic forecasting

variables display marked persistence. Among the macroeconomic predictor variables considered,

10 of the 15 first order autocorrelation estimates at the quarterly horizon are in excess of 0.8.

The strong persistence of the macroeconomic variables, coupled with the persistence and slow

decay in the autocorrelation structure of (log) realized variance, raises the concern of spurious

regression.

Spurious regression refers to the danger of finding a correlation between unrelated random

variables. The classic reference regarding spurious correlation in time series is Yule (1926). The

introduction of spurious regression into econometrics is due to Granger and Newbold (1974),

who illustrate that when the regressor and regressand in a univariate regression follow stochas-

tically independent random walks there is a possibility of a spurious finding of a relationship

between the two variables.

Suppose that Xt is in fact independent of Yt. Two variations of spurious regression might

occur. The first variation occurs when the standard asymptotic results summarized in (4)-
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(7) fail to obtain, and in particular in situations where the statistic tβ̂ diverges to infinity

as the sample size grows. We refer to this case as ‘asymptotic spurious regression.’ The

second variation of spurious regression refers to instances in which the standard asymptotic

results remain valid, but the finite-sample distribution of t-statistics differs significantly from

the limiting case, despite the fact that a HAC estimator of the long-run covariance matrix is

employed. We will refer to this case as ‘virtually-spurious’ regression to capture the notion

that, without an exceedingly large sample of data, the null of no predictability will be rejected

too frequently despite the fact that a consistent estimator of the long-run covariance matrix

is employed. As discussed below, either variety of spurious regression may be relevant in the

context of predictive regressions for variance.

2.2.1 Asymptotic Spurious Regression

Phillips (1986) shows that when the Yt and Xt follow independent random walks with no drift

β̂ converges not to zero but rather to a random variable. In addition, tβ̂ does not converge to

the standard normal limiting distribution but instead diverges as the sample size grows.

Time series need not exhibit nonstationary behavior (as in the random walks studied by

Phillips (1986)) in order for spurious regression to obtain. Particularly relevant to the variance

regression setting are results by Tsay and Chung (2000), who show that nonsense regressions

can occur when two series are independent, stationary, fractionally integrated series.11 Letting

dY and dX indicate the fractional order of integration of Yt and Xt, Tsay and Chung (2000)

show that whenever dY + dX > 0.5 a regression of Yt on Xt will be spurious in the sense that

tβ̂ diverges asymptotically. If (log) realized variance follows a stationary fractionally integrated

variance, and an econometrician runs a predictive regression of lrvar on a lagged macroeconomic

predictor that is I(1), then the results of Tsay and Chung (2000) show that the resulting t-

statistics are divergent.

11Marmol (1998) develops theoretical results for spurious regression with fractionally integrated nonstationary
processes. Granger, Hyung and Jeon (2001) illustrate the potential of spurious regression in regressions with
stationary series including long moving averages and positively autocorrelated autoregressive series.
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2.2.2 Virtually-Spurious Regression

Suppose that Yt and Xt are short-memory processes that satisfy mild assumptions so that the

asymptotic results in (5) hold. Finite sample inference may still be plagued by persistence that

is difficult to capture or correct for using standard HAC covariance estimators.

Ferson, Sarkissian and Simin (2003a,b; hereafter jointly referenced as “FSS”) illustrate

the potential of virtually-spurious regression in predictive regressions for stock returns. FSS

assume that the unobserved expected return follows a persistent, but stationary and short-

memory, AR(1) process. They assume that the forecasting variable also follows a persistent

but stationary AR(1) process. When the forecasting variable is independent of returns, so

that there is no true predictability, FSS demonstrate via simulation that tests of the null of no

predictability are oversized even when HAC estimators are employed and even for sample sizes

that are very large in a practical sense.12

Table 2 illustrates that log realized variance at the quarterly frequency is well-described by

a stationary, short memory ARMA(1,1) process with a correlogram that resembles that of a

long-memory ARFIMA(0,d,0) process. Assuming a given macroeconomic forecasting variable

follows a persistent, but stationary, AR(1) process, then regressions of log variance on lagged

macroeconomic variables are likely to lead to spurious findings of predictability, even though

standard dynamic regression assumptions are formally satisfied. Therefore spurious regression

of the variety studied by FSS is certainly a concern in variance regressions.

Similarly, and more subtly, we show in the next section of the paper that virtually-spurious

regression continues to obtain when mis-specified dynamic models that include one or two lags

of the dependent variable are estimated. Indeed, these latter cases are more similar to the

setting studied by FSS, where a persistent component in returns is obscured by the low signal-

to-noise ratio in returns. Similarly, when one or two lags of variance are included in regressions,

the errors may not display ‘obvious’ signs of correlation, but if variance is truly a long memory

process then a persistent component lurks in the error term.

12FSS also show that when regressors are chosen via a data mining process the size distortions associated with
the spurious regression problem increase substantially, because highly persistent spurious predictors are most
likely to be selected as the result of a specification search. Although data mining is not the focus of this paper,
data mining would exacerbate the spurious regression problems documented here in exactly the same fashion.
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2.3 Weakly Exogenous Regressors and the Stambaugh Bias

The previous section considered inference in a setting where the forecasting variable Xt is

independent of Yt. Consequently, Xt is strictly exogenous and the OLS estimator β̂ is unbiased.

In the context of models of the conditional mean of stock returns, Stambaugh(1999) points

out that the strict exogeneity assumption is strongly violated by ‘financial ratio’ predictors such

as dp or ep, since such variables are are highly contemporaneously correlated with shocks to

returns. When the strict exogeneity assumption is violated, β̂ will be biased in finite samples.

As Stambaugh (1999) illustrates, the magnitude of the bias can be large since variables like dp

are highly persistent while, at the same time, the contemporaneous correlation between shocks

to excess returns and dp is large in magnitude.

Unfortunately, the strict exogeneity assumption is also dubious in predictive regressions

for variance. Table 3 presents two measures of correlation between macroeconomic predictors

and realized variance. Panel A of Table 3 presents estimates of contemporaneous correlations

between lrvar and each of the macroeconomic forecasting variables. It is clear that several of the

macroeconomic predictors are contemporaneously correlated with stock return variance. Most

notably, the contemporaneous correlation between dfy and lrvar is 0.62 over the full sample,

although this value drops to around 0.39 over the post-Treasury Accord sub-sample. Over the

post-Treasury Accord period, estimates of the contemporaneous correlation with lrvar are in

excess of 0.20 (in absolute value) for 8 of the 15 forecasting variables considered.

Panel B of Table 3 presents estimates of correlations between shocks to lrvar and shocks

to the macroeconomic predictors. These estimates are obtained from maximum likelihood

estimation of the following bivariate restricted VARMA specification:

(1− φL)Yt = (1− θL) εt (9)

(1− φXL)Xt = ηt

where we assume that the error vector is i.i.d. Gaussian:
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(ε, ηt)
′ = N

0,

 σ2
X ρσXσY

ρσXσY σ2
Y

 (10)

The estimates of ρ vary among the forecasting variables. Some, including those for ik, ltr

and tbl, are close to zero, suggesting that the strict exogeneity assumption may not be a severe

departure from reality. For other forecasting variables, the strict exogeneity assumption is

clearly unsatisfactory. This is true in particular for a number of the ‘financial ratio’ predictors,

including bm, dp and ep, for which the correlation estimates are in the 0.2 - 0.4 range. These

conclusions do not depend on the logarithmic transformation applied to realized variance, as

similar estimates are obtained using rvar (not shown in the table).

When ρ is nonzero, the regressorXt is only ‘weakly exogenous,’ in the sense that E(εt|{Xt}T1 ) 6=

0. As a consequence, the OLS estimator β̂ will generally be biased in finite samples. Thus, the

same bias documented by Stambaugh(1999) is relevant for predictive regression for variance.

This bias is likely to be less severe in the context of realized variance regressions, though, since

the correlations between lrvar and the forecasting variables tend to be significantly smaller than

the correlation between, e.g., stock returns and the dividend yield.

2.4 Weakly Exogenous Regressors and Dynamic Misspecification: Inconsis-

tent Estimation

When Xt is only weakly exogenous for εt, misspecification of the regression Yt on Xt in the

direction of omitted dynamics can lead to severe consequences. In particular, under the null of

no-predictability, the OLS estimator β̂ is typically inconsistent for the true value β0.

Domowitz and White (1982) show that, under mild conditions, the estimator β̂ will be

consistent for a “pseudo-true” value β∗ that delivers the best approximation to Yt in a mean

square error sense:

β̂
p→ β∗ ≡ argminβ E((Yt − βXt−1)2) (11)

As a simple example, assume that Yt and Xt follow the restricted VARMA process described

in (9) and (10). Additionally assume that both series have zero mean and unit variance for

simplicity. Now suppose that the regression model (4) is estimated using OLS. The regression
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model is misspecified since the ARMA dynamics of Yt are omitted.

By (11), the OLS estimate β̂ converges in probability to the value β∗ that minimizes the

population mean-square error of the regression. Differentiating the condition in (11) with

respect to β and setting the result to zero yields:

β∗ = E(YtXt−1)

=
(φ− θ)ρ

(1− φφX)
, (12)

where the second expression follows algebraically upon substituting in the MA(∞) representa-

tions for Yt and Xt−1 in the previous line. The formula (12) reveals that β̂ will be inconsistent

for the true value of zero unless either: 1.) ρ = 0, which is the special case where Xt−1 is strictly

exogenous; or 2.) φ = θ, when the AR and MA terms for Yt cancel out so that Yt becomes a

white noise series. The results in Table 2 show that for log realized variance φ − θ > 0. This

implies that the direction of the asymptotic bias in β̂ is driven by the sign of ρ. In particular,

when ρ > 0, as appears to be the case for a number of ‘financial ratio’ variables, then β̂ will be

asymptotically upward biased.

The results discussed above were developed in a simple setting where a scalar Yt was re-

gressed on a lagged scalar predictor Xt−1. Similar insights obtain in more complicated settings,

although explicit results such as (12) are more tedious to obtain. In particular, suppose that

the regression model in (4) is augmented to include one or two lagged values of Yt. Since the

model remains misspecified, the OLS slope estimator will generally remain inconsistent for the

true slope when the forecasting variable is only weakly exogenous. The added lags will tend to

reduce the severity of the asymptotic bias, though, since Xt will play a reduced role in correcting

for the omitted dynamics.

In the stock return predictability literature a close analog of the dynamic misspecification

issue addressed here is studied by Butler, Grullon and Weston (2006; ‘BGW’). BGW find

evidence of a structural change in the level of excess bond returns in the 1980s that coincides

with a shift in managers’ bond issuance behavior. When excess bond returns are forecast using

managers’ issuance activity without including the structural break, the resulting regression
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model is misspecified. BGW point out that this leads to biased and inconsistent estimation of

the slope coefficient for issuance activity in the bond return regression. In both the variance

regression setting addressed here and the bond return regression setting studied by BGW, the

root source of the inference problem is an omitted explanatory variable in a dynamic regression

model.

3 Simulation Evidence

The previous section describes several distinct sources of inference issues in predictive regres-

sions for realized variance. These issues were presented in a very simple, abstract, dynamic

linear regression setting. In this section of the paper we describe a series of Monte Carlo exper-

iments that support the relevance of the various inference issues for realistic data generating

processes that match key features of realized variance and macroeconomic predictors.

In the predictive regression literature, forecasting variables such as the dividend yield and

nominal interest rates are commonly been modeled as persistent AR(1) processes that satisfy the

stationarity condition. The univariate time series modeling results discussed earlier suggest that

lrvar may be modeled using either an ARMA(1,1) or ARFIMA(0,d,0) process. For simplicity,

and to emphasize that finite sample inference issues arise even if variance is formally a short-

memory process, we assume the ARMA(1,1) specification in the simulations that follow.

3.1 Simulation Design

Data are randomly generated according to the restricted bivariate VARMA process described

by (9) and (10), calibrated to empirical estimates of the system for different macroeconomic

predictors. Although the simulated Yt values follow an ARMA(1,1) process tuned to lravr, we

assume that the econometrician estimates one of the following predictive regression models for

Yt using ordinary least-squares:

Model 1 Yt = α+ βXt−1 + εt

Model 2 Yt = α+ βXt−1 + φYt−1 + εt

Model 3 Yt = α+ βXt−1 + φ1Yt−1 + φ2Yt−1 + εt

(13)
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The regressions in (13) are misspecified, specifically with respect to the dynamic behavior

assumed for Yt+1. Model 1 includes no dynamics whatsoever. Models 2 and 3 attempt to handle

the apparent persistence in Yt by including one and two lags of the dependent variable in the

regression specification, respectively.

The first set of simulations focus on the potential of spurious regression bias, and therefore

we set ρ = 0. Otherwise, we calibrate the system using the forecasting variable ik, for which the

point estimate of ρ is very close to zero. The second set of simulations focus on the case where

the forecasting variable is contemporaneously correlated with (log) variance. For this case,

we calibrate the system using the forecasting variable dp, which exhibits the highest absolute

estimate of ρ, namely a value of 0.45.

In all cases, results are based on 10,000 Monte Carlo simulations. We compute results

for sample sizes of 100, 250 and 500, which correspond to empirically plausible sample sizes

ranging from 25-125 years at the quarterly frequency. Results are reported both for the case

where t-statistics are computed using the classical covariance matrix estimator and for the case

where they are computed using the nonparametric HAC estimator suggested by Newey and

West (1987).

3.2 Simulation Results

Table 4 presents the simulation results. The table reports the bias, standard deviation, skewness

and kurtosis of t-statistics along with the proportion of the simulations in which the absolute

value of the t-statistic exceeds 1.96, corresponding to rejection of the null at the 5 percent level.

Figures 3 and 4 display density plots for the Monte Carlo t-statistics for various sample sizes

and dynamic specifications.

Panels A and B of Table 4 present results for the case with ρ = 0 for classical and Newey-

West standard errors, respectively. For the intercept only model (‘CONS’), the t-tests based

on classical standard errors in Panel A are dramatically over-sized for all three sample sizes

considered, with a standard deviation of nearly three rather than one, and an empirical rejection

rate of nearly 50 percent. The extremely poor performance of the t-tests is unsurprising given

the strong serial correlation in both the dependent variable and forecasting variable.

More interestingly, the analogous results in Panel B, where the HAC estimator is employed,
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continue to exhibit strikingly oversized behavior. The performance is poorest for the smallest

sample size of 100, where the test rejects nearly 30 percent of the time. Even for the largest

sample size of 500, the test rejects nearly 15 percent of the time, illustrating a case of virtually

spurious regression.

When one or two lagged dependent variables are included in the specification, the severity

of the spurious regression problem diminishes significantly as the moments of the t-statistics

are much closer to those of the standard normal. Still, even in the case where two lags of the

dependent variable are included in the model, the tests remain significantly oversized, with

rejections occurring approximately 9 percent of the time for a sample size of 500 and more

often for smaller sample sizes. It is interesting to note that the performance of the Newey-West

covariance matrix estimator and classic covariance estimator are nearly identical in this case.

Finally, Figure 3, along with the mean values in Table 4, shows that the t-statistics appear

to be unbiased for all of the cases where ρ = 0. This is expected since in this case the regressor

is strictly exogenous so that OLS parameters estimates are unbiased.

Panels C and D, along with Figure 4, present results for the case where Xt and Yt are

contemporaneously correlated due to the fact that ρ = 0.45. As expected based on the discussion

in the preceding section, the t-statistics in this case are biased as clearly indicated by the density

plots in Figure Y. This is particularly true for the model that omits any dynamics. Note also

that in this case the t-statistics are biased upward, as expected based on (12) since ρ > 0.

Adding lags of the dependent variable reduces, but does not eliminate, the bias and oversized

behavior for the t-statistics. When two lags of the dependent variable are included in the model,

the empirical rejection rate is again roughly 8-9 percent, similar to the strictly exogenous case

previously examined.

Overall, we conclude that standard methods of robustifying inference to serial correlation

and heteroskedasticity in the regression errors do not appear to offer adequate insurance against

misspecification of the realized variance dynamics in the direction of ignoring a long memory

component. Further, including one or two lags in the regression leads only to modest im-

provement in the size properties of the tests. Although not reported in Table 4, simulation

experiments using a correct ARMA(1,1) dynamic specification for Yt show that, as expected,

correct model specification leads to well-behaved hypothesis tests.
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4 Empirical Regression Results

4.1 Assessomg the Ability of Macroeconomic Variables to Predict Volatility

Mindful of the potential of spurious regression and bias driven by omitted dynamics, we turn to

an analysis of the empirical evidence regarding the ability of macroeconomic variables to forecast

volatility at a quarterly horizon. Table 5 presents estimation results for each macroeconomic

predictor in turn. For comparative purposes, a range of dynamic specifications are estimated,

including a model with no dynamics, models with AR(1) and AR(2) dynamics, a model with

ARMA(1,1) dynamics and a model with ARFIMA(0,d,0) dynamics. All of these may be viewed

as special cases of the following ARFIMAX model:

(1− φL)(1− L)dlrvart = c+Xtβ + (1− θL)εt, (14)

Based on the results and discussion in the preceding sections of the paper, regression results

under the richer ARMA(1,1) and ARFIMA(0,d,0) specifications are likely to be substantially

more reliable indications of the true forecasting ability of macroeconomic variables for lrvar.

For each specification, Table 5 reports estimates of the slope coefficient β̂, the t-statistic

for a two-sided test of the null that β = 0 based on Newey-West standard errors, and the

regression R2. Results are reported over both the full sample period, which varies over the

different macroeconomic predictors as indicated in Table 1, and also over the post-Treasury

accord period of 1951:2 - 2005:4.

4.1.1 Full Sample Results

Over the full sample period (Panel A of Table 5), there is only limited evidence regarding

the ability of macroeconomic predictors to forecast volatility. Specifically, for the preferred

ARMA(1,1) and ARFIMA(0,d,0) specifications, the slope coefficients on lagged macroeconomic

predictors are insignificant at conventional levels for all variables save the investment to capital

ratio ik. The predictive power of ik is robust across the various dynamic specifications, whereas

the apparent predictive ability of the default yield dfy evaporates when richer dynamic speci-

fications are entertained. It is notable that the coefficient on dfy changes substantially moving

from a constant-only specification to an ARFIMA(0,d,0) specification. This also occurs for sev-
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eral other forecasting variables and in some cases the point estimate of the slope changes sign.

Finally, it is interesting that the long-memory specification appears to strengthen the evidence

for predictability for the tbl ; although this variable is still not significant at the 5 percent level.

4.1.2 Post-Treasury Accord Results

The macroeconomic variables fare better over the post-Treasury Accord period. Roughly half of

the 15 forecasting variables are statistically significant based on a regression with ARMA(1,1)

dynamics. Statistically significant variables include de, dfr, dy, ik, lty and tbl. Several other

variables are borderline significant. While the evidence for predictability is stronger, it is

important to note that several other variables would appear to be significant based on regression

models that include no dynamics, or only a single lag of lrvar. Also, there are still large

differences in the estimated coefficient values across the various dynamic specifications. So,

while there is some evidence that macroeconomic variables predict (log) variance at a quarterly

horizon during the post-Treasury Accord period, the nature of inference remains sensitive to

the dynamic specification employed in the regression.

4.1.3 Economic Significance

It is clear from a cursory examination of Table 5 that the magnitude of the regression coefficients

on the macroeconomic predictors varies substantially over the different dynamic specifications

considered. Often, the magnitude of the coefficients drops in moving from an intercept-only or

AR(1) specification for realized (log) variance to the richer ARFIMA(0,d,0) specification. A

particularly striking example is the default yield variable, for which the absolute value of the

coefficient plummets steadily as richer dynamic specifications are entertained for the dependent

variable.

While it would be overly tedious to provide an explicit interpretation and discussion of eco-

nomic significance for each forecasting variable considered, several examples are worth mention.

The coefficients in regressions of lrvar on (lagged) dp, de, ep, dy and bm are particularly easy

to interpret, as these are simply estimates of the elasticity of variance forecasts with respect to,

e.g., the lagged dividend-price ratio. When the model includes no dynamics these estimated

elasticity values vary widely in sign and magnitude across the different ‘ratio’ variables. For
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example, the estimated elasticity of variance forecasts with respect to the dividend yield is 0.11,

implying that a 10 percent increase in the yield results in a 1.1 percent increase in volatility.

The estimated elasticity for the dividend-earnings ratio, on the other hand, is 0.73, suggesting

a rather large 7.3 percent increase in the forecasted variance for a 10 percent increase in this

ratio. Under a richer AR(2) or ARMA(1,1) specification, on the other hand, the estimated

elasticity values are typically below 0.1 in absolute value, suggesting a change of less than one

percent in forecasted variance for a 10 percent change in the ratio.

4.2 Multivariate Regressions

The analysis up to this point has focused on the ability of individual macroeconomic variables

to explain time variation in stock return volatility. To obtain a better sense of the overall

predictive strength of macroeconomic variables for stock return variance we run multivariate

predictive regressions over the sample period 1927:1 - 2005:4 and 1952:1 - 2005:4. The latter

period essentially corresponds to the post-Treasury Accord period, adjusted by two quarters

to sync up with the onset of cay data. The former period corresponds to the CRSP coverage

period.

In each regression, we include most of the available macroeconomic predictors. The predic-

tors dp, ep, bm and dy are highly correlated, and so we include only dp from this set (arbitrarily).

Similarly, lty and tbl are highly correlated and we include only tbl. Table 6 displays the es-

timated coefficients and standard errors, as well as information criteria, adjusted R2 and Box

Pierce (Q) diagnostic statistics for residual correlation.

We also include results for an ARMA(1,1) model that excludes the macroeconomic pre-

dictors as a reference. One way to assess the overall strength of the predictive power of the

macroeconomic variables is via a comparison of the improvement in fit offered by adding the

macroeconomic variables to the basic ARMA(1,1) model. Only a handful of the slope coef-

ficients on macroeconomic variables are statistically significant at conventional level in either

sub-period. The variable dfr is the only statistically significant variable over both periods ex-

amined. The information criteria and adjusted R2 values indicate that adding the full set of

macroeconomic predictors leads to only a modest improvement in model fit (an adjusted R2

improvement of roughly 2 percent). The information criteria are split regarding whether they

22



favor the more heavily parameterized model that includes lagged macroeconomic data (favored

by AIC) versus the simpler univariate model (favored by BIC). Time series plots of fitted vari-

ances based on the two models over the period 1927:1 - 2005:4 (not explicitly shown) are very

similar, again suggesting that the economic significance of predictability afforded by the macro

variables is limited.

5 Robustness and Extensions

5.1 Alternative Variance Proxies

The realized variance measure rvar implicitly assumes that the mean excess return is constant

and equal to zero. Both assumptions are likely invalid. To explore the consequence of relaxing

these assumptions, we computed a number of alternative realized variance measures with differ-

ent assumptions regarding the unconditional and conditional mean of excess returns. Empirical

evidence suggests that daily excess returns are positively autocorrelated. In this case the sum

of squared daily returns is a downward-biased estimator for the true integrated variance. Fol-

lowing French, Schwert and Stambaugh (1987) we construct an alternative measure of realized

variance as:

Nt∑
i=1

R2
i,t

1 +
2
Nt

Nt−1∑
j=1

(Nt − j) ρ̂j
 . (15)

As in French, Schwert and Stambaugh (1987), the within-month returns are assumed to follow

an AR(1) process which gives rise to the bracketed bias correction term in (15). The parameter

ρ̂ is an estimate of the autocorrelation in excess daily returns. Other alternative estimators were

constructed by first estimating a predictive regression for stock returns to obtain a fitted series

of time-varying expected returns. These were subsequently converted to the daily frequency

and subtracted from realized daily returns prior to computing the realized variance. Variations

of this sort had very little effect on our results as the realized variance series were very similar.

This accords with the notion that expected return variation is an order of magnitude smaller

than unexpected return variation.
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5.2 Modeling the Level of Variance

We have focused on models in which the dependent variable is the logarithm of realized variance.

As a robustness check on our findings, we repeated the empirical analysis using the level of

realized variance, rvar, as the dependent variable. To conserve space, these results are not

explicitly reported in the paper, but are available from the author upon request. Qualitatively,

the findings are similar, in the sense that point estimates and inference results regarding the

predictive power of macroeconomic variables are highly sensitive to the dynamic specification

employed, with richer dynamic models corresponding to weaker evidence of predictability in

both a statistical and economic sense.

6 Discussion

The paper examines linear regressions of ‘realized volatility’ measures on macroeconomic vari-

ables at the monthly horizon. The paper notes the potential of finite sample inference problems

in regressions of realized volatility measures on persistent macroeconomic predictors such as

the dividend yield, nominal interest rates, default premium and term spread. If realized volatil-

ity follows a simple long memory process then regressions of realized volatility on persistent

macroeconomic predictors may be subject to a spurious regression bias similar to that illus-

trated by Ferson, Sarkissian and Simin (2003a,b) when the dynamic model for realized variance

is misspecified in the direction of omitting the long memory component. Our simulation results

illustrate that the practice of including one or two lags of the dependent variable in the realized

volatility model may not be sufficient to control spurious regression bias when realized volatil-

ity exhibits long range dependence. This is true even if common kernel-based HAC covariance

estimators are employed.

Some of the macroeconomic predictors we consider are contemporaneously correlated with

stock return variance. In this the forecasting variable is only weakly exogenous in the regres-

sion model, which raises the spectre of several additional inferences problems. In particular,

slope coefficient estimates will be biased in finite samples as shown by Stambaugh (1999), and

mispecification of the dynamic structure in volatility may lead to inonsistent estimation of the

true slope. A simulation analysis suggests that the inference issues raised in this paper are of
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concern in a realistic setting.

Turning to the empirical evidence of the forecasting ability of macroeconomic variables for

stock return variance, we find that the case for predictive ability for many of these variables is

far from compelling. Evidence of predictability is strongest in the latter portion of our sample;

however, even in these cases the economic signficance of the macroeconomic factors for volatility

seems to be quite weak.

In this paper we have operated under the assumption that volatility is in fact observed.

This is clearly not strictly valid. Without question some measurement error remains when daily

squared returns are used to construct volatility proxies at monthly and quarterly horizons. As

a consequence, the results reported in this paper must be interpreted with some caution. Our

inability to observe volatility without error presumably translates into reduced power to detect

true, valid forecasting relationships as well as underestimation of the economic significance

of such relationships. High-frequency intraday returns data provide a means to obtain more

accurate volatility proxies. However, such data are only available since the mid 1980s for the

S&P 500. Given the high persistence in macroeconomic quantities such as the interest rate and

dividend yield, the effective sample size in regressions based on such data would be very small.

For example, the dividend yield largely trends downward during the post-1985 period, so it

is unclear to what extent one might learn about the ability of the dividend yield to forecast

volatility in such a regression. Nevertheless, this represents a possible area for future work,

particularly as the available time series of high frequency intraday returns gets longer.

In recent research, Han and Park (2005a,b) provide a theoretical foundation for the ability

of macroeconomic variables to generate the type of long memory behavior typically observed

in volatility. This is obviously intriguing as it suggests the possibility of a strong connection

between the dynamics in volatility and observable macroeconomic quantities. In a way, it is

somewhat disappointing that when we simultaneously include a long memory component and

lagged macroeconomic quantities in our volatility regressions that the macroeconomic variables

only ‘explain away’ a relatively small fraction of the long memory behavior. However, two things

are important to keep in mind. First, we consider only linear functions of macroeconomic

predictors. Nonlinear specifications may increase the explanatory ability of macroeconomic

predictors in our regressions and this is an interesting area for future research. Perhaps more
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importantly, we consider only a relatively small subset of the vast quantity of macroeconomic

information that is publicly available. It is possible that by including more macroeconomic

information we might ultimately be able to further reduce the residual degree of long memory

behavior. Obviously, data mining becomes a concern in this context. One idea might be to

construct indices or factors that are linear combinations of a large number of macroeconomic

quantities.

A host of intriguing questions remain for future research. The present paper focuses entirely

on a full sample or in-sample analysis of predictability. There is relatively little existing work

that addresses the out-of-sample forecasting ability of models linking stock return volatility to

macroeconomic conditions.13 There has been much recent activity in the econometrics litera-

ture related to the out-of-sample evaluation of forecasting models. A thorough out-of-sample

examination of the effectiveness of incorporating macroeconomic variables in longer horizon

volatility forecasting models would be of great interest.14

Finally, while this paper documents evidence of long range dependence in stock return

volatility at the monthly horizon, questions remain regarding the source of this behavior and

in particular whether structural instability might be the root cause. Diebold and Inoue (2001)

illustrate that regime switching can give rise to long memory behavior. Banergee and Urga

(2004) review the literature on breaks, long memory and the connection between the two.

Empirical evidence suggests the possibility of breaks in both volatility and macroeconomic

variables such as interest rates. It would be interesting to consider inference problems that

might arise from ignoring such breaks in the type of regressions considered in this paper.

13Some limited results presented by Marquering and Verbeek (2005) are not particularly encouraging.
14Inoue and Killian (2004), however, argue that in-sample tests of the variety discussed in this paper may be

preferable to out-of-sample tests of the null of no predictability.
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Sample Period mean sd skew kurt. �1 �2 �3

rvar Realized Variance 1885q1 - 2005q4 0.0073 0.0119 4.85 30.61 0.6531 0.6195 0.5517
lrvar Log Realized Variance 1885q1 - 2005q4 -5.4208 0.8778 0.83 4.30 0.6934 0.6094 0.5479
exret Excess Return 1885q1 - 2005q4 0.0515 0.1033 2.40 26.13 -0.0364 0.0002 0.187

bm Book to Market 1921q1 - 2005q4 0.6049 0.2586 0.76 5.33 0.9311 0.8929 0.8455
cay Consumption-Wealth-Income 1951q4 - 2005q4 0.0000 0.0121 0.00 2.68 0.8412 0.7258 0.6401
de Dividend Payout Ratio 1885q1 - 2005q4 -0.5411 0.2728 0.51 3.79 0.9607 0.8897 0.8049
dfr Default Return Spread 1926q1 - 2005q4 0.0010 0.0169 -0.89 6.34 -0.0981 -0.0664 -0.0058
dfy Default Yield Spread 1919q1 - 2005q4 0.0120 0.0073 2.07 9.56 0.9143 0.8887 0.8314
dp Dividend Price Ratio 1885q1 - 2005q4 -3.1950 0.4043 -0.84 4.32 0.963 0.9252 0.8854
dy Dividend Yield 1885q1 - 2005q4 -3.1833 0.3968 -0.95 4.46 0.9633 0.9271 0.8923
ep Earnings Price Ratio 1885q1 - 2005q4 -2.6539 0.3628 0.05 3.11 0.9493 0.8877 0.8239
i/k Investment-Capital Ratio 1947q1 - 2005q4 0.0358 0.0035 0.41 2.42 0.964 0.8984 0.8177
infl Inflation Rate 1913q2 - 2005q4 0.0082 0.0163 0.49 7.31 0.5647 0.4372 0.3658
ltr Long Term Bond Return 1926q1 - 2005q4 0.0143 0.0431 1.06 7.80 -0.051 0.0296 0.1124
lty Long Term Bond Yield 1919q1 - 2005q4 0.0528 0.0278 1.05 3.62 0.9873 0.9777 0.9674
ntis Net Equity Expansion 1926q3 - 2005q4 0.0213 0.0233 2.01 11.80 0.9061 0.7984 0.6562
tbl Treasury-Bill Rate 1920q1 - 2005q4 0.0378 0.0300 1.05 4.53 0.9585 0.9269 0.9141
tms Term Spread 1920q1 - 2005q4 0.0151 0.0127 -0.20 3.34 0.8431 0.7157 0.662

Table 1: Descriptive Statistics

The table presents descriptive statistics for the realized volatility measures and macroeconomic forecasting variables. Data for excess 
returns and macroeconomic forecasting variables are based on Goyal and Welch (2008) and are sourced from Amit Goyal's webpage. Data 
on realized volatility measures are constructed using daily total return data on the S&P 500 from CRSP from 1926 - 2005 and daily total 
return data provided by Schwert (1990) prior to 1926. 



INTERCEPT AR1 AR2 ARMA(1,1) ARFIMA(0,d,0)

AR 0.69 0.52 0.90
(0.04) (0.05) (0.03)

AR2 0.25
(0.05)

MA 0.45
(0.07)

d 0.51
(0.04)

AIC -622.91 -465.03 -449.93 -444.98 -446.26
SIC -625.00 -469.21 -456.19 -451.25 -450.44
Adj-R2 0.00 0.48 0.51 0.52 0.52
SIG-RES 0.88 0.63 0.61 0.61 0.61
Box-Pierce(12) 1204.86*** 47.45*** 8.70 6.74 7.21

INTERCEPT AR1 AR2 ARMA(1,1) ARFIMA(0,d,0)

AR 0.65 0.52 0.86
(0.05) (0.06) (0.06)

AR2 0.21
(0.07)

MA 0.39
(0.10)

d 0.50
(0.05)

AIC -259.85 -200.65 -196.87 -195.29 -195.74
SIC -261.55 -204.04 -201.95 -200.37 -199.13
Adj-R2 0.00 0.42 0.44 0.45 0.45
SIG-RES 0.79 0.60 0.59 0.59 0.59
Box-Pierce(12) 357.96*** 17.46 9.45 6.53 6.38

Panel A: Full Sample (1885q1:2005q4)

Panel B: Post Treasury Accord  (1951q2:2005q4)

Table 2: Univariate Time Series Model Section

The table presents estimation results for a univariate time series analysis of the log of realized
variance (lrvar ). Five models are estimated, including an intercept-only model, an AR(1) model, an
AR(2) model, an ARMA(1,1) model and an ARFIMA(0,d,0) model. Panel A displays results for the
full sample period 1885q1 - 2005q4, while Panel B presents results for the post-Treasury Accord
period from 1952q2 - 2005q4. Standard errors are displayed in parentheses below coefficient
estimates. 



1885q1:2005q4 1951q2:2005q4
lrvar lrvar

bm 0.199 -0.060
cay -0.057 -0.057
de 0.244 -0.280
dfr -0.008 -0.075
dfy 0.617 0.392
dp 0.140 -0.203
dy 0.074 -0.254
ep -0.027 -0.076
ik 0.198 0.200

infl -0.087 0.173
ltr 0.077 0.153
lty -0.067 0.302

ntis 0.014 -0.204
tbl -0.143 0.240

tms 0.191 0.092

1885q1:2005q4 1951q2:2005q4
lrvar lrvar

bm 0.21 0.315
cay 0.228 0.228
de 0.043 -0.010
dfr -0.140 -0.241
dfy 0.181 0.172
dp 0.373 0.452
dy 0.005 0.060
ep 0.304 0.379
ik 0.060 0.004

infl 0.046 0.024
ltr 0.041 0.104
lty -0.025 -0.053

ntis 0.158 0.051
tbl -0.017 0.040

tms -0.008 -0.082

Panel A: Contemporaneous Correlations

Panel B: Residual Correlation - Restricted VARMA(1,1)

The table presents evidence of correlations between the log of realized
variance (lrvar ) and various macroeconomic forcasting variables. Panel A
presents estimates of the contemporaneous correlation between lrvar and
each macroeconomic predictor over the full sample of available data (see
Table 1) and over the post-Treasury Accord period. Panel B presents the
estimated correlation between shocks to lrvar and shocks to the
corresponding macroeconomic predictors based on maximum likelihood
estimation of the restricted VARMA(1,1) system described in equations (9)
and (10) of the paper.

Table 3: Correlations



CONS AR1 AR2 CONS AR1 AR2 CONS AR1 AR2
mean -0.013 -0.002 0.005 0.008 0.004 0.010 0.033 0.013 0.013

sd 2.749 1.430 1.245 2.850 1.391 1.167 2.867 1.371 1.129
skew -0.025 -0.016 0.002 0.014 -0.007 -0.021 0.017 0.013 0.023

kurtosis 3.207 2.952 2.936 3.274 3.116 3.019 3.055 2.993 2.947

% |t| > 1.96 46.26% 17.07% 11.60% 48.30% 15.55% 9.16% 49.42% 15.25% 8.35%

CONS AR1 AR2 CONS AR1 AR2 CONS AR1 AR2
mean -0.011 -0.006 0.006 0.002 0.005 0.012 0.014 0.012 0.015

sd 1.940 1.545 1.345 1.568 1.406 1.223 1.362 1.285 1.170
skew -0.008 -0.027 0.017 -0.006 -0.001 -0.009 0.013 0.021 0.038

kurtosis 3.919 3.146 3.193 3.750 3.195 3.038 3.387 3.069 2.976

% |t| > 1.96 28.21% 20.20% 14.06% 19.29% 15.71% 10.45% 14.63% 12.78% 9.54%

N = 100 N = 250 N = 500

The table presents results for Monte Carlo simulation experiments based on random draws from the restricted VARMA(1,1) system
described in (9) and (10) of the paper calibrated to alternative macroeconomic predictors. For each set of simulated data, regressions of Y on
lagged X are run with alternative dynamic specifications. The table presents the first four moments for the t -statistics associated with the
slope coefficient on lagged X along with the percentage of simulations in which the null hypothesis of no predictability was rejected at the 5%
significance level. In Panels A and B the VARMA(1,1) system is calibrated using the log realized variance (as Y) and the investment to capital 
ratio ik (as X). In Panels C and D the system is calibrated using the log realized variance (as Y) and the dividend-price ratio (as X). The t-
statistics in Panels A and C are computed using classic standard errors while those in panels B and D are computed using the HAC
estimator of Newey and West (1987).

Panel A: Strictly Exogenous Regressor tuned to ik; classic errors

Panel B: Strictly Exogenous Regressor tuned to ik; NW errors

Table 4: Simulation Evidence for t-statistics

N = 100 N = 250 N = 500



CONS AR1 AR2 CONS AR1 AR2 CONS AR1 AR2
mean 1.951 -0.077 -0.308 3.009 0.145 -0.195 4.221 0.405 -0.054

sd 2.879 1.376 1.230 3.019 1.356 1.155 3.101 1.344 1.123
skew 0.081 0.047 0.055 0.052 0.042 0.053 0.075 0.035 0.022

kurtosis 3.349 3.092 3.014 3.063 3.038 2.987 3.141 3.105 3.083

% |t| > 1.96 57.26% 15.22% 12.35% 68.26% 14.98% 9.22% 78.44% 15.50% 8.57%

CONS AR1 AR2 CONS AR1 AR2 CONS AR1 AR2
mean 1.299 -0.098 -0.336 1.538 0.133 -0.207 1.854 0.378 -0.058

sd 1.973 1.490 1.329 1.610 1.392 1.209 1.418 1.289 1.163
skew 0.361 0.012 0.008 0.307 -0.006 0.037 0.324 0.002 0.001

kurtosis 4.242 3.163 3.298 3.694 3.110 3.058 3.698 3.219 3.115

% |t| > 1.96 38.22% 18.43% 15.05% 38.27% 16.06% 11.26% 45.89% 13.81% 9.44%

Panel C: Predetermined Regressor tuned to dp; classic errors

Table 4: Simulation Evidence for t-statistics (Cont.)

N = 500N = 100 N = 250

Panel D: Predetermined Regressor tuned to dp; NW errors
N = 100 N = 250 N = 500



� t -tstat R2
� t -tstat R2

� t -tstat R2
� t -tstat R2 � t -tstat R2

bm 0.578 0.869 0.025 0.038 0.226 0.550 -0.008 -0.053 0.592 -0.045 -0.618 0.601 -0.102 -0.815 0.575
cay -8.844 -1.154 0.018 -6.336 -2.081 0.432 -5.551 -1.945 0.455 -3.486 -1.840 0.466 -4.254 -1.441 0.419
de 0.730 1.340 0.051 0.197 1.416 0.485 0.111 1.001 0.514 0.045 0.691 0.524 -0.195 -1.299 0.501
dfr -0.304 -0.093 0.000 0.051 0.024 0.560 -2.053 -1.077 0.606 -2.720 -1.338 0.612 -1.341 -0.604 0.581
dfy 74.572 6.395 0.335 25.569 3.779 0.570 16.249 2.684 0.598 6.935 1.339 0.598 -5.311 -0.809 0.574
dp 0.196 0.562 0.008 -0.014 -0.186 0.481 -0.029 -0.415 0.514 -0.014 -0.372 0.524 -0.126 -1.720 0.504
dy 0.119 0.355 0.003 0.007 0.100 0.481 -0.033 -0.509 0.514 -0.018 -0.508 0.524 -0.114 -1.675 0.504
ep -0.166 -0.835 0.005 -0.120 -1.708 0.484 -0.091 -1.288 0.515 -0.040 -1.071 0.524 -0.049 -0.723 0.504
ik 56.851 2.191 0.067 30.076 3.044 0.430 31.118 3.191 0.453 18.204 3.416 0.463 37.155 3.336 0.436

infl -5.947 -0.787 0.011 -2.277 -1.239 0.531 -1.163 -0.664 0.574 -0.886 -0.657 0.584 -0.696 -0.444 0.548
ltr 0.443 0.418 0.000 -0.861 -1.058 0.562 -0.925 -1.159 0.606 -1.096 -1.450 0.612 -0.993 -1.206 0.582
lty -2.006 -0.553 0.003 -0.311 -0.336 0.546 -0.026 -0.031 0.589 -0.024 -0.040 0.595 1.939 1.785 0.578

ntis 0.605 0.103 0.000 0.195 0.110 0.562 1.093 0.838 0.605 1.124 1.341 0.614 -1.610 -1.138 0.588
tbl -3.720 -0.957 0.014 -0.387 -0.380 0.546 0.318 0.447 0.590 0.361 0.675 0.599 1.966 1.805 0.569

tms 11.251 1.233 0.023 0.797 0.318 0.546 -1.825 -0.698 0.590 -2.198 -1.480 0.601 -2.394 -0.855 0.569

� t -tstat R2
� t -tstat R2 � t -tstat R2

� t -tstat R2 � t -tstat R2

bm -0.287 -0.555 0.008 -0.159 -0.966 0.425 -0.128 -0.833 0.449 -0.075 -0.848 0.457 -0.085 -0.561 0.445
cay -8.844 -1.154 0.018 -6.336 -2.081 0.432 -5.551 -1.945 0.455 -3.486 -1.840 0.466 -4.254 -1.441 0.419
de -1.312 -2.584 0.095 -0.559 -2.360 0.439 -0.496 -2.420 0.460 -0.308 -2.028 0.467 -0.417 -1.910 0.456
dfr -4.584 -1.776 0.010 -2.293 -1.162 0.425 -4.085 -2.032 0.455 -4.786 -2.295 0.466 -3.638 -1.970 0.449
dfy 62.183 3.639 0.109 16.774 1.932 0.430 9.181 0.972 0.449 3.502 0.519 0.456 2.598 0.275 0.445
dp -0.484 -1.836 0.064 -0.237 -2.616 0.438 -0.202 -2.247 0.458 -0.119 -1.892 0.464 -0.155 -1.654 0.454
dy -0.533 -2.092 0.078 -0.231 -2.533 0.437 -0.216 -2.397 0.460 -0.126 -2.008 0.466 -0.170 -1.871 0.455
ep -0.240 -0.715 0.014 -0.137 -1.282 0.428 -0.110 -1.111 0.451 -0.063 -0.902 0.458 -0.079 -0.763 0.449
ik 60.179 2.250 0.072 32.227 3.246 0.443 33.329 3.407 0.469 21.279 3.602 0.483 48.967 4.972 0.467

infl 19.873 2.320 0.046 9.931 2.669 0.434 9.086 2.376 0.457 6.216 1.991 0.464 9.851 2.445 0.456
ltr 1.099 1.016 0.005 -0.495 -0.608 0.424 -0.542 -0.662 0.449 -0.773 -0.907 0.458 -0.662 -0.817 0.445
lty 9.206 3.532 0.101 3.887 2.893 0.439 3.362 2.596 0.460 1.883 1.978 0.464 3.217 2.241 0.455

ntis -10.890 -2.557 0.045 -4.114 -1.867 0.429 -3.080 -1.315 0.451 -2.139 -1.431 0.459 -1.726 -0.731 0.445
tbl 7.525 2.848 0.075 3.421 2.732 0.438 3.285 2.696 0.461 1.982 2.509 0.468 3.968 2.853 0.462

tms 3.235 0.456 0.003 -0.195 -0.068 0.423 -1.713 -0.631 0.448 -2.087 -1.254 0.459 -4.442 -1.588 0.449

INTERCEPT AR1 AR2 ARMA(1,1) ARFIMA(0,d,0)

ARFIMA(0,d,0)ARMA(1,1)AR2
Panel A: Full Sample (first observation period - 2005:4)

Panel B: Post-Treasury Accord (1951q2:2005q4)

Table 5: Predictive Regressions for Variance
The Table presents estimation results for predictive regressions of the log of realized variance for the S&P500 Index on lagged macroeconomic 
forecasting variables. Five different dynamic specifications are entertained, including a model with no dynamics, and models with AR(1), AR(2), 
ARMA(1,1) and ARFIMA(0,d,0) dynamics. The table reports the OLS estimate of the slope coefficient on the corresponding lagged macroeconomic 
variable, the t-stat based on Newey-West (1987) standard errors, and the R2 -value for the regression. 

AR1INTERCEPT



AR 0.9255*** 0.83663*** 0.86274*** 0.80874***
(0.03) (0.06) (0.06) (0.08)

MA 0.44933*** 0.44254*** 0.39888*** 0.4177***
(0.07) (0.09) (0.10) (0.12)

cay(-1) -2.48
(2.87)

de(-1) 0.08 0.15
(0.12) (0.22)

dfr(-1) -5.12** -6.11**
(2.13) (2.52)

dfy(-1) 17.79** 4.20
(7.84) (13.00)

dp(-1) -0.147 -0.13
(0.07) (0.12)

ik(-1) 8.26
(12.37)

infl(-1) -0.134 3.74
(2.25) (5.30)

ltr(-1) -1.783 -1.94
(1.04) (1.32)

ntis(-1) 1.448 -2.40
(1.52) (2.15)

tbl(-1) 0.056 1.26
(0.97) (2.01)

tms(-1) -2.767 2.00
(2.48) (2.76)

AIC -294.843 -291.163 -193.737 -193.047
SIC -300.476 -313.698 -198.8 -216.674
Adj-R2 0.6089 0.6284 0.4515 0.4811
SIG-RES 0.6122 0.5968 0.5893 0.5732
Box-Pierce(12) 9.9303 10.934 6.7785 6.9772

Table 6: Multivariate Regressions for Log Realized Variance

The table presents estimation results for ARMA(1,1) models of log realized variance (lrvar) .  
A simple ARMA(1,1) specification is compared to the fit of an ARMAX(1,1) that employs
lagged macroeconomic forecasting variables. The variables bm , dy and ep are omitted
due to high correlation with the included variable dp . Similarly, lty is omitted due to strong
correlation with the included variable tbl . Results are presented for the sample period
1927q1 - 2005q4 and alternatively for 1952q1 - 2005q4. The estimated intercept is omitted
to conserve space. Standard errors based on the Newey-West (1987) HAC estimator are
presented in parenteses below coefficient estimates. 

1927q1 - 2005q4 1952q1 - 2005q4



 
 
 
 
 
 
Figure 1: Time series plots of excess returns (top left), realized variance (top right) and 
the logarithm of realized variance (bottom left) over the sample period 1885:1 – 2005q4.  
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Figure 2: Correlograms for the logarithm of realized variance (lrvar – top panel) and the 
realized variance (rvar – bottom panel) along with 95% confidence bands.  
 



 

 
 
 
 
Figure 3: Density plots of t-statistics from regressions of Yt on Xt-1 over 10,000 Monte 
Carlo simulations. The simulations are based on equations (9) and (10) of the paper 
calibrated using the log realized variance (as Y) and the investment to capital ratio (as X). 
The correlation of shocks is set exactly to zero so that the forecasting variable is strictly 
exogenous. The sample size is 500 in all cases. In the top row the model includes no 
dynamics. In the second row the model includes one lag of the dependent variable, while 
in the third row the model includes two lags of the dependent variable.  
 



 

 
 
 
Figure 4: Density plots of t-statistics from regressions of Yt on Xt-1 over 10,000 Monte 
Carlo simulations. The simulations are based on equations (9) and (10) of the paper 
calibrated using the log realized variance (as Y) and dividend-price ratio (as X). The 
correlation of shocks is set to the empirical value of 0.45 over the post-Treasury accord 
sub-period.  The forecasting variable is therefore only weakly exogenous. The sample 
size is 500 in all cases. In the top row the model includes no dynamics. In the second row 
the model includes one lag of the dependent variable, while in the third row the model 
includes two lags of the dependent variable.  
 


