
Interest Rate Volatility and
No-Arbitrage Term Structure Models∗

Scott Joslin† Anh Le‡

November 1, 2012

PRELIMINARY

COMMENTS WELCOME

Abstract

Forecasting volatility of interest rates remains a challenge in finance. An important
aspect of any dynamic model of volatility is the fact that volatility is a positive process,
not only with respect to the historical measure, but also with respect to the risk
neutral measure. As a consequence, risk neutral forecasts of volatility must also always
remain positive. One way for this admissibility condition to hold is for volatility to
represent an autonomous process under the risk neutral measure. In contrast to the
historical time series, the cross section of bond yield provides very precise information
about risk neutral forecasts and therefore strong guidance to which combinations of
yields are autonomous. We conclude that in the stochastic volatility setting, the no
arbitrage assumption provides strong over-identifying constraints which, when the model
is correctly specified, improve inference on the volatility instrument.

∗We thank Caio Almeida, Francisco Barillas, Greg Duffee, Michael Gallmeyer, Kenneth Singleton, Anders
Trolle and seminar participants at the Banco de España - Bank of Canada Workshop on Advances in Fixed
Income Modeling, Emory Goizueta, EPFL/Lausanne, Federal Reserve Bank of San Francisco, and Gerzensee
Asset Pricing Meetings (evening sessions) for helpful comments.
†University of Southern California, Marshall School of Business, sjoslin@usc.edu
‡Kenan-Flagler Business School, University of North Carolina at Chapel Hill, anh le@unc.edu

1



1 Introduction

Forecasting volatility of interest rates remains an important challenge in finance.1 A rich
body of literature has shown that the volatility of the yield curve is, at least partially, related
to the shape of the yield curve. For example, volatility of interest rates is usually high when
interest rates are high and when the yield curve exhibits higher curvature (see Cox, Ingersoll,
and Ross (1985), Litterman, Scheinkman, and Weiss (1991), and Longstaff and Schwartz
(1992), among others). This suggests that the shape of the yield curve is a potentially useful
instrument for forecasting volatility. In this paper, we assess whether standard no arbitrage
affine term structure models can improve the precision of estimation of volatility instruments.

We find that instruments for a positive volatility process are strongly identified by the cross
section of yields. The key to our results is that volatility must be a positive process not only
under the historical measure but also under the risk neutral measure. Any linear combination
of yields which is forecasted to be negative (or has a positive probability of achieving a
negative value) under the risk neutral measure cannot be an instrument for volatility and
maintain positivity. We show that since the risk neutral distribution is estimated much more
precisely than the historical distribution, these conditions precisely identify which instruments
maintain positive volatility. Morever, risk neutral forecasts of yields are largely invariant to
any volatility considerations (see, e.g. Campbell (1986) or Joslin (2010).) This implies the
striking conclusion that at a Gaussian term structure model – which has constant volatility –
can reveal which instruments would be admissible for a stochastic volatility model.

To develop some intuition for our results, consider a simple time series model of the yield
curve. Consider a standard vector autoregression of the principle components of the yield
curve (level, slope and curvature), denoted P :

∆Pt = K0 +K1Pt + εt+1. (1)

In order to capture time-variation in volatility of the level, we can project squared changes in
the level of interest rates onto the principal components along the lines of Campbell (1987)
and Harvey (1989) through the regression

(∆Pt,1)2 = α + β · Pt + et. (2)

This simple instrumentation procedure suggests that the variance of the level factor could be
instrumented by Vt ≡ α + β · Pt.2 Alternatively, one could use other proxies for conditional
variance, such as from realized volatility or time-series models.

Assuming that volatilities of all the principle components have a one-factor structure, we
could then generate a fully dynamic affine model of the term structure by modifying the
VAR in (1) so that the conditional covariance of the innovation, εt+1, is affine in α+ β · Pt.
However, this process may not be well-defined since volatility may become negative. Following
Dai and Singleton (2000), we will refer to any condition required for a well-defined positive

1See Poon and Granger (2003) or Andersen and Benzoni (2008) for recent surveys of volatility forecasting.
2In principle, the projection in (2) could result in negative variances. Ensuring positivity here represents

an additional constraint.
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volatility process as an admissibility condition. A sufficient condition for volatility to be a
positive process is that the variance defines an autonomous (discrete-time) Cox Ingersoll
Ross (CIR) process. When there is a single volatility factor and the other risk factors are
conditionally Gaussian, this condition is also necessary.3 Among other things, this means
that the conditional mean of ∆Vt, β

′(K0 +K1Pt), should depend on only Vt. This happens
only when β′K1 is a multiple of β′. That is, β′ is a left-eigenvector of K1.

Requiring that this time series model rule out arbitrage opportunities introduces a starker
version of these over-identifying restrictions. The condition of no arbitrage gives rise to
the existence of a risk neutral measure Q. Joslin, Singleton, and Zhu (2010) show that the
risk-neutral distribution can be characterized through the equation

∆Pt = KQ
0 +KQ

1 Pt + εQt+1, (3)

where (KQ
0 , K

Q
1 ) are appropriately constrained to maintain the internal consistency of no

arbitrage. Admissibility requires that volatility must be autonomous under Q. Thus β′ must
also be a left eigenvector of KQ

1 .
The fact that admissibility requires that volatility is an autonomous process under both

the historical and risk neutral measures represents a tension between the conditional first and
second moments given by (1), (2), and (3). Unless the estimate of β is, simultaneously, a left
eigenvector of K1 and KQ

1 , a joint estimation procedure designed to produce an admissible
process will necessarily trade off the fit of these three equations. Naturally, equations with
the least statistical errors will be given the most weight. As is commonly observed, KQ

1

can be estimated very precisely, particularly relative to parameters underlying (1) and (2).
Intuitively, although we observe only one historical time series, each observation of the yield
curve effectively represents a term structure of risk neutral expectations of P . Given a precise
estimate of KQ

1 , the left eigenvectors are set and thus so too are the potential volatility
instruments.

To shed further light on this trade-off, we compare the estimate of KQ
1 implied by the

above model to two alternative estimates: (a) one implied by a Gaussian term structure
model – where the volatility equation (2) is left out of the estimation; and (b) a model-free
estimate using the regression technique in Joslin (2011b) – where both equations (1) and (2)
are left out of the estimation. Strikingly, the estimates are practically identical across the
three different estimation methods – and this is the case for all choices of model specifications
and sample periods that we consider. These results indicate that KQ

1 are pinned down
very strongly effectively by the cross-sectional information alone from equation (3). As a
consequence, the no arbitrage restrictions allow very reliable inferences for the admissible
volatility instruments. When the no arbitrage restrictions are ignored (i.e. equation (3) is
dropped from the estimation) we demonstrate that the admissible volatility instruments
implied by the unconstrained estimates of K1 from (1) are estimated much less precisely.

3More precisely, this result is for the continuous time A1(N) class of models in the notation of Dai and
Singleton (2000). Analogous conditions maintain in the discrete time stochastic volatility models of Bansal
and Shaliastovich (2009) and Le, Singleton, and Dai (2010).
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Our results help clarify the relationship between volatility instruments extracted from
the cross-section of bond yields documented by several recent studies. For example, Collin-
Dufresne, Goldstein, and Jones (2009) find an extracted volatility factor from the cross-section
of yields through a no arbitrage model to be negatively correlated with model-free estimates.
Jacobs and Karoui (2009) in contrast generally find volatility extracted from affine models
are generally positively related though in some cases they also find a negative correlation.
Almeida, Graveline, and Joslin (2011) also find a positive relationship. Our results show
that for the A1(N) class of models, the cross-section of bonds will reveal up to N linear
combinations of yields (given by the left eigenvectors of KQ

1 ) that can serve as instruments for
volatility. The no arbitrage structure then essentially implies nothing more for the properties
of volatility beyond the assumed one factor structure and the admissibility conditions. To
the extent that the instrument obtained from KQ

1 is optimal, the model implied-volatility
will match the analogous results obtained from a model without the no arbitrage structure.

Our results clearly spell out aspects of model specifications that may or may not have
any significant bearing on the model’s volatility outputs. For example, within the A1(N)
class of models, different specifications of the market prices of risks are unlikely to affect the
identification of the volatility factor as long as the risk-neutral dynamics is maximally flexible.
While this may seem at odds with numerous studies (e.g. Dai and Singleton (2000) and
Duffee (2002)) that demonstrate the importance of the market prices of risks specification in
matching yields dynamics, it can be understood in light of our results. Intuitively, since the
market prices of risks serve as the linkage between the physical and risk-neutral measures,
and since the risk neutral dynamics is very strongly identified, different forms of the market
prices of risks are most likely to result in different estimates for the physical dynamics while
leaving estimates of KQ

1 essentially intact. This in turn implies that identifications of the
volatility factor are likely identical across these models. This explains the almost identical
performances by the volatility estimates implied by the completely affine and essentially
affine A1(3) models as reported in Jacobs and Karoui (2009).

Our results also add to the recent discussion that suggests that no arbitrage restrictions
are completely or nearly irrelevant for the estimation of Gaussian dynamic term structure
models (DTSM). See, for example, Duffee (2011), Joslin, Singleton, and Zhu (2010), and
Joslin, Le, and Singleton (2012). Left open by these studies is the question of whether the
no arbitrage restrictions are useful in the estimation of DTSMs with stochastic volatility.
Our results show that the answer to this question is a resounding yes! The cross-section
of yields strongly identifies KQ

1 and therefore strongly identifies the admissible instruments
for volatility. Key to the linkage between KQ

1 and the identification of the volatility factor
is the admissibility conditions that require the volatility factor be autonomous. To the
extent that the admissibility conditions hold in the true data generating process, these
over-identifying restrictions will be very useful for inferring the true process of the yield curve.
The admissibility conditions though are motivated not by economic considerations so this
seems a potentially dubious assumption. In Section 5, we consider alternative non-affine (but
nearly-affine) models which relax the admissibility constraints.

The rest of the paper is organized as follows. In Section 2, we lay out the general setup of
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the term structure models with stochastic volatility that we subsequently consider. Section 3
provides intuitive examples as to why the cross-sectional information is likely to provide very
strong identification for volatility instruments. Section 4 reports our empirical analysis and
Section 5 concludes.

To fix notation, suppose that a DTSM is to be evaluated using a set of J yields yt =
(ym1
t , . . . , ymJ

t )′ with maturities (m1, . . . ,mJ) in periods and with J ≥ N , where N is the
number of pricing factors. To be consistent with our empirical work, we fix the period length
to be one month. We introduce a fixed, full-rank matrix of portfolio weights W ∈ RJ×J and
define the “portfolios” of yields Pt = Wyt. The modeler’s choice of W will determine which
portfolios of yields enter the DTSM as risk factors and which additional portfolios are used
in estimation. Throughout, we assume a flat prior on the initial observed data.

2 Stochastic Volatility Term Structure Models

This section gives an overview of the stochastic volatility term structure models that we
consider. As we elaborate, a key consideration is the admissibility conditions required to
maintain a positive volatility process under both the historical and risk neutral measures.
The conditions for a positive volatility process can be considered even without a formal term
structure model by considering a factor time series model with stochastic volatility. This
formulation is also of interest in its own right since it allows us to assess the role of the no
arbitrage assumption in stochastic volatility models. For simplicity, we focus in the main
text on the case of a single volatility factor under a continuous time setup; modifications for
discrete time processes and more technical details are described in Appendix A.

2.1 General admissibility conditions in latent factor models

We first review the conditions required for a well-defined positive volatility process within
a multi-factor setting. Following Dai and Singleton (2000), hereafter DS, we refer to these
conditions as admissibility conditions. Recall the N -factor A1(N) process of DS. This process
has an N -dimensional state variable composed of a single volatility factor, Vt, and (N − 1)
conditionally Gaussian state variables, Xt. The state variable Zt = (Vt, X

′
t)
′ follows the Itô

diffusion

d

[
Vt
Xt

]
= µZ,tdt+ ΣZ,tdB

P
t , (4)

where

µZ,t =

[
K0V

K0X

]
+

[
K1V K1V X

K1XV K1X

] [
Vt
Xt

]
, and ΣZ,tΣ

′
Z,t = Σ0Z + Σ1ZVt, (5)

and BP
t is a standard N -dimensional Brownian motion under the historical measure, P. Duffie,

Filipovic, and Schachermayer (2003) show that this is the most general affine process on
R+ × RN−1.

In order to ensure that the volatility factor, Vt, remains positive, we need that when Vt is
zero (a) the expected change of Vt is non-negative and (b) the volatility of Vt becomes zero.
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Otherwise there is a positive probability that Vt will become negative. Imposing additionally
the Feller condition for boundary non-attainment, our admissibility conditions are then

K1V X = 0, Σ0Z,11 = 0, and K0V ≥ 1
2
Σ1Z,11. (6)

A consequence of these conditions is that volatility must follow an autonomous process
under P since the conditional mean and variance of Vt depends only on Vt and not on Xt.
We now show how to embed the A1(N) specification into generic term structure models and
re-interpret these admissibility constraints in terms of conditions on the volatility instruments.

2.2 An A1(N) model without no arbitrage restrictions

We can extend the latent factor model of (4–5) to a factor model for yields by appending the
factor equation

yt = AZ +BZZt, (7)

where (AZ , BZ) are conformable matrices. Given the parameters of the model, we can replace
the unobservable state variable with observed yields through (7).

Following Joslin, Singleton, and Zhu (2010), hereafter JSZ, we can identify the model by
observing that equation (7) implies Pt ≡ Wyt = (WAZ) + (WBZ)Zt. Assuming WBZ is full
rank4, this in turn allows us to replace the latent state variable Zt with Pt.

dPt = (K0 +K1Pt)dt+
√

Σ0 + Σ1VtdB
P
t , (8)

where Vt = α+ β · Pt serves as the volatility instrument. Individual yields are then related to
the yield factors through

yt = A+BPt. (9)

For identification of the parameters, we also impose that WA = 0 and WB = IN , as in JSZ.
The admissibility conditions (6) map into:

β′Σ0β = 0, and β′K0 ≥
1

2
β′Σ1β, and β′K1 = cβ′, (10)

where c is an arbitrary constant. The last admissibility condition can be restated as the
requirement that β′ be a left eigenvector of K1, which is required so that Vt is an autonomous
process under P.

We will denote the stochastic volatility model in (8–9) by F1(N). The model is parame-
terized by ΘF ≡ (K0, K1,Σ0,Σ1, α, β, A,B) which is subject to the conditions in (10). Our
development shows that the F1(N) model is the most general factor model with an underlying
affine A1(N) state variable.

4This is slightly overidentifying. For details, see JSZ.
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2.3 No arbitrage term structure models with stochastic volatility

The A1(N) no arbitrage short rate model of DS represents a special case of the F1(N) model.
That is, when one imposes additional constraints to the parameter vector ΘF one will obtain
a model consistent with no arbitrage. In this section, we first review the standard formulation
of the A1(N) no arbitrage model. We then focus on the the effect of no arbitrage on the
volatility instrument through the restriction it implies on the loadings parameter β.

The latent factor specification of the A1(N) model

We now consider affine short rate models which take a latent variable Zt with dynamics
given by (4-5) and append a short rate which is affine in a latent state variable. We consider
the general market prices of risk of Cheridito, Filipovic, and Kimmel (2007). Joslin (2011a)
shows that any such latent state term structure model can be drift normalized under Q so
that we have the short rate equation

rt = r∞ + ρV Vt + ι ·Xt, (11)

where ι denotes a vector of ones, ρV is either +1 or -1, and the risk-neutral dynamics of Zt
are given by

dZt =

([
KQ

0V

0N−1×1

]
+

[
λQV 01×N−1

0N−1×1 diag(λQX)

]
Zt

)
dt+

√
Σ0Z + Σ1ZVtdB

Q
t , (12)

where λQX is ordered. To ensure the absence of arbitrage, we impose the Feller condition that
KQ

0V ≥ 1
2
Σ1Z,11.

No arbitrage pricing then allows us to obtain the no arbitrage loadings that replaces the
unconstrained version of (7) in the F1(N) model:

yt = AQ
Z +BQ

ZZt, (13)

The no arbitrage latent factor model can then be parameterized by

ΘNA,Z = (K0Z , K1Z ,Σ0Z ,Σ1Z , r∞, ρV , K
Q
0V , λ

Q).

Here, we use λQ to denote the vector (λQV , λ
Q
X).

Implications of the no arbitrage restrictions for the factor model

Ideally, we would like to characterize the no arbitrage model as restrictions on the parameter
vector ΘF in the F1(N) model. The ΘNA,Z parameterization only indirectly accomplishes
this goal. In JSZ, they were able to succinctly characterize the parameter restrictions of
the no arbitrage model as a special of the factor VAR model. In their case, essentially
the only restriction was that the factor loadings (B) belongs to an N -parameter family
characterized by the eigenvalues of the Q feedback matrix. In our current context of a
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stochastic volatility models, such a simple characterization is not possible because changing
the volatility parameters Σ1Z affects not only the volatility structure but also the loadings.
This is because higher volatility implies higher convexity and thus higher bond prices or lower
yields. The fact that the Σ1Z shows up both in volatility and in yields complicates a clean
characterization of the restrictions on ΘF that no arbitrage implies.

For now, let us focus on a simpler question: what is the relationship between the loadings
B in (9) and the volatility instrument loadings β when the no arbitrage restrictions are
applied? In the general F1(N) model, both are fully flexible and independent. Surprisingly,
in the no arbitrage model the loadings B essentially fix the volatility instrument. We can see
this in two ways.

First, observe that in (14), the loadings BQ
Z depend only on (ρV , λ

Q,Σ1Z). Since ρV is
a normalization factor, we ignore this. Σ1Z will have an effect on how the loadings due to
the stochastic convexity effects. However, these affects will generally be small and will be
dominated by variation in risk neutral expectations which will be determined by λQ. Thus if
we approximate (14) by replacing

yt ≈ AQ
Z + B̂Q

Z (λQ)Zt, (14)

where B̂Q
Z (λQ) is a functional approximation for the true loading function that depends only

on (ρV , λ
Q,Σ1Z). For example, we could take B̂Q

Z (λQ) to be the loadings from a Gaussian
term structure model which does not have a stochastic volatility effect. Multiplying by W
we can solve this approximation to obtain that

Zt ≈ (WB̂Q
Z )−1(Pt −WAQ

Z). (15)

Now, the volatility factor, Vt, is the first component of Zt and so we see that the volatility
instrument β must be given by the first entry of (WB̂Q

Z (λQ))−1, which depends only on the
parameter λQ. Thus, given a set of no arbitrage loadings B, one could extract an associated
λQ (according to this approximation) and this completely fixes the volatility loading β (up to
scaling).

A more careful analysis of these steps indicates a slightly stronger relationship. In fact, β
is completely determined by λQX . This can be see as follows. Let us write W1 for the first
row of W and W2 for matrix consisting of rows 2 to row N of W . Similarly, let P1

t denote

the first entry of Pt and P(2)
t denote entries two to N of Pt. Finally, let BQ

V denote the first
column of BQ

Z and BQ
X the remaining columns of BQ

Z . Then we have, ignoring constants,

P(1)
t = W1B

Q
V Vt +W1B

Q
XXt

P(2)
t = W2B

Q
V Vt +W2B

Q
XXt.

This gives two equations and two unknowns, so we can subtract W1B
Q
X(W2B

Q
X)−1 times the

second equation from the first equation to eliminate Xt and obtain

P(1)
t −W1B

Q
X(W2B

Q
X)−1P(2)

t = cVt,
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where c is a constant. This shows directly that the no arbitrage imposes the restriction

β = (1,−W1B
Q
X(W2B

Q
X)−1).

We see that the volatility instrument is in fact determined entirely by λQX .
Thus our overall conclusion is that the no arbitrage restriction on the F1(N) model imposes

a very tight link between the cross-sectional loadings BP and the volatility instrument β.

3 Positive volatility under the risk neutral measure

In this section, we provide intuitive examples why the no-arbitrage restrictions can strongly
pin down the volatility factor, without reference to the time series properties of the data.

We have seen in Section 2.2 that in order to have a well-defined autonomous volatility
process we must have the condition (10). This condition can be restated as that β′ is a left
eigenvector of K1. This means that β · Pt is a sufficient statistic to forecast future volatility.
This provides some guidance on potential volatility instruments. For example, although level
is known to be related to volatility, it is also well-known (for example Campbell and Shiller
(1987)), that the slope of the yield curve predicts future changes in the level of interest rates.
Up to the associated uncertainty of such statistical evidence, this suggests that the slope
of the yield curve predicts the level and thus also that the level of interest rates is not an
autonomous process. We now show that the risk neutral measure provides strong guidance
for which combinations of yields form autonomous processes, as required for a valid volatility
instrument.

For illustrative purposes, we consider the case of three factors N = 3, but the same
intuition applies to any N .

3.1 Example 1

Let’s define the convexity-adjusted forward rate by:

ft(n) = EQ
t [rt+n]. (16)

In the spirit of Collin-Dufresne, Goldstein, and Jones (2008) we can write the following
risk-neutral dynamics:

EQ
t

 Vt+1

rt+1

ft+1(1)

 = constant +

a1 0 0
0 0 1
a2 a3 a4

 Vt
rt

ft(1)

 . (17)

The first row is due to the autonomous nature of Vt. The second row is the definition of
the forward rate in (16). The last row is obtained from the fact that in a three factor affine
model, (Vt, rt, ft(1)) are informationally equivalent to the three underlying states at time t.
From the last row and by applying the law of iterated expectation to (16), we have:

a2Vt = constant + ft(2)− a3rt − a4ft(1). (18)
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Using (18) to substitute Vt out from (17), we have:

EQ
t

 rt+1

ft+1(1)
ft+1(2)

 = constant +

 0 1 0
0 0 1
α1 α2 α3

 rt
ft(1)
ft(2)

 . (19)

where α1 = −a1a3, α2 = a3 − a1a4, and α3 = a4 + a1. It follows from the last row of (19)
that:

ft(3) = constant + α1rt + α2ft(1) + α3ft(2). (20)

Equation (20) reveals that if the short rate as well as the forward rates can be empirically
observed, the loadings α can in principle be pinned down simply by regressing ft(3) on rt,
ft(1), and ft(2). Based on the mappings from (a1, a3, a4) to α, it follows that the regression
implied by (20) will also identify all the a coefficients, except for a2. In the context of equation
(18), it means that the volatility factor is already determined up to a translation and scaling
effect.

Repeated iterations of the above steps allow us to write any forward rate ft(n) as a linear
function of (rt, ft(1), ft(2)). Suppose that we use J forwards in (ft(1), . . . ft(J)) in estimation,
then: 

rt
ft(1)
ft(2)
ft(3)
ft(4)

...
ft(J)


=



1 0 0
0 1 0
0 0 1
α1 α2 α3

g4(α)
. . .
gJ(α)


 rt
ft(1)
ft(2)



where (g4, . . . , gJ) represent the cross-sectional restrictions of no-arbitrage. So we can think
of no-arbitrage as having two facets. First, it imposes a cross-section to time series link
through the fact that fixing α constrains what the volatility factor must look like, through a3
and a4. Second, it induces cross-sectional restrictions on the loadings (g4, . . . gJ), just as is
seen with pure gaussian term structure models.

3.2 Example 2

We can also use the approach of Joslin (2011b) to consider arbitrary linear combinations of
yields as factors. The insight again is that risk-neutral expectations are, up to convexity,
observed as forward rates. The m-term forward rate the begins in one period, f 1,m

t is given
by

f 1,m
t =

1

m
((m+ 1)ym+1

t − rt). (21)

Thus we can use (21) to approximate EQ
t [ymt+1] whereby we simply ignore any convexity

term. Notice that since our primary interest is not in the level of expected-risk neutral
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changes but in their variation (i.e. KQ
1 ), it is only stochastic convexity effects that will

violate this approximation. Thus to the extent that changes in convexity effects are small
this approximation will be valid for inference on KQ

1 .
From this method, we extract observations on EQ

t [ymt+1] from forward rates which we

can then convert into estimates of EQ
t [Pt+1] using the weighting matrix W . We denote this

approximation of EQ
t [Pt+1] by Pft . We can consider the regression of the form

Pft = constant +KQ
1 Pt + ut. (22)

Given the validity of our convexity approach and repeated cross-sections of yields, we should
be able to obtain estimates of KQ

1P even without estimating a term structure model.

3.3 Example 3

Consider the J × 1 vector of yields yt used in estimation:

yt = A+BXt, (23)

where Xt denotes the underlying states. To have affine bond pricing, the essential requirement
is that the risk-neutral dynamics of Xt be affine. Focusing on the conditional mean, and
applying standard rotations to Xt, we can always write:5

EQ
t [Xt+1] = diag(λQ)Xt. (24)

In the spirit of Joslin, Singleton, and Zhu (2010), we can rotate Xt to any N yields portfolios:
Pt = Wyt. Rewriting (23) and (24), replacing Xt with Pt, we have:

yt =constant+B(WB)−1Pt, (25)

EQ
t [Pt+1] =constant+ (WB)diag(λQ)(WB)−1︸ ︷︷ ︸

KQ
1P

Pt. (26)

Assuming the effect of convexity on the loadings B is minimal (which we confirm subsequently
in our empirical exercises), to the first-order approximation, the loadings B are only dependent
on λQ.6 Consequently, equation (25) implies that we could estimate λQ by regressing yt on Pt,
forcing the loadings to be of the form B(WB)−1, which is only dependent on λQ. Once λQ is
identified, the risk-neutral feedback matrix KQ

1P in (26) is in turn pinned down. Notably, this
must be true of all canonical affine term structure models regardless of whether a volatility
factor is included or not.

5Suppose that we start from EQ
t [Xt+1] = K0+K1Xt. The appropriate rotation is X̃t = C+DXt where D is

the inversion of the eigenvector matrix of K1 such that DK1D
−1 is diagonal. And C = (DK1D

−1−I)−1DK0.
Here for ease of exposition, we assume that the eigenvalues of K1 are distinct and real-valued.

6Specifically, for the loading on the ith factor for yield ynt with n periods to maturity is approximately
1+λQ(i)+...+λQ(i)n−1

n∆t .
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Focusing on term structure models with one stochastic volatility factor Vt, affine bond
pricing implies that we can write:

Vt = constant+ b′Pt (27)

for some b. It follows that:

EQ
t [Vt+1] = constant+ b′KQ

1PPt. (28)

Since Vt+1 must be autonomous, its conditional mean can only depend on its lagged value.
Consequently, we must have:

b′KQ
1P = cb′ (29)

for some scaler c. In other words, b′ must be a left eigenvector of KQ
1P .

4 Empirical Results

In this section, we empirically evaluate the implications of our theory, using the US Treasury
data spanning the period from March 1984 until December 2006. The sample is chosen
such that our analysis is not materially affected by either the Fed experiment regime or the
current financial crisis. We use the monthly unsmoothed Fama Bliss zero yields and the
following seven maturities in our estimation: 3–month, 6–month, one– out to five–year. We
first provide evidence that for our sample period, conditional volatilities of yields can be
captured to a large extent by linear combinations of yields. Next, we examine the extent to
which the requirement of autonomous volatility can impact the identification of volatility
under both the physical and risk-neutral measures. For all of our exercises, we consider
models with three factors.

4.1 Conditional volatility from linear projections

In this section, we investigate whether interest rate volatility can be approximately spanned
by yields. In doing this, we focus on the conditional volatility of the level factor – the most
important determinant of yields for all maturities. We first construct the first three principal
principal components of yields, Pt, for our data and fit these to a VAR:

Pt+1 = K0 +K1Pt + εt+1. (30)

To estimate the conditional volatility of the level factor Pt+1,1, we project the fitted residuals
of the level factor, ε̂t+1,1, from (30) onto Pt:

ε̂2t+1,1 = α + βPt + et+1. (31)

The square root of the predicted component of (31) is a measure of the conditional
volatility of the level factor implied by the affine structure (of the conditional means and
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Figure 1: Volatility of the level factor estimated from the EGARCH(1,1) model and a
two-stage regression.

variances) of standard term structure models. What we are primarily interested in is whether
this spanned measure of volatility, free of admissibility constraints, can reasonably capture
interest rate volatility. As a result, in estimating (30) and (31), we do not require that
the volatility factor be autonomous. While the true volatility process is not known, we
follow standard practices and use volatility estimates from the EGARCH(1,1) model as a
benchmark. Specifically, using the fitted residuals ε̂t+1,1 from (30) as input, we obtain and
plot the EGARCH(1,1) estimates in Figure 1 side by side the predicted component of (31),
labeled “Instrumented Volatility.” It is visually clear that the two series track each other
quite well with a sample correlation of 66%. Comparing volatility estimates of a A1(3) model
with the EGARCH(1,1) estimates over a longer sample period, Jacobs and Karoui (2009)
find a very similar correlation.

Additionally, using a multi-period version of (31),7 Le and Singleton (2011) show that
spanned volatility is considerably rich of information relevant for predicting future excess
returns. Together, these suggest that volatilities instrumented by yields can potentially reflect
realistic fluctuations in yields as well as meaningful information about priced risks. As we
overlay the estimation of (31) with the requirement that volatility be autonomous, there
is a possibility that the estimates of the loading β can be altered in such a way that the
information content of the resulting volatility estimates can be quite different. We take on
these issues at greater depth in the subsequent sections. Here with the aim of providing some
initial descriptive evidence of the impact of the autonomous requirement, we perform the

7In particular, they stack ε̂2t+h over multiple horizons and use the technique of rank reduced regression to
estimate α and β.
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following simple test. Using the estimated loading β̂ from (31), we regress β̂Pt+1 on Pt:

β̂Pt+1 = constant + γPt + noises. (32)

Under the null hypothesis that the volatility factor α+βPt is autonomous, it must be true that
γ is a scaled version of β. This amounts to a χ2 test with two degrees of freedom. Using twelve
lags to construct the robust asymptotic covariance matrix of the estimates, accounting for
estimation errors with sequential inferences, we obtain a χ2(2) statistics of 11.2, statistically
significant at the 1% level. This evidence shows that while there exists a linear combination
of yields that can give a reasonable account of the time-varying conditional variances of yields,
such a combination does not give rise to a volatility factor that is autonomous under P. This
suggests the potential tension in fit when autonomy is imposed in estimation. In the next
two subsections, we separately consider the impact of the autonomous requirement under P
and Q.

4.2 Autonomy under P
We first consider the requirement by both the F1(N) and A1(N) models that volatility forms
an autonomous process under P. This requires (10) which states that the volatility instrument,
β′ be a left eignevector of K1. To the extent that the conditional mean is strongly identified
by the time-series, this condition will pin down the admissible volatility instruments up to a
sign choice and the choice of which of the N left eigenvectors instruments volatility. However,
in general even with a moderately long time series, such as our 22 year sample, inference
on the conditional mean is not very precise. At the same time however, this condition does
provide some guidance as we have just seen that there is statistical evidence that the linear
projection of the squared residuals does not seem to follow an autonomous process.

To gauge how strongly identified the volatility instrument is by the autonomous require-
ment under P, we implement the following exercise. First we estimate an unconstrained VAR
on the first three principal factors, Pt. Ignoring the intercepts, the estimates for our sample
period are:

Pt+1 =

 0.9805 −0.0190 −0.5530
−0.0027 0.9581 0.3928
0.0014 −0.0005 0.8433


︸ ︷︷ ︸

K1

Pt + noises (33)

Then, for each potential volatility instrument βPt (as β roaming over R3), we re-estimate the
VAR under the constraint that β is a left eigenvector of K1. The VAR is easily estimated under
this constraint after a change of variables so the the eigenvector constraint becomes a zero
constraint (compare the constraints in (6) and (10)). We then conduct a likelihood ratio test
of the unconstrained versus the constrained alternative and compute the associated p-value.
A p-value close to 1 indicates that the evidence is consistent with such an instrument being
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Figure 2: Likelihood Ratio Tests of P-Autonomous Restrictions. This figure reports the
p-values of the likelihood ratio test of whether a particular linear combination of yields, βPt,
is autonomous under P, plotted against the loadings of PC2 and PC3. The loading of PC1 is
one minus the loadings on PC2 and PC3 (β(1) = 1− β(2)− β(3)). PC1, PC2, and PC3 are
scaled to have in-sample variances of one.

an autonomous process while a p-value close to 0 indicates evidence against the instrument
being an autonomous process.8

Since βPt and its scaled version, cβPt, for any constant c, effectively give the same
volatility factor (and hence deliver the same p-values in our exercise), we scale so that all
elements of β sum up to one. We plot the p-values against the corresponding pairs of loadings
on PC2 and PC3 (the loading on PC1 β(1) = 1 − β(2) − β(3)) in Figure 2. For ease of
presentation, in this graph the three PCs are scaled to have in-sample variances of one.

We see that there are three peaks which correspond to the three left eigenvectors of the
maximum likelihood estimate of K1. When β is equal to one of these left eigenvectors, the
likelihood ratio test statistic must be zero and hence the corresponding p-value must be one,
by construction. As our intuition suggests, many, though not all, instruments appear to

8We view this test as an approximation since it assumes volatility is constant. However, exploratory
computations of p-values, accounting for heteroskedasticity of the errors, deliver very similar results.
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Figure 3: Likelihood Ratio Tests of Q-Autonomous Restrictions. This figure reports the
p-values of the likelihood ratio test of whether a particular linear combination of yields, βPt,
is autonomous under Q, plotted against the loadings of PC2 and PC3. The loading of PC1 is
one minus the loadings on PC2 and PC3 (β(1) = 1− β(2)− β(3)). PC1, PC2, and PC3 are
scaled to have in-sample variances of one.

potentially satisfy the requirement of (10) according to the metric that we are considering.
Thus we conclude that the autonomy requirement under the P measure in general still leaves
a great deal of flexibility in forming the volatility instrument.

4.3 Autonomy under Q
Having seen the precision with which the historical measure guides the set of admissible
volatility instruments, we now turn to the information gained from the risk-neutral measure.
We follow the model-free approach of Joslin (2011b) as in Section 3.2 to study this restriction
in a similar manner to our previous exercise under the historical measure. Specifically, we
consider, ignoring constants, the regression

EQ
t [Pt+1] = KQ

1 Pt + ut,
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where, as before, we proxy for EQ
t [Pt+1] using the linear combination of forwards Pft . As in

our analysis of the autonomy constraints under the historical measure, we consider both the
unconstrained version of this regression and the same regression with the constraint that a
particular β is a left eigenvector of KQ

1 . Intuitively, although we observe only a single time
series under the historical measure with which to draw inferences, we observe repeated term
structures of risk-neutral expectations every month and this allows us to draw much more
precise inferences.

Figure 3 plots the p-values for this test of the restrictions of various instruments to be
autonomous under Q. In stark contrast to Figure 2 and in accordance with our intuition,
we see that the risk-neutral measure provides very strong evidence for which instruments
are able to be valid volatility instruments. Most potential volatility instruments are strongly
ruled out with p-values essentially at zero. Bond prices essentially pin down KQ

1 and the
only degrees of freedom are the sign choice and choosing which of the left eigenvectors is the
volatility instrument.

4.4 Comparison of Gaussian and stochastic volatility models

The analysis in the previous subsections provides suggestive evidence that the cross-sectional
information, in combination with the autonomy requirement, is likely to be very helpful in
identifying the potential volatility instrument. What are left out of these exercises, however,
are, among other things, the constraints imposed from variance equations such as (2). The
informal evidence produced in Section 4.1 hints at the potential tension between fitting the
variance equations and satisfying the autonomy requirements.

To shed light on how this tension is resolved, we estimate the Gaussian term structure
model A0(3) with constant volatility and compare it to the A1(3) model. This comparison
is informative since the main difference between the two models is simply the variance
equations. In particular, we are interested in the estimates of KQ

1 implied by these two
models since the volatility loading from the A1(3) model must be a left eigenvector of this
matrix. Estimates of KQ

1 for the two models are reported in the first two panels of Table 1.
The two estimates are strikingly close: except for the (1,2) entry, for every other entry, the
two estimates are essentially identical up to the third decimal place. This evidence suggests
that the identification by the cross-sectional information (and possibly other moments shared
between the A0(3) and A1(3) models) for the parameter KQ

1 seems overwhelmingly stronger
than the restrictions coming from the variance equations. This leads us to the surprising
conclusion that the A0(N) model with constant volatility allows us to essentially identify
(up to choice of which eigenvector) the volatility instrument in the A1(N) model.

Moreover, we have argued that variation in the risk-neutral expectations, as determined
by KQ

1 , is well approximated by the regression based estimate of (22). Importantly, this
model free estimate of KQ

1 is independent of any physical dynamics. As can be seen from the
last panel of Table 1, this estimate is also very similar to ones implied by the A0(3) and A1(3)
models. This evidence suggests that the cross-sectional information alone is sufficient to pin
down the risk-neutral feedback matrix, and this identification is so strong that information
from other constraints imposed by the models seem irrelevant.
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A0(3)
1.0084 0.1088 -0.4111
-0.0105 0.9786 0.4491
0.0042 -0.0098 0.7851

A1(3)
1.0085 0.1102 -0.4084
-0.0104 0.9781 0.4479
0.0042 -0.0088 0.7870

Regression
1.0066 0.1230 -0.4078
-0.0082 0.9659 0.4510
0.0020 -0.0008 0.7589

Table 1: This table contains the estimates of KQ
1 computed from the A0(3) and A1(3) models,

along with the estimates from the model-free regression of (22).

This observation has a number of implications. First, as stated previously, this allows us
to pin down the potential volatility instruments using the cross-section of yields due to the
admissibility constraint. Essentially the volatility instrument is free in terms of the sign but
must be one of the left eigenvectors of KQ

1 which can be computed accurately from either
the cross-sectional regression or from estimation of the A0(N) model which has constant
volatility and can be estimated quite quickly as shown in JSZ.

This observation also shows that in some regards, the estimation of the no arbitrage
A1(N) model is more tractable than estimate of the F1(N) model. In the case of the Gaussian
models the opposite holds: the factor model is trivial to estimate as it amounts to a set of
ordinary least squares regressions while the no arbitrage model is slightly more difficult to
estimate due to the non-linear constraints in the factor loadings. In the stochastic volatility
models, the admissibility conditions require a number of non-linear constraints in order
to ensure that volatility remains positive. The no arbitrage model essentially determines
the volatility instrument up to sign and choice of eigenvector. This actually simplifies the
computational burden in estimation since it reduces the set of non-linear constraints that
need to be imposed.

4.5 Comparison of estimates of volatility

The strong identification power of the cross-sectional information for the potential volatility
instruments (to the extent that the variance equations do not seem to matter) begs the
important question of whether the volatility outputs by these models make sense. With this
in mind, we now turn to see the estimation results for volatility in both the general F1(N)
factor model and the A1(N) model. The time series of model-implied volatilities are plotted
in Figure 4. We see that in general both the factor model (which imposes only admissibility
without restrictions on the cross-sectional loadings) and the no arbitrage model produce
a volatility time series for the level of interest rates which is generally consistent with the
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Figure 4: This figure plots the model estimates of the volatility from the estimated A1(N)
and F1(N) with the EGARCH(1,1) estimates.

EGARCH(1,1) estimates. The correlations between the F1(N) and A1(N) volatility estimates
and the EGARCH(1,1) estimates are 0.72 and 0.45, respectively. We note again that we
should anticipate a positive correlation since both specifications are free to change the sign of
the volatility instrument so to the extent that the maximum likelihood criterion function is
maximized with a positive sign, this positive correlation should generally occur.

5 Conclusion

In this paper, we show that there is a strong link in a no arbitrage affine term structure
model between the cross-section of bond yields and the set of positive processes under the
risk neutral measure. Since volatility must define a positive process under any measure, this
provides a tight link between the cross section of bond yields and the set of valid volatility
instruments. To the extent that the no arbitrage model is correctly specified, no arbitrage
therefore provides evidence for identifying volatlity instruments. Moreover, the information
about volatility instruments in the cross section of bond yield can also be approximately
obtained either through model-free regressions or by analyzing Gaussian models with constant
volatilities. Empirically, we show that broadly the no arbitrage models appear to match
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volatility with this condition in our sample. Of separate interest, we also provide a general
canonical form for affine models with stochastic volatility (the A1(N) class) where nearly all
of the parameters directly relate to observable variables.

Our primary results are driven by the fact that an affine drift requires a number of
constraints in order to assure that volatility stays positive. A number of alternative models
could be considered. First, one could consider a model with unspanned or nearly unspanned
volatility. This, however, can only partially counteract our results in the sense that the
projection of volatility onto yields must still mathematically be a positive process. So several
of our insights maintain. Another possible model to consider is a model with non-linear drift.
That is, we can suppose that there is a latent state variable Zt with the drift of Zt linear
in Zt without any constraints provided that volatility (or its instrument) is far from the
boundary. Near the zero boundary, the drift of the volatility may be non-linear in such a way
as to maintain positivity. Provided that the probability of entering this non-linear region is
small (under Q), similar pricing equation will be obtained as in the standard affine setting.
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A A Canonical Form for Discrete-Time Term Struc-

ture with One Stochastic Volatility Factor

In this section, we lay out canonical forms for discrete-time affine term structure models with
one stochastic volatility factor. Our construction draws on the discrete volatility dynamics of
Le, Singleton, and Dai (2010) and the canonical setup of Joslin, Singleton, and Zhu (2010)
(JSZ) for Gaussian DTSMs. The continuous time limit of our construction nets the A1(N)
family of models considered in Dai and Singleton (2000).

Recall that we denote the N latent risk factors by (Vt, X
′
t)
′ where Vt governs the conditional

volatility of the states and Xt represent the remaining N − 1 conditionally gaussian risk
factors. We first write down the conditional dynamics of states that: (a) delivers affine
bond pricing; (b) ensures econometric identification. Next, we provide explicit bond pricing
formulas. Finally, we show how to reparameterize the model in terms of observable yield
portfolios and a way to generate sensible starting points for ML estimation.

A.1 P and Q dynamics of the latent states in discrete time

Under Q, the states follow:

Vt+1|Vt ∼ univariate CAR(ρQ, cQ, νQ), (34)

Xt+1 ∼ N(KQ
1ZVt + diag(λQ)Xt,Σ0X + Σ1XVt), independent of Vt+1 (35)

rt = r∞ + ρV Vt + ι ·Xt. (36)

Here we have applied the rotation techniques similar to those used by DS and JSZ to obtain
econometric identification for the parameters related to Xt. CAR refers to a compound
autoregressive gamma process, characterized by three strictly positive parameters (νQ, ρQ, cQ)
such that:9

EQ
t [Vt+1] = νQcQ + ρQVt, and V arQt [Vt+1] = νQcQ

2
+ 2ρQcVt. (37)

Here, ρQ, νQ, and cQ modulate the (risk-neutral) persistence, mean and scale of Vt, respectively.
To see the continuous time limit of CAR, let ρQ = κ∆t, cQ = 1

2
σ2∆t, and vQ = 2κθ

σ2 , we can
see that

EQ
t [∆Vt+1] = κ(θ − Vt)∆t and V arQt [∆Vt+1] = σ2Vt∆t+ o(∆t). (38)

Clearly, a CAR process approaches the CIR process in the continuous time limit as ∆t
approaches 0.

To avoid Vt being absorbed at the zero boundary, the discrete–time counterpart to the
Feller condition (κθ ≥ 1

2
σ2) requires νQ be greater than one. One attractive property of the

CAR process is that Vt is always strictly positive, yet its conditional Laplace transform is

9For further details of the CAR process, such as its associated conditional density and Laplace transform,
see Le, Singleton, and Dai (2010).
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exponentially affine in Vt,
10 which is essential to obtain affine bond pricing. It is important

to note that Vt must be autonomous – that is, the gaussian states Xt must not directly affect
the conditional dynamics of Vt. The presence of Xt on the right hand side of either equation
in (37) would give a strictly positive probability that either the conditional mean or the
conditional variance of Vt+1 be negative.

Note that we can still scale Vt up and down by a positive constant.11 To obtain econometric
identification, we will fix the scaling of Vt by normalizing ρV the details of which will be
described below.

Under P, the states follow an analogous dynamics:

Vt+1|Vt ∼ univariate CAR(ρP, cP, νP), (39)

Xt+1 ∼ N(L(Vt, Xt),Σ0X + Σ1XVt), independent of Vt+1 (40)

where L denotes a linear operator. Again, non-attainment under P requires the Feller
condition: νP ≥ 1.

We now discuss two technical issues related to this parameterization. First, consider the
market prices of variance risk:

EP
t [Vt+1]− EQ

t [Vt+1]

V arPt [Vt+1]
.

As discussed by Cheridito, Filipovic, and Kimmel (2007), when V arPt [Vt+1] approaches zero,
there is the issue of exploding market prices of risks unless the intercept terms of EP

t [Vt+1]
and EQ

t [Vt+1] are the same (hence the numerator too approaches zero at the same rate as
the denominator). Nevertheless, in our discrete time setup, as long as νP and cP are strictly
positive, V arPt [Vt+1] is bounded strictly away from zero. As a result, we don’t have to directly
deal with this issue. If one wishes to avoid this issue even in the continuous time limit, then
a sufficient restriction on the parameters is:

vPcP = vQcQ.

Finally, the scale parameters (cP and cQ) in principle can be any pair of positive numbers
in our discrete time setup. Nevertheless, the diffusion invariance property of the CIR process
requires that these two parameters have the same continuous time limit (1

2
σ2dt). To be

consistent with diffusion invariance of Vt in the continuous time limit, then a sufficient
restriction on the parameters is:

cP = cQ.

A.2 Bond pricing

Note that the Laplace transform for a univariate CAR process is:

Et[e
uVt+1 ] = ea(u)+b(u)Vt where a(u) = −νQlog(1− ucQ), b(u) =

ρQu

1− ucQ
.

10That is, EQ
t [euVt+1 ] = ea(u)+b(u)Vt .

11If we scale Vt up by a positive constant c then cVt+1|cVt ∼ CAR(ρQ, ccQ, νQ).
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Therefore, bond prices are exponentially affine logPn,t = −An−BV,nVt−BX,nXt with loadings
given by:

BX,n = ι′ +BX,n−1diag(λQ), (41)

BV,n = ρZ +
ρQBV,n−1

1 +BV,n−1cQ
+BX,n−1K

Q
1Z −

1

2
BX,n−1Σ1XB

′
X,n−1, (42)

An = r∞ + An−1 + νQlog(1 +BV,n−1c
Q)− 1

2
BX,n−1Σ0XB

′
X,n−1, (43)

starting from: A0 = BV,0 = BX,0 ≡ 0.
If we ignore convexity, then the loadings of yields on the factors satisfy:

Bc
X,n = ι′ +Bc

X,n−1diag(λQ), (44)

Bc
V,n = ρZ + ρQBc

V,n−1 +Bc
X,n−1K

Q
1Z , (45)

starting from Bc
V,0 = Bc

X,0 ≡ 0. Note that Bc
X and BX are the same.

To obtain loadings on annualized yields, we need to scale these loadings appropriately by
the corresponding maturities.

A.3 Parameterization with yields portfolios as factors

In estimation, we assume that N portfolios of yields, PNt = WNyt are observed without
errors. Let’s denote the first row of WN by WV and the last N − 1 rows by WX , with the
corresponding portfolios denoted by PV,t and PX,t. If we use convexity-adjusted yields instead,
we add superscript c and denote these portfolios by P c

t , P c
V,t, and P c

X,t.
Applying WX to both sides of the yield pricing equation yt = A + BV Vt + BXXt, we

obtain
PX,t = WXA+WXBV Vt +WXBXXt.

Thus under the physical measures:

PX,t+1 −WXBV Vt+1 = N
(
L(Vt, PX,t),Σ0 + Σ1Vt

)
where

Σ0 = WXBXΣ0X(WXBX)′, and Σ1 = WXBXΣ1X(WXBX)′.

Now, pricing the PV,t portfolio, we obtain:

PV,t = WV τA+WV τBV Vt +WVBX(WXBX)−1PX,t

where τ = I −BX(WXBX)−1WX .
We choose to fix the scaling of Vt to the observable portfolio PV,t. Specifically, we choose

ρZ such that:
WV τBV = sV where sV = 1 or sV = −1.
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Let β = (sV ,−sVWVBX(WXBX)−1), we can write:12

Vt = βPt − sVWV τA = βPt − βWNA.

Now to make sure that Vt be strictly positive, it is convenient to write instead:

Vt = βPt −min(βPt) + α̃.

Obviously, as long as α̃ is positive, Vt is positive. To this extent, it is more convenient
to use α̃ as a primitive parameter. For this, we will give up our degree of freedom in r∞.
Matching:

βWNA = min(βPt)− α̃,
noting that (1) r∞ does not enter into the calculations of the loadings BX and BV ; and
(2) r∞ contributes to A linearly: A = hr∞ + Ã where h is a constant vector and Ã is the
component of A that is not dependent on r∞, we can write:

r∞ =
min(βPt)− α̃− βWN Ã

βWNh
.

The full set of Q parameters include {ρQ, cQ, νQ, KQ
1V , λ

Q, sV , α̃,Σ0,Σ1}. The P parameters
include {ρP, cP, νP} and other parameters {K0, K1V , K1P} that determine the conditional
means of PX,t.

Et[PX,t+1 −WXBV Vt+1] = L(Vt, PX,t) = K0 +K1V Vt +K1PPX,t.

A.4 Starting points

A.4.1 λQ

We guess that the eigenvalues of the risk-neutral feedback matrix, (ρQ, λQ), are similar to
those obtained in estimating the corresponding A0(N) model. Since there is no ordering
between ρQ and λQ, given the N risk-neutral eigenvalues implied by the A0(N) model, there
are N possibilities as to which one corresponds to ρQ. The remaining eigenvalues are then
ordered from high to low and form into λQ. Although we can make a guess of ρQ here (to be
the remaining risk-neutral eigenvalue), we will defer this until later by choosing a value for
ρQ that best fits the cross-section of yields.

Given a guess of λQ, we can compute BX and β = (sV ,−sVWVBX(WXBX)−1). For β,
we need to know sV . We will consider both possibilities sV = 1 and sV = −1.

A.4.2 α̃, Σ0, and Σ1

Given each β from the previous subsection, we fit the following physical dynamics:

Vt+1 = βPt −min(βPt) + α̃ ∼ CAR(ρP, cP, νP), (46)

PX,t+1 ∼ N(K0 +K1V Vt +K1PPX,t + φV Vt+1,Σ0 + Σ1Vt), (47)

12It is straightforward to show that βWN = sVWV τ .
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subject to 0 < ρP < 1, νP >= 1, and cP > 0. Note that for each value of α̃, the triplet
{ρP, cP, νP} can be obtained relatively efficiently by maximizing the likelihood implied by
the CAR dynamics. Additionally, for each value of α̃ and Σ0 and Σ1, the mean parameters
in the second equation ({K0, K1V , K1P , φV }) can be obtained analytically. Note that φV
corresponds to WXBV .

A.4.3 The remaining risk neutral parameters

The remaining risk neutral parameters are cQ, νQ, ρQ, and KQ
1V . For νQ and cQ, we will use

their physical counterparts, νP and cP, from the previous subsection. To guess ρQ and KQ
1V

we follow the following steps:

1. Regressing yt −BX(WXBX)−1PX,t on βPt to obtain a loading vector θ; Note that by
construction, WXθ = 0, and WV θ = sV .

2. Let B̃V = θ+BX(WXBX)−1φV . It can be checked that WXB̃V = φV , and WV τB̃V = sV .

3. Fit a cubic spline through BV to obtain a series of B̃V,n. Assuming that BV,n’s are close
to Bc

V,n therefore satisfying equation (45).

4. Regressing B̃V,n on B̃V,n−1 and BX,n−1. The loadings obtained from this regression
correspond to ρQ and KQ

1V .
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