
Skewness in Expected Macro
Fundamentals and the Predictability of
Equity Returns: Evidence and Theory

Riccardo Colacito Eric Ghysels Jinghan Meng∗

————————————————————————————————————–

Abstract

We show that introducing time-varying skewness in the distribution of ex-
pected growth prospects in an otherwise standard endowment economy can up to
double the model implied equity Sharpe ratios, and produce a substantial amount
of fluctuation in equity risk premia. Looking at the Livingston Survey, we docu-
ment that the first and third cross-sectional moments of the distribution of GDP
growth rates made by professional forecasters can predict equity excess returns,
a finding which is consistent with our consumption based asset pricing model.

JEL classification: C22; C58; G12.
First Draft: August 10, 2012. This draft: October 23, 2012.

————————————————————————————————————–

Most recent draft available at: http://www.unc.edu/∼colacitr/Research/CGM.pdf

∗All authors are affiliated with the University of North Carolina at Chapel Hill. We thank seminars
participants at the University of North Carolina at Chapel Hill.

http://www.unc.edu/~colacitr/Research/CGM.pdf


1 Introduction

Each month a large number of forecasts about expected growth prospects of the econ-

omy is made available to the public. A lot of attention is typically devoted to the

average of all these forecasts, sometimes called the consensus forecast. Indeed ex

post assessments of the stock market reactions to the release of official economic data

is made relative to the discrepancy between actual data and ex-ante consensus fore-

cast. The consensus forecast is inherently an average of the average forecasts, as the

entire distribution of the forecasts is generally not available for each analyst.

In this paper, we put ourselves in the position of an investor that looks at the entire

distribution of analysts’ average forecasts. This is a particularly relevant exercise

because, if on the one hand the consensus forecast may provide a reliable prediction

for the near term, on the other hand the entire distribution of forecasts may con-

tain useful information to assess more precisely the medium and longer-term growth

prospects of the economy.

Using the Livingston Survey dataset, we find that the degree of asymmetry of the

distribution of professional forecasters helps in predicting future expected growth

rates. This is true even without including the period of the financial crisis of 2008.

We also find that the degree of asymmetry is moderately persistent. We explore the

asset pricing implication of a model in which expected growth features a time-varying

degree of skewness.

Motivated by the empirical evidence concerning the time-varying shape of expected

growth prospects, we investigate the importance of modeling time-varying skewness

in the context of a consumption based asset pricing model. We follow Bansal and

Yaron (2004) by assuming that investors order consumption profiles using Epstein

and Zin (1989) preferences. This means that agents care about the temporal distri-

bution of risk. In particular, we show that this type of investors not only likes high
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expected utility levels, but also dislikes uncertainty and negative asymmetry about

her future utility. We explicitly model the expected growth rate of consumption as

following a skew-normal distribution with time-varying parameters. First introduced

by Azzalini (1985), the skew-normal provides a convenient way of modeling asymmet-

ric distributions, as the first three conditional moments are available in closed form.

Furthermore, we can easily incorporate the empirical finding that the cross-sectional

mean, variance, and skewness of the distribution of forecasts follow autoregressive

processes and that the cross-sectional skewness appears to have predictive power for

the conditional mean. We show that the introduction of skewness can: i) up to double

equity risk premia, and ii) produce a substantial amount of time variation in condi-

tional risk premia.

Given the mean forecast for each analyst, investors can postulate a transition model

for the distribution of the conditional mean of GDP growth. The fact that we focus on

the cross-section of analyst’s mean forecasts highlights a subtle but crucial difference

between the contributions of our paper and the rare events literature. The case of the

financial crisis of 2008 provides a useful example. During 2008-2009 there was a lot

of discussion regarding a rise in equity premia as a compensation for the increased

probability of a catastrophic event in the economy. Looking at the distribution of an-

alysts’ forecasts, this was reflected in a large drop in the consensus forecast, which

ranged between -0.2 and 0.8 during the recession. The skewness of the distribution of

average forecasts, however, was mostly positive during this period (on average it was

0.47). Quite clearly, the extra equity premium that we are capturing in this paper

is not coming from an increase in negative skewness during a recession. Instead, it

is coming from the fact that negative skewness today predicts that the future revi-

sions of the average growth rate will be more pessimistic. Indeed, the skewness of the

forecasts’ distribution was very negative heading into the recession (-2.10 in the first

semester of 2007) at a time when the average forecast was a solid 2%. The impor-

tant message for macro-finance models is that skewness matters above and beyond
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its role as a signal for an increased probability of a catastrophic event. Skewness mat-

ters because it is the indication of possibly long-lasting movements in the expected

growth rate of the economy. This uncertainty matters in general in the long-run risks

framework and it is reinforced here by the presence of time-varying skewness.

Using the Livingston dataset, we confront our model with the data. We document

that the cross-sectional moments of the distribution of professional forecasters’ ex-

pected GDP growth help predict future equity excess returns. In particular, we show

that the first and third cross-sectional moments have economically and statistically

significant predictive power, as larger mean and more positive skewness predict lower

equity returns going forward. This empirical result remains even after one controls

for standard predictors such as cay, dividend yields, and default premia (see Goyal

and Welsch (2008) for a comprehensive study). These findings are consistent with our

consumption based asset pricing model.

This paper is related to several strands of the literature. An extensive literature has

documented the predictability of equity excess returns at various horizons (see again

inter alia Goyal and Welsch (2008)). Campbell and Diebold (2009) have provided ev-

idence in support of the predictive power of the consensus forecast for subsequent

stock market returns. We extend their findings and show that the degree of asym-

metry can also help explain equity returns going forward. This paper builds on the

recent literature on long-run risks by showing that the introduction of skewness in

the dynamics of a small, but highly persistent predictive component of consumption

growth can further amplify the ability of equilibrium models of consumption to ac-

count for asset pricing phenomena. Furthermore, there is a considerable literature

on asset pricing models with investors who take into account higher moments (beyond

variances) in asset returns. Arditti (1967), Rubinstein (1973), Kraus and Litzenberger

(1976), Harvey and Siddique (2000) developed some of the early models of expected

returns which incorporate the higher moments of individual securities that co-move

with the aggregate market portfolio. Subsequently, empirical work provided support-
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ing evidence that higher moments of the return distribution are important in pricing

securities (see e.g. Harvey and Siddique (2000), and most recently Chang, Christof-

fersen and Jacobs (2012), Conrad, Dittmar and Ghysels (2012), among others).

There have also been several other attempts to find structural asset pricing interpre-

tations of skewness. For example Damodaran (1985) suggests skewed distributions of

asset returns are caused by investors reacting asymmetrically to good and bad com-

pany news. Chen, Hong and Stein (2001) argue that differences of opinion among

investors combined with short-sale constraints generate skewed returns. Chabi-Yo,

Ghysels, and Renault (2010) show that allowing for heterogeneity in investors’ prefer-

ences and beliefs can give rise to additional factors related to skewness and kurtosis

in the pricing of nonlinear risks, whereas Mitton and Vorkink (2007) show that al-

lowing for heterogeneity in investors’ preferences for skewness can also lead to right-

skewed securities having higher prices.

The paper is organized as follows. Section 2 documents the time series properties of

the cross-sectional moments of the distribution of expected real GDP growth rates.

Section 3 describes the types of preferences that are employed throughout our theo-

retical analysis, as well as the postulated dynamics of consumption growth. Section 4

reports the results from a calibrated version of the proposed economy, and section 5

details its asset pricing implications. Section 6 confronts the empirical predictions of

the model with the data, and section 7 concludes the paper.

2 Time series properties of the cross-section of ex-

pected GDP growth

Multiple forecasts are commonly available for key economic variables, as different

professional forecasters may disagree about the outlook of the economy, or simply be-

cause different forecasting models are employed in this task. In this section, we put
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FIG. 1 - Time series for the first three cross-sectional moments of the distribution of expected
real GDP growth. The series are constructed using one semester ahead real GDP growth
forecasts from the Livingston dataset from 1951:1 to 2011:2. The vertical grey bars represent
recessions according to the National Bureau of Economic Research.

ourselves in the position of an investor who looks at the entire cross-sectional distri-

bution of these forecasts at each point in time. We document that this distribution

features time-varying mean, volatility, and skewness.

Dataset. We construct the time-series of cross-sectional measures of mean, disper-

sion, and asymmetry of GDP growth expectations using the Livingston Survey. This

survey was started in 1946 and it is the oldest continuous survey of economists’ ex-

pectations. It summarizes the forecasts of economists from industry, government,

banking, and academia. The Federal Reserve Bank of Philadelphia took responsi-

bility for the survey in 1990. Every June and December, the Livingston Survey asks

participants to forecast a set of key macroeconomic variables, including real and nom-

inal GDP. Survey participants are asked to provide forecasts for these variables for

the end of the current month, six months ahead, and 12 months ahead. For each

date we have a cross-section of up to 50 forecasts. Our interest in this specific survey

is motivated by the fact that it spans the longest time period, an appealing feature
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since we are trying to capture the properties of a slowly moving component of GDP

growth.1

Time varying moments. Figure 1 reports the time-series for the first three cross-

sectional moments of the distribution of expected GDP growth.2 The figure shows

that these moments are varying over time. While average expected GDP growth is

on average positive, the skewness is negative in the most of the occasions. The dis-

persion of the forecasts appears to be very persistent. Quite interestingly, the three

moments seem to be almost uncorrelated with one another. This suggests that the

asymmetry of the distribution of forecasts may contain additional information about

the risk factors in the economy. A qualitative finding that can be appreciated from

looking at Figure 1 is that skewness tends to turn more negative right before the be-

ginning of recessions, even at times when the mean forecast would otherwise suggest

normal growth rates. This effect is particularly apparent for the last two recessions.

We investigate this empirical regularity in greater detail in the last section of the

paper.

Time series regressions. Table 1 reports some additional information about the

time series properties of the cross-sectional moments of the distribution of average

forecasts. In Panel A, we estimate three separate AR(1) processes for the mean, the

volatility, and the third centered moment to the power of 1/3. We choose to focus

on this specific power of the third moment, because the model that we propose in the

later sections directly imposes restrictions on its dynamics. Our time series estimates

suggest that all three moments feature statistically significant first order autocorre-

lations. The persistence appears to be more pronounced for the first two moments.
1Since 1968 a richer data set that includes individual density forecasts is available. To motivate

the theory and build our empirical models we opted for the longer time series with only the individual
point forecasts.

2Volatility and in particular skewness estimates may be sensitive to outliers. We therfore also con-
sidered the quantile-based measures of volatility and skewness (see e.g. Conrad, Dittmar and Ghysels
(2012) for details about such measures) to control for the effect of outliers. The results are similar as
those depicted in Figure 1 and available on request.
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TABLE 1
TIME SERIES PROPERTIES OF CROSS-SECTIONAL MOMENTS

Panel A Mean Volatility Third Moment1/3

Lagged Mean 0.556 − −
[6.769]

Lagged Volatility − 0.627 −
[7.747]

Lagged Third Moment1/3 − − 0.229
[2.816]

Panel B Mean Volatility Third Moment1/3

Lagged Mean 0.592 0.001 −0.153
[8.432] [0.023] [−1.564]

Lagged Volatility 0.186 0.643 −0.106
[0.565] [7.314] [−0.536]

Lagged Third Moment1/3 0.489 0.035 0.162
[2.306] [0.723] [1.799]

Panel C Mean Volatility Third Moment1/3

Mean 1.000 −0.288 −0.190
Volatility 1.000 −0.238
Third Moment1/3 1.000

Notes - Time series properties of cross-sectional moments. Panel A reports the estimates of
the AR(1) coefficients for the mean, volatility, and third centered moment to the power of 1/3.
Panel B reports the estimates of time series regressions of each variable on the corresponding
column and the three lagged variables reported in the rows. The numbers in brackets under-
neath each estimate are t-statistics. All standard errors are adjusted for heteroskedasticity.

Panel B of Table 1 further investigates the dynamics by including the lags of all

three cross-sectional moments as right hand side variables of the regressions. The

interesting finding is that the third moment seems to have predictive power for the

conditional mean. More specifically our estimates indicate that following periods of

positive asymmetry, the conditional mean increases. This property of the conditional

skewness will prove itself important in our theoretical analysis, as news to the shape

of the distribution of forecasts will matter in forming the entire stream of future

growth prospects. Panel C concludes our preliminary analysis, by documenting that
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the contemporaneous correlation of the three moments is usually low and slightly

negative.

3 The economy

3.1 Preferences

A representative consumer orders consumption profiles according to the following

preferences:

Ut = (1− δ) logCt +
δ

1− γ
logEt [exp {(1− γ)Ut+1}] (1)

where γ indexes risk aversion toward atemporal gambles. This specification is due

to Hansen and Sargent (1995) and it is the special case of Epstein and Zin (1989)

preferences of unit intertemporal elasticity of substitution. These preferences are

also known as risk sensitive preferences and have been employed by Anderson (2005)

and Tallarini (2000) among others. The key feature of these preferences is that they

allow agents to be risk averse in future utility in addition to future consumption. For

the purpose of this article, it is convenient to look at a third order Taylor expansion

of (1) about the conditional expectation of Ut+1:

Ut ≈ (1− δ) logCt + δEt [Ut+1] +
δ(1− γ)

2
Vt [Ut+1] +

δ(1− γ)2

3
Et
[
(Ut+1 − Et [Ut+1])

3] .
This approximation highlights several important aspects of our specification. When

γ = 1, the standard case of time-additive preferences attains: agents care only about

high expected utility levels. However, for levels of risk aversion in excess of 1, our con-

sumers care also about smooth future utility (low Vt [Ut+1]), and they dislike negative

skewness of their future utility profiles.
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The variance and negative skewness aversion are specific to this type of preferences

and they suggest that skewness of future growth prospects may matter through a

variety of channels in our economy. In this paper, we focus on a class of models in

which consumption growth is predictable. In particular, we analyze a specification

for the dynamics of the predictable component of consumption growth rates in which

news about expected future growth prospects are drawn from a skewed distribution,

a prediction that conforms well with the empirical evidence reported in section 2.

3.2 Endowments

In this model skewness is directly built into the dynamics of expected consumption

growth. As investors are looking at the one-period ahead distribution of macroeco-

nomic growth prospects, they will act under the assumption that such distribution

is not normal. Specifically, we show that a parsimonious way of incorporating this

idea within a consumption based asset pricing model consists in using a skew-normal

distribution with time-varying parameters.

Preliminaries and notation. At each date t, the representative consumer observes

a cross-section of n one period ahead consumption growth forecasts: {Ei
t (∆ct+1)}

n
i=1.

3

We assume that each forecast is a noisy signal of the actual expected one period ahead

consumption growth:

Ei
t (∆ct+1) = Et (∆ct+1) + ξit, ∀i = {1, ..., n}

3The idea to exploit individual analyst macroeconomic forecasts to infer agent’s expectations in as-
set pricing models is not new. For example, Anderson, Ghysels and Juergens (2009) study asset pricing
when agents face risk and uncertainty. They use the degree of disagreement among professional fore-
casters as a proxy for the amount of uncertainty that agents have about consumption growth in the
economy. Via this measure, they empirically demonstrate that uncertainty has a substantial effect on
asset prices and find stronger empirical evidence for a uncertainty-return trade-off than for the tradi-
tional risk-return trade-off. In this paper, we focus on different features of the cross-section of point
forecasts - namely we focus on the skewness of the distribution and its time variation. The distinction
is important, as skewness of the cross-section reveals pattern very different from the dispersion of an-
alyst forecasts. The former is a measure of asymmetry, whereas dispersion measures cross-sectional
variances.
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where the distribution of ξit may be non-Gaussian to reflect the degree of asymme-

try of the distribution of expected growth rates. We shall denote the cross sectional

moments at each date as:

Êcs
t (∆ct+1) =

1

n

n∑
i=1

Ei
t (∆ct+1)

V̂ cs
t (∆ct+1) =

1

n

n∑
i=1

[
Ei
t (∆ct+1)− Êcs

t (∆ct+1)
]2

Ŝcst (∆ct+1) =

1
n

∑n
i=1

[
Ei
t (∆ct+1)− Êcs

t (∆ct+1)
]3

(
V̂ cs
t (∆ct+1)

)3/2
Consumption. The logarithm of consumption growth evolves according to the fol-

lowing process:

∆ct+1 = Et [∆ct+1] +
√
σctε

c
t+1 (2)

where εct+1 is i.i.d. distributed as a standard normal and the conditional variance σct+1

follows an AR(1) process:

σct+1 = (1− ρσ)σc + ρσσ
c
t +
√
σσξ

σ
t+1. (3)

At each date the investor must forecast consumption growth for the following pe-

riod, Et [∆ct+1]. We assume that this task is carried out by using the cross-sectional

mean of one period ahead forecasts, Êcs
t (∆ct+1). In order to evaluate securities, she

also needs to figure out the way in which average consumption growth is going to

evolve over time. In the process of coming up with a sequence of one period ahead

consumption growth forecasts, she recognizes that at each point in time there is an

entire cross-section of one period ahead forecasts. In times in which there is a large

dispersion about the average growth rate (V̂ cs
t (∆ct+1) is large), she forecasts that the

uncertainty about the average forecast is also going to be large in the future. Sim-
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ilarly, at times of heightened asymmetry about the consensus prediction (Ŝcst (∆ct+1)

is large), the agents thinks that it is more likely that the future average forecast will

take on extreme values in one direction or the other.

One way to formalize this economic idea is to specify the expected growth process

as one in which innovations follow a skew-normal distribution with time-varying pa-

rameters. Specifically, define Et [∆ct+1] = µc + xt and let

xt+1 = ρxxt + ϕe
√
σxt ε

x
t+1 (4)

where the innovations εxt+1 are orthogonal to the innovations to the consumption pro-

cess, εct+1, and have the following conditional distribution:

εxt+1|It ∼ SKN(0, 1, νt+1) .

The notation SKN(0, 1, νt+1) stands for skew-normal distribution with parameters 0,

1, and νt+1 as defined by Azzalini (1985).4 The skew-normal distribution provides

a convenient way of characterizing departures from normality which may consist in

negatively or positively skewed shocks (see Figure 2). The convenience of this distri-

bution also stems from the fact that the first four centered moments are available in

closed form. Furthermore, we show in the Appendix that the exponential of the level

and the square of a skew-normal random variable can be computed in closed form,

which adds to the computational appeal of this distribution.5 We shall assume that
4See also Carmichael and Cóen (2011) who used the skew-normal distribution in reduced form

asset pricing models. In contrast, our approach focuses on modeling skewness in expected macro
fundamentals.

5Specifically: Et
(
εxt+1

)
=
√

2
π Etφt+1, Vt

(
εxt+1

)
= 1− 2(Etφt+1)

2

π , and St
(
εxt+1

)
= 4−π

2

(√
2/π Etφt+1

)3

(1−2(Etφt+1)
2/π)

3/2 ,

where St
(
εxt+1

)
denotes the third conditional standardized moment and φt = νt√

1+ν2
t

. It is straightfor-

ward to show that St
(
εxt+1

)
is an monotonically increasing function of νt, when νt is stationary.
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FIG. 2 - The Skew-Normal distribution for different degrees of asymmetry. The parameter ν
governs the skewness of the distribution.

νt, which governs the degree of skewness, follows an AR(1) process

νt+1 = ρννt +
√
σνξ

ν
t+1 (5)

To reduce the dimensionality of the model, we rescale the process for σxt in such a way

that the innovations to consumption growth and to consumption growth forecasts are

proportional to each other:

σxt = σct/

(
1− 2 (Etφt+1)

2

π

)

where φt = νt√
1+ν2t

. Given this specification of the model, the first three moments of

the distribution of consumption growth forecasts are time-varying. We show in the
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Appendix that:

Et(xt+1) = ρxxt +

(
2

4− π

)1/3

Vt(xt+1)
1/2|St(xt+1)|1/3sign(St(xt+1)), (6)

Vt(xt+1) = ϕ2
eσ

c
t ,

St (xt+1) =
4− π

2

(√
2/π Etφt+1

)3
(
1− 2 (Etφt+1)

2 /π
)3/2 .

4 A calibrated economy

Baseline calibration. Table 2 reports our baseline calibration. The model is cal-

ibrated to describe a monthly decision problem. We approximate σct and νt on dis-

crete grids and assume independent Markov transition processes for their dynamics.

Specifically, we adopt the Rouwenhorst method to approximate AR(1) transition dy-

namics with various degrees of persistence. Kopecky and Suen (2010) describe this

procedure. We approximate the σct process by a symmetric and evenly-spaced state

space YN = {y1, . . . , yN}, with N = 21 defined over the interval [0, 2ψ]. The transition

matrix ΘN with two parameters p, q ∈ (0, 1) is defined recursively as follows:

p

 ΘN−1 0

0′ 0

+ (1− p)

 0 ΘN−1

0 0′

+ q

 0′ 0

ΘN−1 0

+ (1− q)

 0 0′

0 ΘN−1

 ,
where

Θ2 =

 p 1− p

1− q q


and 0 is an (N −1)-by-1 vector of zeros. Kopecky and Suen (2010) show that using the

persistence ρσ and shock volatility σσ alone, it is possible to construct the approximate

Markov chain, with p = q = (1 + ρσ)/2 and ψ =
√

(N − 1)σσ/(1− ρ2σ). Using the semi-

annual frequency Livingston dataset, we calibrate the parameters of the model at a

monthly frequency. In particular, we set ρσ = 0.651/6 = 0.93, and σ
1/2
σ = 3.80 × 10−6.
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TABLE 2
BASELINE CALIBRATION

γ Risk aversion 10
δ Subjective discount factor 0.998
µc Average consumption growth 0.001
ρx Autoregressive coefficient of the expected consumption growth rate xt 0.9619
φe Ratio of long-run shock and short-run shock volatilities 0.05
µx Location parameter of skew normal distribution of the innovations to xt 0√
σσ Conditional volatility of the variance of the short-run shock 3.80× 10−6

to consumption growth
ρσ Persistence of the variance of the short-run shock to consumption growth 0.93√
σν Conditional volatility of the scale parameter ν of the skew normally 0.4696

distributed innovations to xt
ρν Persistence of the scale parameter ν of skew normally distributed 0.8

innovations to xt
λ Leverage 3

Notes - the calibration is set to describe a monthly decision problem.

As a consequence, the 21-state discrete Markov process has parameters p = q = 0.965

and ψ = 4.6235× 10−5.

Following the same procedure, we approximate the process of the variable that gov-

erns the skewness dynamics, νt, with a symmetric state space ZN = {z1, . . . , zN} with

N = 21 evenly spaced nodes over the interval [−φ, φ]. Using the Livingston dataset,

we estimated the persistence and unconditional volatility of the skewness process

St(xt+1), which is an increasing and nonlinear function of νt. For all the calibrations

in this paper, we find that St(xt) can accurately be approximated as an AR(1) process,

provided that νt is also an AR(1) process. Specifically, we set the monthly persistence

of νt to 0.8, and its volatility to 0.4696, by using a 21-state discrete Markov process

has parameters p = q = (1 + ρν)/2 = 0.9 and φ =
√

20
√
σν/(1− ρ2ν) = 3.5. This cali-

bration results in an AR(1) process for skewness, which is line with our estimates in

section 2. In the benchmark model, we assume that skewness is on average zero, but

we explore the case of average negative skewness in the section that describes the

sensitivity analysis.

The calibration of the other parameters is standard in the long-run risks literature. In
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particular, we set the persistence of the predictive component of consumption growth,

ρx, to 0.9612. This value is within the significance range given the estimates that we

provided in section 2, and it is overall on the low end of the typical values which are

typically find in this literature.

Consumption. Table 3 reports several moments of the distribution of consumption

growth and its conditional mean for various horizons. This exercise is relevant, be-

cause we need to make sure that the time-variation in the first three moments of the

conditional mean of consumption that we have parameterized in the previous sections

produces consumption dynamics which are consistent with the observed data.

The dynamics of the the first three moments of the distribution of the conditional

mean produce a process of consumption growth which is consistent with the observed

dynamics of annual US historical data. It is worth commenting on the negative skew-

ness and excess kurtosis that we find in the data. These are due mostly to the fact

that we focus on the largest possible sample of US data, which starts in 1929. The

inclusion of the Great Depression on the 1930s’ and the World War II years are re-

sponsible for the reported estimation of third and fourth moments. We decided not

to pursue negative skewness and excess kurtosis in the treatment of our model for

practical computational purposes, but we would expect our result to be even more

dramatic with the inclusion of these unconditional non-normalities.

Also note that the inclusions of the three persistent components in the dynamics

of consumption growth does not produce excessive autocorrelation in consumption

growth. The model is simulated at a monthly frequency and aggregated to annual

frequency: the degree of persistence of consumption is very much in line with US

historical data.
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TABLE 3
TIME SERIES PROPERTIES OF CONSUMPTION GROWTH

Data Model
Estimate S.E. Mean 2.5% 97.5%

E[∆c] 2.042 (0.259) 1.189 0.096 2.282
σ[∆c] 2.285 (0.366) 2.869 2.307 3.431
skew[∆c] −1.629 (0.277) 0.012 −0.519 0.543
kurt[∆c] 7.971 (0.555) 2.933 2.004 3.862
AC1[∆c] 0.505 (0.085) 0.569 0.354 0.783
AC5[∆c] −0.061 (0.117) 0.009 −0.241 0.260
AC10[∆c] 0.006 (0.121) −0.025 −0.233 0.183

Notes - The table reports the unconditional mean, volatility, skewness, and kurtosis for real
US log-consumption growth computed using annual data from 1929 to 2006. The column
labeled “S.E.” reports the standard errors of these moments. The columns labeled “Mean”,
“2.5%”, and “97.5%” report the mean, bottom 2.5%, and top 97.5% of the distribution of the
corresponding moment, obtained from simulating the model 1000 times with sample size 100
years. Consumption is temporally aggregated to annual frequency.

Equilibrium Utility. We shall solve for the utility minus log-consumption:

Vt = Ut − logCt = δθ logEt exp

{
Vt+1 + ∆ct+1

θ

}

We document in the Appendix that Vt can be decomposed as the sum of two terms.

The first one is linear in xt, while the other one is non-linear in σt and φt:

Vt =
δ

1− δρx
· xt + Ṽ (σt, νt) .

We will use the notation Ṽ (σt, νt) and Ṽt interchangeably. Figure 3(a) shows Ṽt as

function of σt and νt. The value function can take on a large range of values as

the conditional skewness and volatility explore the state space. Figure 3(b) is even

more insightful. This panel reports three horizontal cuts of the utility function. The

middle line refers to the case of zero skewness. This is a version of the Bansal and

Yaron (2004) model. Notice that in this case the value function is not extremely sen-

sitive to changes in volatility, given our chosen calibration, that postulates a very
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FIG. 3 - Value function. The left panel reports Ṽt as a function of the skewness and of the
variance parameters. The right panel shows three slices of Ṽt for different values of skewness.

small amount of time-varying volatility. The situation is very different for the cases

in which skewness is positive or negative. The interaction between second and third

moments produces large movements in total discounted utilities. As the degree of

asymmetry gets more and more positive, volatility is welfare increasing as it implies

a larger probability of landing in an extremely good state of the economy. The op-

posite is true for the case of negative skewness, since more volatility increases the

likelihood of a left tail event. The important message is that time-variation in skew-

ness amplifies the magnitude of utility fluctuations. We shall see in the next section

how important this is for the market price of risk.

5 Asset Pricing

We divide our analysis of the asset pricing properties of the model in two parts. First,

we study the properties of the stochastic discount factor through which future uncer-
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tain payoffs are being discounted by time and by risk. In particular, we check the

ability of the model to satisfy the Hansen and Jagannathan (1991) volatility bound

and the entropy bound recently proposed by Backus, Chernov, and Zin (2012). Sec-

ond, we study the properties of the returns of a claim to levered equity and document

that it is possible to quantitatively replicate several properties of the distribution of

equity returns.

5.1 Bounds

Hansen-Jagannathan bound. Hansen and Jagannathan (1991) construct bounds

on the first and second moments of stochastic discount factors that are consistent

with the a given distribution of payoffs on a set of primitive securities. Let R denote

the vector of quarterly returns of the S&P500 index and the 3 months Treasury bill

and let E [R] and cov (R,R) be the vector of expected returns and covariance matrix,

respectively. Then the lower bound for the volatility of the stochastic discount factor

is

σ (M) ≥
√

(1− E [M ]E [R])′ cov (R,R)−1 (1− E [M ]E [R])

where E [M ] is the expected value of the stochastic discount factor and 1 is a vector of

ones.

The stochastic discount factor can be calculated as the intertemporal marginal rate

of substitution:

Mt+1 =
∂Ut/∂Ct+1

∂Ut/∂Ct
= exp

{
log δ −∆ct+1 +

Ut+1

θ
− logEt exp

{
Ut+1

θ

}}
. (7)

The Appendix reports the details of the calculations. Figure 4 shows the lower bound

on volatility as a function of the average of the stochastic discount factor along with

the pairs obtained for several calibrations of the model and by letting the coefficient

of risk aversion γ vary between 1 and 20. The bound was obtained using US quar-
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terly data on the S&P500 index and three months Treasury bills. The steepest line

refers to the baseline Bansal and Yaron (2004) model, in which any time variation

in volatility has been shut down. Notice that a coefficient of risk aversion of about

15-16 is needed for the model to deliver a pair into the acceptable region. The intro-

duction of time-varying volatility (line with circles) is beneficial, in that the mean of

the stochastic discount factor increases (thereby reducing the average risk-free rate)

and its volatility also increases somewhat for any given degree of risk aversion. The

introduction of time-varying skewness (lines with X’s and triangles) produces a dra-

matic increase in the volatility of the stochastic discount factor. Note that for the two

calibrations with skewness, a risk aversion of only 9-10 is now needed to get within

the Hansen and Jagannathan acceptance region. For the baseline calibration the in-

crease in volatility is so large, that for given γ equity Sharpe ratios up to 50% larger

can be achieved relative to a model without any time-variation in skewness.

Entropy bound. Backus, Chernov, and Zin (2012) define the conditional entropy of

the pricing kernel as:

Lt (Mt+1) = logEtMt+1 − Et logMt+1

and show that, together with the Euler equation Et [Mt+1Rt+1] = 1, it leads to the

entropy bound:

EL (Mt+1) ≥ E (logRt+1 − rf,t) (8)

where rf,t is the logarithm of the one period risk free rate. Equation 8 has the in-

terpretation that mean excess returns are bounded above by the mean conditional

entropy of the pricing kernel.
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FIG. 4 - Hansen-Jagannathan volatility bound. The thick line is the lower bound calculated
using US quarterly data on the S&P500 index and three months Treasury bills. Each line
refers to the mean-volatility pairs obtained for the model’s calibration reported in the top-left
corner. “B&Y model w/constat vol” refers to a model calibrated as in the benchmark, except for
the volatility being constant and the skewness being equal to zero at all times. “B&Y model
w/stochastic vol” refers to a model calibrated as in the benchmark, except for the skewness
being equal to zero at all times. The third model refers to the benchmark calibration, while
in the last one the persistence of the ν process is lower and so is its volatility. Each point on
the lines refers to an increasing coefficient of risk aversion (γ ∈ {1, 20}).

We document in the appendix that

EL (Mt+1) = −1

θ
(µc + σ̄) +

1

2
σ̄ +

1− δ
δ

E
[
Ṽt+1

]
(9)

where E
[
Ṽt+1

]
denotes the unconditional mean of Ṽt+1. Figure 5 reports the entropy

bound in equation (9) for increasing values of γ and for the same specifications of

the model discussed in the previous subsection. The figure confirms the ability of

the model to satisfy the bound for degrees of risk aversion as low as 6. Equivalently,
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FIG. 5 - Entropy bound. The thick line is the lower bound calculated using US quarterly
data on the S&P500 index and three months Treasury bills. Each line refers to the entropy
bound for the model’s calibration reported in the top-left corner. “B&Y model w/constat vol”
refers to a model calibrated as in the benchmark, except for the volatility being constant and
the skewness being equal to zero at all times. “B&Y model w/stochastic vol” refers to a model
calibrated as in the benchmark, except for the skewness being equal to zero at all times.
The third model refers to the benchmark calibration, while in the last one the persistence of
the ν process is lower and so is its volatility. Each point on the lines refers to an increasing
coefficient of risk aversion (γ ∈ {1, 20}).

for the same amount of risk aversion needed in a model without time -varying skew-

ness to satisfy the entropy bound, the model presented in this paper can deliver a

maximum equity risk premium between 2 and 3 times larger.
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5.2 Time series properties of equity returns

We study the properties of the returns to a claim to levered consumption, that is a

cash flow whose dynamics are defined as ∆dt = λ∆ct, with λ = 3. The returns to this

claim, Rd, satisfy an Euler equation Et
[
Mt+1R

d
t+1

]
= 1, where Mt+1 is the stochastic

discount factor reported in the previous section. The details of how to solve the above

Euler equation are reported in the Appendix. In Table 4 we report the results of our

benchmark calibration in the column labeled “Benchmark”. For comparison, we also

report the actual moments calculated using annual US data from 1929 to 2006, as

well as two alternative calibrations: one in which skewness is made more volatile

by increasing the parameter σν (labeled “Volatile Skewness”) and one in which any

time-variation in skewness in shut down, while keeping the volatility process alive

(labeled “No Skewness”). The results are obtained from simulating the models 1000

times with sample size equal to 100 years.

Several results ought to be noticed. First of all, notice that the introduction of skew-

ness determines an increase in the average equity risk premium which doubles the

equity premium in the absence of skewness dynamics. This increase comes together

with more volatile equity excess returns, with an overall increase in equity Sharpe

ratios in the order of 30% to 40%. Second, the average risk free rate is almost unaf-

fected by the introduction of skewness dynamics. Its volatility increases in the two

skewness calibrations, but the 95% confidence intervals (reported underneath each

estimate) reveal that these increases are well within the margin of significance. Last,

the average price-dividend ratio is even closer to data thanks to the introduction of

the time-varying skewness process, and so are its volatility and autocorrelation.

Sensitivity analysis. Table 5 documents the sensitivity of our results to several

alternative calibrations. Specifically, we consider three main specifications, in which

we alter the degree of persistence of the predictive component, ρx, and the average
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TABLE 4
BENCHMARK CALIBRATION: RESULTS

Data Benchmark Volatile Skewness No Skewness
E[rdt − r

f
t ] 6.33 7.80 8.83 2.89

[5.46, 10.15] [6.39, 11.27] [1.04, 4.74]

σ[rdt − r
f
t ] 19.4 16.0 18.2 9.30

[13.8, 18.2] [15.8, 20.6] [7.93, 10.7]

E[rft ] 1.16 1.89 1.89 1.89

[0.857, 2.93] [0.754, 3.03] [1.26, 2.51]

σ[rft ] 1.89 2.22 2.44 1.37

[1.68, 2.76] [1.85, 3.03] [1.04, 1.70]

E[p/d] 3.30 2.82 2.66 4.47

[2.75, 2.88] [2.59, 2.74] [4.43, 4.50]

σ[p/d] 0.312 0.169 0.191 0.089

[0.137, 0.201] [0.157, 0.226] [0.071, 0.107]

AC1[p/d] 0.870 0.516 0.502 0.521

[0.331, 0.701] [0.316, 0.688] [0.338, 0.704]

Notes - The first column reports the statistics of interest calculated using annual US data from
1929 to 2006. The second column reports the results from the model using the benchmark
calibration. The column labeled “Volatile Skewness” refers to the becnhmark calibration with√
σν set to 0.604, instead of 0.469. The column label “No Skewness” refers to the benchmark

calibration with
√
σν and ρν equal to zero. The numbers in squared brackets underneat each

statistic are 95% confidence intervals obtains from 1000 simulations of sample size 100 years.

volatility of the shocks,
√
σc.6 We label the three cases as “Benchmark” (ρx = 0.962

and
√
σc = 0.0068), “Medium Persistence” (ρx = 0.969 and

√
σc = 0.0058), and “High

Persistence” (ρx = 0.979 and
√
σc = 0.0058). For each case, we report the results

for a number of possible combinations of the parameters that govern the skewness

dynamics (ρν ranging from 0.8 to 0.86, and
√
σν ranging between 0.2 and 0.6), as well

as the calibration in which skewness is fixed at zero.

The main messages looking at the three panels of Table 5 seem to be that Sharpe

ratios increase on average by 50% thanks to the introduction of skewness dynamics
6We adjust

√
σc in such a way that increasing the persistence parameter ρx does not alter too much

the overall volatility of consumption growth.
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and in some cases they can even get three times as large relative to the zero skewness

specification. The volatility of consumption growth is usually moderately low, as the

95% confidence intervals from the simulations typically include the number estimated

from actual data. For some of the most extreme calibrations Panel C documents

that the autocorrelation of consumption growth becomes excessively large, but this is

generally not an issue for the “Benchmark” and “Medium Persistence” calibrations.

Empirical predictions. A well established empirical fact in the asset pricing lit-

erature is the tendency of equity risk premia and returns’ volatilities to vary over

time. It is therefore natural to ask whether this model can produce any systematic

time-variation in the first two moments of equity excess returns. In Table 7 we report

the regressions for equity excess returns and their realized variances on the lagged

values of the conditional mean of consumption growth, its conditional variance, and

its conditional skewness. Panel A documents that the conditional moments of ex-

pected consumption growth can predict future values of equity returns. In particular

it seems that the odd moments (mean and skewness) have negative signs and the even

moment (variance) has a positive sign in our regressions. The explanation for this is

that better growth prospects, in the sense of better average forecasts and increased

upside potential, decrease the conditional premium requested for holding risky as-

sets. Similarly, more uncertain growth opportunities determine an increase in condi-

tional equity risk premia, a result already set forward by Bansal and Yaron (2004).

We repeat this exercise in Panel B of Table 7 by changing the dependent variable

to the realized variance of equity excess returns. The results clearly indicate that

the most significant variable in this set of regressions is the conditional variance of

expected consumption growth. In the next section we explore the validity of these

prediction of the model, by employing the Livingston dataset.
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TABLE 6
MODEL IMPLIED PREDICTIVE REGRESSIONS

Panel A: Excess Equity Returns Panel B: Volatility of Equity Returns
Coefficients t-statistic Coefficients t-statistic

Intercept 0.0585 4.064 0.3006 20.859
Êcs
t -0.0513 -15.388 0.0207 6.204

V̂ cs
t 0.0099 3.136 0.0692 21.91
Ŝcst -0.0673 -20.172 0.0302 9.052
Adj. R2 0.1% 1.63%

Notes - The table reports the model implied predictive regressions for equity excess returns
and their realized volatility. All variables are standardized by subtracting their unconditional
means and dividing by their standard deviations. The results were obtained by simulating
the model at a monthly frequency.

6 Empirical Analysis

We explore the predictive ability of the first three cross-sectional moments of GDP

growth forecasts for equity excess returns. We build equity excess returns as the

logarithmic difference of the returns on the S&P500 index and the returns on three

months Treasury bills. Equity prices are obtained from Shiller’s web site, while Trea-

suries are obtained from the web site of the Federal Reserve Bank of St. Louis. The

details and properties of the cross-sectional moments of the distribution of expected

real GDP growth rates have been discussed at length in section 2.

Predictive regressions. Table 8 reports the results of our predictive regressions.

In all the specifications, we regressed the ex-post six months excess returns on the

ex ante cross-sectional moments of the distribution of real GDP growth, and on some

additional variables that are known to have predictive power for equity returns. Part

of our results confirm the findings of Campbell and Diebold (2009), in that positive

average expected GDP growth rates significantly forecast lower future returns, while

the opposite is true for the measure of dispersion of forecasts. Furthermore, while the

coefficient on average expected growth is always strongly statistically significant, the
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TABLE 7
MODEL IMPLIED PREDICTIVE REGRESSIONS

Panel A: Excess Equity Returns Panel B: Volatility of Equity Returns
Coefficients t-statistic Coefficients t-statistic

Intercept 0.0585 4.064 0.3006 20.859
Êcs
t -0.0513 -15.388 0.0207 6.204

V̂ cs
t 0.0099 3.136 0.0692 21.91
Ŝcst -0.0673 -20.172 0.0302 9.052
Adj. R2 0.1% 1.63%

Notes - The table reports the model implied predictive regressions for equity excess returns
and their realized volatility. All variables are standardized by subtracting their unconditional
means and dividing by their standard deviations. The results were obtained by simulating
the model at a monthly frequency.

one on the dispersion is typically not.

The new finding of Table 8 is that skewness also has predictive power for future

equity returns. The negative sign of the regression coefficient is also intuitive: a more

negative asymmetry suggests an increase in tail risk, and equity holders require extra

compensation for it. The coefficient is usually significant at conventional levels and

this finding is robust to the inclusion of additional control variables, such as Lettau

and Ludvigson (2001) cay, default premium, price-dividend ratio, and term spread.

Taken together, these findings seem to suggest that the odd moments of the distri-

bution of GDP growth forecasts matter in predicting future equity returns, which is

consistent with the results of the calibrated model presented in the previous sections.

Table 9 repeats the same exercise for the ex-post realized variance of equity excess

returns. Here the situation is reversed, with the dispersion of GDP growth forecast

showing up as the only variable with predictive power for future realized variance,

a result that seems to be robust to the inclusion of lagged returns’ realized variance.

Disagreement about future macroeconomic growth prospects is therefore a good indi-

cator of future stock market uncertainty, while the odd moments of the distribution
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of expected GDP growth appear not to be playing any significant role in this context.

Skewness and business cycles? The endowment economy that we discussed in the

earlier sections allows for a quantitative assessment of the effect of skewness on the

conditional and unconditional distribution of equity returns, but it is silent about the

economic rationale underlying the specific timing of positive and negative values of

the cross-sectional skewness. One possible explanation for why negative skewness

commands a positive risk premium is the following. Before the beginning of a reces-

sion, the distribution of average forecasts becomes more negatively skewed, as fore-

casters are expecting their future revisions to become more pessimistic (which tends

to be the case during recessions). Equivalently the premium for negative skewness

that we observe in the data is a compensation for recession risk. A similar argument

can be used to explain why positive skewness reduces the conditional equity risk pre-

mium.

We explore this intuition in Figure 6. We construct two dummies for the beginning

and for the end of US recessions using the “NBER Business Cycle Expansions and

Contractions” dates. To account for the frequency mismatch between the NBER re-

cession dates and the cross-sectional moments of average forecasts (semi-annual), we

denote recession semester as a six months span during which the economy was in

a recession for at least two months. Also, we omit the January-July 1980 recession

from our analysis, because the two dummies for the begging and end of the reces-

sion would coincide due to the short duration of the contraction. We then proceed

to calculate the correlograms between each of the two recession dummies and the

cross-sectional skewness.

Our results seem to indicate the existence of a negative (positive) correlation bew-

teen skewness and the subsequent start (end) of a recession. This seems to confirm

our economic interpretation that skewness becomes more negative before a contrac-

tion and an additional equity premium is being requested as a compensation for the
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FIG. 6 - Skewness and recessions. In both panels, the bars represent the correlation between
a recession dummy and the cross-sectional skewness lag reported on the horizontal axis. In
the left panel, the recession dummy indexes the beginning of the recession, while in the right
panel it indexes the end of the recession. the horizontal lines above and below each bar
represent the 95% confidence interval of the corresponding correlation.

recession that is about to unfold.

7 Concluding remarks

Investors look at the predictions of future growth prospects made by professional

forecasters. This paper documents that the entire distribution of such forecasts seems

to matter as a larger cross sectional mean, a lower dispersion, and a larger degree of

skewness predict lower equity excess returns going forward. The predictive ability of

skewness is a novel empirical finding of this paper and it opens up the question of

how to think about asymmetric growth prospects in the context of equilibrium asset

pricing models. Introducing asymmetry in the distribution of expected consumption

growth rates in a way that is consistent with the observed dynamics of consumption

produces a sizeable increase in equity Sharpe ratios. Future developments in this
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literature should look at how these findings generalize to the cross-section of equity

returns and to global equity markets.
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Appendix

Skew-normal distribution. A skew-normal distribution SKN(µ, σ, ν) with local parameter µ, scale

parameter σ and shape parameter ν, has a probability density function

p(x) =
1

σπ
exp

{
− (x− µ)2

2σ2

}∫ ν( x−µσ )

−∞
exp

{
− t

2

2

}
dt.

And the first three moments have closed form:

mean = µ+ σφ

√
2

π
, variance = σ2

(
1− 2φ2

π

)
, skewness =

4− π
2

(φ
√

2/π)3

(1− 2φ2/π)3/2
,

where φ = ν√
1+ν2

.

In our model, the innovations εxt+1 follow the conditional distribution SKN(0, 1, νt+1). And therefore,

the conditional expectation of the shock is:

Et(ε
x
t+1) =

√
2

π
Etφt+1.

The conditional variance of the shock is:

Vt(ε
x
t+1) = Et[Vt(ε

x
t+1|νt+1)] + Vt[Et(ε

x
t+1|νt+1)]

= Et

(
1−

2φ2t+1

π

)
+ Vt

(√
2

π
φt+1

)

= 1− 2

π
(Etφt+1)

2
.

Similarly, it is straightforward to show that the conditional skewness of the shock is:

St
(
εxt+1

)
=

4− π
2

(√
2/π Etφt+1

)3
(

1− 2 (Etφt+1)
2
/π
)3/2 .

Solving for the value functions. We shall start by expressing the utility functions in a more conve-

nient form. We define the value functions as the utility minus log-consumption:

Vt = Ut − logCt

= δθ logEt exp

{
Vt+1 + ∆ct+1

θ

}
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We shall decompose Vt as the sum of two terms: one is linear in xt, the other one is non-linear in σt

and νt:

Vt = Bxt + Ṽ (σt, νt)

we will use the notation Ṽ (σt, νt) and Ṽt interchangeably. It is easy to verify that:

B =
δ

1− δρx

We shall solve for

Ṽt = δθ logEt exp

{
µc + ϕeB

√
σxt ε

x
t+1 +

√
σct ε

c
t+1 + Ṽt+1

θ

}
(10)

via value function iteration.

In order to solve (10), we are going to use the following lemma.

Lemma 1. If z ∼ SKN(µ, σ, ν), then

logE exp
{
κ1z + κ2z

2
}

= log(2)− 1

2
log
(
1− 2κ2σ

2
)

+
1

2σ2

[(
κ1σ

2 + µ
)2

1− 2κ2σ2
− µ2

]
+

log Φ

(
ν

σ2
· κ1σ

2 + µ− µ
√

1− 2κ2σ2

√
1− 2κ2σ2 + ν2

)

for any scalar κ1 and κ2, such that 1− 2κ2σ
2 > 0.

Proof. By definition:

E exp{κ1z + κ2z
2} =

∫ +∞

−∞
exp{κ1z + κ2z

2}[
1

σπ
exp

{
− (z − µ)2

2σ2

}
·

(∫ ν
(z−µ)
σ

−∞
exp

{
− t

2

2

}
dt

)]
dz

where the term in the square brackets corresponds to the probability distribution function of a skew-
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normal. It follows that:

E exp{κ1z + κ2z
2} =

∫ +∞

−∞

1

σπ
exp

−z
2 − 2

(
κ1σ

2+µ
1−2κ2σ2

)
z + µ2

1−2κ2σ2

2
(

σ2

1−2κ2σ2

)
 ·

(∫ ν
(z−µ)
σ

−∞
exp

{
− t

2

2

}
dt

)
dz

= exp


(κ1σ

2+µ)
2

1−2κ2σ2 − µ2

2σ2

 ·
∫ +∞

−∞

1

σπ
exp

−
(
z −

(
κ1σ

2+µ
1−2κ2σ2

))2
2
(

σ2

1−2κ2σ2

)
 ·(∫ ν

(z−µ)
σ

−∞
exp

{
− t

2

2

}
dt

)
dz

Apply the following change of variable

y =
z −

(
κ1σ

2+µ
1−2κ2σ2

)
σ

·
√

1− 2κ2σ2.

Then:

E exp{κ1z + κ2z
2} =

2√
1− 2κ2σ2

· exp


(κ1σ

2+µ)
2

1−2κ2σ2 − µ2

2σ2

 ·
∫ +∞

−∞

1√
2π

exp

{
−y

2

2

}
·

(∫ ν√
1−2κ2σ

2
y+

(κ1+2µκ2)νσ

1−2κ2σ
2

−∞

1√
2π

exp

{
− t

2

2

}
dt

)
dy

Now use the following result from Zacks (1981). If U is a N(0, 1) random variable, then

E [Φ (hU + k)] = Φ

(
k√

1 + h2

)

for any real h, k and where Φ(·) denotes the cumulative distribution function of a N(0, 1) random

variable. This implies that:

E exp{κ1z + κ2z
2} =

2√
1− 2κ2σ2

· exp

{
1

2σ2

[(
κ1σ

2 + µ
)2

1− 2κ2σ2
− µ2

]}
·

Φ

(
(κ1 + 2µκ2)µσ√

(1− 2κ2σ2)(1− 2κ2σ2 + ν2)

)

Applying logarithms to both sides concludes the proof.

For the special case of κ2 = 0 and σ = 1, lemma 1 implies:

logEt exp {κ1z} = log(2) +
κ1(κ1 + 2µ)

2
+ log Φ

(
νκ1√
1 + ν2

)
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This allows us to rewrite the right hand side of the Bellman equation as:

Ṽ (σct , νt) = δθ logEt

{
Et

[
exp

{
µc + ϕeB

√
σxt ε

x
t+1 +

√
σct ε

c
t+1 + Ṽt+1

θ

}
|νt+1

]}

= δµc +
δ

2θ
σct + δθ

(
log(2) +

ϕ2
eB

2σxt
2θ2

+
2µxϕeB

√
σxt

2θ

)
+ δθ logEtΦ

νt+1ϕeB
√
σxt

θ
√

1 + ν2t+1


+δθ logEt exp

{
Ṽ
(
σct+1, νt+1

)
θ

}

Note that σxt that appears on the right hand side of the previous equation is a function of σct and νt

only:

σxt = σct/

1− 2

π

Et νt+1√
1 + ν2t+1

2


Solving for the stochastic discount factors. The stochastic discount factor is the intertemporal

marginal rate of substitution:

mt+1 = log

(
∂Ut/∂Ct+1

∂Ut/∂Ct

)
= log δ −∆ct+1 +

Vt+1 + ∆ct+1

θ
− logEt exp

{
Vt+1 + ∆ct+1

θ

}
= log δ −

(
1− 1

θ

)
∆ct+1 +

Vt+1

θ
− Vt
δθ

= log δ −
(

1− 1

θ

)
∆ct+1 +

1

θ

(
Ṽt+1 −

Ṽt
δ

)
+
B

θ

(
xt+1 −

xt
δ

)
(11)

Notice that the stochastic discount factor captures the innovations in the conditional mean, in the

conditional volatility, and in the conditional skewness.

Solving for the risk-free rates. Real risk-free rates can be obtained as:

rft = − logEt exp{mt+1}
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Using the stochastic discount factor (11) above:

rft = − log(δ)− logEt exp


(

1− θ
θ

)(
µc + xt +

√
σct ε

c
t+1

)
+

(
Ṽt+1 − Ṽt

δ

)
θ

+
B

θ

(
ρxt + ϕe

√
σxt ε

x
t+1 −

xt
δ

)
= − log(δ)− (

1

θ
− 1)µc +

1

θδ
Ṽt + xt −

1

2

(
1

θ
− 1

)2

σct − logEt exp

{
Bϕe
√
σxt

θ
εxt+1 +

Ṽt+1

θ

}

= − log(δ)− (
1

θ
− 1)µc +

1

θδ
Ṽt + xt −

1

2

(
1

θ
− 1

)2

σct

− logEt

[
Et

(
exp

{
Bϕe
√
σxt

θ
εxt+1

}
|νt+1

)
· Et

(
exp

{
Ṽt+1

θ

}
|νt+1

)]

Rewrite equation (10) and we shall obtain:

logEt exp

{
µc +

√
σct ε

c
t+1 +Bϕe

√
σxt ε

x
t+1 + Ṽt+1 − Ṽt/δ

θ

}
= 0

Using equation (10) and lemma 1 , we conclude that:

rft = − log(δ) + µc + xt +

(
1

θ
− 1

2

)
σct . (12)

Solving for returns to levered consumption claim. We consider the returns to a claim to levered

consumption

∆dt = λ∆ct

where λ > 1 denotes the leverage ratio for the claim on consumption. Then the returns to the levered

consumption claim satisfy

1 = Et

[
exp {mt+1}

(
Pt+1 +Dt+1

Pt

)]
= Et

[
exp {mt+1}

(
1 + exp {V dt+1}

exp {V dt}

)
exp {λ∆ct+1}

]

where V dt = log(Pt/Dt) denotes the log ratio of price to the consumption of levered claims.
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Rewrite the above equation, V dt is given by:

V dt = logEt exp {mt+1 + λ∆ct+1} (1 + exp {V dt+1})

= log (Et exp {mt+1 + λ∆ct+1}+ Et exp {mt+1 + λ∆ct+1 + V dt+1})

(13)

Using the stochastic discount factor equation (11), the first part in the logarithm of equation (13) is

Et exp {mt+1 + λ∆ct+1} = Et exp

{
log δ +

(
λ− 1 +

1

θ

)(
µc + xt +

√
σct ε

c
t+1

)
+

1

θ

(
Ṽt+1 −

Ṽt
δ

)

+
B

δ

(
ρxxt + ϕe

√
σxt ε

x
t+1 −

xt
δ

)}
= 2δ exp

{(
λ− 1 +

1

θ

)
µc + (λ− 1)xt −

Ṽt
δθ

+
1

2

(
λ− 1 +

1

θ

)2

σct +
B2ϕ2

e

2θ2
σxt

}
·

Et

Φ

Bϕe√σxt νt+1

θ
√

1 + ν2t+1

 · exp

{
Ṽt+1

θ

} .

We notice that the right hand side of V dt expression (13) is a function of state variables σct , νt, xt. Due

to the complexity of the V dt function, it is difficult to guess the closed form solution of V dt. Therefore,

we approximate V dt by using a quadratic polynomial function of these three state variables xt,
√
σct ,

and νt:

V dt = a1 + a2xt + a3x
2
t + a4

√
σct + a5σ

c
t + a6νt + a7ν

2
t + a8xt

√
σct + a9xtνt + a10

√
σctνt.

Plugging the guess of V dt function into the second part in the logarithm of equation (13), we have:

Et exp {mt+1 + λ∆ct+1 + V dt+1}

= δ exp

{(
λ− 1 +

1

θ

)
µc + (λ− 1)xt −

Ṽt
δθ

+
1

2

(
λ− 1 +

1

θ

)2

σct

}
· Et exp

{
Bϕe
√
σxt

θ
εxt+1 +

Ṽt+1

θ
+ V dt+1

}

= δ exp

{(
λ− 1 +

1

θ

)
µc + (λ− 1)xt −

Ṽt
δθ

+
1

2

(
λ− 1 +

1

θ

)2

σct

}
· Et exp

{
Ṽt+1

θ
+ a1 + a2xt + a3ρ

2
xx

2
t

+a4
√
σct+1 + a5σ

c
t+1 + a6νt+1 + a7ν

2
t+1 + a8ρxxt

√
σct+1 + a9ρx + a10

√
σct+1νt+1 + a3ϕ

2
eσ
x
t (εxt+1)2

+

(
Bϕe
√
σxt

θ
+ a2ϕe

√
σxt θ + 2a3ρxϕe

√
σxt θxt + a8ϕe

√
σxt θ

√
σct+1 + a9ϕe

√
σxt θνt+1

)
εxt+1

}
.

We solve for parameters a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, by regressing V dt on these three state
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variables and all their quadratic terms [1,
√
xt, x2t , σ

c
t , σ

c
t , νt, ν

2
t , xt

√
σct ,
√
σctνt, xtνt], and updating

regression coefficients via iteration.

We find that the quadratic polynomial function of
√
σct , νt, and xt is a good approximation of V dt

solution.

The returns to the levered consumption claim

rd,t+1 =

(
1 + exp {V dt+1}

exp {V dt}

)
exp {∆λct+1}

can be computed using the V dt.

Derivation of Entropy bound. We need to calculate:

ELt (Mt+1) = E (logEtMt+1)− E (logMt+1)

We shall focus on the two terms on the right hand side separately. The first one is simply minus the

unconditional expectation of the risk-free rate:

E (logEtMt+1) = −E (rf,t)

= log δ − µc −
(

1

θ
− 1

2

)
σ̄ (14)

Now turn to the second term:

E (logMt+1) = Emt+1

= log δ −
(

1− 1

θ

)
E [∆ct+1] +

B

θ
Ext+1 −

B

δθ
Ext +

1

θ
EṼt+1 −

1

δθ
EṼt

= log δ −
(

1− 1

θ

)
µc +

1

θ

(
δ − 1

δ

)
E
[
Ṽt

]
(15)

where E
[
Ṽt

]
is the unconditional expectation of Ṽt. This can be calculated by denoting π̄σ and π̄ν

as the probability vectors that define the invariant distributions of σ and ν. These are obtained as

the eigenvectors (normalized so that the sum of all entries adds up to 1) associated with the unit
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eigenvalues of the transition matrices Πσ and Πν . By letting the matrix Ṽ (σ, ν) be defined as

Ṽ (σ, ν) =


Ṽ (σ1, ν1) Ṽ (σ1, ν2) . . . Ṽ (σ1, νN )

Ṽ (σ2, ν1)
. . .

...

Ṽ (σN , ν1) . . . Ṽ (σN , νN )



it follows that E
[
Ṽt

]
= π̄′σṼ (σ, ν)π̄ν . By combining, (14) and (15), we get

EL (Mt+1) = −1

θ
(µc + σ̄) +

1

2
σ̄ +

1− δ
δ

E
[
Ṽt+1

]

Calculation of yields. The prices of zero coupon bonds can be computed recursively as

q1,t = Et [exp {mt+1}]

q2,t = Et [exp {mt+1} q1,t+1]

...

qn,t = Et [exp {mt+1} qn−1,t+1]

where qj,t is the date t price of a bond with j periods left until maturity. Note that rf,t = log (1/q1,t) is

the risk-free rate. Log-yields are yj,t = − log qj,t.
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