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Abstract

This paper extends the set of feasible algorithms for finding core allocations in

a job-matching game. In Kelso and Crawford, Econometrica 1982, firms make

offers to the workers. The reverse case of algorithms in which the workers make

the offers was not analysed as it was expected to lead to technical difficulties.

In fact, such algorithms can easily be constructed. They are similar to the ones

described by Kelso and Crawford, and the same assumptions are critical.
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1 Introduction

In their analysis of job-matching processes that lead to core allocations with non-homogeneous

workers and firms, Kelso and Crawford (1982) restrict their attention to algorithms in which

only the firms can make offers, and the workers can only accept or reject offers. This follows

from the conjecture that the analogous algorithm in which workers make offers would not

lead to clear results: “We have not considered the effects of reversing the roles of firms and

workers in the adjustment process [. . .]. Because of the use made of our assumption that

workers are indifferent about which other workers their firms hire, this seems to involve sig-

nificantly greater difficulties in the non–separable case” (Kelso and Crawford (1982), fn. 4,

p. 1494. See also Roth and Sotomayor (1990, p. 184)).

In fact, it is possible to design an algorithm that achieves exactly that: workers make of-

fers to firms, and the algorithm leads to a ’worker-optimal’ core allocation. The assumptions

which are necessary are very similar to the ones necessary to characterise the analogous

allocations using the algorithm with only the firms making offers. This emphasizes the

importance of the “gross substitutability” assumption emphasized in Kelso and Crawford

(1982).

2 Assumptions and Definitions

Expressions and notation are taken from Kelso and Crawford (1982) for simplicity. There is

a set of firms F, j ∈ F , with production functions yj(C), where C is a set of workers from

W . The firm’s profit function is πj(C; sj), where sj is the vector of salaries sij paid to the

workers i ∈ C. The workers have preferences over the firms and the salaries these firms pay.

The preferences of worker i are expressed in the utility function ui(j; sij). A matching is

described by the correspondence µ : W ∪ F → W ∪ F .

The following assumptions are the ’No Free Lunch’ and ’Gross Substitutability’ assump-

tions from Kelso and Crawford (1982).

Assumption 1 (NFL) yj(∅) = 0 for all firms j ∈ F .
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Assumption 2 (GS) M j(sj) :=
{
C

∣∣C ∈ arg maxC πj(C; sj)
}

and sj ≤ s̃j, T j(Cj) :=
{
i
∣∣i ∈ Cj and s̃ij = sij

}
. There exists C̃j ∈ M j(s̃j) such that T j(Cj) ⊆ C̃j.

Each firm may employ several workers i ∈ W , but each worker is allowed to work for at most

one firm. Workers are not interested in who else is being employed by the same firm.

Definition 1 Individual rationality

∀i : siµ(i) ≥ σiµ(i), the worst outcome is ui(j; σij) = ui(µ(i) = i; 0).

∀j : πj ≥ 0, the worst outcome is πj(µ(j) = j) = πj(∅) = 0.

Definition 2 Core allocations

A (discrete) strict core allocation is an individually rational allocation (µ; Cj
µ, s

j) such that

there are no coalitions between firms and sets of workers (j, C) and (integer) salaries rj

that satisfy ui(j; rij) ≥ ui(µ(i); siµ(i)) for all i ∈ C, and πj(Cj; rj) ≥ πj(Cj
µ; sj

µ), with strict

inequality for at least one member of (j, C). A (discrete) core allocation is defined in the

same way, except for all inequalities being strict.

3 The Salary-Adjustment Process With Worker Offers

In the first round all workers propose some ζij to some firm. ζij must be an exaggerated

salary demand, which no firm will accept. The idea behind this is that the worker should

not make initial demands too low, maybe below some stable assignment salary. By starting

with much too high salary demands, only the number of periods the algorithm needs to

find an equilibrium is higher, but under the given assumptions these extra rounds do not

add any costs. For simplicity let ζij be the highest profit that the firm can produce: ζij =

maxC⊆W πj(C, σj).

In all following rounds the workers who were not accepted in the preceding round are

allowed to make offers to any firm, given the vector of permitted salaries sij(t) in this

round. They can either make an offer to the same firm that rejected the offer, demanding

sij(t + 1) = sij(t)− 1, or they can make an offer to another firm `, demanding a permitted
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salary si`(t + 1) = si`(t). All workers who were accepted repeat their offer unchanged:

sij(t + 1) = sij(t).

In each round the firms accept a preferred (profit–maximizing) subset of all offers they

have (see Lemma 1 below.) Offers from earlier rounds may be rejected as well as new ones.

The algorithm stops at some round t∗ if no offers are rejected.

The workers have preferences over the set of all combinations (j; sij) and, starting from

ζij, diminish their demanded utility levels after each rejection. In finite time they can reach

their reservation salaries σij, if enough rejections occur.

The firms have preferences over sets of workers and their demanded salaries, expressed

in the profit function. The firms are only interested in maximizing profits. The individual

marginal productivities of the workers and their salary demands are not of interest, only the

absolute difference between these values does matter.

The acceptance and rejection rules of the firms need some comments. Without further

restrictions it is not clear, why their situation is not worsened by following these rules, i.e.

why doing so should not leave scope for coalitions later. One could imagine for instance

that there are pairs of workers who together produce a high output, but not alone. Then

in the process a single offer would not be accepted, but an incidentally pairwise offer in the

same round would. This would allow for a coalition with this pair, if it is not matched to

the firm. In order to exclude this, assumption (GS) is needed. With (GS) the firm will not

incur any losses in the process by accepting in each round the profit-maximizing subset of

the new and old offers. The proof that the (GS)-assumption is a sufficient condition for this

is given below in Lemma 1.

The losses may not only stem from complementarities as described above, but also from

the possibility that after rejecting an offer the same offer could be repeated with a lower

salary demand. Both causes for losses are ruled out if the workers are “more substitutes than

complements”, i.e. by the competition between the workers for jobs that this substitutability

produces.
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4 Core Allocations

In this section two theorems are stated and proved. To simplify the comparison with the

algorithm in Kelso and Crawford (1982), the formulations and proofs are as similar as possible

in language and structure.

Lemma 1 When assumption (GS) holds, the firms incur no losses in the process by accept-

ing in each round the profit–maximizing subset of offers.

Proof: The idea of the proof is that no firm when hearing an offer will ever regret to

have rejected another offer in an earlier round. Since the firm can in every round reject

every offer it has not yet rejected, there are no possible ’mistakes’ if profits are maximized

independently in each round. The proof is by contradiction, showing that no firm will be

the first to feel such regrets. Suppose that in round τ firm j hears an offer sτj from wτ , and

regrets having rejected an offer sρj from wρ in a round ρ < τ . Up to round τ − 1 it did not

regret the rejection, but when it hears wτ ’s offer, it would like to add wρ with unchanged

salary demand. During the adjustment process, the permitted salaries cannot have risen. All

workers wk who offer in round τ surely have demanded higher salaries at an earlier round:

skj(ρ) ≥ skj(τ) (In which round these earlier offers happened exactly does not matter, since

the firm by hypothesis feels uncomfortable for the first time in round τ). Using the notation

of assumption (GS), s̃kj ≥ skj and s̃ρj = sρj. Now, wρ is accepted when some coworkers are

paid sij, but not when some of these coworkers are more expensive, contradicting (GS).

Theorem 1 The salary-adjustment process converges in finite time to a core allocation in

the discrete market for which it is defined.

Proof: The proof follows from Steps 1–3

Step 1: In finite time, every worker is matched and the process stops.

This follows from the fact that after each rejection the demanded salaries are diminished.

After a finite number of rounds (if all ζij < ∞) each worker will either have been accepted

by some firm or the sinking salary demands will have reached the reservation salaries σij (for

all j). In the latter case a worker will be matched with himself: He will be unemployed.
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Step 2: The salary-adjustment process converges to an individually rational allocation.

Say the process stops at round t∗ with the matching µ. By voluntariness of the offers,

siµ(i) ≥ σiµ(i) for all workers i who are matched to a firm. By the acceptance and rejection

rules and by Lemma 1, for all firms jπj(Cj
µ; sj

µ(t∗)) ≥ 0 (since πj(∅) = 0 can always be

chosen.)

Step 3: The process converges to a core allocation in the discrete market for which it is

defined.

By Step 1 the process converges to an equilibrium. Suppose this equilibrium µ is not a core

allocation. Since by Step 2 µ is individually rational, there must be a coalition (j, C) and

integer salaries rj such that

ui(j; rij) > ui(µ(i); siµ(i)(t
∗))∀i ∈ C, and (1)

πj(C, rj) > πj(Cj
µ; sj

µ(t∗)). (2)

Then j has never received an offer sij ≤ rij from i, which it clearly would have accepted.

Since in the process the demanded salaries cannot rise, the permitted salary demands at

round t∗ satisfy sij(t
∗) ≥ rij.

Then ui(j; sij(t
∗)) ≥ ui(j; rij). Together with the hypothesis (1) a contradictory inequal-

ity follows:

ui(j; sij(t
∗)) > ui(µ(i); siµ(i)(t

∗)), (3)

showing that µ could not have been an equilibrium.

Theorem 2 The salary-adjustment process converges to a discrete strict core allocation that

is at least as good for every worker as any other strict core allocation.

Proof: For the proof that the salary-adjustment process converges to the core defined by

weak dominance, the assumption is needed that in the core there is no indifference. That is,

given any allocation in the core and the permitted salaries corresponding to it, there is no

other allocation with the same permitted salaries that yields the same profits and utilities.
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Suppose that given a core assignment a firm could form a coalition with some workers,

netting a higher profit. All workers in this coalition who weren’t contained in the original

assignment of firm j must strictly prefer j to the firm they have been assigned to. Then

Theorem 1 applies and the assignment cannot be an equilibrium.

To prove that for all w this core allocation is at least as good as any other core allocation,

it can be shown that no firm would ever reject an offer sij that is part of any core allocation.

This follows directly from Lemma 1, since each firm must in any core allocation have chosen

a profit– maximizing set of workers. Therefore, all workers who are matched in any core

allocation to a firm, will be accepted, if they demand the corresponding salary. And since

the workers make offers following their preferences, the outcome will be for each worker the

most preferred firm–salary combination in the core (yielding the highest utility).
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