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LINEAR BETA PRICING WITH INEFFICIENT BENCHMARKS 
 

1 Introduction 

Current asset pricing models require mean variance efficient benchmarks1 

which are generally unavailable because of partial securitization and free float 

restrictions. We provide a pricing model that uses inefficient benchmarks, a two beta 

model, one induced by the benchmark, one adjusting for its inefficiency. While 

efficient benchmarks induce zero beta portfolios of the same expected return, any 

inefficient benchmark induces infinitely many zero beta portfolios at all expected 

returns. These make market risk premiums empirically unidentifiable and explain 

empirically found dead betas and negative market risk premiums. We characterize 

other misspecifications that arise when using inefficient benchmarks with models that 

require efficient ones. 

Linear beta pricing motivated by equilibrium (as in the various CAPM 

versions), or arbitrage (as in the APT and various factors’ pricing), stochastic discount 

factor pricing, or “risk neutral pricing” identify the same pricing kernels. (See, for 

example, Hansen and Richard (1987), Huberman, Kandel and Stambaugh (1987), and 

Ferson (1995)). Therefore, failure of a pricing method implies either failure of all 

methods or failure in implementing the method. The works of Roll (1977), Roll and 

Ross (1994) (RR), Kandel and Stambaugh (1995) (KS), and Jagannathan and Wang 

(1996) demonstrated linear beta pricing with efficient benchmarks (LBPE) failures 

due to internally inconsistent empirical implementations:  the use of inefficient 

benchmarks with models for efficient ones. Hansen and Jagannathan (1997) assess 

specification errors in stochastic discount factor (SDF) models where SDFs are not 

perfectly correlated with efficient benchmarks. Thus, there is a sense under which the 

                                                 
1 We use the term "benchmark" to include "indices" and "portfolio proxies."  
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mean-variance representation in this paper is isomorphic to the SDF representation in 

Hansen and Jagannathan (1997). 

With human capital, energy, and real estate largely unsecuritized, and with 

free float restrictions, the likelihood is small to nil, that a subset of the securitized free 

float, or other observable variables, span efficient benchmarks in the space of market 

returns that are priced with respect to “what we care about.” 

The above-cited works provide sufficient theoretical and empirical examples 

that imply that consistent correct pricing implementations require inefficient 

benchmarks to be used with models for inefficient benchmarks. Thus, we generally 

and simply provide, here, a linear beta pricing restriction for inefficient benchmarks 

(LBPI). The LBPI degenerates to LBPE when benchmarks become efficient, and 

characterizes critical misspecifications when using inefficient benchmarks with 

models for efficient ones. 

Within a Markowitz world (a finite set of nonredundant risky securities with 

finite first two moments), we identify three sources of misspecification that arise 

while inconsistently using inefficient benchmarks with models for efficient ones: i) 

the omission of an addend in the pricing relation, ii) the use of incorrect risk 

premia/beta coefficients (due to the existence of infinitely many “zero beta” portfolios 

at all expected returns), and iii) the use of unadjusted betas. We suggest the use of 

incomplete information equilibria to overcome unobservability of moments of returns. 

Our results are robust to the use of other pricing methods and regressions that produce 

positive explanatory beta power, including extensions such as multiperiod, 

multifactor, and the conditioning on time and various attributes. 

Careful reading, of “Roll’s Critique,” Roll (1977), would have forewarned us 

of misspecification while using inefficient benchmarks with the traditional CAPM. 
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Researchers have largely ignored this point, perhaps because of Roll’s Critique other 

seminal contributions.2,3 

A Markowitz world with no further (equilibrium) assumptions induces exact 

linear relations between excess expected returns and betas (LBPE) with respect to any 

mean-variance frontier portfolio.4,5 Quantitatively, this relation is identical to a 

classical CAPM relation. We say, and explain why below, that the LBPE is well 

defined for all reference portfolios excluding those with expected returns equal to that 

of the global minimum variance portfolio (GMVP). 

In this context, we first develop a general and simple method to write the 

LBPI in terms of inefficient portfolios. We use the term “inefficient” portfolios to 

imply “non-frontier” portfolios. 

Our analysis emphasizes an essential implication:  where the LBPE is well 

defined and where market portfolio benchmarks are inefficient, LBPE regressions are 

essentially misspecified because of three sources of misspecification. The first source 

of misspecification arises because the use of the LBPE with inefficient portfolio 

benchmarks inappropriately and incorrectly ignores a non-zero addend in the 

restriction. The second source of misspecification arises from the, above mentioned, 

existence of infinitely many “zero beta” portfolios, and at all expected returns, for any 

inefficient benchmark. Thus, the identification of a correct “market risk premium,” 

“excess return,” or beta coefficient, is extremely unlikely. On the other hand, the 

identification of “zero relations” that induce no explanatory power becomes (always) 

                                                 
2 Following the Merton (1972) mathematical development of the portfolio frontier, Roll (1977) first 
emphasized that all, and only, mean-variance frontier portfolios induce a CAPM; thus the only CAPM 
testable implication is the efficiency of the index. Roll also showed that the GMVP (global minimum 
variance portfolio) is an exception and that it induces beta equals to one on all assets. 
3 See discussion of notable exceptions towards the end of the introduction. 
4 See, for example, Feldman and Reisman (2003) for a simple construction. 
5 See discussion of the odd case of the global minimum variance portfolio in the Appendix. 
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possible.6 The third source of misspecification arises from the use of unadjusted betas, 

while adjusting the betas is required for inefficient benchmarks. 

Where a LBPE is well defined, we very simply demonstrate that, as Roll 

(1980) showed, “Every nonefficient index possesses zero-beta portfolios at all levels 

of expected returns.” [Roll (1980), p. 1011]. In particular, for any inefficient 

benchmark there is at least one and practically infinitely many zero beta portfolios of 

the same expected return, which, in turn, implies that for any inefficient benchmark 

there is at least one portfolio and could be infinitely many portfolios that induce zero 

relations. We demonstrate a zero relation case with both exogenously given and 

endogenously constructed zero relations. Consequently, a zero relation could be 

empirically detected. 

We show that all (adverse) effects of using inefficient benchmarks in a model 

for efficient ones, as in the case of the traditional CAPM, occur for all inefficient 

benchmarks regardless of their “distance” from the frontier. The intuition behind this 

result is straight forward. The frontier consists of endogenously constructed portfolios 

that have special properties not shared by non-frontier portfolios. Thus, moving away 

from the frontier even an infinitesimal distance discontinuously “switches regimes” in 

terms of these portfolios properties. If portfolios near the frontier had the same 

properties, they were also solutions to the optimization problem that defines the 

frontier and would have been part of the frontier. 

We suggest that applications/tests that use inefficient benchmarks should use 

our well-specified LBPI rather than the misspecified, with inefficient benchmarks, 

LBPE. 

                                                 
6 "Zero relations" might be caused by two complementing reasons. One is a zero "covariance" between 
beta and expected returns as is the case of benchmarks corresponding to the GMVP a case we call here 
where the LBPE is not well defined (see RR). Another reason is a zero coefficient of the betas (zero 
excess return on the benchmark), a case we extensively explore here. 
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Where the LBPE is not well defined, we show that a theoretical zero relation 

between expected returns and betas (a zero coefficient of the betas in the LBPE 

restriction) may occur. It occurs, however, only under a degenerate indeterminate case 

that non-uniquely allows a theoretical zero relation as one possible relation out of 

infinitely many non-zero possible ones. This occurs where 

 the reference portfolio is in a degenerate cone in the mean-variance space, 

at the line where expected returns are equal to those of the GMVP 

 all securities have betas equal to 1 and the same expected return 

 there is no zero beta portfolio 

The misspecifications to which we point out above are robust with respect to 

the explanatory power of the betas. Also subject to the misspecification are LBPE 

regressions that use different procedures from Fama and French’s (1992) and that 

produce positive beta explanatory power. The misspecification is also robust to 

various extensions, such as multiperiod, multifactor, and the conditioning on time and 

various attributes. This LBPI implication might be particularly beneficial as it is not 

clear that the RR KS, and Jagannathan and Wang (1996) essential implication—that 

LBPE regressions with inefficient benchmarks are meaningless—has been sufficiently 

internalized. 

Because the real-world unobservability of moments of returns (a cause of the 

use of inefficient benchmarks) impairs the usefulness of the LBPI, we suggest the 

implementation and testing of incomplete information equilibria models developed to 

handle unobservable moments, as demonstrated in Feldman (2007), for example. 

For a simple construction of the LBPI we use an orthogonal decomposition 

similar to the one in Jagannathan’s (1996) finite number of securities version of 

Hansen and Richard’s (1987) conditioning information model. 
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Roll (1980) demonstrated that there is a (theoretical) zero relation between 

expected returns and betas for every inefficient portfolio, where the LBPE is well 

defined. We provide intuition and simple construction of this result. Consider the 

hyperbola that an inefficient benchmark spans with the GMVP and also the 

(degenerate) hyperbola it spans with the frontier portfolio of the same expected return. 

We demonstrate below that each of these hyperbolas includes a zero beta portfolio to 

the inefficient benchmark and that these two zero beta portfolios are of different 

expected returns. 

Now, all infinitely many portfolios, expanding to all expected returns, on the 

hyperbola spanned by these two zero beta portfolios are also zero beta with respect to 

the inefficient benchmark. We call such a hyperbola a “zero beta hyperbola.” In 

addition, any zero beta portfolio not on this hyperbola generates infinitely many 

additional portfolios that are zero beta with respect to the inefficient benchmark. 

There are vast regions where infinitely many such portfolios may exist, as we 

demonstrate, numerically as well. Thus, we have at least one and possibly infinitely 

many zero beta hyperbolas and on each such hyperbola infinitely many zero beta 

portfolios. 

Because any non-degenerate zero beta hyperbola expands to all expected 

returns (as is the case for any non-degenerate hyperbola), it includes a portfolio with 

expected return equal to that of the inefficient benchmark. Moreover, there are 

infinitely many portfolios on each zero beta hyperbola that induce incorrect “excess 

expected return” values (risk premiums/beta coefficients) in the LBPE. Thus, any 

inefficient benchmark induces incorrect pricing due to incorrect excess expected 

return premia with respect to infinitely many portfolios. When these excess expected 

returns are zero—that is, the expected returns of the zero beta portfolios are equal to 
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that of the inefficient benchmark—they induce zero relations. Of course, each of these 

infinitely many portfolios, whether inducing an incorrect excess expected return value 

or a zero relation, induces a pricing error. 

Therefore, where the LBPE is well defined, using it with inefficient 

benchmarks gives rise to three sources of misspecification. The first is ignoring a non-

zero addend in the relation, the second is using an incorrect excess expected return 

value, and the third is using an incorrect value for beta. Recapping, the reason for the 

first and the third sources of misspecification is the need to correct the inefficient 

benchmark “coordinates” to efficient ones on which the LBPE is defined; the reason 

for the second is that (all) inefficient benchmarks have infinitely many zero beta 

portfolios and of all expected returns. 

While the analysis in this paper is done in a single-period, its implications 

apply to multiperiod, multifactor models. This is because we can see the single period 

mean-variance model here as a “freeze frame” picture of a dynamic equilibrium 

where, because of the tradeoff between time and space, only the instantaneous mean 

and instantaneous variance of returns are relevant until the decision is revised in the 

next time instant.7 

Roll (1977), RR, KS, and Jagannathan and Wang (1996) elaborately discuss 

the relation between expected returns and betas and its implications for regression 

estimates [see also the report of some of their results in Bodie, Kane, and Marcus 

(2005), Section 13.1, page 420]. Here, we introduce the LBPI and demonstrate 

properties of the relation; see RR, KS, and Jagannathan and Wang (1996) for detailed 

perspectives and references. 

By providing a pricing specification for inefficient benchmarks, our results 

                                                 
7 This is true for all preferences, myopic or non-myopic, diffusion state variables, and even dependent 
jumps. The instantaneous mean and variance will not be sufficient to span independent jumps. 
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can be seen as closing a gap in the theoretical literature, which provided a pricing 

specification for efficient benchmarks but not to inefficient ones. While the main 

practice of the empirical literature, seems to have been, using inefficient benchmarks 

with models for efficient ones, substantial empirical literature acknowledged and 

treated the issue of inefficient benchmarks. Such notable exceptions include, in 

addition to Hansen and Jagannathan (1997) mentioned above, Gibbons and Ferson 

(1985), who developed tests under changing expected returns, unobservable market 

portfolio, or multiple state variables, implying changing risk premiums and 

conditioning information. Shanken (1987), who developed a CAPM test for 

benchmarks that are sufficiently highly correlated with efficient ones. Gibbons, Ross 

and Shanken (1989) who called the zero beta portfolio that spans with an inefficient 

benchmark a given frontier portfolio the "active portfolio" and used it in statistical 

tests to determine efficiency. MacKinlay (1995) who called such a portfolio the 

"Optimal Orthogonal Portfolio" and demonstrated that multifactor representation will 

not overcome mispricing. More recently, Asgharian (2011) and Ferson (2012) who used 

the "Optimal Orthogonal Portfolios" under conditioning information. Lehmann (1989) 

who developed cross-section efficiency tests acknowledging an important property of 

inefficient benchmarks:  the inducement of zero beta portfolios at all expected returns. 

He proceeds to reject the efficiency of the benchmarks. In a different context, Green 

(1986) looks at consequences of inefficient benchmarks on deviations from the 

Security Market Lines, Ferguson and Shockley (2003) examine the implications of 

omitting “debt” from the market portfolio and show that equity-only benchmarks 

induce understated betas. We, indeed, obtain a similar property for all inefficient 

benchmarks. 

Section 2 demonstrates the results, Section 3 discusses implications, and 
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Section 4 concludes. The Appendix discusses cases where the LBPE is not well 

defined. 

 
2 The LBPE Relation 

Below, we introduce the model—a Markowitz world—and develop the 

analytical results. 

2.1 Markowitz World and LBPE 

In this section, we present the economy and write a LBPE using the following 

notational conventions: constants and variables are typed in italic (slanted) font, 

operators and functions in straight font, and vectors and matrices in boldface (dark) 

straight font. 

In a market with N risky securities, let R be an 1N  vector of rates of return 

of the securities, iR , 1,...,i N , and 2N  . We do not specify the probability 

distributions of the rates of return. Rather, we assume means and variances that are 

real finite numbers and a positive definite covariance matrix, V, which implies that 

there are no redundant securities.8 To avoid degeneracy we assume that there are at 

least two securities with distinct expected returns and a non-frontier security. We call 

the vector of security expected returns E, the expectation operator E( ) , the 

covariance , ,ij i jR R  , the variance 2 ,ii i iR   , and the standard deviation 

2 ,i i i   . 

Let some portfolio, say a, of the N market securities, be an 1N  vector of 

real numbers, with components ia , 1,...,i N , where ia  is the “weight” of security i 

in the portfolio and, unless otherwise noted, T 11 a , where 1  is an 1N  vector of 

ones and the superscript T denotes the transpose operator. Let z be a zero beta 

                                                 
8 We define a redundant security as one whose return can be constructed by combining other securities. 
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operator, i.e., za is portfolio a’s zero beta frontier portfolio; thus, by definition, 

z 0z  aa a a . We will call some portfolio that is uncorrelated with a, thus having a 

zero beta with respect to a, za.9 We call this world a Markowitz world.10 

Let q be some frontier portfolio other than the GMVP. Portfolio q stands for a 

frontier index or reference portfolio. Then, we can write a Sharpe-Lintner-Mossin-

Black (zero beta) LBPE for q: 

 z z 2
E( ) [E( ) E( )]R R R


  q q q

q

Vq
E 1 .11 (1) 

2.2 LBPI 

In this section, we write a LBPI in terms of any portfolio—efficient or 

inefficient. The previous section’s LBPE is, thus, a special case of this section’s 

LBPI. We exclude, however, portfolios with expected returns equal to that of the 

GMVP, where the LBPE is not well defined, and discuss these in the Appendix. 

Let p be a portfolio with E( ) E( )R Rp q  and  p q . Portfolio p stands for an 

inefficient benchmark that serves as a proxy to q. In a mean-standard deviation 

Cartesian coordinate system where the mean is on the vertical axis, q lies on the 

frontier and p lies inside the frontier to the right of q.12,13 

We project Rp  on Rq , decomposing it into Rq  and a residual return Re : 

                                                 
9 For simplicity of notation, and consistently with our notation convention, we use the operator z (z in 
straight font) on some portfolio a, za to delineate the frontier portfolio that is uncorrelated with a; and 
we call some portfolio (not necessarily a frontier portfolio) that is uncorrelated with a, za [z is in 
slanted font (italics)]. The visual distinction between za and za is subtle, but in context, there is little 
ambiguity and the introduction of additional notation is unnecessary. Also, as the GMVP induces no 
finite zero beta portfolios, without loss of generality, we exclude z from operating on GMVP. 
10 Markowitz (1952), for example. See also Roy (1952). 
11 For a simple construction, see Feldman and Reisman (2003); for a geometric approach, see Bick 
(2004); and for a frontier expansion, see Ukhov (2005). 
12 q is the frontier portfolio with the highest correlation with p. See Kandel and Stambaugh (1987), 
Proposition 3, p. 68. This can be proven directly, spanning the frontier with q and zq, noting that p and 
zq are uncorrelated.  
13 For an examination of inefficient portfolios, see Diacogiannis (1999). 
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 R R R p q e , (2) 

implying 

  p q e , (3) 

 
where E( ) 0R e , 0 qe , T 01 e , 2 pq q , 2 pe e , 0 e , and e is the weights 

vector of Re .14 The orthogonal decomposition in Equations (2) and (3) is similar to 

those in Hansen and Richard (1987), (see Equation 3.7, p. 596), and Jagannathan 

(1996), (see Equation 1, p. 3). 

We will now demonstrate why Equation (2) and the six following properties 

hold. Equation (2) and the first two properties hold because we can project any 

portfolio p on any portfolio q such that R c bR R  p q e , where c and b are constants, 

E( ) 0R e , and 0 qe . We achieve this if we choose 
2

b



 pq

q

, and 

2
E( ) E( )c R R




  pq
p q

q

.15 The choice that E( ) E( )R Rp q  implies that 0c  , 1b  , 

and, by left multiplying Equation (3) by T1 , that T 01 e = .16 Equation (3) implies that 

2
( )     pq q+e q q qe  and that 2

( )     pe q+e e e qe . Together with 0 qe , we 

have 2 2     pq q qe q , and 2 2     pe e qe e . Finally, because 0 qe , 

Equation (2) implies that 2 2 2 2 2 22           p q+e q e qe q e . Thus, the property 

                                                 
14 Note that from Equation (3),  e p q , thus, e  exists and is unique. 
15 The (orthogonal) decomposition R c bR R  p q e , 0 qe  implies COV( , )R R qe q e  

2COV( , ) 0R R bR b    q p q pq q , which, in turn, implies 
2

b



 pq

q

. If we choose b as implied, and, 

in addition, choose c to equal  
2

E( ) E( ) E( ) E( )c R b R R R



    pq

p q p q
q

, we also have E( ) 0R e  and 

accomplish the decomposition. 
16 With E( ) 0R e  and T1 e = 0 , e is an arbitrage portfolio. 
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 p q  implies that 0 e . 

Equation (2)’s projection is similar to regressing Rp  on Rq . Equivalently, this 

is a market model presentation of Rp , developed in Sharpe (1963). 

Substituting  p q e  into Equation (1) yields 

 z z 2

( )
E( ) [E( ) E( )]R R R




  q q q
q

V p e
E 1 . (4) 

When we rearrange and define 2p
p

Vp
β  , and 2

e
e

Ve
β   as vectors of market security 

betas with respect to portfolios p and e, respectively, Equation (4) becomes 

 
2 2

z z z2 2
E( ) [E( ) E( )] [E( ) E( )]R R R R R

 
 

    p e
q q q p q q e

q q

E 1 β β . (5) 

Equation (1) implies that portfolios with expected returns equal to that of zq 

are uncorrelated with q.17 In addition, zzq is q. Thus, all portfolios with the same 

mean as q are uncorrelated with zq. Therefore, because we have E( ) E( )R Rp q , we 

also have z zq p . That is, the frontier portfolio that is zero beta with respect to q is 

zero beta with respect to all portfolios of the same expected return equal to that of q, 

including p, in particular. Thus, zE( ) E( )zR Rp q  , and we can rewrite Equation (5): 

 
2 2

2 2
E( ) [E( ) E( )] [E( ) E( )]z z zR R R R R

 
 

    p e
p p p p p p e

q q

E 1 β β  (6) 

The intuition behind Equation (6) is straightforward. It is the LBPE where the 

efficient benchmark portfolio is written as the sum of two portfolios: one that is 

inefficient and one that is the difference between an efficient portfolio and the 

                                                 
17 Left multiplying Equation (1) by Ta  and rearranging yields z 2

z

E( ) E( )

E( ) E( )

R R

R R
 





a q

aq q
q q

, which 

demonstrates the property if E( ) E( )R Ra zq . 
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inefficient one. For parsimony and without loss of generality, the efficient and 

inefficient portfolios have the same expected return. 

Examining Equation (6) we identify three potential sources of misspecification 

that arise while using the LBPE with inefficient index portfolios. The first potential 

source of misspecification is, simply, ignoring the rightmost addend of Equation (6). 

The second potential source of misspecification is using incorrect excess 

expected return values due to the existence of portfolios that, although zero beta with 

respect to p, are of expected returns different than that of zq. If, then, in empirical 

tests, the latter portfolios are used, the excess expected returns values 

[E( ) E( )]zR Rp p  are incorrect. We argue below that there are infinitely many such 

portfolios that could cause this misspecification. In particular, when this excess 

expected return is zero, we say that the (inefficient) benchmarks induce zero relations. 

We examine these issues in the following sections. 

The third potential source of misspecification is the use of unadjusted betas. 

Equation (6), the LBPI, adjusts the LBPE betas by multiplying it by the ratio of the 

inefficient benchmark's variance to the variance of a corresponding efficient 

benchmark of the same expected return. This ratio is greater than one, and it 

“becomes” one as the inefficient benchmark “becomes” efficient. As this 

misspecification holds for all inefficient benchmarks, it agrees with the results of 

Ferguson and Shockley (2003), who find that, omitting debt, equity-only (inefficient) 

benchmarks induce understated betas.18 

We can rewrite Equation (6) such that it is additively separable in a traditional 

LBPE for p by writing the first addend without a beta adjustment. We accomplish that 

                                                 
18 Strictly speaking, the understatement is in the absolute value of the betas. Thus, for positive betas 
there is an understatement of the values, and for negative ones there is an overstatement. 
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by recalling that 2 2 2   p q e  (see above) and substituting for 2p  in Equation (6). 

We get 

 
2

2
E( ) [E( ) E( )] [E( ) E( )] ( )z z zR R R R R




     e
p p p p p p p e

q

E 1 β β β , (7) 

where the first two addends on the right hand side are a traditional LBPE with respect 

to p.19,20 

2.3 Where the LBPI is Well Defined 

In this subsection, we provide a very simple construction of zero relations and 

a hyperbola of zero beta portfolios for any inefficient benchmark where the LBPE is 

well defined.21 See Roll (1980) for a comprehensive study of zero beta portfolios’ 

existence and properties. For exposition purposes, we start the discussion with a 

demonstration that shows the existence of both exogenous and endogenous zero 

relations.22 Exogenous zero relations arise between the original assets in a Markowitz 

world. Note that in a Markowitz world, there is no restriction on the number of 

original assets that are uncorrelated. This number could be zero, two, or equal to the 

number of all original assets (diagonal covariance matrix.). Endogenous zero relations 

arise between assets or between portfolios which are not originally uncorrelated. 

Thus, an interpretation of this demonstration should be that in a Markowitz world 

there is no limit to the number of cases similar to those in the demonstration because 

of potential existence of exogenous zero relations. 

                                                 
19 We thank Richard Roll for suggesting this presentation. 
20 Recall that Equations (6) and (7) are correct only for zp with  zE( ) E( )zR Rp q .

 
21 For simplicity, we do not repeat the phrase, “where the CAPM is well defined” through the section. 
22 There is no loss of generality in the demonstration, however, and under cosmetic changes it is a 
proof. 
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Demonstration. Assume a four assets, q, p, u, and v, Markowitz world. If for 

 
 
 
 
  
 

q

p

u

v

, 

we have 

2

2

2

0

 
 
 
 
  
 

E  and 

1 1 1 0

1 2 0 0

1 0 3 0

0 0 0 1

 
 
 
 
  
 

V , then, solving for the portfolio frontier 

identifies q and v as frontier portfolios. Thus, we can view p as some inefficient 

benchmark and note that u (exogenously) induces a zero relation with respect to p as 

it is uncorrelated with it and has the same expected return. A more specific structure 

to support this demonstration could be as follows. Because q, p, and u have the same 

expected return, projecting p and u on q yields   pp q ε , and   uu q ε , 

respectively, where both pε and uε  are of mean zero and uncorrelated with q. Then, 

setting 2  
p uε ε q  implies 0 pu . Thus, u is a zero beta portfolio of and with the 

same expected return as p, inducing a zero relation. This could be the case, for 

example, where the q, p, u, and v are distributed according to a multivariate normal 

distribution. As p and u are original exogenously given assets, we call the zero 

relation that u induces with respect to p an exogenous one. 

The intuition behind the existence of exogenous zero relation portfolios as p 

and u in the demonstration above and in general is straightforward. It follows from 

the property that a Markowitz world specifies the first two moments of return 

distributions, leaving freedom to further specify “distributions structure.” In order to 

leave “other things equal,” a constraint on such “distribution structuring” is that it 

should not change the frontier. 

We will now show that, within the demonstration’s Markowitz world, there is 
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an endogenously determined asset, a combination of p and q, where p and q are 

positively correlated, which induces a zero relation with respect to p. This asset, say 

zp, has a weight of 2 in q and -1 in p. Thus, the variance of zp and its covariance with 

p are 

T

2

2 1 1 1 0 2

1 1 2 0 0 1
2

0 1 0 3 0 0

0 0 0 0 1 0

z

    
          
    
        
    

p , and 

T
2 1 1 1 0 0

1 1 2 0 0 1
0

0 1 0 3 0 0

0 0 0 0 1 0

z

    
         
    
        
    

p p . As the 

expected returns of p and zp are equal and they are uncorrelated, zp induces a zero 

relation with respect to p. 

We will now show that the latter property is not coincidental to the last 

demonstration but, in fact, is a general property in this context:  it exists for any 

inefficient benchmark at any Markowitz world. Consider some inefficient benchmark 

p and the frontier portfolio with the same expected return q. Consider now the 

(degenerate) hyperbola spanned by q and p only. We claim that on this single 

expected return hyperbola, q must be the GMVP. This is because q was already the 

GMVP for its expected return on a hyperbola that was spanned by q, p and additional 

assets. Removing the additional assets from the set of assets available to span the 

hyperbola could not have improved the optimum, that is, could not have allowed the 

creation of a portfolio with variance lower than that of q.23 Thus, q must still be the 

GMVP on the hyperbola spanned by q and p. 

It is a well-known property that a GMVP’s covariance with all assets is equal 

to a positive constant, its variance [see Huang and Litzenberger (1988), Section. 3.12, 

                                                 
23 The presence of additional assets is not necessary for the argument, of course. However, were there 
no additional assets, q would have been the GMVP of the original hyperbola. 
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for example].24 This property, together with the one that we demonstrated above, that 

q is the GMVP on the hyperbola spanned by q and p, imply that within any 

Markowitz world any inefficient benchmark p and the frontier portfolio of the same 

expected return, q, have a covariance matrix of the form , 0F F
I F

F I

v v
v v

v v

 
  

 
, 

where Fv  is the variance of the frontier portfolio q, and Iv  is the variance of the 

inefficient portfolio of the same expected return, p.25 It, thus, becomes straight 

forward to identify a pair of weights, ( ,1 )  , of a portfolio that combines q and p, 

respectively, and form a portfolio that is uncorrelated with p. The weights of such a 

portfolio must solve the equation 
T

0
0

1 1
F F

F I

v v

v v




    
        

. Solving the equation we 

get the well-defined solution, ( ,1 ) ,I F

I F I F

v v

v v v v
 

 
     

. Note that the weight of 

the frontier portfolio, I

I F

v

v v
, is always positive and greater than one. It is the ratio of 

the variance of the inefficient portfolio over the variance increment of the inefficient 

portfolio over the frontier portfolio’s variance. This ratio can be interpreted as related 

to a relative measure of inefficiency. We also note that the variance of the zero 

                                                 
24 This property must also follow, and indeed follows, from direct calculation of the covariance 
between the GMVP and any portfolio a. The (weight vector of the) GMVP [see, for example, Feldman 

and Reisman (2003)] is 




1

T 1

V 1

1 V 1
. Thus, the covariance of the GMVP with any portfolio a is 

1

 
1

T
T 1 T 1

V 1
a V

1 V 1 1 V 1
, a positive constant, independent of a. As a could stand for the GMVP, this 

covariance is also the variance of the GMVP. 
25 This property is also implied by the CAPMR. Rearrange the CAPMR for some portfolio p with 

respect to some non-GMVP frontier portfolio q as z2

z

E( ) E( )

E( ) E( )

R R

R R
 





p q

q pq
q q

. Thus, for any portfolio p 

with the same expected return as q, this relation becomes 
2 q pq . In particular, for any p and u that 

have the same expected return as q and possibly 
2 2 p u , applying the above relation twice, we have 

2   q pq uq . 
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relation portfolio is I F

I F

v v

v v
  

T

2because,
I I

I F I F

F F

I F I F

v v
v v v vF F I F

z v v
F I I Fv v v v

v v v v

v v v v
  

 
 

                    
p . We 

identify additional properties. Where 2I Fv v , as is the case in our demonstration 

above, the variance of the zero relation portfolio is equal to the variance of the 

inefficient benchmark, that is, 2 2
z p p . (Of course, the expected returns of these 

portfolios are equal as well.)  Further, 2 ( 2 )I F I Fv v v v  , implies 

2 22 ( 2 )z F z Fv v  p p . 

If we define a measure of relative inefficiency RI, F

I F

v
RI

v v
 , we can write 

the variance ratio of the zero relation portfolio return over the frontier portfolio return 

as 
2

1z I

F I F

v
RI

v v v


  


p . Then, we note that 

2

0
1 1z

RI
F

RI
v


  p , that is, as the 

“inefficiency” of the benchmark grows, the zero relation portfolio gets closer to the 

frontier; and conversely, 
2

1z

RI
F

RI
v


  p , that is, the closer the benchmark 

gets to the frontier, the higher is the variance of zero relation portfolio. 

Graphical representations of LBPI properties. We will now present eight graphs that 

manifest the LBPI properties. For easy exposition and without loss of generality we 

follow the above demonstration. Figure 1 depicts the market’s four assets q, p, u, and 

v, the portfolio frontier they induce, and the GMVP. 
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Figure 2 depicts the tangent to the efficient benchmark q, which is also the 

pricing line induced by q. Note that v is a zero beta portfolio to q as it is at the level of 

the intercept of the tangent, or on the horizontal line. 

 

Figure 2: The Tangent Line and The Zero-Beta 
Portfolios 
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Figure 1:  The Portfolio Frontier
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Figure 3 depicts the hyperbola spanned by p and GMVP. This hyperbola must 

have GMVP as its own GMVP. 

 

Figure 4 depicts the tangent to p on the hyperbola spanned by p and GMVP. 

This tangent defines zp, p’s zero beta portfolio on this hyperbola and a locus of higher 

variance zero beta portfolios to p at the expected return of zp, on the green line. 

Figure 3:  The Inefficient Proxy-GMVP Frontier
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Figure 5 depicts the hyperbola spanned by v and zp. As both spanning 

portfolios are zero beta with respect to p, all this hyperbola’s portfolios are also zero 

beta with respect to p. In our demonstration, this hyperbola goes through the expected 

Figure 4: The Inefficient Proxy's Minimum Variance 
Zero-Beta Portfolios
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Figure 5: The Inefficient Proxy's Endogenous Zero-Beta 
Frontier
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value and standard deviation coordinates of p. As we demonstrate above, this is a 

special case that occurs when the variance of the inefficient benchmark p is double 

that of the corresponding efficient one, q. The analysis above also demonstrates that if 

p “moves” to the left (right), the hyperbola moves to the right (left). Note that this 

frontier/hyperbola is the locus of the minimum variance zero beta portfolios of p. 

Thus, for example, all exogenous zero relation portfolios, induced by u, for example, 

will be contained within this hyperbola [see Roll (1980)]. 

Figure 6 superimposes Figure 5 on Figure 4 and depicts two loci of portfolios 

that are zero beta with respect to p:  the horizontal line that passes through zp and the 

hyperbola spanned by v and zp. Combinations of portfolios from each locus further 

induce loci of portfolios that are zero relation portfolios with respect to p. 

 

Figure 7 depicts the direct generation of a zero relation to p by combining p 

and q. As in the analysis above and in Figure 5, the zero relation portfolio to p, in our 

demonstration, has the same expected value and standard deviation as p. 

Figure 6: The Inefficient Proxy's Zero-Beta Portfolios
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Figure 8 depicts an additional locus of portfolios that are zero beta with 

respect to p, generated by portfolio u, a market portfolio that is uncorrelated with p. 

 

We have thus, proved and illustrated the following proposition and corollary. 

Figure 8: The Inefficient Proxy's Exogenous Zero-Beta 
Frontier
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Figure 7:  Zero Relations
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Proposition 1. i) In a Markowitz world, any inefficient benchmark induces a zero 

relation. ii) Let, without loss of generality, the variance of some inefficient 

benchmark, p, be Iv  and that of the frontier portfolio of the same expected return, q, 

be Fv , 0I Fv v  . Then, the portfolio whose weights are  ,I F

I F I F

v v
v v v v


   in ( , )q p , 

respectively, induces a zero relation with respect to p, and its variance is I F

I F

v v
v v . 

Corollary 1. If the variance of the inefficient benchmark is double that of the frontier 

portfolio of the same expected return, then, the zero relation portfolio has the same 

variance (and, of course, the same expected return) as that of the inefficient 

benchmark. As the inefficient benchmark gets closer to the frontier, the variance of its 

zero relation grows to infinity. Conversely, as the variance of the inefficient 

benchmark grows to infinity, its zero relation portfolio gets closer to the frontier. 

The following proposition identifies, for any inefficient benchmark, a zero 

beta portfolio at a different expected return than that of the inefficient benchmark and 

its zero relation portfolio that was identified in Proposition 1. It is the minimum 

variance inefficient benchmark’s zero beta portfolio among all of the inefficient 

benchmark’s zero beta portfolios at all expected returns. 

Proposition 2. [Roll (1980), Huang and Litzenberger (1988), Section 3.15]. Consider 

the hyperbola spanned by some inefficient benchmark and the GMVP. Then, the 

GMVP is the GMVP of this hyperbola as well, and the zero beta portfolio of the 

inefficient benchmark on this hyperbola is the minimum variance zero beta portfolio 

of the inefficient benchmark, among all the  zero beta portfolios of the inefficient 

benchmark. 

The proof of the first part of Proposition 2 is similar to the proof of 

Proposition 1. The proof of the second part of Proposition 2, the identification of the 
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inefficient benchmark’s zero beta portfolio as the minimum variance one among all its 

zero beta portfolios, is demonstrated in Huang and Litzenberger (1988), Section 3.15, 

by Lagrange’s method. 

Corollary 2. The zero beta portfolios, with respect to some inefficient benchmark, 

identified in Propositions 1 and 2, are of different expected returns. 

Proof. The zero beta / zero relation portfolio identified in Proposition 1 is of the same 

expected return as the inefficient benchmark. The zero beta portfolio identified in 

Proposition 2 is on the other side, with respect to the inefficient benchmark, of the 

(non-degenerate) hyperbola spanned by the inefficient benchmark and the GMVP 

[see, for example, Huang and Litzenberger (1988), Section 3.15]. Thus, they must be 

of different expected returns. 

As the two zero beta portfolios identified in the propositions above are of 

different expected returns, they span a zero beta hyperbola that extends to all expected 

returns. We state this property in the following proposition. 

Proposition 3. Any inefficient benchmark induces a hyperbola of zero beta portfolios 

that extends to all expected returns. Such a hyperbola is the one spanned, for 

example, by the zero relation portfolio identified in Proposition 1, and by the 

“minimum variance zero beta portfolio” identified in Proposition 2. Moreover, this 

hyperbola consists of the minimum variance zero beta portfolios at every expected 

return. The hyperbola includes one frontier portfolio, the (single) frontier portfolio 

that is uncorrelated with the frontier portfolio that has the same expected return as 

the inefficient benchmark. 

Roll (1980) attains the results of Proposition 3 in a different way. Using our 

approach, the proof of the first and second part of Proposition 3 is straightforward. 

Proving the latter part of the proposition, the property that the said hyperbola consists 
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of the minimum variance zero beta portfolios for each expected return, can be done by 

contradiction. Following the proof of Proposition 1, existence of a zero beta portfolio 

with lower variance than that of the said hyperbola portfolio, will facilitate combining 

it with the frontier portfolio of the same expected return and constructing a portfolio 

with variance lower than that of the frontier portfolio. This is, of course, a 

contradiction. 

Note, also, that any zero beta hyperbola includes a single frontier portfolio. 

This frontier portfolio is the (only) frontier portfolio that is uncorrelated with the 

frontier portfolio of the same expected return as that of the inefficient benchmark that 

induces the zero beta hyperbola. In fact, all portfolios of the same expected return are 

uncorrelated with a single frontier portfolio. On the other hand, all the portfolios 

uncorrelated with a frontier portfolio are of a single expected return. A consequence is 

that as an inefficient benchmark becomes efficient, the zero beta hyperbola it induces 

degenerates/collapses to a degenerate (single expected return) hyperbola (or a line). 

See Roll (1980). 

We reemphasize that although a zero relation generally induces a zero 2R  in a 

LBPE type regression, the choice of any zero beta portfolio at any expected return—

except the single expected return corresponding to the frontier zero beta portfolio with 

respect to the benchmark (zq in our case)—induces a pricing error by inducing an 

incorrect excess expected return value / risk premium / coefficient on the beta in the 

LBPE. As we demonstrated, there are infinitely many such portfolio and for every 

expected return. The likelihood of identifying the “correct” zero beta portfolio among 

the infinitely many seems to be negligible. 

2.4 The LBPI Market Model: Correlated Explanatory Variables 

We cannot say that the omitted addend in the LBPE is uncorrelated with or 
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orthogonal to, the existing addends. 

Following Sharpe (1963) and Black (1972), we can write the LBPI market 

model. To do that, we replace, the explanatory random variable Rq  in the LBPE 

market model with the difference in the random variables R Rp e .26 Thus, we replace 

one market model addend, related to Rq , with two addends, related to Rp  and Re  

respectively. Recalling the construction method of the LBPI, it is easy to see that if p 

is indeed an inefficient portfolio (that is, if R Rp q ), then Rp  and Re  must be 

correlated. In other words, the two “new” addends in the LBPI market model must be 

correlated. This property might be material when considering the misspecification 

caused by ignoring, in implementations and tests, the addend related to Re . Thus, we 

cannot say that the omitted addend is orthogonal to, or uncorrelated with, the existing 

addends. 

 
3 Implications 

In this section we list a few implications of a Markowitz world. 

3.1 Misspecification and Factor Pricing 

Using models for efficient benchmarks with inefficient benchmarks data, as is 

the case of implementations and tests of the traditional CAPM, raises questions of 

internal consistency. While one can nominally claim that these implementations and 

tests are under joint hypothesis,27 under theoretical likelihood and ample empirical 

evidence of benchmarks’ inefficiency (see also discussion in Section 3.5 below) these 

claims seem irrelevant. 

Factor pricing models, however, do not suffer from internal inconsistency as 

                                                 
26 Recall that by construction R R R p q e , thus R R R q p e . 
27 Model’s validity and proxy’s efficiency. 
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they simply identify, endogenously or exogenously, factors that span a subspace of 

returns. If this subspace includes a portfolio that is on the portfolio frontier, there is 

(with respect to this portfolio) a well-specified market pricing rule. The question then 

becomes to empirically identify the single portfolio/relevant pricing kernel out of the 

infinitely many spanned by the factors, as previous works (RR, KS, for example) 

suggested that choosing the combination that induces the highest R2 is not a relevant 

criterion.28 If, however, all portfolios spanned by the factors are inefficient—that is, 

the frontier spanned by the factors is strictly inside the portfolio frontier and does not 

include even one portfolio that is tangent to the portfolio frontier—the factor pricing 

will be subject to (all) the misspecifications that we identified above. These are true, 

of course, whether factors are endogenously identified or exogenously specified. Note 

that spanning two distinct frontier portfolios implies spanning the full return space. 

The likelihood that using a subset of securities’ free floating portions we will be able 

to span even one portfolio of the frontier of “what we care about,” which reflects also 

not fully securitized factors (human capital, energy resources, real-estate,…) is nil to 

negligible, we believe. 

3.2 Misspecification of the LBPE and a Reemphasis of the Roll and Ross, 
Kandel and Stambaugh, and Jagannathan and Wang Implication 

 
Equation (6) is a well-specified LBPI and is distinctly different from the 

LBPE.29 We say that when using inefficient benchmarks with the LBPE, we use a 

misspecified relation because we unjustifiably and incorrectly force an addend in the 

specified equation to be zero. This misspecification reemphasizes the important RR, 

KS, and Jagannathan and Wang (1996) results that demonstrate that it is meaningless 

to use inefficient benchmarks to implement regressions of CAPM, which is designed 

                                                 
28 Note that this portfolio is the only one whose zero beta portfolios have the same expected return. 
29 As specified in Equation (1), for example. 
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to use efficient benchmarks. For example, KS write in their abstract, “If the index 

portfolio is inefficient, then the coefficients and 2R  from an ordinary least squares 

regression of expected returns on betas can equal essentially any values….” Because 

real-world benchmarks are practically inefficient, such regressions based on the 

classical LBPE are misspecified. Jagannathan and Wang (1996, p. 41), provide an 

example of a portfolios rearrangement, to which the LBPE should not be sensitive, 

that reduces the 2R from 95% to zero. 

The misspecification that we demonstrate is robust with respect to the 

explanatory power of the betas. Positive explanatory power of the betas does not 

imply that the well-specified LBPI would have resulted with the same values for R2 

and coefficients. In other words, CAPM regressions that unduly constrain a 

specification addend to be zero are subject to getting meaningless R2 and coefficient 

values regardless of the R2 and coefficients they produce. Thus, CAPM regressions 

that use different procedures from those used by Fama and French (1992), and that are 

able to produce positive beta explanatory power, are also subject to the same 

misspecification. In addition, this misspecification is robust to multiperiod and 

multifactor models, and to those conditioning on various attributes. 

A multitude of CAPM empirical studies followed the introduction of the 

CAPM in Sharpe (1964), Lintner (1965), Mossin (1966), and Black (1972), and the 

empirical works of Black, Jensen, and Scholes (1972) and Fama and Macbeth (1973). 

Curiously, however, the issue of the misspecification with respect to inefficient 

benchmarks, though highlighted by Roll’s Critique, Roll (1977), was largely ignored 

and was not attended to until the Fama and French (1992) results induced the 

declaration, “Beta is dead…”. Please see references to notable exceptions at the end 

of the introduction section of this paper. 
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3.3 Infinitely Many Theoretical Zero Relations Within a Markowitz World 

While a main implication of this paper is the misspecification of the LBPE 

with inefficient portfolio benchmarks and the values of the misspecified coefficients 

and 2R  are immaterial, the prevalence and likelihood of zero relations has captured 

special interest in the literature. RR said, in their abstract, “For the special case of zero 

relation, a market portfolio proxy must lie inside the frontier, but it may be close to 

the frontier.” On page 104, they write, “Portfolios that produce a zero cross-sectional 

slope…lie on a parabola that is tangent to the efficient frontier at the global minimum 

variance point.” In addition, their Figure 1, page 10530 draws a boundary region that 

contains zero relation benchmarks, one such portfolio being 22 basis points away 

from the portfolio frontier. We emphasize that where the LBPE is well defined, any 

inefficient benchmark (regardless of its “distance” from the efficient frontier) has at 

least one and possibly infinitely many portfolios that induce zero relations. 

We say that for benchmarks whose expected returns are equal to that of the 

GMVP, the LBPI is not well defined because, as described above and in Appendix A, 

the GMVP has no zero beta portfolios and the limit zero beta rate is infinity. We 

identify, however, a degenerate indeterminate case that non-uniquely allows a 

theoretical zero relation: where all securities have the same expected return. The 

theoretical zero relation, however, is one possible relation out of infinitely many 

possible ones. 

3.4 The Misspecification with Respect to Any Zero Beta Portfolio 

When considering the misspecification of the LBPE with inefficient 

benchmarks where the LBPE is well defined, it is important to note that zero beta 

portfolios other than those noted below induce an incorrect excess expected return 

                                                 
30 This figure is reproduced as Figure 13.1, in Bodie, Kane, and Marcus (2005), Chapter 13, page 421. 
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premium in the LBPE and, thus, a pricing error. This is in addition to the zero beta 

portfolios with expected returns equal to that of the benchmark, which induce zero 

relations, and in addition to the zero beta portfolios of expected return equal to that of 

the frontier zero beta portfolio, which induce the correct excess expected return value 

in the LBPE. As stated above, there are infinitely many such portfolios and for each 

expected return. 

We can specify regions where the zero beta portfolios could lie [see Roll 

(1980)], but considering the measure of these portfolios out of all portfolios might be 

irrelevant. Also, because a Markowitz world specifies only the first two moments of 

assets’ return distributions, each point in the mean-variance space might represent 

more than one asset. These zero beta portfolios induce zero relations or incorrect 

excess expected return values, thus, pricing errors. 

3.5 A Robust LBPI and Incomplete Information Equilibria 

Expected returns and variances, and thus the portfolio frontier, are 

unobservable. Moreover, assets that are correlated with returns on optimally invested 

wealth or consumption growth—human capital, real-estate, and energy, for 

example—are not fully securitized and traded. Thus, in all likelihood, real-world 

portfolio benchmarks are inefficient. Though Equation (6) is a robust LBPI in the 

sense that it holds for all benchmarks whether efficient or inefficient, an interesting 

question might arise regarding the usefulness of this relation, as inefficient 

benchmarks are unobservable as well. The answer to this question is twofold. First, 

observable or unobservable, the LBPI had better be well specified. Particularly, the 

LBPI expresses any portfolio as a combination of an inefficient one and the difference 

between an efficient portfolio and the inefficient one. The LBPE constrains this 

difference to be zero, limiting portfolios to be efficient. This constraint, however, is 
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not satisfied; thus, the CAPM, which is a constrained (special case) of the LBPI, is 

misspecified. Because the LBPE is misspecified with inefficient portfolio 

benchmarks, we should use the LBPI in implementation and testing. 

Second, to resolve the problem of unobservable means and covariances, we 

suggest the use of an incomplete information methodology. There we would identify a 

LBPE in terms of endogenously determined moments. We would use Bayesian 

inference methods (filters) to form these moments, conditional on observations. These 

observations would include (noisy) functions of the sought-after moments, such as 

prices, outputs, and macroeconomic variables. Such equilibria in a multiperiod, 

multifactor context were developed by Dothan and Feldman (1986), Detemple (1986, 

1991), Feldman (1989, 1992, 2002, 2003), Lundtofte (2006, 2007), Björk, Davis and 

Landén (2010), and many others. Feldman (2007) includes a review of incomplete 

information works and a discussion of issues related to these equilibria. 

 
4 Conclusion 

The Sharpe-Lintner-Mossin-Black classical CAPM type relation implies an 

exact non-zero relation between expected returns and betas of frontier portfolios other 

than the GMVP. Because neither expected returns nor betas are directly observable 

and because not all assets that covary with the return on optimally invested portfolios 

or consumption growth are fully securitized, it is highly likely that asset pricing 

implementations and tests (linear beta pricing, factor pricing, stochastic discount 

factor pricing, risk neutral measure pricing) use, or correspond to, inefficient 

portfolios benchmarks. Roll and Ross (1994), Kandel and Stambaugh (1995), and 

Jagannathan and Wang (1996) demonstrated that inefficiency of benchmarks might 

render LBPE regression results meaningless. They offer their finding as the reason 

behind the empirical results of Fama and French (1992) and others, and they 
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intensively examine the relation between expected returns and betas. 

We introduce the LBPI specification, the LBPE for any (inefficient) portfolio 

benchmarks. We suggest that because we use inefficient benchmarks, we should use 

the LBPI in implementations and tests, and not use the LBPE, which is misspecified 

for use with inefficient portfolios. Three sources of misspecification arise when using 

the LBPE with inefficient index portfolios. One source of misspecification stems from 

ignoring an addend in the LBPI. The second source arises because of the infinitely 

many zero beta portfolios, at all expected returns, which are likely to induce incorrect 

excess expected return values in the LBPE. And the third source of misspecification 

arises because betas of inefficient benchmarks are different from those of efficient 

ones. 

Using the LBPE with inefficient benchmarks is a misspecification that renders 

the resulting coefficients and 2R  meaningless. This reemphasizes the RR and KS 

implication that the LBPE is misspecified for use with inefficient benchmarks, which 

renders CAPM regressions with inefficient benchmarks meaningless. This 

misspecification is robust to CAPM procedures that, unlike Fama and French (1992), 

find explanatory powers of betas and is robust to various extensions of the basic 

model, such as multiperiod, multifactor, and the conditioning on various attributes. To 

overcome the problem that means and covariances are not observable, we suggest 

implementing and testing incomplete information equilibria, described in Feldman 

(2007), for example. 

While the analysis in this paper is done in a single period mean-variance 

framework, its implications apply to multiperiod, multifactor models. This is because 

we can see the single period mean-variance model here as a “freeze frame” picture of 

a dynamic equilibrium where, because of the tradeoff between time and space, only 
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the instantaneous mean and instantaneous variance of returns are relevant until the 

decisions revision in the next time instant. 

 
Appendix A 

A1 Where the LBPI is Not Well Defined 

In this appendix, we explore the case where the CAPMI is not well defined. 

This is the case where the benchmark is of the same expected return as the GMVP. 

While willingly choosing a benchmark of the GMVP expected return makes no sense, 

it is important to study this case because it is an empirical possibility, as the 

placements of the benchmark, GMVP, and the other assets/portfolios in Markowitz 

world (the mean-variance space) are unobservable. Within this case, we further 

identify a special case, one where all securities have the same expected return. 

Equation (6) implies that there is a zero coefficient of pβ  if and only if 

E( ) E( )zR Rp p . The latter never happens with frontier zero beta portfolios because if 

E( ) E( )R Rp GMVP  [E( ) E( )]R Rp GMVP , then E( ) E( )zR Rp GMVP  [E( ) E( )]zR Rp GMVP  

(where zp is a frontier portfolio). See, for example, Huang and Litzenberger (1988), 

Equation (3.14.2), which follows Merton (1972).31 Also, geometrically, 

E( ) E( )zR Rp p  (where zp is a frontier portfolio) requires a flat frontier tangent 

(parallel to the standard deviation axis), a situation that cannot happen.32 

We will now examine the case where E( ) E( )R Rp GMVP . Because the 

covariance of the GMVP with any security equals the variance of the GMVP,33 it 

induces a beta of one for all securities; there is no zero beta portfolio, zGMVP, and 

thus no zero beta rate; and we say that the LBPE is not well defined (with respect to 
                                                 
31 Geometrically, this means that the above (below) GMVP frontier portfolios’ tangent intersects the 
expected return axis below (above) the GMVP expected return. 
32 See the discussion of the case where all securities have the same expected return (below). 
33 See, for example, Roll (1997), also Huang and Litzenberger (1988), Section 3.12. 
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the GMVP). We also note that as the reference frontier portfolio moves (along the 

frontier) toward the GMVP, the absolute value of the zero beta rate tends to infinity. 

When at least two securities have different expected returns, the LBPE does not exist. 

Geometrically, in this case, E( ) E( )R Rp GMVP  implies a frontier tangent having no 

intersection with (and parallel to) the expected return axis. 

If, however, all market securities have the same expected return, the frontier 

consists of one point only, which is also the GMVP, and any benchmark has the same 

expected return as the GMVP. Thus, this is a special instance of the case described 

above where the LBPE is not well defined. Because all securities have the same 

expected return and the same beta, and because the zero beta rate is not specified, 

there are infinitely many pairs of coefficients that average any constant (standing for 

the non-existent zero beta rate) and 1 (standing for any security’s beta) to equal 

securities’ expected return. In particular, there is a pair of coefficients that allows a 

theoretical zero relation: if the constant that stands for the (non-existent) zero beta rate 

is equal to securities’ expected return, then a coefficient of one of the constants and a 

coefficient of zero of the betas explain all securities’ expected returns. We call this a 

case of indeterminate degeneracy. We use the term degeneracy because expected 

returns degenerate to a single value, the hyperbola degenerates to a single point, the 

GMVP and the market portfolio degenerate to one portfolio, all betas degenerate to 

one, and a zero beta portfolio and thus the zero beta rate do not exist. We call this case 

indeterminate because there are infinitely many distinct pairs of coefficients that 

explain expected returns, of which the theoretical zero relation is only one. Because of 

the latter property, we also say that the theoretical zero relation is non-unique. 

A2 Discontinuity and Disparity 

This section highlights properties related to the transition between the two 
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cases, where the LBPE is and is not well defined. In a Markowitz world, there is an 

interesting “asymptotic discontinuity” when the reference portfolio becomes the 

GMVP. This discontinuity does not exist in a model with a risk-free asset. When there 

is a risk-free asset, the tangency portfolio becomes the GMVP as the risk-free rate 

goes to infinity (or negative infinity). Correspondingly, in analytical solutions, the 

weights of the frontier tangency portfolio go to the weights of the GMVP as the risk-

free rate goes to infinity. Needless to say, the risk-free asset is always zero beta with 

respect to all risky portfolios, including the tangency portfolio. 

In a zero beta model, which is the model in this paper, as the tangency 

portfolio tends to become the GMVP, the zero beta rate grows in absolute value and 

tends to infinity. However, as the tangency portfolio becomes the GMVP, its beta 

with any portfolio becomes one. There are no zero beta portfolios, and thus no zero 

beta rate. 

Thus, in the “risk-free” case zero beta portfolios and a zero beta rate (albeit 

possibly infinitely high) always exist, including the case where the tangency portfolio 

becomes the GMVP. In the zero beta case, in contrast, when the tangency portfolio 

becomes the GMVP, the beta it induces on all assets becomes one; there are no zero 

beta portfolios and no zero beta rate.  

We call the phenomenon of “disappearance” of zero beta assets and rate 

within the zero beta model “asymptotic discontinuity” and the qualitative difference 

between the properties of the model with and without a risk-free rate “disparity.” 
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