Lecture 9

Conditional CAPM

The CAPM Revisited

• Let’s rewrite the CAPM DGP:

\[R_{i,t} - r_f = \alpha_{i,t} + \beta_{i,t} (R_{m,t} - r_f) + \epsilon_{i,t} \]

\[\beta_{i} = \text{Cov}(R_{i,t}, R_{m,t}) / \text{Var}(R_{m,t}) \]

• The CAPM can be written in terms of cross sectional returns. That is the SML:

\[E[R_{i,t} - r_f] = \gamma_0 + \gamma_1 \beta_{i} \]

There is a linear constant relation between \(E[R_{i,t} - r_f] \) and \(\beta_{i} \).

• This version of the CAPM is called the static CAPM, since \(\beta_{i} \) is constant, or unconditional CAPM, since conditional information plays no role in determining excess returns.
• Q: Is beta unresponsive to (conditioning) information?
 • Suppose that in January we have information about asset i’s next dividend. Suppose this was true for every stock. Then, what should the risk/return tradeoff look like over the course of a year?

• Time-varying expected returns are possible.
• Q: What about time-varying risk premia?

• Other problems with an unconditional CAPM:
 – Leverage causes equity betas to rise during a recession (affects asset betas to a lesser extent).
 – Firms with different types of assets will be affected by the business cycle in different ways.
 – Technology changes.
 – Consumers’ tastes change.
 – One period model, with multi-period agents.

• In particular, the unconditional CAPM does not describe well the CS of average stock returns: The SML fails in the CS.

• The CAPM does not explain why, over the last forty years:
 - small stocks outperform large stocks (the “size effect”).

 - firms with high book-to-market (B/M) ratios outperform those with low B/M ratios (the “value premium”).

 -stocks with high prior returns during the past year continue to outperform those with low prior returns (‘momentum’).
The Conditional CAPM

• We have discussed a lot of anomalies that reject CAPM. Recall that some of the “anomaly” variables seemed related to β.

• Simple idea (“trick”) to “rescue” the CAPM: The ‘anomaly’ variables proxy for time-varying market risk exposures:

$$R_{i,t} - r_f = \alpha_{i,t} + \beta_{i,t} (R_{m,t} - r_f) + \epsilon_{i,t}$$

$$\beta_{i,t} = \frac{\text{Cov}(R_{i,t}, R_{m,t})}{\text{Var}(R_{m,t})} = \frac{\text{Cov}(R_{i,t}, R_{m,t}|I_t)}{\text{Var}(R_{m,t}|I_t)}$$

where I_t represents the information set available at time t. (Note, the conditional cross-sectional CAPM notation used I_{t-1} to represent the information set available at time t. Accordingly, they also use $\beta_{i,t-1}$.

$=> \beta_{i,t-1}$ is time varying. Conditional information can affect $\beta_{i,t-1}$.

• In the SML formulation of the CAPM (and using usual notation):

$$R_{i,t} - r_f = \gamma_{0,t-1} + \gamma_{1,t-1} \beta_{i,t-1} + \epsilon_{i,t}$$

• The SML is used to explain CS returns. Taking expectations:

$$E[R_{i,t} - r_f] = E[\gamma_{0,t-1}] + E[\gamma_{1,t-1}] E[\beta_{i,t-1}] + \text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1})$$

If the $\text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1})=0$ (or a linear function of the expected beta) for asset i, then we have the static CAPM back: expected returns are a linear function of the expected beta.

• In general, $\text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1})\neq 0$. During bad economic times, the expected market risk premium is relatively high, more leveraged firms are likely to face more financial difficulties and have higher conditional betas.
Given I_{t-1}, $\text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1}) = 0$ is testable.

- This is the base for conditional CAPM testing.

- Q: But, what is the right conditioning information set, I_{t-1}?
 Usually, papers condition on observables.
 - Estimation error and Roll’s critique are still alive.
 - If the variables in I_{t-1} are chosen according to previous research, data mining problems are also alive and well.

- Q: How do we model $\beta_{i,t-1}$ –actually, how do we model $\text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1})$?
 A great source of papers. The conditional CAPM is an ad-hoc attempt to explain anomalies. (Moreover, in general, theory does not tell us much about functional forms or conditioning variables.)

 \Rightarrow It is up to the researchers to come up with $\beta_{i,t-1} = f(Z_{t-1})$.

- There are two usual approaches to model $\beta_{i,t-1}$:
 1. Time-series, where the dynamics of $\beta_{i,t-1}$ are specified by a time series model.
 2. Exogenous driving variables: $\beta_{i,t-1} = f(Z_{t})$, where Z_{t} is an exogenous variable (say D/P, size, etc.). In general, $f(.)$ is linear.

 Example:
 \[
 \beta_{i,t-1} = \beta_{i,0} + \beta_{i,1} Z_{t}
 \]
 \[
 R_{i,t} = \alpha_{i} + (\beta_{i,0} + \beta_{i,1} Z_{t}) R_{m,t} + \varepsilon_{i,t}
 = \alpha_{i} + \beta_{i,0} R_{m,t} + \beta_{i,1} Z_{t} R_{m,t} + \varepsilon_{i,t}
 \]
 Now we have a multifactor model: easy to estimate and to test.

 Testing the conditional CAPM: $H_0: \beta_{i,1} = 0$. (A t-test would do it.)

 Note: An application of this example is the up-β and down-β:
 \[
 Z_{t} = 1 \quad \text{if} \ g(R_{m,t-1}) > 0 \quad \text{-say,} \ g(R_{m,t-1}) = R_{m,t-1}
 \]
 \[
 Z_{t} = 0 \quad \text{otherwise.}
 \]
Conditional vs. Unconditional CAPM

- The conditional CAPM says that expected returns are proportional to conditional betas: \(E[R_{i,t}|I_{t-1}] = \beta_{i,t-1} \gamma_{t-1} \).

- Taking unconditional expectations:
 \[
 E[R_{t,t}] = E[\beta_{i,t-1}] E[\gamma_{t-1}] + \text{Cov}(\gamma_{t-1}, \beta_{i,t-1}) = \beta \gamma + \text{Cov}(\gamma_{t-1}, \beta_{i,t-1})
 \]

- The asset’s unconditional alpha is defined as:
 \[
 \alpha_u = E[R_{i,t}] - \beta_u \gamma
 \]

- Substituting for \(E[R_{i,t}] \) yields:
 \[
 \alpha_u = \gamma (\beta - \beta_u) + \text{cov}(\beta_{i,t-1}, \gamma_{t-1}).
 \]

- Note: Under some conditions, discussed below, a stock’s \(\beta_u \) and its expected conditional beta (\(\beta \)) will be similar.

- It can be shown (see Lewellen and Nagel (2006)):
 \[
 \alpha_u = [1 - \gamma^2/\sigma_m^2] \text{cov}(\beta_{t-1}, \gamma_{t-1}) - \gamma/\sigma_m^2 \text{cov}(\beta_{t-1}, (\gamma_{t-1} - \gamma)^2) - \gamma/\sigma_m^2 \text{cov}(\beta_{t-1}, \sigma_{m,t}^2)
 \]

- Some implications:
 - It is well known that the conditional CAPM could hold perfectly, period-by-period, even though stocks are mispriced by the unconditional CAPM. Jensen (1968), Dybvig and Ross (1985), and Jagannathan and Wang (1996).

 - A stock’s conditional alpha (or pricing error) might be zero, when its \(\alpha_u \) is not, if its beta changes through time and is correlated with the equity premium or with conditional market volatility.

 - That is, the market portfolio might be conditionally MV efficient in every period but, at the same time, not on the unconditional MV efficient frontier. Hansen and Richard (1987).
Application 1: International CAPM

• From the CAPM DGP, the International CAPM can be written:
 \[R_{i,t} = \alpha_i + \beta_i R_{w,t} + \epsilon_{i,t} \]
 \[\beta_i = \frac{\text{Cov}(R_{i,t}, R_{w,t})}{\text{Var}(R_{w,t})} \]

• Using a bivariate GARCH model, we can make \(\beta \) time varying:
 \[\beta_{i,t} = \frac{\text{Cov}_t(R_{i,t}, R_{w,t})}{\text{Var}_t(R_{w,t})} \]

• A model for the World factor is needed. Usually, an AR(p) model:
 \[R_{w,t} = \delta_0 + \delta_1 R_{w,t-1} + \epsilon_{w,t} \]
 where \(\epsilon_{w,t} \) and \(\epsilon_{i,t} \) follow a bivariate GARCH model.

Mark (1988) and Ng (1991) find significant time-variation in \(\beta_{i,t} \).
• **Braun, Nelson and Sunier** (1995): Use an E-GARCH framework, where $\beta_{i,t}$ also respond asymmetrically to positive versus negative domestic ($\epsilon_{i,t}$) or world news ($\epsilon_{w,t}$).

$$R_{i,t} = \alpha_i + \beta_i(\epsilon_{i,t}, \epsilon_{w,t}) R_{w,t} + \epsilon_{i,t}$$

They find no significant time-variation evidence for their version of $\beta_{i,t}$.

• **Ramchand and Susmel** (1998): use a SWARCH model, where $\beta_{i,t}$ is state dependent:

$$R_{i,t} = \alpha_i + (\beta_{i,0} + \beta_{i,1} S_t) R_{w,t} + \epsilon_{i,t},$$

where $\epsilon_{i,t}$ follows a SWARCH model.

Strong evidence for state dependent $\beta_{i,t}$ in Pacific and North American markets, not that significant in European markets.

US: World Beta-varying coefficients using SWARCH model

![Graph](image-url)
• **Bekaert and Harvey** (1995): Study a conditional version of the ICAPM for emerging markets’ stocks, where beta is conditioned on an unobservable state variable that takes on the value of zero or one.

\[R_{it} = \alpha + \beta_1 (1-S_t) R_{m,t-1} + \beta_2 S_t R_{w,t-1} + \epsilon_{w,t} \]

where \(S_t \) is an unobservable state variable, which they considered linked to the degree of the emerging market’s integration with a world benchmark.

They find evidence for time variation on \(\beta_1 \) and \(\beta_2 \), somewhat consistent with partial integration.

Note: These International CAPM papers do not use exogenous observable information. These papers focus on the time-series side of expected returns. They provide a very simple way of constructing time-varying betas.

Application 2: CS returns

• **Ferson and Harvey** (1993): Attempt to explain the CS expected returns across world stock markets.

 • FH make \(\alpha_{it} \) and \(\beta_{it} \) linear function of variables such as dividend yields and the slope of the term structure.

\[R_{it} = (\alpha_{0i} + \alpha'_{1i} Z_{t-1} + \alpha'_{2i} A_{it-1}) + (\beta_{0i} + \beta'_{1i} Z_{t-1} + \beta'_{2i} A_{it-1}) R_{m,t} + \epsilon_{it} \]

 \(Z_{t-1} \): global variables (“instruments”) that affect all assets –say, interest rates, world and national factors.

 \(A_{it-1} \): asset specific variables (“instruments”) –say, P/E, D/P, volatility.

Note: “Instruments,” since they are pre-determined at \(t \).
• FH find several instruments to be significant – i.e., $\text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1}) \neq 0$.
 - Betas are time-varying, mostly due to local variables: E/P, inflation, long-term interest rates.
 - Alphas are also time-varying, due to: E/P, P/CF, P/BV, volatility, inflation, long-term interest rates, and the term spread.
 - Economic significance: typical abnormal return (in response to 1σ change in X) around 1-2% per month

Overall, however, the model explains a small percentage of the predicted time variation of stock returns.

Note: Ferson and Korajczyck (1995), though, using a similar model for the U.S. stock market, cannot reject the constant β_i model.

• Jagannathan and Wang (1996): Work with the SML to explain CS returns:

 $$E[R_{i,t} - r_f] = E[\gamma_{0,t-1}] + E[\gamma_{1,t-1}] E[\beta_{i,t-1}] + \text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1})$$

• They decompose the conditional beta of any asset into 2 orthogonal components by projecting the conditional beta on the market risk premium.

 - For each asset i, JW define the beta-premium sensitivity as

 $$\upsilon_i = \text{Cov}(\gamma_{1,t-1}, \beta_{i,t-1}) / \text{Var}(\gamma_{1,t-1})$$

 $$\eta_{i,t-1} = \beta_{i,t-1} - E[\beta_{i,t-1}] - \upsilon_i (\gamma_{1,t-1} - E[\gamma_{1,t-1}])$$

 υ_i measures the sensitivity of the conditional beta to the market risk premium.

Then, rewriting the last equation as a regression:

$$\beta_{i,t-1} = E[\beta_{i,t-1}] - \upsilon_i (\gamma_{1,t-1} - E[\gamma_{1,t-1}]) + \eta_{i,t-1}$$

where $E[\eta_{i,t-1}] = E[\gamma_{1,t-1}, \eta_{i,t-1}] = 0$.
Now, the conditional beta can be written in three parts:
- The expected (unconditional) beta.
- A random variable perfectly correlated with the conditional market risk premium.
- Something mean zero and uncorrelated with the conditional market risk premium.

Going back to the SML:

$$E[R_{i,t} - r_f] = E[\gamma_{0,t-1}] + E[\gamma_{1,t-1}] E[\beta_{i,t-1}] + \nu_i \text{Var}(\gamma_{1,t-1})$$

The unconditional expected return on any asset i is a linear function of
- Expected beta
- Beta-prem sensitivity, the larger the sensitivity, the larger the variability of the “second part” of the conditional beta.

Note: The beta-prem sensitivity measures instability of β_i over the business cycle. Stocks with β_i that vary more over the cycle have higher $E[R_{i,t} - r_f]$.

- We are back to the Fama-MacBeth (1973) CS estimation.
- To estimate the model, we need to estimate:
 - Expected beta: $E[\beta_{i,t-1}]$
 - Estimates of beta-prem sensitivity: ν_i.

- We can see η does not affect expected returns, it affect $\beta_{i,t-1}$. Thus, we can concentrate on the first two parts of the conditional beta.

- We need to make assumptions about the stochastic process governing the joint temporal evolution of $\beta_{i,t-1}$ and $\gamma_{1,t-1}$.
• Usually, the JW-type conditional CAPM is estimated using the following SML formulation:

\[E[R_{i,t} - r_f] = \gamma_0 + \gamma_1 E[\beta_{i,t-1}] + \lambda_i \]

where \(E[\beta_{i,t-1}] \) will be an average beta for asset \(i \) and \(\lambda_i \) measures how the stock’s beta co-varies though time with the risk premium. Different assumptions will deliver different \(E[\beta_{i,t-1}] \) and \(\lambda_i \).

• Findings: JW find that the betas of small, high-B/M stocks vary over the business cycle in a way that, according to JW, largely explains why those stocks have positive unconditional alphas.

• Lettau and Ludvigson (2001), Santos and Veronesi (2005), and Lustig and Van Nieuwerburgh (2005) find similar results. All papers find a dramatic increase in \(R^2 \) for their conditional models.

• **Lettau and Ludvigson (2001):** Estimate how a stock consumption betas change with the consumption-to-wealth ratio, or CAY:

\[\beta_{i,t} = \beta_i + \delta_i \text{CAY}_t \]

where \(\beta_i \) and \(\delta_i \) are estimated in the first-pass regression:

\[R_{i,t} = \alpha_{i0} + \alpha_{i1} \text{CAY}_t + \beta_i \Delta c_i + \delta_i \text{CAY}_t \Delta c_i + e_{it}, \]

\(\text{CAY}_t \) is the consumption residuals from a Stock and Watson (1993) cointegrating regression, with assets \((a_t) \) and labor income \((y_t) \):

\(\text{CAY}_t = c_t - 0.31 a_t - 0.59 y_t - 0.60. \)

Then, substituting \(\beta_{i,t} \) into the unconditional relation gives:

\[E[R_{i,t}] = \beta_i \gamma + \delta_i \text{cov}(\text{CAY}_t, \gamma_t). \]

Note: There are some econometric issues here. Wealth (human capital) is not observable. Stationarity of proxy is an empirical matter.

• LL call their model a conditional C-CAPM. (More on Lecture 10.)
• LL use as γ a market returns and Δyt or Δct to estimate the SML.

• They also include other variables in the SML to test their conditional C-CAPM: Size and B/M. (Traditional omitted variables test)

• Note: LL’s model implies that the slope on βi should be the average consumption-beta risk premium and the slope on δi should be \(\text{cov}(CAY_t, γ_t)\).

• Class comment: Check the last row (6) on Table 6, Panel B –taken from LL. No coefficient has a significant t-stat, but R² is huge (.78)! Multicollinearity problem? (Recall that multicollinearity affects the standard errors, but not the estimates. The estimates are unbiased)

\[
\begin{array}{cccccc}
\text{Row} & \text{Constant} & \hat{R}_m & \Delta \alpha & \hat{R}_m & \Delta \beta & \text{t} \\
\hline
1 & 1.12 & -0.60 & -0.70 & 1.12 & -0.60 & -0.70 \\
(0.77) & (-2.59) & (-3.67) & (0.77) & (-2.59) & (-3.67) \\
2 & 0.13 & -0.80 & 0.82 & -0.40 & -0.70 & 1.24 \\
(0.78) & (-1.28) & (1.00) & (-0.40) & (-0.70) & (2.00) \\
3 & 0.09 & 0.26 & 0.26 & 0.26 & 0.26 & 0.26 \\
(0.46) & (-0.26) & (0.26) & (-0.26) & (0.26) & (0.26) \\
4 & -0.93 & 0.10 & -0.93 & 0.10 & -0.93 & 0.10 \\
(0.73) & (-1.00) & (0.73) & (-1.00) & (0.73) & (0.73) \\
0.09 & -0.84 & 0.09 & -0.84 & 0.09 & -0.84 \\
(0.48) & (-0.90) & (0.48) & (-0.90) & (0.48) & (0.48) \\
5 & 0.30 & 0.04 & 0.30 & 0.04 & 0.30 & 0.04 \\
(0.04) & (0.58) & (0.04) & (0.58) & (0.04) & (0.58) \\
6 & 0.09 & -0.10 & 0.09 & -0.10 & 0.09 & -0.10 \\
(0.21) & (-1.01) & (0.21) & (-1.01) & (0.21) & (-1.01) \\
7 & 0.05 & -0.10 & 0.05 & -0.10 & 0.05 & -0.10 \\
(0.05) & (-0.10) & (0.05) & (-0.10) & (0.05) & (-0.10)
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Row} & \text{Constant} & \hat{R}_m & \Delta \alpha & \hat{R}_m & \Delta \beta & \text{t} \\
\hline
1 & 1.12 & 1.17 & -0.20 & 1.12 & 1.17 & -0.20 \\
(0.08) & (1.08) & (0.08) & (1.08) & (0.08) & (1.08) \\
2 & 2.25 & 1.45 & 0.15 & 2.25 & 1.45 & 0.15 \\
(0.01) & (1.08) & (0.01) & (1.08) & (0.01) & (1.08) \\
3 & 1.91 & 0.30 & 1.91 & 0.30 & 1.91 & 0.30 \\
(0.21) & (0.45) & (0.21) & (0.45) & (0.21) & (0.45) \\
4 & 1.39 & 0.01 & 1.39 & 0.01 & 1.39 & 0.01 \\
(0.96) & (-0.19) & (0.96) & (-0.19) & (0.96) & (-0.19) \\
5 & 0.69 & 0.69 & 0.69 & 0.69 & 0.69 & 0.69 \\
(0.03) & (0.03) & (0.03) & (0.03) & (0.03) & (0.03) \\
6 & 0.99 & -0.02 & 0.99 & -0.02 & 0.99 & -0.02 \\
(0.03) & (0.03) & (0.03) & (0.03) & (0.03) & (0.03) \\
7 & 0.95 & -0.02 & 0.95 & -0.02 & 0.95 & -0.02 \\
(0.03) & (0.03) & (0.03) & (0.03) & (0.03) & (0.03) \\
\end{array}
\]

\[\text{Note: } \text{This table presents estimates of consumption-based Fama-French regressions using the variance on the Fama-French portfolio.} \]

\[\text{R}_m, \text{R}_f = \text{Fama-French portfolio.} \]

\[\text{R}_m, \text{R}_f = \text{Fama-French portfolio.} \]
Conditional CAPM: Does it Work?

• Lewellen and Nagel (2006): argue that variation in betas and the equity premium would have to be implausibly large to explain the asset pricing anomalies like momentum and the value premium.

• LN use a simple test of the conditional CAPM using direct estimates of conditional α and β from short-window regressions –i.e., assuming that α and β do not change in the estimation window. (Maybe, not a trivial assumption during some periods.)

• LN claim that they are avoiding the need to specify I_t.
• Fama and French (1993) methodology, adding momentum factor.
• LN estimate α and β quarterly, semiannually, and annually.

Table 3
Average conditional alphas, 1964 – 2001
The table reports average conditional alphas for size, B/M, and momentum portfolios (% monthly). Alphas are estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using monthly returns. The portfolios are formed from all NYSE and Amex stocks on CRSP / Compustat. We begin with 25 size-B/M portfolios (5×5 sort, breakpoints determined by NYSE quantiles) and 10 return-sorted portfolios, all value weighted. 'Small' is the average of the five low-market-cap portfolios, 'Big' is the average of the five high-market-cap portfolios, and 'S-B' is their difference. Similarly, 'Growth' is the average of the five low-B/M portfolios, 'Value' is the average of the five high-B/M portfolios, and 'V-G' is their difference. Return-sorted portfolios are formed based on past 6-month returns. 'Losers' is the bottom decile, 'Winners' is the top decile, and 'W-L' is their difference. Bold denotes estimates greater than two standard errors from zero.

<table>
<thead>
<tr>
<th></th>
<th>Size</th>
<th>B/M</th>
<th>Momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Big</td>
<td>S-B</td>
</tr>
<tr>
<td>Quarterly</td>
<td>0.42</td>
<td>0.00</td>
<td>0.42</td>
</tr>
<tr>
<td>Semiannual 1</td>
<td>0.26</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>Semiannual 2</td>
<td>0.16</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>Annual</td>
<td>-0.06</td>
<td>0.08</td>
<td>-0.14</td>
</tr>
<tr>
<td>Standard error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarterly</td>
<td>0.20</td>
<td>0.06</td>
<td>0.22</td>
</tr>
<tr>
<td>Semiannual 1</td>
<td>0.21</td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>Semiannual 2</td>
<td>0.21</td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>Annual</td>
<td>0.26</td>
<td>0.07</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Quarterly and Semiannual 1 alphas are estimated from daily returns, Semiannual 2 alphas are estimated from weekly returns, and Annual alphas are estimated from monthly returns.
• **Findings:** The conditional CAPM performs nearly as poorly as the unconditional CAPM.
 - The conditional alphas (pricing errors) are significant.
 - The conditional betas change over time. But, not enough to explain unconditional alphas. (Not enough co-variation with the market risk premium or volatility.)

• LN have a final good insight on Conditional CAPM tests:
 - LN Conditional CAPM models estimate a restricted version of the SML, imposing a constraint on the slope of λ_i. The slope of λ_i is equal to 1:
 \[
 E[R_{it} - r_f] = \gamma_0 + \gamma_1 E[\beta_{it-1}] + \lambda_i
 \]

In their tests, LN reject this restriction.