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Introduction 
 
The topic of capital structure remains an active area of financial research.  While much has been 

learned about what factors are correlated with leverage and financing decisions, there still is no 

“workhorse” model of capital structure that is generally agreed upon.  A more recent entrant has 

been the development of dynamic structural models of capital structure (e.g., Fisher, Heinkel, and 

Zechner (1989); Goldstein, Ju, and Leland (2001); Hennessy and Whited (2005), and Strebulaev 

(2007)).  These models have been useful in highlighting how certain insights from static models 

do not necessarily generalize to a dynamic setting and by being able to offer potential 

explanations for some puzzling features of the data, such as the robust negative association 

between profitability and leverage and the weak evidence on rebalancing toward a target capital 

structure.  Moreover, the structural approach, if the models are correct, also provides the ability to 

examine the effects of alternative policy choices, such as how changes in taxation or investment 

subsidies might affect the demand for various sources of capital.  Nevertheless, while these 

models are appealing on a number of dimensions, the intuition driving their results remains 

opaque, and more importantly, in most cases, there has been no serious attempt to compare these 

models both to one another and to various alternative models that might be proposed.  We seek to 

address some of these issues in this paper by first, examining the predictions of these models 

relative to some plausible alternative models along the existing dimensions upon which these 

models have been tested, and second, by developing a formal methodology for testing among 

alternative models.   

On the first front, our results are not encouraging.  Although these models can fit a number of 

moments of the data, we show that on these dimensions, they cannot generally be discriminated 

from simple alternative models, including a model of random financing choices.  This is 

important, because it points out the difficulties associated with constructing powerful tests of 

alternative models and highlights some of the problems of the typical Simulated Method of 

Moments (SMM) approach.  On the second, issue, we are more optimistic.  We develop a 
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framework for evaluating alternative structural models based on particle filtering and show that it 

can provide a powerful and simple decision-theoretic approach to model comparison, even for 

non-nested models.  Moreover, we show how this approach can highlight the dimensions on 

which various models fail, thus providing guidance to researchers for developing better models. 

The remainder of the paper is organized as follows.  In Section 2 we review a few of the existing 

models of capital structure.  Section 3 summarizes the use of SMM in the existing studies. 

Section 4 describes our data. Section 5 presents a comparison of the existing structural models 

with some simple alternatives under the SMM approach. Section 6 introduces our framework for 

evaluation of alternative models, and Section 7 describes the empirical implementation using the 

particle filtering methodology. Section 8 presents empirical results using our approach. Section 9 

discusses possible extensions and Section 10 concludes. 

 

2.  Structural Models of Capital Structure 

All of the existing structural models of capital structure can be represented in the following basic 

state space form: 

  𝑑𝑥𝑖𝑡 = 𝜇(𝑥𝑖𝑡 , 𝑡)𝑑𝑡 + 𝜎(𝑥𝑖𝑡 , 𝑡)𝑑𝐵𝑖𝑡 ,                                  (state evolution) 

𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡;  𝜙) + 𝜂𝑖𝑡 .                                                         (observation equation) 

The state vector, 𝑥𝑖𝑡, is the sole source of the exogenous shocks in the model, and follows an Itô 

process with drift, 𝜇(⋅), and volatility, 𝜎(⋅), both of which may depend on the current time, 𝑡, and 

the current value of the state for firm 𝑖 at time 𝑡. At each point in time we observe a vector of 

outcome variables, 𝑦𝑖𝑡, which is a function of the underlying state and a set of exogenous 

parameters 𝜙. The derivation of this function, 𝑓(⋅), is the bread and butter of the model. The 

observation noise, 𝜂𝑖𝑡, is not typically part of the model, but we include it for reasons that will 

become clear below. For notational convenience, we also define the parameter vector 𝜃 as the 



5 
 

collection of the parameters in the state evolution (e.g. drift, volatility, speed of mean reversion 

parameters) and the observation equation, 𝜙. 

In Table 1, we summarize the main capital structure models in the literature by identifying the 

state variable, the observed variables, and the exogenous parameters in each model. For example, 

in the classic Merton (1974) model, the state variable is the value of the firm’s assets, which 

follows a Geometric Brownian Motion, whereas in Goldstein, Ju and Leland (2001), 𝑥𝑖𝑡 is the 

firm’s EBIT. In other models the state is an unobserved variable. For example, in the Leland 

(1994) model the state is the value of the unlevered firm’s assets. In Hennessy and Whited (2005, 

2007) the state variable is the level of productivity. The vector 𝑦𝑖𝑡 includes observed variables 

such as leverage, profitability, and capital expenditures, all of which are pinned down by the 

model based on the realization of the current state and the model’s parameters.1 

 

3.  The SMM approach to model testing 

The method of choice to date in evaluation of structural models of capital structure is Simulated 

Method of Moments (SMM).  In the SMM approach, the researcher chooses a number of 

moments to match from the data.  Then, starting with an initial guess for the values of the 

exogenous parameters, the researcher generates a set of simulated moments from the model under 

consideration and compares the values of the simulated moments to the moments in the actual 

data.  A global optimization routine, such as simulated annealing, is then used to find the set of 

parameter values that minimizes the distance between the simulated and actual moments.  A 

weighting matrix is generally used to weight the moments in a statistically optimal manner.   

While the SMM approach is useful, its application in the literature suffers from several potential 

weaknesses. The first weakness is that models are not directly tested against each other. Rather 

                                                 
1 Although the majority of the structural models are written in continuous time, some models (such as 
Hennessy and Whited (2005, 2007)) are written in discrete time. This does not change the subsequent 
discussion because the continuous-time models end up being discretized to fit data that is observed at 
regular time intervals. In other words, the empirical models that are taken to the data are all discrete-time 
versions of the theoretical models. 
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the J-test of over-identifying moment restrictions is used to judge whether a model is rejected by 

the data. Surviving the J-test does not mean that the model is “right” or that there is not another 

model that fits the data better. Conversely, what should we conclude if the J-test rejects the 

model? No benchmark model or alternative hypothesis is specified.  

The second weakness of SMM is that it is not amenable to testing non-nested models. The 

literature typically reports significance tests for the individual model parameters. This is in 

essence a nested model test that informs us whether a restricted model fits the data equally well. 

However, structural models of the firm are typically non-nested, as is evident from the variety of 

state variables across models shown in Table 1, for example.2 Moreover, even shutting down 

friction parameters in a given model does not always result in a meaningful benchmark. For 

example, turning off taxes and bankruptcy costs in Goldstein, Ju and Leland (2001) results in a 

model in which leverage drifts down to zero.  

The third issue with SMM is that its application in the literature lacks statistical power. SMM 

does not require models to fit every observed data point, but only certain moments (e.g. means, 

variances, correlations) chosen by the researcher. It is common practice to estimate 8 or 9 

parameters by matching 10 to 12 moments. Much of the dynamics in the data is lost and it is 

therefore more difficult to reject models. It is particularly important for capital structure models 

to use all available data in model testing, since different frictions can have very similar empirical 

predictions. For example, the well known negative relationship between leverage and profitability 

is consistent both with the financing hierarchy arising from asymmetric information as described 

by the pecking order (Myers and Majluf (1984)) and with dynamic tradeoff theories of capital 

structure that rely on the tradeoff between taxes and bankruptcy costs (Fisher, Heinkel, and 

Zechner (1989)). 

                                                 
2 There is a small literature on testing non-linear, non-nested models using GMM. Based on the 
encompassing principle of Mizon and Richard (1986): Cox test, Davidson-McKinnon J-test. A notable 
exception is Singleton (1985) who considers a case where there is no encompassing model. However, the 
applications of these techniques are quite sparse due to the restrictive assumptions required. See 
also,Vuong (1989) and Hong and Preston (2011). 
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The fourth issue is that structural models of capital structure typically make predictions on 𝑦𝑖𝑡’s 

of different dimensions. For example, Leland (1994) only models the leverage decision whereas 

Hennessy and Whited (2005, 2007) also make predictions on investment. To our knowledge there 

is no established way to use SMM to compare models of different dimensionality. 

The fifth and final limitation is that there is no theoretically founded adjustment for model 

complexity in SMM. Ideally we would like to find the “simplest” model that “fits” the data. 

Although the Wald test for joint parameter restrictions accounts for degrees of freedom, a more 

pertinent issue for model complexity is in the number of state variables and whether they are 

observed or latent. For example, with a latent state the researcher has much more flexibility to 

match the observed data than if the state is observed, and a model test should account for the 

higher degrees of freedom. With SMM this is not an easy task to accomplish. 

A final issue, although not specific to SMM, is that the structural models are specified at the firm 

level and do not aggregate. Yet the extant literature aggregates firms to the level of the economy 

or certain broad subsamples of firms at best. For example, a well-known result in macro-

economics is that although individual firms follow lumpy investment policies (e.g. due to fixed 

adjustment costs), aggregate investment may be smooth even when firms have identical 

parameters (Caballero and Engel, 1991). Hence, estimates based on aggregate moments may be 

misleading when the aim is to learn about firm-specific behavior. It is difficult to estimate firm-

specific parameters with SMM because the available time series to calculate moments on a firm-

by-firm basis is very short, making the issue of statistical power even more worrisome. 

While SMM may be adapted to deal with some of the issues (such as increasing power by adding 

conditioning information and including more correlations to better capture dynamics), we propose 

a simple likelihood-based methodology that is solidly grounded in decision theory and deals with 

all of the problems that we identify above. 

 

4. Data 
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To provide an illustration of our approach, we use a small set of firm specific data from 

Compustat.  We first select firms that have 20 years of continuous data from 1989-2008, and find 

the median firm in the sample in terms of total book assets over the sample period. We then select 

the closest five firms (including the median firm). While this sample is clearly not representative, 

it provides us with a set of time-series at the firm level to evaluate our modeling procedure.  One 

would expect that moving to the full sample of firms will only induce greater variation in the 

dynamics that we document here.  We measure leverage following Hennessey and Whited (2005) 

as the total book value of long-term debt less the book value of cash all divided by the market 

value of the firm—defined as total assets less book equity plus market equity.  To be consistent 

with the Goldstein, Ju, and Leland (2001) model (which we use as the benchmark structural 

model in this paper) we measure profitability (ROA) as earnings before interest, taxes, and 

depreciation scaled by the market value of the firm.  We also compute the financing deficit as 

total net debt and equity issues net of payouts (interest and dividends, respectively).   

Summary statistics of the two samples are reported in Table 2. Average book assets is $1.4 

billion, with a standard deviation of $815 million. The large standard deviation is due to the 

change in assets over the 20 year sample period rather than a cross-sectional dispersion, as firms 

were selected to be of similar size. Average leverage is 0.076 and the standard deviation of 

leverage is 0.090.  ROA is 0.112 on average, with a standard deviation of 0.037.  Average Q is 

2.044, and firms invest on average at a rate of 0.121, with a standard deviation of 0.101, showing 

that these firms grow considerably over the sample period. Average net equity issuance is -0.058, 

revealing that these firms are prodigious dividend payers. Average debt issuance is 0.006, with a 

standard deviation of 0.081. Figure 1, Panels A through F plot the key variables over time for a 

single firm (the median firm based on book assets).  These figures illustrate the dynamics that we 

are interested in understanding. 

 

5.  SMM and model testing—An example 
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In this section we illustrate the difficulties in using SMM as a model evaluation tool.  To do so, 

we fit four models to the representative data based on firm size above.  The first is a random 

financing model in which the firm randomly decides to issue debt or equity to cover its external 

financing gap, with fixed probability p. The second is a simple pecking order inspired model in 

which the firm issues debt to cover its financing gap if leverage is below capacity (a parameter 

that is to be estimated), and equity if leverage is above capacity as in Lemmon and Zender 

(2010).3 These two models are simple reduced-form models that we compare with the structural 

model. The third model and our first structural model is a variant of the Goldstein Ju and Leland 

(2001) tradeoff model as modified in Korteweg and Strebulaev (2010).  The exogenous 

parameters in this model are: the risk free rate, the risk premium (used to move back and forth 

between the physical and risk-neutral measures), the refinancing cost (γ), the bankruptcy cost (α), 

and the volatility of the earnings process (σ).  The fourth model is a Q theory model in the spirit 

of Hennessy and Whited (2005) with a linear tax structure. For all models we estimate the 

parameters using SMM.  For the tradeoff model we attempt to match the mean and variance of 

both leverage and roa, while for the random financing model we fit only the mean and variance of 

leverage.  

The results of the estimations are shown in Table 2 and are easy to summarize.  At this point we 

make no attempt to assess the reasonableness of the parameter estimates.  The tradeoff model fits 

leverage fairly well but has a particularly difficult time matching the volatility of the earnings 

process.  This is because in this tradeoff model, the earnings process is a random walk with drift 

and does not allow for mean reversion.  Thus firm value scales very closely with shocks to 

earnings making the ROA process less volatile.  Most important is the comparison with the 

random financing model.  As seen in the table, the moments for leverage generated via random 

financing are basically identical both the actual moments and to the moments from the tradeoff 

                                                 
3 Note that this pecking order model is subtly different from a trade-off model in the sense that financing 
decisions are made incrementally in response to a need for external financing. In a trade-off model the firm 
should refinance if leverage drifts too far from optimum even if there is no need for external finance. 
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structural model.  Simply put, at least based on matching the moments of leverage, the SMM tests 

have no power to reject one model over the other.  While one could add additional moments that 

could potentially discriminate the two models (such as correlation between profitability and 

leverage), we take a different path based on a decision theoretic approach to testing non-nested 

models that exploits all of the information in the data.  We introduce this approach in the 

following section. 

 

6.  A decision-theoretic approach to model testing 

The goal of model testing is to use the observed data, 𝑌, to compare two competing models, ℳ0, 

and ℳ1, that are possibly non-nested. The data set 𝑌 contains the observed variables 𝑦𝑖𝑡 for all i 

and t, as well as the observed elements of the state, 𝑥𝑖𝑡, if any.  

In a decision-theoretic framework, the researcher prefers model 1 if the expected utility of model 

1 exceeds the expected utility from model 0: 

𝒰1 ⋅ 𝑝(ℳ1|𝑌) > 𝒰0 ⋅ 𝑝(ℳ0|𝑌) 

where 𝒰0 is the utility from model 0 being true, and 𝑝(ℳ0|𝑌) the probability that ℳ0 is the 

correct model based on the observed data.4 Rewrite the decision rule to choosing model 1 if  

𝑝(ℳ1|𝑌)
𝑝(ℳ0|𝑌) >

𝒰0

𝒰1
 

In other words, the researcher chooses model 1 if the ratio of posterior model probabilities, called 

the posterior odds ratio, exceeds a threshold that is larger the higher the utility to model 0 relative 

to model 1. For example, the relative utilities may reflect the researcher’s preference for a more 

complex model even if it fits the data slightly less well, because it provides more economic 

insight.  
                                                 
4 It is tempting to equate 𝑝(ℳ0|𝑌) to the classical p-value, but this is not correct. The p-value is the 
probability of observing a dataset that is at least as “extreme” as the observed Y, under the null hypothesis. 
The p-value is therefore strongly biased against the null. In Jeffreys’ (1939) famous words: “What the use 
of P implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted 
observable results that have not occurred. This seems a remarkable procedure.” We refer the interested 
reader to Berger and Delampady (1987) for a comprehensive treatment of p-values and hypothesis testing. 
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Applying Bayes’ rule, express the posterior odds ratio as 

𝑝(ℳ1|𝑌)
𝑝(ℳ0|𝑌) =

𝑝(𝑌|ℳ1)
𝑝(𝑌|ℳ0) ⋅

𝑝(ℳ1)
𝑝(ℳ0) 

The first factor on the right-hand side is called the Bayes factor for ℳ1 against ℳ0, denoted by 

ℬ10. A Bayes factor larger than one indicates that the data favors ℳ1 over ℳ0. The second factor 

is the prior odds ratio and is often set equal to one, indicating the absence of a prior preference for 

either model. The decision rule is then  

If  ℬ10 > 𝑐 ⇒ choose model 1. 

If  ℬ10 ≤ 𝑐 ⇒ choose model 0. 

The choice of threshold, 𝑐 ≡ 𝒰0𝑝(ℳ0)
𝒰1𝑝(ℳ1), is rather subjective, depending on the prior odds ratio and 

the relative utility of the models. Jeffreys (1961) suggest applying a threshold of 𝑐 = 100 as 

decisive evidence in favor of ℳ1. We will report the Bayes factors and let the reader decide what 

constitutes strong evidence. 

 

At first sight the Bayes factor looks like a classical likelihood ratio, but on closer inspection it 

becomes clear that it is a different object. While a likelihood is conditional on the model 

parameters, the marginal likelihoods, 𝑝�𝑌|ℳ𝑗�, that make up the Bayes factor integrate out the 

parameters from the likelihood:5 

𝑝�𝑌|ℳ𝑗� = �𝑝�𝑌|𝜃,ℳ𝑗�𝑝 �𝜃|ℳ𝑗� 𝑑𝜃 

The advantage of integrating out the parameters is that the Bayes factor functions like a fully 

automated Occam’s razor: it trades off model fit and parsimony in a theoretically consistent way. 

Figure 2 illustrates the intuition. Consider two restricted, parsimonious models that fix the 

parameter 𝜃 to either 𝜃1 or 𝜃2. Their likelihoods are plotted in Figure 2 with a striped and dotted 

                                                 
5 The following is a slight abuse of notation. Since the parameters technically depend on the model 
specification, the parameter should be labeled as 𝜃^�ℳ𝑗� . To avoid overly complex notation, we drop the 
dependence on the model.  
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curve, respectively. Now consider the unrestricted, more complex model, where 𝜃 can potentially 

take on either value (and hence 𝜃 needs to be estimated for this model). Its (integrated) marginal 

likelihood, 𝑝(𝑌), is a weighted average of the likelihoods of the restricted models, and plotted as 

a solid line in Figure 2. Relative to the restricted models, the complex model is more flexible: its 

likelihood is “stretched” over the support and can therefore fit many realized datasets with 

reasonable probability. However, for any given dataset, one of the restricted models always fits 

the data better. In other words, the flexibility of the complex model is a double-edged sword, as it 

can fit many datasets a priori, but fits no dataset particularly well and is therefore punished for its 

flexibility when comparing it to more parsimonious models, which have sharper predictions about 

what datasets are expected to be observed.  

This intuition extends to non-nested models and models with latent state variables, where in the 

latter case the integration is over both the model parameters and the latent states. Interpreting a 

latent state as a (somewhat restricted) sequence of free parameters, the state variable affords great 

flexibility in fitting the observed data but also makes the model more difficult to validate relative 

to models with observed states. 

Thus far it was implicitly assumed that all models have predictions on the same variables, such 

that 𝑌 is the same across models. There are two ways to deal with models that make predictions 

on different sets of variables. The first is to integrate out the dimensions of 𝑌 that are not common 

to the models considered. This allows models to be compared on an equal basis, but has the 

disadvantage of ignoring the richness of predictions that more sophisticated models have. The 

second way is to specify priors on the dimensions that are not modeled (e.g. investment in 

Leland’s (1994) model). The latter approach carries the same intuition as the parsimony-fit trade-

off: models that do not make predictions on certain dimensions are penalized (assuming diffuse 

priors) because those dimensions are integrated out in order to compute 𝑝�𝑌|ℳ𝑗�. 
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The Bayes factor is conditioned on all observed data and is generally a statistically more powerful 

approach than SMM: it is easier to reject a given model when every data point needs to be 

explained rather than matching a select set of moments derived from the data. Moreover, each 

firm may be fitted individually so there is no need to average across companies to fit aggregate 

moments. However, the approach does come at the expense of making stronger distributional 

assumptions about the observation errors, an issue to which we will return to below. 

The above insights generalize to model testing in the presence of more than two models. For 

example, we can pick a baseline model and compare all models against the baseline, or 

alternatively, compute relative model probabilities within the set of models considered. The set of 

models need not be exhaustive (i.e. ∑ 𝑝�ℳ𝑗|𝑌�𝑗  need not equal one), as we are purely 

comparing models against each other. 

 

7.  The Particle MLE implementation of model testing 

We use the Bayesian Information Criterion (BIC, also known as the Schwarz criterion) to 

approximate Bayes factors, using a Maximum Likelihood Estimator (MLE). This approach is 

effective in dealing with the dimensionality of structural models while preserving the advantages 

of the Bayes factor outlined above.  

 

7.1.  The Bayesian Information Criterion 

A useful asymptotic approximation to the marginal probability 𝑝�𝑌|ℳ𝑗� can be derived using 

Laplace’s method for integrals (see appendix A for a detailed derivation):  

𝑝�𝑌|ℳ𝑗� ≈ 𝑝�𝑌|𝜃�,ℳ𝑗� −
𝑑𝑗
2

log 𝑠 

Where 𝜃� is the MLE of the model parameters, 𝑑𝑗 is the number of parameters in model j, and s is 

the total number of firm-years. This particular approximation assumes Normally distributed priors 

on the parameters, with the same information content as a single observation.  
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The above expression shows that we can use the likelihood of the fitted model, 𝑝�𝑌|𝜃�,ℳ𝑗�, to 

approximate the Bayes factor. Define  

𝐵𝐼𝐶𝑗 ≡ −2 log𝑝�𝑌|𝜃�,ℳ𝑗� + 𝑑𝑗 log 𝑠 

The relation between BIC and the Bayes factor is then 

2logℬ10 ≈ 𝐵𝐼𝐶0 − 𝐵𝐼𝐶1 

The approximation error is of order 𝑂 �𝑠−
1
2�, and thus tends to zero as 𝑠 grows larger. 

 

7.2.   Estimating the likelihood  

If the state variables are all observed then maximizing the likelihood (and hence computing the 

BIC) is a standard MLE exercise. With an unobserved state vector, however, the likelihood 

function requires us to integrate out the latent state variables: 

log𝑝(𝑌|𝜃) = log𝑝(𝑦1 … 𝑦𝑇|𝜃) 

= � log p(yt|yt−1,𝜃)
𝑇

𝑡=1

 

= � log�𝑝(𝑦𝑡|𝑥𝑡,𝜃)𝑝(𝑥𝑡|𝑦𝑡−1,𝜃)𝑑𝑥𝑡

𝑇

𝑡=1

 

where 𝑦𝑇 = {𝑦1 … 𝑦𝑇}. We suppress the conditioning on the model, ℳ𝑗, for ease of exposition. 

Given the non-linearity of the observations in the states, we use the particle filter to evaluate the 

integral. The particle filter is fast and does not suffer from the dimensionality problems of 

importance sampling in Simulated Maximum Likelihood, where the variance of the importance 

weights rises rapidly as the length of the time series increases (Pitt, 2002). 

The particle filter is a non-linear filtering method used to obtain a discretized approximation to 

the posterior distribution of the state, 𝑝(𝑥𝑡|𝑦𝑡,𝜃), and to update it sequentially as new data 

arrives. The filter relies on two basic requirements, namely the ability to: 1) simulate forward the 

state vector, and; 2) evaluate the conditional likelihood 𝑝(𝑦𝑡|𝑥𝑡 ,𝜃). Note that these two steps are 
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also present in the integral above, underscoring that this a natural approach to evaluating the 

integral. From the assumption that the state follows an Itô process, step (1) is straightforward. 

With additive observation errors, 𝜂, step (2) also does not pose any problem.  

Figure 3 illustrates the basic the intuition behind the particle filter. The top left corner shows the 

discrete approximation to the distribution of the state at time t using a number of particles (points 

in the state space), with associated probability weights. The first step simulates each particle 

forward by one period using the state evolution process. This simulation yields a sample of the 

predictive density 𝑝(𝑥𝑡+1|𝑦𝑡,𝜃), but does not account for the new information in 𝑦𝑡+1. The 

second step therefore reweighs the particles proportional to the conditional likelihood 

𝑝(𝑦𝑡+1|𝑥𝑡+1,𝜃). The resulting distribution approximates the updated filtering density 

𝑝(𝑥𝑡+1|𝑦𝑡+1,𝜃). 

Appendix B describes the particle filter in more detail and explains how to use the particle 

approximation to evaluate the likelihood.  

 

8.  Empirical results using particle MLE 

In this section, we estimate each of the models described above using particle MLE.  We use the 

data on five representative firms based on firm size (total book assets) and fit the models to the 

100 data points. 

8.1.  Summary Statistics and Correlations 

To provide some initial evidence on how well the models fit the data Table 4 compares a number 

of moments from the data with the predicted moments from the various models.  To be specific, 

the predictive moments are computed based on the one-step ahead forecasts.  The first row of the 

table reports the results for leverage.  As seen in the table, all four of the models provide 

reasonable fits to both the mean and standard deviation of leverage.  Note, however, that the 

simpler random financing and pecking order models actually match the data more closely.  This is 

not too surprising, given that these models have little to say about other moments, such as 



16 
 

investment and profitability.  Nevertheless, it is a useful reminder that even simple models can 

easily match some of the primary features of the data.  Similarly, for debt and equity issuances 

none of the models exhibit an obvious superiority.  Finally, comparing the correlations between 

leverage and debt and equity issuance from the data with those from the models, the pecking 

order model most closely matches the data, while all of the other models get at least one of the 

signs of the correlations incorrect. 

Next comparing the dynamic tradeoff model and the Q model with the data on profitability, it can 

be seen that the Q model does a better job of capturing the variability of profitability.  The fact 

that the tradeoff model generates little variation in profitability is an artifact of the fact that in this 

model assets and profitability both grow in proportion to the shocks resulting in constant ROA 

across time.  Both models generate a strong negative relationship between profitability and 

leverage, but in both cases, the correlation is much stronger than that exhibited in the data (which 

is actually positive in this particular sample). 

Finally, the Q model predicts investment that is higher and more variable than that observed in 

the data and also produces correlation between investment and leverage, debt issuance and equity 

issuance that are higher than those observed in the data. 

Next, in Table 5, we report the correlations between the predictive means from the models and 

the realized data.  These correlations provide some initial information on how well the models do 

at capturing the dynamics of the data.  For leverage, the random financing model produces a 

correlation with the data of 0.61, which is similar to that of the pecking order model (0.57).  In 

contrast the correlations of predicted leverage with the data for the tradeoff and Q models are 

0.34 and 0.30, respectively.  In terms of profitability, both the tradeoff model and the Q model 

exhibit low correlations with the data.  Similarly, predicted investment from the Q model is 

negatively correlated with actual investment.  Finally, all models exhibit reasonably large 

correlations between predicted and actual debt issuance, but only the random financing and 
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pecking order models have correlations that are the right sign for predicted and actual debt 

issuance. 

Table 6 displays the average sources and uses of funds from the data and compares these with the 

predicted moments from the Q model.  On average, the Q model overpredicts the fraction of 

sources of funds coming from debt issuance, but generates higher levels of capex and interest 

expense/debt repayment compared to the data. 

8.2  Likelihood Analysis 

Figure 4 displays the likelihood analysis based on the particle filter estimation for the four models 

based on leverage only.  As seen in the top and middle panels of the table, both the random 

financing and pecking order models have higher likelihood values compared to the more complex 

tradeoff and Q models in every single period. This suggests that the better fit of the simpler 

models is not due to any particular time period but rather is uniform over the sample. In contrast, 

the better fit of the tradeoff model is driven mostly by the pre-2003 period (boom vs bust?)  The 

last panel in the Figure, shows that, based on leverage alone, according to the BIC, one would 

favor the simpler models (random financing and pecking order) versus the more complex models.  

This is consistent with the data in Section 8.1, which showed that the simple models can easily 

match average leverage as well as the correlations between leverage and issuance.  The next 

figure compares the models along the dimensions of both leverage and ROA jointly. In order to 

make this comparison, we augment the random financing and pecking order models with a model 

for ROA in which ROA is assumed to be drawn from an i.i.d. Normal distribution with the 

empirical mean and variance.6 This is a fair comparison to the tradeoff model, because the 

tradeoff model predicts that ROA is a constant when the frictions (taxes and bankruptcy costs) are 

turned off. The i.i.d. variance can then be interpreted as the noise component. We get very similar 

results if we use an AR(1) model for ROA instead, which is close the process implied by the Q 

                                                 
6 Note that the distribution of ROA must be proper for BIC to work (Raftery (1995)). 
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model (we do not report the these results). As seen in this figure, the more complex models now 

perform better, but the simple models are still at least as good according to BIC.   

In Table 7, we compute the various contributions to the log-likelihood of the various models.  The 

table reports the base case (where the predictive moments are used) and the “in Sample” case 

where it is assumed that the state is known.  Comparing the base case with the in sample 

likelihoods, the main take away is that the likelihoods of models are dramatically improved if one 

knows the state in the current period rather than having to forecast it out-of-sample. 

Finally, we provide some assessment of how well the various models do in capturing the 

dynamics in the data.  For example, does the firm in the Q model issue debt or increase leverage 

at the correct times?  Figure 6 displays the data for the dynamics of leverage for each of the five 

firms used in the estimation.  Examining the figures, the following features are evident.  First, the 

simple models do a good job of tracking actual leverage, whereas both the tradeoff model and to 

an even greater extent, the Q model exhibit much smoother dynamics than the actual data.  This is 

intriguing, because it suggests that the frictions in these models appear to cause firms to smooth 

leverage to a much greater extent than what appears in the data.  The second figure repeats the 

analysis above but based on the in sample fitted values.  Overall the results are similar with the 

exception of the fact that the dynamic tradeoff model now tracks the evolution of leverage more 

closely, while the Q model still exhibits muted dynamics compared to the actual data. 

The next figure compares the dynamics of ROA from the data with ROA implied by the tradeoff 

and Q models.  Again, the main feature evident in the figures is that the models have a difficult 

time capturing the actual dynamics in the data, suggesting that some source of additional 

variation in profitability is needed to improve the model fit.7 

                                                 
7 Note that this does not mean that the tax-bankruptcy cost model is invalidated, it just means that this 
particular model does not fit the data well. This is informative, though, because it tells us that an 
improvement to the GJL model needs to decouple EBIT and equity market value in order to fit the data 
better. 
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Finally, Figure 9 shows the dynamics of investment from the Q model compared to the data.  The 

figures are interesting.  While the model delivers investment with similar or even greater 

variability than in the actual data, the dynamics are not similar.  This is true both when one uses 

the predictive moments or the in sample moments and indicates that investment in the data is 

driven by something beyond simple productivity shocks.  Better understanding these dynamics 

represents a challenge for future research.    

 

9.  Discussion and possible extensions 

In this section, we discuss a number of implications of our analysis for future research on 

structural models and their application to capital structure. 

9.1 Interpretation of results and guidelines for future structural work 

First, the bulk of structural models in the literature only incorporate cash flow shocks but do not 

allow for discount rate shocks. This has large implications for empirical fit, as seen particularly 

clearly in the tradeoff model, where ROA does not exhibit any time variation. Recent models 

such as Chen (2010) and Bhamra et al. (2010) have started to incorporate pricing kernels into 

these models, and our results suggest that this is a fruitful direction. 

Second, the Q model lacks “real” frictions such as adjustment costs. The result is that investment 

(and hence financing) closely follows Q (and hence shocks to market values), resulting in too 

much issuance activity relative to the observed data. For non dividend-payers financial frictions 

(issuance costs) may take on the role of real adjustment costs. This does not happen in our sample 

of firms because they tend to pay dividends, and the distribution tax lowers the threshold to 

invest.  

Third, models need to be compared on dimensions other than attributes like the mean and 

variance of leverage, and more formal comparisons against alternative models should be made.  

Our results show that naïve models can fit a number of moments in the data and even yield 

dynamics that are similar to those observed. 
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Finally, structural models are a combination of economic and statistical assumptions. The 

economics should be center-stage, but the statistical assumptions can have important empirical 

implications. For example, Kane, Marcus and McDonald (1983) showed that one needs a jump in 

the driving process in order to explain the simultaneous existence of levered and unlevered firms. 

9.2 Methodology 

The basic trade-off between SMM and Likelihood-based methods is between having a more 

powerful estimator and making stronger distributional assumptions on the observation errors, 𝜂. 

However, the difference in distributional assumptions between our approach and SMM is not as 

large as it may seem at first sight. In SMM you still need the distributional assumption on the 

state diffusion. The difference is that in likelihood-based methods you also need to make 

assumptions about the observation error distribution. The distributional assumptions on 

observation error can be relaxed through using mixtures of Normals. 

Another perspective on the relation between the two methods is that MLE is essentially doing 

SMM on the score, and we treat each firm-year as its own separate moment. In other words, we 

push SMM to consider many more moments.  

Note: you need the observation errors (𝜂’s), without them you run into a stochastic singularity: 

since no model can perfectly fit every datapoint, without the observation errors we can simply 

reject every single model. We therefore need to allow for some model misspecification. The 

variance of 𝜂 indicates how closely the model fits the data. 

Heterogeneity in parameters can be accommodated through hierarchical priors (akin to random 

effects). 

We ignore predictions of theories outside of the model. We also ignore characteristics of the data 

outside of the models (e.g. the robust relation between size and leverage in the data is not 

captured by any of the models we considered). 
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More deeply, we should warn against using our approach as the sole guiding principle in 

comparing models. The goal should not be to set out on a fishing expedition to find the model 

that best fits the data.  

• Cannot distinguish how “close” the model’s results are to its assumptions. 

• Cannot distinguish economic vs statistical/distributional assumptions. 

• Can always cook up a reduced-form model that outperforms a structural model? Related 

point: can always find a simple model that works better in-sample (see Fig 1) 

o Importance of out-of-sample testing!! 

• Other definitions of parsimony/complexity  

o e.g. existence of closed-form solution (whereas our measure reflects complexity 

in a statistical sense, i.e. # parameters and state variables). 

Rather, our methodology is useful to diagnose where models do and do not fit the data and to 

serve as input into a broader discussion of the relative merits of a model. 

 

10.  Conclusion 

We present a general approach for comparing the empirical fit of state space models. Our 

approach is motivated from a Bayesian perspective on relative model probabilities, and relies on 

maximum likelihood estimation with particle filtering that is effective in dealing with the 

complex nature of structural models in corporate finance. These models are typically non-linear, 

non-nested and are driven by unobserved state variables, making them difficult not only to 

estimate but also to compare across models. In addition, we present two strategies for making 

comparisons across models that make predictions on different sets of variables that may only 

partially overlap. 
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Our framework allows us to formally contrast the empirical fit of models in both a predictive and 

an in-sample sense, and to consider the full dynamics of the data rather than a selected set of 

moments. 

We show that with standard SMM/GMM methods it is difficult to distinguish models based on 

their fit to leverage alone. Using our framework instead, we find that simple random financing 

and pecking order models fit the leverage data better than a canonical tax-bankruptcy cost trade-

off structural model or a Q-theory based investment model with financing frictions. However, this 

should not be taken as a defeat of the structural models, as they make rich predictions on 

variables other than leverage, unlike the simple models. For example, when we augment the 

simple models with a model for profitability, the difference between the simple and structural 

models shrinks considerably.  

Based on our empirical findings we provide a number of suggestions for improving the structural 

models going forward: First incorporating discount rate shocks in addition to cash flow shocks 

will help to generate market value movements that are closer to those observed in the data while 

keeping investment relative stable. Second, introducing “real” frictions such as adjustment costs 

to changing the productive capital stock will result in more realistic financing patterns. Finally, 

the specification of the driving process in the structural models has a first-order effect on the 

empirical fit. It is important to recognize and diagnose the effect of the statistical assumptions 

relative to the economic assumptions that make up a structural model. 

Finally, due to the state-space representation, our methodology can also be applied to asset 

pricing and DSGE models in macro-economics. 
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Appendix A - Derivation of the BIC approximation to the Bayes factor  
This derivation follows Raftery (1995), using Laplace’s method to approximate the integral in the 

marginal likelihood, 

𝑝�𝑌|ℳ𝑗� = �𝑝�𝑌|𝜃,ℳ𝑗�𝑝 �𝜃|ℳ𝑗� 𝑑𝜃 

Define 𝑔(𝜃) ≡ log �𝑝�𝑌|𝜃,ℳ𝑗�𝑝(𝜃|ℳ𝑗)� and consider the Taylor series expansion around its 

maximum, 𝜃�: 

𝑔(𝜃) = 𝑔�𝜃��+ �𝜃 − 𝜃��′𝑔′�𝜃��+
1
2 �
𝜃 − 𝜃��′𝑔′′�𝜃���𝜃 − 𝜃�� + 𝑜 ��𝜃 − 𝜃��2� 

By definition of 𝜃�, its vector of first derivatives, 𝑔′�𝜃��, equals zero, so  

𝑔(𝜃) ≈ 𝑔�𝜃��+
1
2 �
𝜃 − 𝜃��′𝑔′′�𝜃���𝜃 − 𝜃�� 

The Taylor expansion works well only for values of 𝜃 close to 𝜃�. However, with a large number 

of observations, the likelihood is concentrated around the maximum and declines fast as one 

moves away from 𝜃�. Hence, only values close to 𝜃� will contribute to the integral (Tierney and 

Kadane (1986) provide a formal argument). Plug the Taylor expansion into the integral: 

𝑝�𝑌|ℳ𝑗� = ∫ exp(g(θ))𝑑𝜃 

≈ exp �𝑔�𝜃���� exp�
1
2 �
𝜃 − 𝜃��′𝑔′′�𝜃���𝜃 − 𝜃���𝑑𝜃 

Since the integrand is proportional to the multivariate Normal density, it integrates to a constant,  

𝑝�𝑌|ℳ𝑗� ≈ exp �𝑔�𝜃��� (2𝜋)𝑑𝑗/2|𝐴|−1/2 

where 𝑑𝑗 is the number of parameters of model j (i.e. the dimension of the vector 𝜃) and 𝐴 ≡

−𝑔′′�𝜃��, the negative of the Hessian matrix of second derivatives. The error in this equation is of 

order 𝑂(𝑠−1), with 𝑠 the number of observations. Hence, 

log𝑝�𝑌|ℳ𝑗�  = log𝑝�𝑌|𝜃�,ℳ𝑗� + log 𝑝 �𝜃�|ℳ𝑗� + �𝑑𝑗
2
� log 2𝜋 − 1

2
log|𝐴| + 𝑂(𝑠−1)
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In large samples 𝜃� converges to the MLE, 𝜃�, and 𝐴 ≈ 𝑠 ⋅ 𝑖, where 𝑖 is the expected Fisher 

information matrix for a single observation, a 𝑑𝑗 × 𝑑𝑗 Hessian matrix  

𝑖 = −𝐸 �
�2 log𝑝�𝑦𝑡|𝜃,ℳ𝑗�

�𝜃�𝜃′
�
𝜃=𝜃�

� 

with the expectation taken over 𝑦𝑡. Therefore, |𝐴| ≈ 𝑠𝑑𝑗 ⋅ |𝑖|. Since these approximations are of 

order 𝑂�𝑠−1/2�,  

log𝑝�𝑌|ℳ𝑗�  

= log 𝑝�𝑌|𝜃�,ℳ𝑗� + log𝑝 �𝜃�|ℳ𝑗�+ �
𝑑𝑗
2 �

log 2𝜋 −
𝑑𝑗
2

log 𝑠 −
1
2

log|𝑖| + 𝑂�𝑠−1/2� 

Assume that the prior distribution 𝑝 �𝜃|ℳ𝑗� is multivariate Normal with mean 𝜃� and variance 

matrix 𝑖−1, i.e. the prior distribution contains roughly the same information as a single 

observation, on average. Thus 

log𝑝 �𝜃�|ℳ𝑗� = −
𝑑𝑗
2

log 2𝜋 +
1
2

log|𝑖| 

and 

log𝑝�𝑌|ℳ𝑗�  = log𝑝�𝑌|𝜃�,ℳ𝑗� −
𝑑𝑗
2

log 𝑠 + 𝑂�𝑠−1/2� 

The error term thus tends to zero as the sample size becomes larger.8  

Define the Bayes Information Criterion (BIC) for model j as  

𝐵𝐼𝐶𝑗 ≡ −2 log𝑝�𝑌|𝜃�,ℳ𝑗� + 𝑑𝑗 log 𝑠 

so that 

𝐵𝐼𝐶𝑗 = −2 log𝑝�𝑌|ℳ𝑗� +  𝑂�𝑠−1/2� 

The BIC can be used to approximate the Bayes factor  

2logℬ10 = 2 log𝑝�𝑌|𝜃�,ℳ1� − 2 log𝑝�𝑌|𝜃�,ℳ0� − (𝑑1 − 𝑑0) log 𝑠 + 𝑂 �𝑠−
1
2� 

                                                 
8 For other prior distributions, the error term is  and does not vanish asymptotically, but the other 
terms eventually dominate as s grows large. Thus, the  error tends to zero as a proportion of . 



27 
 

≈ 𝐵𝐼𝐶0 − 𝐵𝐼𝐶1 

Appendix B - Particle filter and Likelihood evaluation. 

Consider the discretized approximation to the filtering distribution 𝑝(𝑥𝑡|𝑦𝑡) using a large sample 

of “particles”,  𝑥𝑡1 … 𝑥𝑡𝑀, with probability weights 𝜋𝑡1 …𝜋𝑡𝑀. Since we only use filters for which 

the weights are flat, we simply substitute in 1/𝑀 for the weights. We also suppress the 

conditioning on the model, ℳ, and its parameters, 𝜃, for ease of exposition. The particle 

approximation to the filtering density is: 

𝑝(𝑥𝑡 = 𝑥|𝑦𝑡) ≈
1
𝑀
�𝕀�𝑥𝑡𝑘 = 𝑥�
𝑀

𝑘=1

 

where 𝕀{⋅} is the indicator function. In words, the probability of 𝑥𝑡 = 𝑥 is simply the proportion 

of particles for which 𝑥𝑡𝑘 = 𝑥.  

This appendix describes two popular methods to sequentially update the filtering distribution, and 

explains how to use the particle approximation to evaluate the likelihood. 

 

SIR particle filter 

The Sampling/Importance Resampling (SIR) filter of Rubin (1988) and Gordon et al. (1993) 

follows three steps to update the filtering density: 

 

After resampling, the M particles again have weights 1/𝑀, and form an approximation to the 

density 𝑝(𝑥𝑡+1|𝑦𝑡+1). This approximation then feeds into step 1 for next period’s update. With 

𝑅 →∞ the approximation 1
𝑅
∑ 𝑤𝑗𝑅
𝑗=1  converges in probability to the conditional likelihood, 

p(yt+1|yt,𝜃). 

Algorithm: SIR Particle Filter 
1) Randomly draw  particles (with replacement). 
2) Simulate each particle forward using the state evolution: , for .  
3) Compute weights , for . 
4) Resample M particles using the weights, normalized to sum to one, as the 

probabilities. 
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Auxiliary particle filter 

The SIR algorithm, although very general, is not the most efficient because it makes blind 

proposals of 𝑥𝑡+1  in the first step, ignoring the fact that 𝑦𝑡+1 is known. This is particularly 

problematic if the likelihood is highly peaked (or, more generally, when the 𝑤𝑗 are highly 

variable). Intuitively, many particles will end up having zero weight and the resampling is based 

on only a few particles. An adapted filter such as the auxiliary particle filter of Pitt and Shephard 

(1999) makes more efficient use of the particles. A popular implementation of this algorithm uses 

the conditional mean of the state evolution, 𝜇𝑡+1
𝑗 = 𝔼�𝑥𝑡+1|𝑥𝑡

𝑗� for each particle 𝑗: 

 

The efficiency gain comes from the first stage, which ensures that we draw particles that have 

large predictive likelihoods. Setting all 𝑔𝑚 = 1 collapses the algorithm back to the SIR filter. 

 

Evaluating the likelihood 

Pitt (2002) shows that an efficient and unbiased estimate of the conditional likelihood is the 

product of the average first and the second-stage weights (both unnormalized): 

p�(yt+1|yt,𝜃) =
1
𝑀
� 𝑔𝑚
𝑀

𝑚=1

⋅
1
𝑅
�𝑤𝑗
𝑅

𝑗=1

 

For the SIR the first stage weights are equal to unity, so 1
𝑀
∑ 𝑔𝑚𝑀
𝑚=1 = 1, and the likelihood 

estimate is simply the average of the weights 𝑤𝑗, as argued above. 

Algorithm: Auxiliary Particle Filter 
1) Compute first-stage weights  for . 
2) Draw R particle indices  for , from a Multinomial distribution with probabilities 

, normalized to sum to one.  
3) Simulate R realizations of  from the state evolution: , for .  
4) Compute second-stage weights , for . 
5) Resample M particles using the second-stage weights, normalized to sum to 

one, as the probabilities. 
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Table 1: Structural models of capital structure 

Summary of a subset of the capital structure models in the literature. The canonical state space 
model for firm 𝑖 at time 𝑡 is 
  𝑑𝑥𝑖𝑡 = 𝜇(𝑥𝑖𝑡 , 𝑡)𝑑𝑡 + 𝜎(𝑥𝑖𝑡 , 𝑡)𝑑𝐵𝑖𝑡 ,                                       (state evolution)    

𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡;  𝜙) + 𝜂𝑖𝑡 .                                                              (observation equation) 
The table identifies the state variable (𝑥𝑖𝑡), the form of the state evolution, the observed variables 
(𝑦𝑖𝑡), and the exogenous parameters (𝜙) in the observation equation.  
 
Model 𝑥𝑖𝑡 State 

evolution 
𝑦𝑖𝑡 𝜙 

Merton (1974) Assets 
market value 

Geometric 
Brownian 
Motion 

Debt market value 
Equity market value 

Risk-free rate  
Debt face value 
Debt maturity 

Mauer and 
Triantis (1994) 

Commodity 
price 

Geometric 
Brownian 
Motion 

Debt coupon rate 
Net debt issuance 
Production decision  
   (yes or no) 

Risk-free rate  
Corporate tax rate 
Bankruptcy cost 
Recap cost (fixed and  
   proportional) 
Production costs 
Investment horizon 
Salvage value 
Convenience yield 
Operating adj. cost 

Leland (1994) Unlevered 
assets market 
value 

Geometric 
Brownian 
Motion 

Debt coupon rate 
Debt market value 
Equity market value 

Risk-free rate 
Corporate tax rate 
Bankruptcy cost 

Goldstein, Ju 
and Leland 
(2001) 

EBIT Geometric 
Brownian 
Motion 

Debt coupon rate 
Debt market value 
Equity market value 

Risk-free rate 
Corporate tax rate 
Personal tax rate 
Bankruptcy cost 

Hennessy and 
Whited (2005) 

Productivity 
shock 

Discrete-time 
Gaussian 
AR(1)  

EBIT 
Debt face value  
Assets book value 
Equity market value 
Net equity issuance 
Capital expenditures 
 

Risk-free rate 
Corporate tax rate  
  schedule (2 param’s) 
Dividend tax rate 
Interest tax rate 
Depreciation rate 
Fire sale cost 
EBIT return to scale  
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Table 2: Summary statistics 

Summary statistics for data used in the paper.  We selected five firms around the median book 
assets in the data between 1989 and 2008. Book asset is in millions of dollars. Leverage is the 
book value of long-term debt less minus cash scaled by the market value of the firm (defined as 
total assets less book equity plus market equity). ROA is earnings before interest, tax and 
depreciation scaled by the market value of the firm. Q is the market value of equity plus book 
debt divided by book equity plus book debt. Investment is capital expenditures divided by 
property, plant and equipment. Equity issuance is defined as net equity issuance (issuance minus 
repurchases) less dividends, scaled by property, plant and equipment. Debt issuance is net debt 
issuance (issuance minus repurchases) less the change in cash balances, divided by property, 
plant and equipment. Source: Compustat. 
 

 
Mean Median St. Dev Min Max 

Book assets  1338.6 1174.2 815.4 324.0 4746.4 
Leverage  0.076 0.080 0.090 -0.129 0.306 
ROA  0.112 0.105 0.037 0.041 0.239 
Q  2.044 1.774 0.951 0.933 5.382 
Investment  0.121 0.101 0.077 0.020 0.388 
Equity issuance  -0.058 -0.054 0.049 -0.253 0.025 
Debt issuance  0.006 0.002 0.081 -0.249 0.250 
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Table 3: SMM fit 

Comparison of fit to moments for Random Financing Model and Goldstein, Ju, and Leland 
Model. 
 
Actual Moments 

Mean Leverage Stdev Leverage Mean ROA Stdev ROA 

0.207 0.098 0.096 0.034 

Estimated Parameters (Tradeoff Model) 

γ (refinancing cost) α (bankruptcy cost) Risk Premium σ (earnings volatiltity) 

0.047 0.631 0.033 0.230 

Simulated Moments (Tradeoff Model) 

Mean Leverage Stdev Leverage Mean ROA Stdev ROA 

0.2105 0.127 0.0761 0.002 

Estimated Parameters (Random Financing Model) 

P (prob of debt issue)    

0.888    

Simulated Moments (Random Financing Model) 

Mean Leverage Stdev Leverage Mean ROA Stdev ROA 

0.203 0.099 NA NA 
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Table 4: Predictive Moments 

 ‘Data’ column reports the realized moments in the data. The standard deviations are averages of 
the within-firm standard deviations. 
 

 Data 
Random 

Financing 
Pecking 
Order 

Trade-
off 

Q 
model 

Panel A: First and second moments 
Mean(Lev) 0.076 0.074 0.074 0.080 0.089 
Std(Lev)  0.053 0.055 0.056 0.033 0.031 
Mean(ROA) 0.112   0.099 0.123 
Std(ROA) 0.030   0.000 0.013 
Mean(Q)  2.044    3.056 
Std(Q) 0.566    0.655 
Mean(Inv) 0.121    0.263 
Std(Inv) 0.063    0.236 
Mean(Eq iss) -0.058 0.004 0.002 0.000 -0.159 
Std(Eq iss) 0.035 0.052 0.071 0.000 0.081 
Mean(Debt iss) 0.006 0.003 0.004 0.010 0.116 
Std(Debt iss) 0.080 0.044 0.040 0.006 0.200 
      
Panel B: Correlations 
Corr(ROA,Lev) 0.167   -0.997 -0.536 
Corr(Inv,Q) 0.174    0.910 
Corr(Inv,Lev) 0.159    0.576 
Corr(Inv,Eqiss) -0.138    0.210 
Corr(Inv,Debtiss) 0.388    0.921 
Corr(Lev,Eqiss) -0.058 0.202 -0.047 -0.181 0.462 
Corr(Lev,Debtiss) 0.360 0.202 0.239 -0.458 0.414 
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Table 5: Correlations between Predictive Means and Realized Data 

Correlations between predictive means and realized data 

 

 Random 
Financing 

Pecking 
Order 

Trade-
off 

Q 
Model 

Lev 0.610 0.573 0.339 0.305 
ROA   -0.158 0.092 
Q    -0.130 
Investment    -0.112 
Equity issuance 0.294 0.327 -0.017 -0.073 
Debt issuance 0.360 0.191 0.226 0.246 
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Table 6: Sources and Uses of Funds 

All numbers are averages across firms-years, and scaled by beginning-of-period PPE. 

 

 Data Q model 
 Sources:   
 Profits (ebit - tax):  0.18 0.29 
 Equity issuance:  0 0 
 Debt issuance:  0.03 0.16 
 Total:  0.21 0.46 
   
 Uses:   
 CapEx:  0.12 0.26 
 Dividends+Share repo:  0.03 0.05 
 Interest+Debt repayment:  0.06 0.16 
 Total  0.21 0.47 

 

  



35 
 

Table 7: Breakdown of Log-likelihood 

Breakdown of log-likelihood. 

 

 

Base case 
    "In-sample" 

 

Random 
Financing 

Pecking 
Order Trade-off Q model 

 
Trade-off Q model 

Lev 162.41 159.72 50.69 -26.61 
 

209.24 147.74 
ROA(mkt)  

 
94.87 79.83 

 
264.88 237.89 

Q 
   

-368.52 
  

8.06 
Inv 

   
-126.66 

  
92.75 

Net equity 
issue      -1,950.81     123.78 
Total 162.41 159.72 320.13 -10,194.7 

 
3,682.09 709,652.9 
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Figure 1 
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Figure 2 

Illustration of the Bayes factor’s trade-off between model parsimony and fit. The horizontal axis 
presents possible realizations of the data, Y, and the likelihood of Y is on the vertical axis. 
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Figure 3 

Illustration of the intuition behind the sequential updating of the particle filter. Dependence on 
model parameters is suppressed for ease of exposition. 
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Figure 4 
 
Plot of the relative model fit to leverage. Leverage is measured as the book value of debt net of 
cash divided by the book value of debt net of cash plus the market value of equity. Models are 
fitted to the five firms closest to median book assets in Compustat, over the period 1989-2008. 
The top plot shows the each individual year’s log-likelihood for the random financing, pecking 
order and Goldstein, Ju and Leland (2001) models. The middle plot shows the cumulative log-
likelihood and the bottom plot shows the Bayesian Information Criterion. 
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Figure 5 
 
Plot of the relative model joint fit to leverage and return on assets (ROA). Leverage is measured 
as the book value of debt net of cash divided by the book value of debt plus the market value of 
equity. ROA is the operating income before depreciation divided by the book value of debt plus 
the market value of equity. For the random financing and pecking order models, ROA is assumed 
to be distributed iid Normal with the empirical mean and variance. Models are fitted to the five 
firms closest to median book assets in Compustat, over the period 1989-2008. The top plot shows 
the each individual year’s log-likelihood for the random financing, pecking order and Goldstein, 
Ju and Leland (2001) models. The middle plot shows the cumulative log-likelihood and the 
bottom plot shows the Bayesian Information Criterion. 
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Figure 6 
 
Model fit to observed leverage for the five firms closest to median total assets. 
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Figure 7 
 
In-sample model fit to observed leverage for the five firms closest to median total assets. “In-
sample” means that the Trade-off and Q models use the posterior mean of the state variable 
instead of the predictive mean. 
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Figure 8 
 
Model fit to observed return on assets (ROA) for the five firms closest to median total assets. 
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Figure 9 
 
Model fit to observed investment (relative to PPE) for the five firms closest to median total 
assets. 
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Figure 10 
 
The top graph plots the delta, the state variable in the Goldstein, Ju and Leland (2001) against the 
model-implied market value of equity. The bottom plot shows the model-implied ROA (delta 
divided by debt plus market equity) as a function of the state variable. 
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