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Abstract

We examine the cross-sectional relation between idiosyncratic volatility and stock returns

and propose that the joint effect of the percentage of zero returns, that affects the loading on the

systematic risk factors, and the bid-ask spread, that inflates the variance of the returns, biases

the estimate of idiosyncratic volatility and the resulting pricing ability of idiosyncratic volatility.

We model the microstructure influence on returns and derive a closed-form solution for the bias

in the estimated idiosyncratic volatility. Motivated by this theory, our empirical results show

that controlling for the liquidity costs on the estimation of idiosyncratic volatility diminishes

to insignificance the ability of idiosyncratic volatility estimates to predict future returns. We

confirm our findings by examining external shocks to liquidity, due to reductions in the stated

quotes after 1997 and the decimalization of quotes in 2001, and find a significant reduction in

the pricing ability of idiosyncratic volatility. Finally, minimizing liquidity’s influence on the

estimated idiosyncratic volatility, by orthogonalizing the percentage of zero return and spread

effects on the estimated idiosyncratic volatility, demonstrates that the resulting idiosyncratic

volatility estimate has little pricing ability.
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1 Introduction

The question of whether cross-sectional idiosyncratic volatility predicts returns strikes at the

heart of empirical asset pricing. In a well regarded paper, Ang, Hodrick, Xing, and Zhang (2006)

present evidence that idiosyncratic volatility is priced in expected returns. Ang et al. (2006) demon-

strate that the spread between the extreme quintiles of stocks sorted by idiosyncratic volatility earns

an abnormal return of 1% per month. The market appears to price unsystematic risk in addition

to the commonly defined systematic risk factors. Understanding the source of the “mispricing” is

fundamental to a better implementation of empirical asset pricing models and the predictions that

arise from these models.

We attempt to elucidate why idiosyncratic volatility predicts one-month-ahead returns given

the underlying return structure. We argue that liquidity costs, in terms of both the bid-ask bounce

that biases the daily security returns (Blume and Stambaugh, 1983) and zero returns (Lesmond,

Ogden, and Trzcinka, 1999) that affect the estimation of systematic risk elements, are important in

understanding the causes of the mispricing of idiosyncratic volatility. We show, both theoretically

and empirically, that the bid-ask bounce upward biases the idiosyncratic volatility estimate and the

preponderance of zero returns affects idiosyncratic volatility due to biased systematic risk estimates.

Controlling for the tandem effects of the bid-ask bounce and zero returns sufficiently reduces the

bias in idiosyncratic volatility eliminating the pricing ability of idiosyncratic volatility. These results

are consistent with the central paradigm of asset pricing and generally acknowledged importance

of liquidity in asset pricing (Amihud and Mendelson, 1986; Acharya and Pedersen, 2005).

Huang, Qianqiu, Rhee, and Zhang (2009) and Fu (2009) offer a reversal effect as an alternative

explanation for the pricing ability of idiosyncratic volatility. Huang, Qianqiu, Rhee, and Zhang

(2009) argue that neglecting the return reversal effect (Jegadeesh, 1990) results in an omitted vari-

able bias. Focusing only on the extreme value-weighted idiosyncratic volatility portfolios, they show

that a specially constructed reversal “factor” reduces the pricing ability of idiosyncratic volatility
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to insignificance.1 In contrast, our value-weighted regressions across all stocks,2 performed in a

manner identical to Ang, Hodrick, Xing, and Zhang (2009), show that the reversal effect, while

negatively and significantly associated with future returns, does not eliminate the pricing ability

of idiosyncratic volatility,3 while the liquidity bias corrected idiosyncratic volatility estimate does

eliminate the abnormal performance.

It should be noted that prior period returns are also used as a control for liquidity effects.

For instance, Jegadeesh and Titman (1993), among many others, exclude the prior month’s return

to control for a liquidity cost effect on future returns. However, our model and findings focus

on the mechanism that liquidity exerts on returns and precisely describe how liquidity affects

the estimation of idiosyncratic volatility. Our treatment of the liquidity bias in returns due to

microstructure noise is fundamentally different than using prior returns as a control for liquidity

effects. The focus of attention is on the estimation of idiosyncratic volatility, not on the ex-poste

testing of omitted variables.

Liquidity explanations (notwithstanding the use of the prior month’s return as a liquidity cost

proxy), have been extensively examined and refuted as an explanation for the pricing ability of

idiosyncratic volatility. For example, Spiegel and Wang (2005) find that while liquidity proxies are

positively associated with future returns, the relation between idiosyncratic volatility and returns

is much stronger than is liquidity’s relation to returns. Similarly, Ang et al. (2006) show that the

significance in the relation between idiosyncratic volatility and value-weighted returns persists even

after controlling for the bid-ask spread liquidity measure. However, neither study addresses the

inextricable impact of liquidity costs on the estimation of idiosyncratic volatility - an omission that

engenders a liquidity bias in the estimated volatility and a multicollinearity bias in the reported

1Although not reported, we show that these results are not robust to the reversal “factor” construction. Using
the reversal factor provided on Ken French’s website, with an identical empirical specification for the time-series
regression as employed by Huang et al. (2009), our time-series regression tests show the reversal effect cannot remove
the pricing ability of idiosyncratic volatility.

2Ang, Liu, and Schwartz (2009) provide an analysis of the relative benefits of individual-security versus portfolio
level analysis in empirical asset pricing applications. Fama and French (2008) also note that firms in the extreme
quintiles have unusual distributional qualities stemming from differences in firm size.

3This also marks a departure from Fu (2009) who argues that the pricing ability of lagged idiosyncratic volatility
noted in Ang, Hodrick, Xing, and Zhang (2006) is driven by a small subset of firms with high idiosyncratic volatility
which he shows is somewhat associated with prior period returns. He construes this evidence as consistent with a
return reversal effect. Our evidence shows the return reversal cannot explain the pricing of idiosyncratic volatility
across all stocks.
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results.

We conjecture that liquidity costs affect the measurement of idiosyncratic volatility in two

ways. The first effect is due to the bid-ask bounce that increases the variance of the returns

leading to an inflated idiosyncratic volatility estimate. Blume and Stambaugh (1983) show that

the bid-ask bounce (microstructure noise) induces an upward bias in expected stock returns, due

to Jensen’s inequality, that is proportional to the variance of the bid-ask spread. Modeling the

microstructure noise4 using the Blume and Stambaugh framework, we show that the bias in the

idiosyncratic volatility estimate is proportional to
√

2 times the bid-ask spread. The size of the bias

is substantial with even large firm portfolios recording an 18% increase in the estimated idiosyncratic

volatility. The second influence is through the incidence of zero returns. These zero returns affect

the loading on the systematic risk factors by distorting the covariance between returns and the

systematic risk factors leading to a biased estimate of idiosyncratic volatility. Zero returns also

capture more expansive liquidity cost elements (such as price impact costs and opportunity costs)

than the spread (Lesmond, Ogden, and Trzcinka, 1999) leading to a more general examination of

liquidity cost effects.5

By using the underlying return structure that reflects liquidity costs as a central theme, our

results indicate that Ang et al. (2006) findings hinge on the bias in the idiosyncratic volatility

measurement, thereby suggesting significance for idiosyncratic volatility’s pricing power that is, in

fact, insignificant. Generally, these results also explain the findings of Bali and Cakici (2008) who

find that different trading horizons, different breakpoints used to sort idiosyncratic volatility into

quintiles, and different screens for price, size, and liquidity costs determine whether idiosyncratic

volatility is priced. Their cross-sectional tests merely proxy for the liquidity effect on the estimate

4The advent of microstructure noise models in the literature is growing. Recently, Asparouhova, Bessembinder,
and Kalcheva (2009) model microstructure noise in a similar framework to our model, but more generally, in equally
weighted asset pricing tests and find significant effects on returns due to microstructure noise.

5Liquidity effects also extend to the measurement of the future return. Common tests of idiosyncratic volatility’s
pricing ability utilize future monthly returns. However, Amihud and Mendelson (1986) show that, in expectation,
investors amortize higher liquidity costs by lengthening the holding period and hence reducing expected returns.
Blume and Stambaugh (1983) show that microstructure noise is mitigated using a buy-and-hold strategy that is
captured by longer holding periods. By using monthly returns in the prediction phase of testing, we are minimizing
the liquidity cost effect on the returns. Thus, the twin effects of an inflated (biased) idiosyncratic volatility estimate
and a liquidity cost minimized future monthly return lead to the reported negative relation between idiosyncratic
volatility and future returns.
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of idiosyncratic volatility. The evidence suggests that testing liquidity’s effect on the pricing of

idiosyncratic volatility cannot be accomplished without first reflecting on liquidity’s effect on the

returns themselves. Thus, it cannot be argued that idiosyncratic volatility has more power than

liquidity in explaining future returns (Spiegel and Wang, 2005), but rather that liquidity and

the estimation of idiosyncratic volatility are intertwined. The resulting multicollinearity between

idiosyncratic volatility and liquidity, evident in the quintile sorting tests utilized by Ang et al.

(2006) or regression tests employed by Spiegel and Wang (2005), illustrates the importance of

liquidity induced estimation bias in the statistical tests showing the pricing ability of idiosyncratic

volatility.

We estimate the idiosyncratic volatility over a one month period from 1984 to 2008 in a manner

consistent with Ang et al. (2006), and test for the pricing of idiosyncratic volatility using either

quintile sorts or value-weighted Fama-MacBeth regressions.

We initially demonstrate the importance of our hypothesized zero return liquidity variable in

double sorts of idiosyncratic volatility and the percentage of zero returns. The results show no

significance in the idiosyncratic volatility pricing ability. To more directly control for the bias pro-

duced by the bid-ask bounce, we then estimate idiosyncratic volatility based on quote midpoint

returns. Consistent with our theory, using quote midpoint returns reduces the magnitude of the

idiosyncratic volatility estimate dramatically and changes the composition of firms in the largest

idiosyncratic volatility portfolio greatly altering the reported pricing ability in the sort tests. Sta-

tistical tests of the extreme quintile portfolios that result using the quote midpoint idiosyncratic

volatility estimate report no significant abnormal performance when using the four-factor Carhart

alpha.6 As a benchmark, the CRSP-based return (closing price) produces a highly significant differ-

ence between the extreme quintile portfolios regardless of using either the Fama-French or Carhart

alpha.

We examine the effect of sudden and lasting (regulatory) changes in liquidity on idiosyncratic

volatility estimates and pricing ability by exploiting exogenous liquidity shocks to the market.

These periods are outlined by Bekaert, Harvey, and Lundblad (2007) who argue that when the

6The Fama-French alpha shows a much reduced level of the abnormal return and a much weaker significance level.
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NYSE/Amex/NASDAQ exchanges reduced the tick size to 1/16 in 1997 and the exchanges reverted

to the decimalization of quotes in 2001, liquidity costs embodied in both the bid ask spread and the

percentage of zero returns also fell precipitously. We find that the ability of idiosyncratic volatility

to predict future returns becomes insignificant from 1997 to 2008 using the Carhart alpha and

insignificant from 2001 to 2008 using either the Fama-French alpha or the Carhart alpha.7

We control for the tandem liquidity effects by first regressing the idiosyncratic volatility esti-

mates on both the percentage of zero returns and the spread. This procedure orthogonalizes the

influence of both the zero returns and the spread effect on the volatility estimate. We then use

the residual from this regression (termed the residual idiosyncratic volatility) in quintile sorts and

in Fama-MacBeth regression tests. These tests specifically address the assertions of Spiegel and

Wang (2005) who argue that idiosyncratic volatility is more powerful than is liquidity in predicting

future returns.

We find that using quintile sorts of the residual idiosyncratic volatility do not produce a signif-

icant Fama-French or Carhart alpha. The Fama-French alpha for the spread between the extreme

idiosyncratic volatility portfolios falls to -0.411% per month (from -1.338% per month in the base-

line sort results), and the Carhart alpha falls to -0.272% per month (from -0.834% per month in

the baseline sort results). These results clearly illustrate a liquidity induced estimation bias em-

bedded in the idiosyncratic volatility estimate. Thus, idiosyncratic volatility results reported in the

literature may reflect liquidity effects after all.

Extending the cross-sectional analysis to a value-weighted Fama and MacBeth (1973) frame-

work8 allows for controlling multiple influences on future returns that encompass one-month lagged

returns (Huang, Qianqiu, Rhee, and Zhang, 2009) and six-month momentum returns (Jegadeesh

and Titman, 1993), book-to-market (Daniel and Titman, 1997), coskewness (Harvey and Siddique,

2000), dispersion in analyst forecasts (Diether, Malloy, and Scherbina, 2002), institutional holdings

7We also find a general decline in the pricing ability of idiosyncratic volatility from 1992 to 2008 that corresponds
to a secular reduction in both the percentage of zero returns and the bid-ask spread subsequent to 1992.

8Asparouhova, Bessembinder, and Kalcheva (2009) note that if return regressions are conducted using value-
weighting, thereby mitigating microstructure noise bias in returns, then the cross-sectional regression will yield
consistent parameter estimates, in the absence of other specification problems. This feature draws a distinction
between our work and that of Asparouhova et al. in that our model shows microstructure noise still induces a bias
in the idiosyncratic volatility estimate and the consequent pricing ability.
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(Chen, Hong, and Stein, 2002), leverage (Johnson, 2004), and firm size. The baseline result is

that idiosyncratic volatility and returns are significantly associated even after these controls are

instituted in the regression and this would be construed as consistent with the results of Ang,

Hodrick, Xing, and Zhang (2006, 2009). However, as is found in the quintile sorts, the residual

idiosyncratic volatility is not significantly associated with future returns in the regressions, nor is

the idiosyncratic volatility estimate based solely on quote midpoint returns.

These results are important for the following reasons. The asset pricing literature’s focus on

liquidity and returns may be neglecting the importance of the liquidity effect on the systematic risk

factors that is dependent on both the occurrence of zero returns and the more direct bid-ask bounce

effect on returns. Liquidity’s importance in asset pricing tests may lie more in the estimation phase

than in the execution costs of trading. Relatedly, the level of idiosyncratic volatility is an important

input in the study of diversification benefits. The diversification effects noted by Merton (1987)

and extended to idiosyncratic volatility measurement by Malkiel and Xu (2004) should consider

the liquidity effect on asset pricing specifications and on the tests of these asset pricing predictions.

The percentage of zero returns may be the demonstrable signal of incomplete diversification effects

that are amplified by the bid-ask spread and may point to a more complete asset pricing model

that prices liquidity risk as well as other systematic risk factors.

The paper is organized as follows. Section 2 models the microstructure effect on idiosyncratic

volatility estimation. Section 3 outlines the estimation of the idiosyncratic volatility and the various

control variables. Section 4 presents summary statistics. Section 5 presents the value-weighted

sorting results. Section 6 examines the effect that exogenous liquidity shocks exert on idiosyncratic

volatility’s ability in predicting future returns. Section 7 presents the results of using a regression

residual approach to disaggregating idiosyncratic volatility from liquidity effects and the resultant

effects on idiosyncratic volatility’s ability to predict future returns. Section 8 concludes.
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2 Microstructure Noise on Idiosyncratic Volatility Estimation

We present a model based on microstructure noise to illustrate the effect on idiosyncratic volatil-

ity estimation and present calculations for the magnitude of the microstructure bias on the esti-

mated idiosyncratic volatility. This section will motivate our focus on zero returns, the proportional

spread, and the quote midpoint returns in the empirical tests.

2.1 The model

Blume and Stambaugh (1983) model a microstructure effect that generates a difference between

the observed return, R̃t, and the true return, Rt given as:

R̃t = Rt

(

1 + δt

1 + δt−1

)

. (1)

The microstructure noise induced by the bid-ask spread at time t is represented by δt. We assume,

as does Blume and Stambaugh (1983), that δt is a normally distributed random variable, i.e.

δt ∼ N (0, σ2
δ) and is independently distributed across time, t. Expanding the denominator via

Taylor-series expansion, as performed in Blume and Stambaugh (1983), we find:

R̃t ≈ Rt(1 + δt)(1− δt−1 + δ2
t−1). (2)

This yields the following relation for the rate of return:

r̃t = (1 + δt)(1− δt−1 + δ2
t−1)(rt + 1)− 1. (3)

Simplifying the expression by eliminating the higher order term, δtδ
2
t−1, results in:

r̃t = rt[1 + (1 − δt−1)(δt − δt−1)] + [(1− δt−1)(δt − δt−1)]. (4)
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Setting εt = (1 − δt−1)(δt − δt−1) allows for a compact representation of the microstructure effect

on returns that is both multiplicative and additive. This is represented as:

r̃t = rt(1 + εt) + εt (5)

To derive the microstructure effect on idiosyncratic volatility, we first take the first two moments

of the εt term. The resulting expression drops the cross-products and sets the expectation of δ4
t

equal to the fourth moment which is given by 3σ4
δ . In addition, the expectation of δ2

t δ2
t−1 is equal

to σ4
δ . The first two moments are then given as:

E(εt) = E(δt − δt−1 − δtδt−1 + δ2
t−1) = σ2

δ . (6)

V ar(εt) = E(ε2)− [E(ε)]2

= E[(δt − δt−1 − δtδt−1 + δ2
t−1)

2]− σ4
δ

= 2σ2
δ + 3σ4

δ

(7)

As is shown, the mean of the distribution for εt is non-zero. To ensure a zero-mean residual term

for the regression we rewrite εt = et + σ2
δ , that ensures et is mean zero, and we have:

r̃t = rt(1 + σ2
δ + et) + (σ2

δ + et). (8)

For simplicity, assuming that the true return is generated by a single factor model, rt = α+βXt+νt,

and substituting9 into Equation (8) results in:

r̃t = α∗ + β∗Xt + ν∗

t (9)

where α∗ = α(1 + σ2
δ ) + σ2

δ and β∗ = β(1 + σ2
δ ). Setting r̂t = α + βXt allows for a compact

9Note that in Asparouhova, Bessembinder, and Kalcheva (2009), if the regressors and the microstructure noise are
not related, then their proposition 1 reduces down to Equation (9). The parameter that Asparouhova et al. calls λ

becomes zero in this case, and the matrix that they call Γ becomes a diagonal N ×N matrix (where N is the number
of securities) with one plus the variances of the noise variables for the different securities on the diagonal.
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representation of the error term10 stated as:

ν∗

t = (1 + r̂t)et + νt(1 + σ2
δ ) + νtet (10)

Assuming that independence between the regression model residual, νt, and the random shock,

et, both of which are zero mean, allows the following representation for the variance of ν∗

t which is

then generally stated as:

V ar(ν∗

t ) = (1 + r̂t)
2V ar(et) + (1 + σ2

δ )
2V ar(νt) + V ar(νtet) (11)

The last term of Equation (11) can be decomposed as follows:

V ar(νtet) = E(ν2
t e2

t )− [E(νtet)]
2

= E(ν2
t )E(e2

t) − [E(νt)E(et)]
2

= V ar(νt)V ar(et)

(12)

Substituting Equation (12) for the last term of Equation (11), noting that the variance of νt equals

σ2
ν , and reflecting that the variance of εt is given in Equation (7) yield:

V ar(ν∗

t ) = (1 + r̂t)
2V ar(et) + (1 + σ2

δ )
2V ar(νt) + V ar(νt)V ar(et)

= [(1 + r̂t)
2 + σ2

ν](2σ2
δ + 3σ4

δ ) + (1 + σ2
δ )2σ2

ν .

(13)

Expanding the last term in Equation (13) results in the bias described as follows:

V ar(ν∗

t ) − V ar(νt) = [(1 + r̂t)
2 + σ2

ν](2σ2
δ + 3σ4

δ ) + (2 + σ2
δ )σ2

δσ
2
ν

= [(1 + 2r̂t + r̂t
2) + σ2

ν ](2σ2
δ + 3σ4

δ ) + (2 + σ2
δ )σ

2
δσ

2
ν

= 2(1 + 2r̂t + r̂t
2 + σ2

ν)σ
2
δ + 3(1 + 2r̂t + r̂t

2 + σ2
ν)σ

4
δ + (2 + σ2

δ )σ
2
δσ

2
ν

(14)

10Asparouhova, Bessembinder, and Kalcheva (2009) are more focused on cross-sectional correlation than on endo-
geneity bias, while the endogeneity bias in our derivation is structurally embedded due to microstructure noise. Our
endogeneity bias stems from the inclusion of r̂t (representing α + βXt) into the error term ν∗

t . However, we would
not anticipate any correlation between the market factor and the pricing noise so any endogeneity bias in our results
would be minimal.
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For comparative analysis, all the terms in Equation (14) are positive indicating that the bid-ask

microstructure effect on the asset return increases the resulting residual variance. This illustrates

that a microstructure effect11 embedded in the return structure can yield an inflated idiosyncratic

volatility estimate. The dominant effect on the residual variance bias contained in Equation (14)

is the microstructure induced variance effect, 2σ2
δ , with the remaining terms an order of magnitude

lower.

2.2 The magnitude of the microstructure bias on idiosyncratic volatility

This microstructure effect is noted to increase in importance when the residual variance is

converted to an idiosyncratic volatility (i.e. by taking the root mean square). Given that Blume

and Stambaugh (1983) postulate that the true price is the quote midpoint and the variance of the

microstructure noise, σ2
δ is equal to the square of the proportional bid-ask spread, we begin this

exercise by noting that the bias in the idiosyncratic volatility is 1.414 times the proportional spread

(or
√

2σ2
δ ). This is then divided by

√
21 to convert the monthly bias to a daily bias to get the

comparable values for the idiosyncratic volatility reported in the tables.

Based on averages from 1984 to 2008, large firms (i.e. those in the largest two size deciles)

experience a closing price based idiosyncratic volatility of 1.048% with a corresponding average

spread of 0.592%. The model would predict a bias of 0.183% (i.e. proportional bid-ask spread of

0.596% times 1.414 divided by
√

21). Thus the midquote idiosyncratic volatility would be predicted

to have an idiosyncratic volatility estimate of 0.865% (or an 18% error in estimated idiosyncratic

volatility). The actual estimate of idiosyncratic volatility using quote midpoints is 0.886%. This is

both a sizeable percentage error and a very good estimate of the bias.

The smallest firms, and those with the highest idiosyncratic volatilities, would be expected to

experience a larger bias, in absolute terms, due to higher spread costs. The spread costs are 3.564%

and the estimated bias is 1.099%. Given a closing price estimated idiosyncratic volatility of 6.416%,

11Also of note, as shown in Asparouhova, Bessembinder, and Kalcheva (2009), with the restriction on λ and Γ, the
difference between the true volatility and the estimated one is a function of the variance they call Dnt. Lemma 3 of
Asparouhova et al. computes Cov(Dnt, Dnt−1). The computation of Cov(Dnt, Dnt) is analogous and after dropping
the higher order terms, one gets to the same leading term as we derive, namely σ2

δ .
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we would predict a “true” idiosyncratic volatility of 5.316%. The actual estimate of idiosyncratic

volatility using quote midpoints is 5.367%.

2.3 Zero return bias on risk estimation

An ancillary effect of microstructure noise on observed returns is the generation of zero returns

(Lesmond, Ogden, and Trzcinka, 1999). These zero returns, in turn, bias the systematic risk

estimates, as well as the resulting intercept term. We present this in general form using the

“partialling out” coefficient interpretation, based on the Frisch-Waugh Theorem (Greene, 2003), of

the multiple regression. Generally, the systematic risk estimate for any factor can be stated as:

βi =

∑n
t=1 ω̂tir̃t

∑n
t=1 ω̂2

ti

(15)

where ω̂ is the residual of the regression of the ith systematic risk factor on the remaining factors.

The effect on the systematic risk factor can be clearly seen in Equation (15) and arises because the

numerator is affected by the incidence of zero returns, or the number of days where the observed

return, r̃t, is zero, while the denominator is unaffected. If the covariance between the true return

(without liquidity costs) and the systematic risk factor is positive, but a zero return is observed,

then a negative bias would be induced. Conversely, if the covariance between the true return and

the systematic risk factor is negative, but a zero return is observed, then the induced bias is positive.

Hence, we cannot unambiguously determine the direction of this effect on each firm’s systematic

risk estimate, only that the systematic risk estimate will be biased. Regardless, if the systematic

risk estimates are biased then the estimate of idiosyncratic volatility will also be biased.

The effect on idiosyncratic volatility due to an increasing percentage of zero returns is intuitively

downward biased. In the limit, if we observe 100% zero returns, the total volatility is zero and, of

course, the idiosyncratic volatility is zero. If the percentage of zero returns is lessened, then the

bias on idiosyncratic volatility will be reduced.

However, we argue that the bid-ask spread directly affects the estimated idiosyncratic volatility

through an inflation in the daily return, while the occurrence of zero returns indirectly biases
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idiosyncratic volatility through biased systematic risk elements. We would conjecture that as a

result the bid-ask spread effect, by increasing the variance of the returns, on the idiosyncratic

volatility would be a larger effect than would be the zero return effect.

The inflation (or bias) in the idiosyncratic volatility estimate differentially affects stocks because

all stocks are not subject to identical bid-ask spreads. In the sort tests, the quote midpoint return

based idiosyncratic volatility effectively alters the composition of firms in the extreme portfolios,

relative to the sort using CRSP based closing return idiosyncratic volatility estimate. In the

Fama-MacBeth tests, using the midquote based idiosyncratic volatility affects the mean in each

cross-section. The sampling distribution then reflects both the mean in each cross-section and

the variance of the mean across the time-series. Given that the correction for the inflation in the

idiosyncratic volatility estimate, we would expect the mean in each cross-section to be reduced

(relative to the closing return based idiosyncratic volatility), and the resulting sampling variance

to be affected.

3 Idiosyncratic Volatility Estimation, Liquidity Estimation, and

Firm Attribute Controls

We present an outline for the measurement of idiosyncratic volatility, a specification of our

microstructure measures, and a detailed outline of our firm and market controls that will be used

in our empirical tests.

3.1 Estimating Fama-French Based Idiosyncratic Volatility

Following Ang, Hodrick, Xing, and Zhang (2006) and Malkiel and Xu (2004), we focus our main

tests on the idiosyncratic volatility estimated from the Fama-French three-factor model. Specifi-

cally, we estimate idiosyncratic volatility as the standard deviation of the residuals (RMSE) from

the Fama-French three-factor model where each month we regress the daily stock excess returns rit

on the market excess returns, rmkt,t, returns on the SMB factor, rsmb,t, and returns on the HML

12



factor, rhml,t,

rit = αi + βmkt,irmkt,t + βsmb,irsmb,t + βhml,irhml,t + εit, εit ∼ N (0, σ2
i ). (16)

Firm-level idiosyncratic volatility each month is then given as: σ̂it. We also delete any firm-month

with less than five observations. We specifically exclude ADR’s, REIT’s, closed-end funds, and

primes and scores (or those stocks that do not have a CRSP share code of 10 or 11). It should be

noted that focusing on daily returns mitigates the need for GARCH corrections for time-varying

properties in the estimation of idiosyncratic volatility.

To conform to the findings of Ang, Hodrick, Xing, and Zhang (2006), our trading strategy focuses

exclusively on a one month estimation period that is immediately followed by a one month return

holding period (this is equivalent to their 1/0/1 nomenclature). Following Ang, Hodrick, Xing, and

Zhang (2006), we analyze value-weighted quintile portfolio returns based on these idiosyncratic

volatility estimates. The value-weighted results are weighted by firm size to reduce the influence

of small stocks on the idiosyncratic volatility and return relation. Our sample runs from 1984:01

(January of 1984) to 2008:06 (June of 2008) for a total of 282 months. We specifically exclude the

“crash” experienced at the end of 2008 to preclude an exogenous shock to the market induced by

the sub-prime crisis and the failures of Lehman Brothers and Bear Stearns.

3.2 Liquidity Measures

The Trades and Quotes (TAQ), the Institute for the Study of Security Markets (ISSM), and

CRSP databases are used to estimate the proportional spread. The ISSM database covers NASDAQ

firms from 1987 to 2008, and NYSE/AMEX firms from 1984 to 2008. We utilize the CRSP database

for NASDAQ firms from 1984 to 1987 to complete our sample period from 1984 to 2008.

For each stock, we obtain the daily end-of-day closing quotes and prices using the ISSM, TAQ,

and CRSP databases for all NYSE/AMEX/NASDAQ stocks for the same month as we estimate

the idiosyncratic volatility.12 The proportional spread is the ask minus the bid quote divided by

12This procedure is problematic for the 2001 to 2006 trading period because of the proliferation of alternative
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the midquote average. We also include the percentage of zero returns observed each month and we

compute Amihud’s measure each day and then average this estimate over the month.

3.3 Firm Attribute Controls

We also estimate the variables that have been shown to be related to future returns or id-

iosyncratic volatility. These include past returns, co-skewness risk, value versus growth, firm size,

institutional holdings, analyst coverage, and leverage. Reversals in returns has been widely doc-

umented (see, e.g., Jegadeesh, 1990). Furthermore, Huang, Qianqiu, Rhee, and Zhang (2009)

provide evidence that the cross-sectional pricing power of idiosyncratic volatility may be subsumed

by one-month past returns. We extend the prior return controls by including the widely used

six-month momentum return (see, e.g., Jegadeesh and Titman, 1993). Negative co-skewness risk

is thought to be associated with higher returns (Harvey and Siddique, 2000), and idiosyncratic

volatility may in part capture that element (Boyer, Mitton, and Vorkink, 2007). Johnson (2004)

shows that raising information uncertainty about asset values leads to lower expected returns and

consequently adding to idiosyncratic volatility. Firm size is known to be associated with returns

with smaller firms experiencing higher expected returns than larger firms. Book-to-market proxies

for the value and growth phenomena (Lakonishok, Schleifer, and Vishny, 1994). Book-to-market

relies on the quarterly Compustat13 where we extract the book value of equity, and CRSP where

we calculate the market value of equity as the month-end price multiplied by the number of shares

outstanding, following Fama and French (1993). Using the monthly market value, we are able to

compute a monthly book-to-market ratio. We delete any observations from the analysis that have

either negative book-to-market ratios or missing information on the book value of the equity.

Roughly classified, institutional holdings and analyst following proxy for an information en-

vironment explanation for returns. The percentage of institutional holdings is taken from the

market maker and after-hours trading. During these years the TAQ database is “painted” with single-side quotes
whereby only one quote, either the ask or bid, is relevant. We control for this by taking the last available quote
with complete bid and ask prices that corresponds to the last price that is set by CRSP. This allows for a direct
comparison of across all of our liquidity cost measures.

13Quarterly book equity is calculated using Total Assets (item #6) - [Total Liabilities (item #181) + Preferred
Stock (item #10)] + Deferred Taxes (item #35) + Convertible Debt (item #79).
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Thompson Financial database using the 13-f filings. We measure the percentage of shares held by

all institutions at the end of each quarter and then use that percentage for the next three months.

The percentage of holdings is adjusted for the newest 13-f filing each quarter and the procedure is

repeated. If there is no institutional holding for a firm, we substitute a zero for that quarter. This

is consistent with Gompers and Metrick (2001).

The data on analyst coverage derives from the I/B/E/S Historical Summary File and is available

on a monthly basis for our entire sample period. Stocks covered by a larger number of analysts

have lower expected returns (see, e.g., Diether, Malloy, and Scherbina, 2002). To be consistent with

Deither et al. and Johnson (2004) we use the standard deviation of forecasts.

4 Summary Statistics

We initially sort the stocks into quintiles by the percentage of zero returns to provide a rela-

tive comparison of idiosyncratic volatility with other explanatory variables that have been used to

explain the idiosyncratic volatility effect. These sort statistics are equal-weighted and are shown

in Table 1. As is shown, sorting by the percentage of zero returns demonstrates a relative corre-

spondence between the percentage of zero returns and idiosyncratic volatility. The percentage of

zero returns increases from 5.062% for the lowest quintile to 49.839% for the highest quintile. To

put this into perspective, of the approximately 21 daily returns each month, the lowest zero return

quintile contains those firms that experience one zero return per month while the highest zero

return quintile contains those firms that experience 11 zero returns per month. Consequently, the

idiosyncratic volatility estimates rise from 2.778% to 3.801% across the zero return quintiles, but

reaching the maximum of 3.965% at the fourth quintile instead. The lack of a monotonic relation

between idiosyncratic volatility and the percentage of zero potentially stems from non-linearity

between idiosyncratic volatility and zero returns.

The increase in the zero returns is matched by an increase in the bid-ask spread costs that rise

from 1.704% to 10.232% across the zero return quintiles. Because NASDAQ firms are typically

smaller than NYSE/Amex firms, the inclusion of NASDAQ firms, especially prior to 1991, greatly
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increases the liquidity costs evident in our sample. The zero return and the bid-ask spread’s

relation with idiosyncratic volatility illustrates the importance of both liquidity aspects in explaining

idiosyncratic volatility’s pricing ability.

The liquidity costs are also related to many of the potential explanatory variables used in Ang,

Hodrick, Xing, and Zhang (2006) and Huang, Qianqiu, Rhee, and Zhang (2009). Lagged return

displays a very interesting trend with a positive lagged return of 2.151% for the lowest zero return

quintile that reverts to a negative return of 0.442% for the highest zero return quintile. This trend

is matched by the six-month momentum return. The highest zero return quintile also contains

more value stocks than does the low zero return quintile as evidenced by the increase in the book-

to-market across the zero return portfolios. The highest zero return portfolio is dominated by

smaller firms and small firms are known to experience higher liquidity costs. The highest zero

return category is also matched by the highest dispersion in analyst forecasts and the lowest level

of institutional holdings. Finally, leverage does appear somewhat related to idiosyncratic volatility,

but more to the level of the percentage of zero returns (liquidity costs). Downside risk, or co-

skewness, displays little trend with either the percentage of zero returns or with idiosyncratic

volatility.

5 Value-Weighted Idiosyncratic Volatility Sort Results With Liq-

uidity Controls

In this section, we present the various sort results of idiosyncratic volatility quintiles that

illustrate the influence of zero returns and the bid-ask spread on idiosyncratic volatility’s ability to

predict future returns.

5.1 Sort results with the percentage of zero returns and the bid-ask spread

We examine the effect of holding constant either the percentage of zero returns or bid-ask spread

and allowing idiosyncratic volatility to vary within each liquidity category. The zero returns will
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allow for an examination of both the estimation issues surrounding the zero returns as well as pro-

viding controls for the microstructure influence on idiosyncratic volatility measurement. The more

focused bid-ask spread liquidity measure will allow for an examination of the relative importance

of the spread itself in controlling for idiosyncratic volatility’s ability to predict future returns. This

is important because both Spiegel and Wang (2005) and Ang, Hodrick, Xing, and Zhang (2006)

have dismissed liquidity costs, as measured by the bid-ask spread or other liquidity cost proxies, as

an explanation for the pricing of idiosyncratic volatility. The structure of this test relies on Ang

et al. (2006) who utilize a double sort in their examination of alternative variables, including the

bid-ask spread, on the abnormal pricing of idiosyncratic volatility.

For these set of tests, we first sort the stocks into three groups either according to the percentage

of zero returns or the bid-ask spread.14 Then within each liquidity group we further sort stocks

into five quintiles according to their idiosyncratic volatility estimates. We then form value-weighted

portfolios within each of the idiosyncratic volatility quintiles. Hence, we hold liquidity effects

relatively constant while allowing idiosyncratic volatility to vary within each liquidity category.

We then regress the quintile portfolio returns against four-factor (Carhart, momentum) model to

estimate the Carhart alpha. We focus on the Carhart alpha to control for momentum effects15 on

the abnormal return measurement. Table 2 reports the abnormal performance of the idiosyncratic

volatility quintile portfolios and the High-Low arbitrage portfolio within each liquidity category.

As reported in Panel A of Table 2, the bid-ask spread is not effective in controlling for id-

iosyncratic volatility’s ability to predict future returns, consistent with the prior findings of both

Spiegel and Wang (2005) and Ang, Hodrick, Xing, and Zhang (2006). The abnormal return of the

High-Low idiosyncratic volatility portfolio is monotonically increasing with increasing spread costs,

and is significant for all but the lowest spread category, reaching a peak of -1.694% per month

for the highest spread category. However, the results do indicate that for low spread cost firms

idiosyncratic volatility cannot predict future returns highlighting a liquidity cost influence on the

14We use three groups because of the non-continuous and limited distribution caused by the integer counts of the
zero returns.

15Arena, Haggard, and Yan (2008) argue for a momentum effect on idiosyncratic volatility performance and find that
higher returns for high idiosyncratic volatility stocks are associated with quicker and larger return reversals. These
results show the importance of the microstructure effect on idiosyncratic volatility measurement and subsequent
performance, but also notes the importance of the momentum effect on the pricing ability of idiosyncratic volatility.
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inferences for idiosyncratic volatility. This would be confirmatory that the spread and idiosyn-

cratic volatility are highly correlated, but that controlling for liquidity’s effect after the estimation

of idiosyncratic volatility only reflects a multicollinearity bias.

Far different results are obtained by controlling for the zero returns. Panel B of Table 2 reports

a significantly reduced ability of idiosyncratic volatility’s ability to predict future returns regardless

of the zero return categories, although the pricing ability of idiosyncratic volatility for the lowest

percentage of zero returns is very close to significance. Increasing the percentage of zero returns,

does significantly reduce the pricing ability of idiosyncratic volatility. However, the lack of sufficient

variability in the percentage of zero returns precludes a finer delineation in the sort tests.

These results are indicative of the measurement issue, engendered by zero returns as well as the

direct microstructure effect typified by the bid-ask bounce, that affects the ability of the standard

methodology to properly estimate idiosyncratic volatility. Using daily returns exacerbates the

effect that both zero returns and microstructure noise exerts on the measurement of idiosyncratic

volatility. In particular, the bid-ask spread affect on the pricing of idiosyncratic volatility are more

in evidence during the estimation phase than in the ex-post testing phase.

5.2 Using quote-midpoint returns to estimate idiosyncratic volatility for value-

weighted quintile portfolios

To operationalize our microstructure model we employ the quote midpoints to address the

microstructure noise that may be evident in the estimate of idiosyncratic volatility. This procedure

specifically minimizes the bid-ask bounce effect on the measured returns and reflects the model

implication offered by Blume and Stambaugh (1983) that the true price is the quote midpoint.

We calculate the quote midpoint returns in a manner consistent with that performed by CRSP

using end-of-day prices and correcting for stock splits and dividends in the calculation of quote-

midpoint returns. In order to assess the magnitude of the microstructure noise bias in idiosyncratic

volatility measurement, we also present the idiosyncratic volatility measured using the closing
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returns provided by CRSP.16

For all the sort results, we concentrate on NYSE/Amex/NASDAQ firms to conform to the

sample used by the prior literature. We sort stocks into quintiles based on their monthly estimates

of idiosyncratic volatility, form quintile-sorted portfolios, and then difference the highest and lowest

idiosyncratic volatility quintiles. Specifically, at the beginning of each month, stocks are sorted

into five quintiles based on the idiosyncratic volatility estimated using the daily returns of the last

month. A value-weighted portfolio is formed from the stocks within each quintile. The portfolios

are held for one month and then re-balanced. We then regress the quintile portfolio returns against

either the three-factor (Fama-French) model or the four-factor (Carhart, momentum) model to

estimate the Fama-French or Carhart alpha, respectively. We finally compare the performance

between the portfolio with the highest idiosyncratic volatility (High) and the portfolio with the

lowest idiosyncratic volatility (Low). The difference is the abnormal return one would earn on

a zero-cost (arbitrage) portfolio formed by taking a long position in the highest ranked quintile

portfolio and taking a short position in the lowest ranked quintile portfolio (High-Low).

The results are presented in Table 3 with Panel A focusing on the baseline results using CRSP

based closing returns and Panel B focusing on the quote midpoint returns. As shown in Panel A

of Table 3, the Fama-French alpha of the arbitrage portfolio is -1.338% per month with a robust

t-statistic of 4.75, a result comparable to that of Ang, Hodrick, Xing, and Zhang (2006). This result

shows that even with an alternative time span, the idiosyncratic volatility is still significantly related

to future returns. The Carhart alpha is -0.83% per month and highly significant, which suggests

that including a systematic momentum factor does not sufficiently control for the idiosyncratic

volatility’s ability to predict one-month ahead returns although it does reduce the level of abnormal

performance. As found by a host of prior research, the abnormal performance appears to be most

evident in the highest idiosyncratic volatility quintile.

Notable in these results is the monotonically increasing trend in the value-weighted percentage

of zero returns and the spread from the lowest ranked idiosyncratic volatility quintile to the highest

16Also, because our sample period, from 1984 to 2008, is significantly different than that of Ang, Hodrick, Xing,
and Zhang (2006), who examine the period from 1963 to 2000, this presentation will confirm the basic sorting results
to illustrate the robustness of the idiosyncratic volatility effect for this alternative time period.
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ranked idiosyncratic volatility quintile. The percentage of zero returns rises from 7.02% for the Low

idiosyncratic volatility quintile, to 13.24% for the High idiosyncratic volatility quintile. This trend

is also matched by the spread that rises from 0.59% to 3.56%. This trend is important because it

highlights the effect that the return structure has on the estimated idiosyncratic volatility.

We now turn to quote midpoints to better focus on the “true” return before estimating id-

iosyncratic volatility. As shown in Table 3, the quote midpoint estimated idiosyncratic volatility’s

are demonstrably less than is measured using CRSP closing returns. The benchmark High-Low

idiosyncratic volatility from the CRSP based returns is 5.368% while the High-Low quote midpoint

based idiosyncratic volatility is significantly reduced to 4.481%, or a 16% reduction in the esti-

mated idiosyncratic volatility. As would be expected for a microstructure influence, most of the

reduction is garnered in the High idiosyncratic volatility quintile that witnesses a decline to 5.367%

(from the benchmark 6.416%). This clearly illustrates the inflation in idiosyncratic volatility due

to microstructure noise and is entirely consistent with our microstructure theory.

The effect on abnormal performance using quote midpoint based idiosyncratic volatility is strik-

ing. Controlling for the microstructure noise in the computed return shows that while the Fama-

French alpha of -0.943% remains significant, it is greatly reduced from the CRSP based results

of -1.338%. The reduction is almost 30%. However, the Carhart alpha, that specifically controls

for a momentum effect on the abnormal performance also reports a greatly reduced abnormal per-

formance of only -0.510% (baseline result of -0.834%), but is insignificantly different from zero.

The bid-ask bounce plays a considerable role in estimation of idiosyncratic volatility and in the

subsequent performance of idiosyncratic volatility in predicting future returns.

6 Exogenous Shock to Liquidity: Value-Weighted Idiosyncratic

Volatility Sort Results

To simultaneously control for measurement issues engendered by zero returns and microstruc-

ture noise, we propose a natural experiment using those time periods that experience a sudden and
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severe external liquidity shock. Conveniently, these periods have been outlined in Bekaert, Harvey,

and Lundblad (2007) who show that when NYSE/Amex/NASDAQ stocks reduced the quotes to

sixteenth pricing in 1997 and when NYSE/Amex/NASDAQ stocks altered the quotes to decimal

pricing in 2001 the percentage of zero returns also fell significantly reflecting reduced liquidity costs.

In tandem, the bid-ask spread liquidity costs fell during decimalization, even for the largest stocks.

However, spread costs did not specifically fall during the conversion to sixteenth pricing. This

departure will allow for a separate examination of the zero return effect on returns and the direct

microstructure effect on returns.

6.1 Exogenous liquidity shock periods

Figure 1 shows a standardized plot of the average percentage of zero returns, the average bid-ask

spread, and the average idiosyncratic volatility from 1984 to 2008. As is clearly shown, 1997 marks

a significant and precipitous decline in the percentage of zero returns that progresses through the

decimalization of all stock quotes in 2001. The percentage of zero returns clearly shows a marked

decline around these two periods. Interestingly, the spread costs experience similar changes, but

only subsequent to the 2001 decimalization. The spread costs also exhibit more volatility during

the NASDAQ growth and decline from 1999 to 2002. The idiosyncratic volatility thus also shows

a marked increase in it’s own volatility during the period from 1999 to 2002, but idiosyncratic

volatility does trend downward from 2001 to 2008. The “volatility” in the idiosyncratic volatility

during the 1999 to 2002 period will work against the liquidity cost hypothesis.17

We focus on the period from 1997 to 2008 to encapsulate the change to sixteenth pricing in Panel

A of Table 4, and the period from 2001 to 2008 to encapsulate the change to decimal pricing in

Panel B of Table 4. Unlike using monthly returns commonly utilized in GARCH model applications,

17The 1980’s shows a marked upward trend in idiosyncratic volatility, consistent with the findings of Campbell,
Lettau, Malkiel, and Xu (2001). In much of the 1990’s and continuing after 2001, idiosyncratic volatility is trending
downward, consistent with the findings of Brandt, Brav, Graham, and Kumar (2008). Indeed, from 1992 to 2008
both the percentage of zero returns and idiosyncratic volatility can be seen to more gradually decline. The downward
trend in idiosyncratic volatility is somewhat contrary to Cao, Simin, and Zhao (2008) who argue that growth options
can explain the increasing trend in idiosyncratic volatility over time because growth options were increasing from
1992 to 2000, yet idiosyncratic volatility is seen to decrease over that time period. These results would indicate that
liquidity costs have more to do with idiosyncratic volatility than do growth options.
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using daily returns in estimating idiosyncratic volatility will allow for an exact identification of these

periods. Again, we focus on NYSE/Amex/NASDAQ stocks.

As shown in Panel A of Table 4, the sort results report a marked decline in the percentage of

zero returns across all the idiosyncratic volatility quintiles, ranging from 1.886% to 3.337%, when

compared to the whole sample period from 1984 to 2008 where the percentage of zero returns are

ranging form 7.018% to 13.242% across the idiosyncratic volatility quintiles (shown in Table 3). The

spread costs are also shown to decrease, but the decrease is most evident in the highest idiosyncratic

volatility quintile, where it demonstrates a decrease to 1.157% from the baseline case of 3.573%

(shown in Table 3). The increased underlying dispersion in idiosyncratic volatility exhibited during

the NASDAQ bubble from 1999 to 2002 is evident. The idiosyncratic volatility shows a marked

increase from 1.119% for the low idiosyncratic volatility quintile to 6.199% for the high idiosyncratic

volatility quintile. The resulting High-Low idiosyncratic volatility of 5.080% is somewhat reduced

from the baseline result of 5.373%. However the reduced bias exerted by the zero returns and the

bid-ask spread alters the composition of firms in the highest idiosyncratic volatility quintile causing

a very different effect on the abnormal performance.

The resulting High-Low Carhart alpha does not display significance in any of the idiosyncratic

volatility quintiles nor does it register significance in the High-Low abnormal performance. The

reported High-Low Carhart alpha is reduced to -0.445% per month down from -0.830% per month

obtained in the period from 1984 to 2008. The abnormal performance is not even marginally

significant displaying a t-statistic of only 1.21. The Fama-French alpha is -0.991% per month and

significant at the 5% level. However, this result is likely due to price run-up and momentum before

the Internet bubble burst in 2000. Thus the period from 1997 to 2008 experiences a degradation

in idiosyncratic volatility performance of more than 35%. We would argue that this decrease in

the idiosyncratic volatility’s ability to predict returns is likely due to the decreased level of zero

returns, as well as reduced spread costs subsequent to 2001.

Turning to the 2001 to 2008 period in Panel B shows an even more marked decline in the

estimate of the idiosyncratic volatility and in the pricing ability of idiosyncratic volatility. For this

time period, the High-Low idiosyncratic volatility estimate is reduced to 4.437% demonstrating the
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microstructure influence of a reduced bid-ask spread.

The Fama-French alpha is greatly reduced to only -0.284% per month and insignificant. The

Carhart alpha is now positive at 0.028% per month and also insignificant. We conjecture that the

insignificance in the pricing ability of idiosyncratic volatility during the decimalization period is

due to the sustained and persistent reduction in the zero return frequency and the reduction in

the bid-ask spread. The spread falls to less than 1%, and is matched by a comparable reduction in

the percentage of zero returns, regardless of idiosyncratic volatility quintile. The reduction in the

spread minimizes the microstructure influence on the estimation of idiosyncratic volatility and the

falloff in the percentage of zero returns allows for a more adequately mapping of the systematic

risk factors to the underlying returns greatly reducing idiosyncratic volatility’s pricing ability.

We provide the following caveat in this experiment. While our results show little ability of

idiosyncratic volatility in explaining future returns, the results are subject to a statistical power

concern. The relative brevity of the sample period from 2001:04 to 2008:06 may not allow for

sufficient power in the statistical tests.

7 Regression Residual Approach and Quote MidPoint Returns

Spiegel and Wang (2005) argue that idiosyncratic volatility is more powerful than is liquidity in

explaining future returns. The problem in testing the relative strength of liquidity over idiosyncratic

volatility is that idiosyncratic volatility already contains a liquidity cost component embedded by

both the zero returns and the direct microstructure influence. In this section we further examine the

relation of idiosyncratic volatility with the percentage of zero returns and the spread and attempt to

disentangle the liquidity effects from the idiosyncratic volatility effects in predicting future returns

by examining the residual of a regression of idiosyncratic volatility on the liquidity cost measures.

The use of the regression residual to orthogonalize collinear effects in a Fama-MacBeth setting has

been utilized by Johnson (2004).
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7.1 The relation between idiosyncratic volatility, zero returns, and the bid-ask

spread

In Table 5, we attempt to provide some statistical merit to our graphical depiction of the

relation between the zero returns and spread with the idiosyncratic volatility estimate shown in

Figure 1. For robustness in modeling the zero return and the spread effect, we present a number

of separate regression specifications. First, we model the spread effect using linear and non-linear

spread influences, evident in the sort results of Table 3, along with the percentage of zero returns.

The inclusion of the squared spread is consistent with our theory because it is a higher order

term in the derivation of the bias. Although its influence is small compared to the linear effect

it does have incremental value. Second, we include an interaction term for the joint zero return

and bid-ask spread effect on the idiosyncratic volatility estimation because Lesmond, Ogden, and

Trzcinka (1999) note that the percentage of zero returns is a proxy for the spread. The regression

is estimated each month over the period from 1984 to 2008 and is generally stated as

Idiosyncratic Volatility = α0 + α1%Zeros + α2Spread + α3Spread2 + α4%Zeros× Spread + ε. (17)

The results of Table 5 indicate that the spread alone explains 33% of the cross-sectional variation

in the idiosyncratic volatility. In addition, the linear term of the spread is positively related

to idiosyncratic volatility and the non-linear (squared) term of the spread is negatively related

to idiosyncratic volatility18 indicating that idiosyncratic volatility is concave with respect to the

spread.

The zero returns are negatively related to the idiosyncratic volatility which is intuitively ex-

pected. As the zero returns increase, in the limit, the resulting idiosyncratic volatility would be

driven to zero. Including the interactive term does not reduce the significance of either the zero

returns, the spread, or the square of the spread. This is important because the correlation between

the zero returns and the spread (Lesmond, Ogden, and Trzcinka, 1999) may have affected the direct

18Pantzalis and Park (2007) find that the relation between mispricing and idiosyncratic risk (measured by 1−R2)
is U-shaped, which seems to be consistent with our findings because high spread firms tend to have large mispricing
as shown in Table 3.

24



liquidity influences.

Finally, we include a measure of trade difficulty that is conveniently estimated by Amihud’s

measure (Amihud, 2002). Table 5 does show that Amihud’s price impact measure is positively

and significantly related to idiosyncratic volatility. Thus, idiosyncratic volatility appears to be

dependent on liquidity, regardless of how liquidity is measured.

We term the regression residual, ε, from Equation (17) the residual idiosyncratic volatility. This

method provides a basis for decomposing the idiosyncratic risk into an orthogonal idiosyncratic

volatility estimate that is devoid of both the zero return effect and the direct microstructure effect

on the estimated idiosyncratic risk. Using the idiosyncratic risk residual provides an assessment on

the relative strength of idiosyncratic volatility to predict future returns after specifically controlling

for liquidity costs embedded in the estimate of idiosyncratic risk.

7.2 Value-weighted residual idiosyncratic volatility sort results: Spread and

zero returns

Each month, we sort stocks into quintiles by the estimated residual idiosyncratic volatility, form

value-weighted quintile portfolios, and compare the abnormal performance of the quintile portfolios

and the High-Low arbitrage portfolio. As a point of reference, Fama and French (2008) also use

regression residuals in quintile sort tests. This test is performed over the period 1984 to 2008. The

results are reported in Panel A of Table 6. In Panel B of Table 6 we replace the CRSP closing

price idiosyncratic volatility with the quote midpoint idiosyncratic volatility. We perform this later

test to control for the zero returns, that occur using the quote midpoint prices, on the estimated

idiosyncratic volatility.

As is shown in Panel A, none of the idiosyncratic volatility quintile alphas are significant and

many are now positive. This is found regardless of using either the Fama-French or the Carhart basis

of determining abnormal performance. The lack of significance in abnormal performance extends

to the High-Low extreme quintile difference. The Fama-French High-Low alpha is reduced (from

the baseline case of -1.338% shown in Panel A of Table 3) to -0.411%. This is a 70% reduction
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in the High-Low abnormal pricing ability of idiosyncratic volatility. Also evident is the lack of

monotonicity with the percentage of zero returns and spread demonstrating the effectiveness of

the residual approach. In fact, the lowest quintile has the highest percentage of zero returns and

highest spread costs of any idiosyncratic volatility quintile.

The Carhart alpha of the High-Low residual idiosyncratic volatility portfolio is only -0.272% per

month and also insignificant, suggesting no pricing ability in idiosyncratic volatility over and above

liquidity cost influences. These results are indicative of the “problem” of testing for a liquidity cost

effect after the estimation of idiosyncratic volatility and illustrate the liquidity cost component

embedded in the estimate of idiosyncratic volatility.

For robustness, we show the added influence of the zero returns on the quote midpoint based

idiosyncratic volatility in Panel B of Table 6. As is shown, the zero returns do affect the pricing

ability of idiosyncratic volatility over and above the spread effect. For this set of tests, we note

that the Carhart alpha’s is reduced to -0.349% (from the baseline result in Table 3 of -0.510%) and

insignificant.

The results are telling for a number of reasons. First the full sample period is noted to exhibit

very strong results for idiosyncratic volatility’s ability to predict future returns, yet over the same

period orthogonalizing the effect of the percentage of zero returns and bid-ask spread on the id-

iosyncratic volatility estimate reduces to insignificance idiosyncratic volatility’s ability to predict

future returns. These results point to the influence of zero returns and bid-ask spread costs on the

idiosyncratic volatility estimation and allow for a control that is both consistent and tractable.

7.3 Value-weighted residual idiosyncratic volatility sort results: Amihud’s mea-

sure

Our theory is predicated on a liquidity effect on returns that affects the estimate of idiosyncratic

volatility. However, it could be argued that firms with both higher spreads and zero returns are more

illiquid and hence harder to arbitrage. In effect, trade difficulty and liquidity are so intertwined that

controlling for the spread and zero returns in the orthogonalization approach does nothing more
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than control for arbitrage difficulty in the estimate of idiosyncratic volatility. Amihud’s measure

has been used in tests of asset pricing (Acharya and Pedersen, 2005) to determine if trade difficulty

is important. We will use the residual of idiosyncratic volatility on Amihud’s measure to determine

if controlling for arbitrage difficulty in the estimate of idiosyncratic volatility can explain the pricing

of idiosyncratic volatility.

The quintile sort results are shown in Table 7. As is shown in Panel A of Table 7, the Amihud

based residual does not remove the pricing ability of idiosyncratic volatility. Both the Fama-French

and Carhart alphas are negative and highly significant.

A natural question may arise that using Amihud’s measure alone may not be the proper basis

of comparison with the prior spread and zero return residual idiosyncratic volatility regressions. To

address this concern, we include the zero returns to estimate the residual idiosyncratic volatility.

The results are shown in Panel B of Table 7. The results of Panel B clearly show that trade

difficulty cannot explain the pricing ability of idiosyncratic volatility regardless of the specification

for the regression residual.

These results are instructive for two reasons. First, the significance of the residual idiosyncratic

volatility using Amihud’s measure clarifies the importance of the spread and to a lesser extent the

zero returns in explaining the pricing ability of idiosyncratic volatility. Second, only the spread

and zero returns, that affect the return structure and consequently the estimate of idiosyncratic

volatility, lead to significant improvements in the performance of the asset pricing models.

7.4 Fama-MacBeth regression tests

The prior sorting results provide one picture of the relation between idiosyncratic volatility and

returns, but they focus primarily on the extreme portfolios. In order to gain some insight on the

overall behavior of the idiosyncratic volatility and return relation, but simultaneously controlling

for additional risk factors or anomalies shown to affect future returns, we employ the Fama and

MacBeth (1973) methodology with nine lags for the Newey and West (1987) correction.

We first partition the results in terms of the control variables used by Ang, Hodrick, Xing, and
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Zhang (2009) that isolate information effects, momentum returns, reversal effects, firm controls,

and market effects. These controls encompass one month lagged returns (Huang, Qianqiu, Rhee,

and Zhang, 2009), and six-month momentum returns (Jegadeesh and Titman, 1993), book-to-

market (Daniel and Titman, 1997), coskewness (Harvey and Siddique, 2000), dispersion in analyst

forecasts (Diether, Malloy, and Scherbina, 2002), institutional holdings (Chen, Hong, and Stein,

2002), leverage (Johnson, 2004), and firm size. Also, we include the contemporaneous Fama-French

risk measures as modeled in Ang, Hodrick, Xing, and Zhang (2009). These controls are by no

means exhaustive, but they represent the principal variables used to model the aspects commonly

known to affect expected returns.

We generalize these results by including the proportional spread, in addition to Amihud’s mea-

sure, the percentage of zero returns and interactive liquidity terms, to corroborate the collinearity

issues evident in the Spiegel and Wang (2005) results. We also use the CRSP based (closing price)

idiosyncratic volatility as well as the residual idiosyncratic volatility, the quote midpoint based

idiosyncratic volatility, and the midquote residual idiosyncratic volatility. This procedure has a

two-fold appeal. Statistically, it corrects for any multicollinearity issues that may arise from the

observed high correlation between liquidity and idiosyncratic volatility. Second, it expressly ex-

amines the incremental ability of idiosyncratic volatility in predicting returns after controlling for

liquidity influences on the estimation of idiosyncratic volatility itself. Our microstructure theory

posits that the estimated idiosyncratic volatility is upward biased due to microstructure noise and

this regression test will highlight that hypothesis.

To be entirely consistent with Ang, Hodrick, Xing, and Zhang (2009), we employ a value-

weighted Fama-MacBeth regression using firm size at the beginning of the month as the weight.
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The general specification is given as:

Returni,t = α0 + α1Idiosyncratic Volatilityi,t−1 + α2βmkt,t + α3βsmb,t + α4βhml,t

+ α5Lagged Returni,t−1 + α6Momentum Returni,t−6 + α7Ln(Book-to-Market)i,t−1

+ α8Ln(Firm Size)i,t−1 + α9Coskewnessi,t−1 + α10Dispersioni,t−1 + α11Inst. Holdingsi,q−1

+ α12Leveragei,t−1 + α13Liquidityi,t−1 + ε,

(18)

where the subscript t represents the month for each variable and q represents the quarter for the in-

stitutional holdings reflecting the frequency of observation. We employ four separate idiosyncratic

volatility estimates. These include the idiosyncratic volatility computed from CRSP-closing returns,

the residual idiosyncratic volatility, the idiosyncratic volatility estimated using the quote midpoint,

or the residual idiosyncratic volatility using the quote midpoint based idiosyncratic volatility. Liq-

uidity represents Amihud’s measure, the proportional spread, the percentage zero returns, the

squared spread, and an interaction term for the zero returns and the spread. The regression results

are presented in Table 8 for NYSE/Amex/NASDAQ exchange listed firms.

The reversal effect (lagged return) is measured using the one month return occurring over the

estimation period of idiosyncratic volatility or during t-1. The six-month return is the cumulative

return accruing from month t-6 to t-2 so as not to overlap with the lagged return. Book-to-market

is calculated by dividing the book equity (following Fama and French (1993)) from the quarterly

Compustat by the market value of equity each month from CRSP. Leverage is defined as the sum

of long and short term debt divided by the sum of debt and market value of equity consistent with

that used by Johnson (2004).

The first prominent result in Table 8 is that the CRSP closing return based idiosyncratic

volatility remains significantly related to future returns regardless of the controls included. The

estimated marginal effect of idiosyncratic volatility on future returns ranges between 15 and 22

basis points depending on the control variables included in the regression. Contrary to Fu (2009)

or Huang, Qianqiu, Rhee, and Zhang (2009), the reversal effect (lagged return) does not control
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for the pricing ability of idiosyncratic volatility. Including institutional holdings, dispersion in

analyst forecasts, and leverage noticeably reduces the pricing ability of idiosyncratic volatility. The

momentum effect, so prominent in the sort results with the Carhart alpha, is significant in the CRSP

based idiosyncratic volatility results, but insignificant in any of the liquidity based idiosyncratic

volatility estimates.

Consistent with the results of Spiegel and Wang (2005), idiosyncratic volatility appears to

dominate liquidity in its relation to future returns regardless of how liquidity is defined (i.e. using

the price of immediacy (spread), price impact (Amihud’s measure), or a very general liquidity cost

measure (percentage of zero returns)). In fact, the spread even has the wrong sign, although value-

weighting could possibly affect these inferences. These results are telling because they point to the

multicollinearity bias that is evident in Spiegel and Wang (2005) and illustrate the importance of

modeling the spread effect on the idiosyncratic volatility before testing is performed.

This is brought into sharper focus by using the residual of the regression specified in Equa-

tion (17) that reports far different results for the pricing ability of idiosyncratic volatility. These

results are shown in columns six, seven, and eight of Table 8. Now the residual of CRSP closing

return based idiosyncratic volatility (labeled “CRSP Residual Idiosyncratic Volatility”) is insignif-

icantly, although negatively, related to future returns. This result implies that the prior regression

results controlling for liquidity as an added variable to the regression is affected by multicollinearity

concerns. Orthogonalizing idiosyncratic volatility and liquidity allows for a specification that specif-

ically tests whether idiosyncratic volatility alone (without the liquidity influence) is associated with

future returns. The residual coefficient would indicate that the marginal effect of the pure idiosyn-

cratic volatility (i.e. without the liquidity influence) is now only 10.5 basis points and insignificant.

This represents a 35% reduction in the incremental influence indicating that liquidity represents a

very large influence on the estimate of idiosyncratic volatility. Removing liquidity’s influence on

idiosyncratic volatility also removes the significance of idiosyncratic volatility in predicting future

returns.

We also focus on the quote midpoint as a basis of estimating the idiosyncratic volatility (labeled

“MidQuote Return Idiosyncratic Volatility”). This result is shown in the column seven of Table 8.
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As is shown, the change in the marginal effect of idiosyncratic volatility on future returns is dra-

matic. The incremental effect of idiosyncratic volatility is now only 8 basis points. Moreover, the

significance level of the resultant association is greatly reduced. We would argue that this insignif-

icant result, in conjunction with the residual idiosyncratic volatility results, demonstrates that the

pricing power of idiosyncratic volatility is subject to the underlying liquidity costs embedded in

idiosyncratic volatility.

Finally, we use the midquote residual idiosyncratic volatility in the last column of Table 8. This

specification for idiosyncratic volatility controls for the percentage of zero returns observed even

though quote midpoint returns are used to estimate the idiosyncratic volatility. As is shown, the

incremental effect of idiosyncratic volatility is reduced to a mere 7 basis points. That is less than

half the incremental effect without the liquidity correction on the estimated idiosyncratic volatility.

The liquidity bias corrected idiosyncratic volatility results highlight the power of the spread and

zero returns, and their influence on returns, to alter the ability of idiosyncratic volatility to predict

future returns.

7.5 Sub-period Fama-MacBeth regression tests

The idiosyncratic volatility pricing effect has been shown to be weakening to insignificance

from 1997 to 2008; a period that corresponds to regulatory changes instituted subsequent to 1997.

However, as shown in Figure 1, a gradual reduction in both the zero returns and the spread

subsequent to 1992 can be observed. We have no economic rationale why the liquidity costs

declined subsequent to 1992, but a natural question arises whether the reduction in zero returns

and spread costs has affected the pricing ability of idiosyncratic volatility. We will extend the sub-

period analysis to the period from 1984 to 1992 for completeness and where idiosyncratic volatility

is significant, we will determine if the quote midpoint return based idiosyncratic volatility can

reduce the pricing ability to insignificance. We present these results based on a Fama-MacBeth

specification and utilize all the previous control variables except institutional holdings, dispersion

in analyst forecast, and leverage. We are using a parsimonious regression specification to maximize

the idiosyncratic volatility effect on future returns. The results are presented in Table 9.
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As shown in Table 9, consistent with our prior sort results, the period from 1997 to 2008 and

from 2001 to 2008 all show insignificant pricing ability of idiosyncratic volatility. However, the

period from 1992 to 2008 also demonstrates no significant pricing ability of idiosyncratic volatility

that corresponds exactly with the decline in both the zero returns and the spread. This result

indicates that the spread and zero return effect on the pricing of idiosyncratic volatility is not a

general market efficiency notion as postulated by Chordia, Roll, and Subramanyman (2008). They

postulate that the tick size reduction in 1997 and 2001 led to a marked improvement in market

efficiency, or return predictability from past information that is short lived. The tick size did

not change until 1997, while the pricing ability of idiosyncratic volatility has been diminished to

insignificance five years prior to the conversion to sixteenth based quotes and ten years prior to the

decimalization date.

Finally, Table 9 shows the pricing ability of idiosyncratic volatility concentrated in the period

from 1984 to 1992. The incremental effect of 44 basis points is highly significant. However, esti-

mating the idiosyncratic volatility on a quote midpoint basis drastically reduces the pricing ability

of idiosyncratic volatility to insignificance. The incremental effect is now reduced to a mere 12

basis points. This result further shows that the pricing ability of idiosyncratic volatility is highly

dependent on the underlying liquidity costs that affect returns. These liquidity costs, embodied

by the bid-ask spread and the zero returns, bias the idiosyncratic volatility estimate leading to

spurious pricing ability.

8 Conclusions

We analyze the empirical relation between cross-sectional idiosyncratic volatility and expected

stock returns. The literature has presented a very vexing set of results with Ang, Hodrick, Xing, and

Zhang (2006) finding that idiosyncratic volatility is negatively related to value-weighted returns,

even for the largest market capitalization firms. Numerous explanations have been offered to explain

this findings such as return reversal (lagged returns), information asymmetry (analyst coverage and

institutional holdings), momentum, market frictions (short-sale constraint), and liquidity, while
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others question the robustness of the findings.

We show that microstructure influences are fundamental to the estimation of idiosyncratic

volatility and in the value-weighted idiosyncratic volatility’s ability to predict future returns. Mi-

crostructure influences are noted both by an increasing percentage of zero returns that biases the

systematic risk estimates and in a daily bid-ask bounce bias that inflates the idiosyncratic volatility

leading to the observed negative relation with future returns. In effect, the idiosyncratic volatility

estimated from the standard methodology has an embedded liquidity component. We find that

controlling for the liquidity cost effect on idiosyncratic volatility estimation, either by examining

the returns derived from quote midpoints or by filtering by the zero returns, can significantly reduce

idiosyncratic volatility’s ability to predict future returns. Regulatory changes that reduced liquidity

costs, such as occurred during the 1997 and 2001 periods (Bekaert, Harvey, and Lundblad, 2007)

provide a natural experiment to test our microstructure hypothesis. We show that the reductions

in the tick size or decimalization of quotes led to a rapid and lasting reduction in the percentage

of zero returns and the spread that, not surprisingly, led to a vast reduction in the the statistical

and economic importance of idiosyncratic volatility in predicting future returns.

The importance of the findings lies in the link to existing microstructure influences clearly noted

in Blume and Stambaugh (1983) and Amihud and Mendelson (1986). However, the arguments for

liquidity are often predicated on liquidity issues after the estimation of idiosyncratic volatility is

complete. We raise the issue whether the estimation of idiosyncratic volatility should reflect the

underlying microstructure influences. We conclude that microstructure influences are much broader

than have been previously thought and extending microstructure influences to include zero returns

and the return bias engendered by the bid-ask bounce on the measurement of idiosyncratic volatility

itself appears to be a first order influence on asset pricing consistent with Acharya and Pedersen

(2005). It appears that the rejection of liquidity as an explanation for idiosyncratic volatility’s

ability to predict future returns is premature.

More telling is the recent work by Ang, Hodrick, Xing, and Zhang (2009) who present strong

international evidence, which, similar to the evidence in the US, shows that high idiosyncratic

volatility stocks yield low returns. However, they fail to find any evidence supporting the notion
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of exposure to zero returns for this phenomenon. Because liquidity costs in other countries are

presumably much higher than in the US, we suspect that the strong relation between idiosyncratic

volatility and returns is again due to liquidity. We would postulate that the incidence of zero

returns indicates a liquidity costs effect on the returns. The estimation of idiosyncratic volatility

should account for the bid-ask bounce in returns before concluding that idiosyncratic volatility is

priced, rather than testing for a liquidity cost effect after the estimation of idiosyncratic volatility.

Future work should incorporate this issue.
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Table 1: Summary Statistics
This table presents the summary statistics for a quintile sort using the percentage of zero returns as the basis. The percentage of zero returns

(%Zeros) is the fraction of trading days in a month that experiences no price movement from the prior end-of-day price estimated using CRSP

daily stock returns. We estimate the idiosyncratic volatility using the Fama-French three factor model specification for all firms listed on the

NYSE/Amex/NASDAQ exchanges using the CRSP-based closing returns each month. Lagged return (reversal) is the prior month return and

six month momentum is the return measured from t-6 to t-2. Book-equity is taken from the quarterly Compustat and monthly book-to-market

is calculated using firm size each month. Firm size is month-end price multiplied by the shares outstanding. Co-skewness is calculated using the

relation:
E[εi,tε

2

M,t]√
E[ε2

i,t
]E[ε2

M,t
]

as recommended by Campbell and Siddique (2000). Analyst dispersion is the standard deviation of the one-year ahead

earnings forecast provided by I/B/E/S and is measured monthly. Institutional holdings are taken from Thompson Financial’s recording of the

13-f filings. We measure the total percentage of shares held by institutions estimated quarterly. We project the quarterly holdings for the next

three months to complete the monthly statistics. The (proportional) spread is defined as the ask minus the bid divided by the quote midpoint.

Finally, leverage is the total debt divided by total debt plus the market value of equity and is taken from Compustat and CRSP. Our sample

period runs from 1984:1 to 2008:6 for a total of 294 months and this period encapsulates the bid-ask spread observations. High - Low is the

difference between the highest (High) quintile and the lowest (Low) quintile for each respective variable. Significance at the 1% level and 5%

level is given by an ** and an *, respectively.

Rank %Zeros
Idiosyncratic

Spread(%) B/M Size
Lagged 6-month Co- Analyst Institutional

Leverage
Volatility (%) Return(%) Momentum(%) Skewness Dispersion Holdings

Low 5.062∗∗ 2.778∗∗ 1.704∗∗ 0.563∗∗ 3287.972∗∗ 2.151∗∗ 11.185∗∗ -0.010∗∗ 0.042∗∗ 50.637∗∗ 0.225∗∗

(6.56) (23.51) (11.66) (33.51) (10.90) (6.34) (7.38) (-4.43) (3.24) (30.33) (36.84)

2 13.570∗∗ 3.811∗∗ 3.287∗∗ 0.739∗∗ 1098.064∗∗ 4.101∗∗ 2.693 -0.008 0.061∗∗ 36.289∗∗ 0.264∗∗

(9.88) (26.29) (22.70) (37.55) (9.06) (5.89) (1.60) (-1.75) (23.42) (33.65) (51.96)

3 19.613∗∗ 3.580∗∗ 3.831∗∗ 0.739∗∗ 845.532∗∗ 1.194∗∗ 4.332∗∗ -0.018∗∗ 0.061∗∗ 32.623∗∗ 0.271∗∗

(9.59) (23.97) (11.32) (30.05) (5.00) (4.08) (3.29) (-7.11) (10.36) (16.92) (37.40)

4 28.683∗∗ 3.965∗∗ 5.318∗∗ 0.817∗∗ 394.569∗∗ 0.686∗ 1.345 -0.018∗∗ 0.098∗∗ 24.586∗∗ 0.291∗∗

(10.43) (24.81) (12.08) (25.75) (4.01) (2.04) (0.94) (-7.54) (4.92) (15.98) (35.92)

High 49.839∗∗ 3.801∗∗ 10.232∗∗ 0.906∗∗ 114.669∗∗ -0.442 -0.571 -0.015∗∗ 0.664 15.409∗∗ 0.307∗∗

(11.02) (21.20) (8.88) (31.30) (4.39) (-1.68) (-0.44) (-8.06) (1.51) (11.42) (39.77)

High - Low 44.777∗∗ 1.023∗∗ 8.527∗∗ 0.343∗∗ -3173.303∗∗ -2.593∗∗ -11.756∗∗ -0.004∗ 0.622 -35.228∗∗ 0.083∗∗

(11.78) (8.41) (7.97) (11.31) (-10.95) (-9.78) (-10.45) (-2.21) (1.45) (-45.65) (8.67)
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Table 2: Double Sort Performance of Liquidity Measures and Idiosyncratic Volatility
Carhart (1997) four-factor alphas, with Newey and West (1987) robust t-statistics in parentheses are reported

for idiosyncratic volatility sorted portfolios. For each liquidity measure, the spread and the percentage of zero

returns, we perform double sorts by first sorting on the liquidity measure and then, within these partitions,

further sorting on idiosyncratic volatility. Panel A reports the sort results using the proportional bid-ask

spread and Panel B reports the sort results using the percentage of zero returns. “%Zeros Low” partition

contains those firms with the fewest number of zero returns recorded each month while the “%Zero High”

partition contains those firms with the largest number of zero returns recorded each month. The bid-ask

spread results are similarly arranged with “Spread Low” representing those firms experiencing the lowest

liquidity costs and “Spread High” representing those firms with the highest liquidity costs. High - Low is

the difference in Carhart alpha between the highest idiosyncratic volatility (High) quintile and the lowest

idiosyncratic volatility (Low) quintile. Significance at the 1% level and 5% level is given by an ** and an *,

respectively.

Rank of Idiosyncratic Volatility

Low 2 3 4 High High - Low

Panel A: Carhart Alpha - Double Sort with Spread

Spread Low 0.086 0.019 -0.042 0.119 0.008 -0.079
(1.12) (0.28) (-0.52) (1.10) (0.04) (-0.30)

Spread 2 -0.043 0.003 -0.220 -0.226 -0.855∗∗ -0.811∗

(-0.32) (0.03) (-1.55) (-1.66) (-3.86) (-2.57)

Spread High 0.256 0.073 -0.164 -0.414 -1.438∗∗ -1.694∗∗

(1.46) (0.44) (-0.67) (-1.23) (-3.90) (-4.69)

Panel B: Carhart Alpha - Double Sort with %Zeros

%Zeros Low 0.011 -0.054 -0.045 -0.039 -0.539∗ -0.550
(0.15) (-0.82) (-0.46) (-0.25) (-2.33) (-1.94)

%Zeros 2 0.172 0.096 0.216 -0.353 -0.309 -0.481
(1.60) (0.82) (1.12) (-1.41) (-0.89) (-1.30)

%Zeros High 0.122 0.201 -0.042 -0.204 -0.314 -0.436
(1.00) (0.88) (-0.26) (-0.80) (-0.81) (-1.14)
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Table 3: Idiosyncratic Volatility Estimated from CRSP Returns and MidQuote Prices
We estimate idiosyncratic volatility using both the CRSP provided closing returns in Panel A and by com-

puting daily returns using the midquote prices in Panel B. We then employ these two return definitions

to estimate the idiosyncratic volatility using the Fama-French three-factor model over one month and rank

them into quintiles. Attached to each idiosyncratic volatility portfolio are the percentage of zero returns,

the spread, and the monthly excess return. The sample period runs from 1984:1 to 2008:6 for 294 monthly

observations. The row labeled High-Low refers to the difference between the portfolio in the highest quintile

and the lowest quintile for each variable. The abnormal performance of each of the portfolios is measured

using the three factor Fama-French Alpha or using the four-factor Carhart Alpha (Carhart, 1997). Newey

and West (1987) robust t-statistics are in parentheses and significance at the 1% level and 5% level is given

by an ** and an *, respectively.

Idiosyncratic
Rank Volatility(%) %Zeros Spread(%) Return(%)

Alpha(%)

Fama-French Carhart

Panel A: CRSP Closing Price Estimated Idiosyncratic Volatility

Low 1.048∗∗ 7.028∗∗ 0.596∗∗ 0.707∗∗ 0.111 0.050
(27.08) (9.29) (11.93) (3.58) (1.81) (0.71)

2 1.737∗∗ 6.762∗∗ 0.812∗∗ 0.586∗ -0.088 -0.011
(31.30) (9.11) (12.49) (2.29) (-1.10) (-0.16)

3 2.534∗∗ 8.082∗∗ 1.139∗∗ 0.576 -0.081 0.029
(29.57) (8.82) (11.80) (1.79) (-0.77) (0.33)

4 3.668∗∗ 10.040∗∗ 1.767∗∗ 0.170 -0.445∗∗ -0.210
(28.65) (8.67) (9.89) (0.40) (-2.82) (-1.40)

High 6.416∗∗ 13.240∗∗ 3.564∗∗ -0.575 -1.227∗∗ -0.783∗∗

(29.40) (8.90) (9.04) (-1.17) (-5.14) (-3.38)

High - Low 5.368∗∗ 6.213∗∗ 2.969∗∗ -1.283∗∗ -1.338∗∗ -0.834∗∗

(28.48) (7.62) (7.94) (-3.06) (-4.75) (-3.04)

Panel B: MidQuote Price Estimated Idiosyncratic Volatility

Low 0.886∗∗ 6.101∗∗ 0.623∗∗ 0.648∗∗ 0.079 0.035
(25.01) (8.35) (12.14) (3.26) (1.23) (0.50)

2 1.418∗∗ 4.121∗∗ 0.695∗∗ 0.658∗∗ 0.022 0.072
(27.91) (8.73) (12.92) (2.86) (0.39) (1.39)

3 2.063∗∗ 4.673∗∗ 0.894∗∗ 0.555 -0.104 0.041
(27.30) (8.77) (13.29) (1.75) (-0.97) (0.40)

4 2.987∗∗ 6.175∗∗ 1.206∗∗ 0.443 -0.169 0.020
(27.73) (8.22) (12.11) (1.10) (-1.14) (0.14)

High 5.367∗∗ 9.265∗∗ 2.152∗∗ -0.300 -0.864∗∗ -0.475
(30.73) (8.08) (10.19) (-0.61) (-3.52) (-1.95)

High - Low 4.481∗∗ 3.164∗∗ 1.529∗∗ -0.948∗ -0.943∗∗ -0.510
(30.38) (4.84) (8.01) (-2.28) (-3.34) (-1.82)
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Table 4: Sort Performance of Idiosyncratic Volatility after Exogenous Liquidity Shocks
We exploit exogenous liquidity shocks by examining the periods from 1997 to 2008:6 and from 2001 to 2008:6

that have been shown to experience significant reductions in liquidity costs due to regulatory changes. These

periods coincide with the NYSE/Amex/NASDAQ move to sixteenth pricing and the decimalization in quotes,

respectively. We rank into quintiles according to the CRSP closing return based idiosyncratic volatility

estimated using a Fama-French three factor model. The row labeled High-Low refers to the difference

between the portfolio with the highest idiosyncratic volatility (High) and the portfolio with the lowest

idiosyncratic volatility (Low). The remaining columns are defined as follows: %Zeros is the proportion of

zero returns; Spread is the proportional bid-ask spread; Return is the monthly excess returns of the portfolio.

The abnormal performance is based on the three-factor Fama-French Alpha and on the four-factor Carhart

Alpha (Carhart, 1997). Newey and West (1987) robust t-statistics are in parentheses and significance at the

1% level and 5% level is given by an ** and an *, respectively.

Idiosyncratic
Rank Volatility(%) %Zeros Spread(%) Return(%)

Alpha(%)

Fama-French Carhart

Panel A: From 1997:06 to 2008:06

Low 1.119∗∗ 1.886∗∗ 0.492∗∗ 0.443 0.096 0.028
(14.47) (8.04) (4.71) (1.55) (0.85) (0.22)

2 1.800∗∗ 1.688∗∗ 0.623∗∗ 0.239 -0.159 -0.052
(16.65) (7.28) (4.80) (0.59) (-1.18) (-0.41)

3 2.575∗∗ 1.879∗∗ 0.619∗∗ 0.324 -0.088 0.013
(15.51) (6.08) (5.47) (0.60) (-0.62) (0.10)

4 3.668∗∗ 2.260∗∗ 0.682∗∗ 0.176 -0.204 0.015
(14.98) (5.88) (5.79) (0.22) (-0.87) (0.06)

High 6.199∗∗ 3.337∗∗ 1.157∗∗ -0.346 -0.895∗ -0.417
(15.70) (6.16) (6.02) (-0.37) (-2.53) (-1.44)

High - Low 5.080∗∗ 1.451∗∗ 0.665∗∗ -0.789 -0.991∗ -0.445
(15.79) (4.13) (4.62) (-0.99) (-2.31) (-1.21)

Panel B: From 2001:04 to 2008:06

Low 0.935∗∗ 1.179∗∗ 0.225∗∗ 0.197 -0.002 -0.009
(15.66) (18.84) (3.26) (0.58) (-0.02) (-0.09)

2 1.545∗∗ 1.019∗∗ 0.289∗∗ 0.082 -0.291∗∗ -0.295∗∗

(17.55) (18.84) (3.36) (0.16) (-2.88) (-2.99)

3 2.192∗∗ 1.064∗∗ 0.311∗∗ 0.279 -0.145 -0.139
(15.27) (18.71) (3.99) (0.47) (-0.93) (-0.86)

4 3.118∗∗ 1.314∗∗ 0.375∗∗ 0.289 -0.115 0.058
(14.13) (15.87) (4.83) (0.35) (-0.42) (0.18)

High 5.372∗∗ 1.987∗∗ 0.700∗∗ 0.245 -0.286 0.019
(13.56) (15.37) (4.70) (0.23) (-0.84) (0.06)

High - Low 4.437∗∗ 0.808∗∗ 0.475∗∗ 0.048 -0.284 0.028
(13.10) (5.69) (4.77) (0.06) (-0.72) (0.07)
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Table 5: Idiosyncratic Volatility and Liquidity Regressions
We present regression results of the idiosyncratic volatility, estimated using a three-factor Fama-French model, on the influences of liquidity

presented by the percentage of zero returns and the proportional bid-ask spread. We run a sequential regression test by including each variable

to assess the relative association of each variable on idiosyncratic volatility. We include the spread and the the square of the spread. These

two terms control for the first and second order effects on the idiosyncratic volatility estimate. We also include an interaction effect between

the %zero returns and the bid-ask spread. Finally, we separately include Amihud’s price impact measure for completeness. The sample period

runs from 1984 to 2008. Each of these microstructure controls are estimated contemporaneously with the idiosyncratic volatility measurement.

T-statistics are in parentheses and significance at the 1% level and 5% level is given by an ** and an *, respectively.

Idiosyncratic Volatility

1 2 3 4 5 6

Intercept 3.388∗∗ 2.041∗∗ 2.554∗∗ 2.354∗∗ 1.800∗∗ 1.780∗∗

(25.40) (18.51) (21.47) (24.92) (15.10) ( 15.69)

Amihud 1.882∗∗

(6.79)

Spread 41.370∗∗ 46.980∗∗ 65.410∗∗ 70.850∗∗ 76.120∗∗

(11.67) (13.34) (20.47) (37.67) (30.53)

%Zeros -3.840∗∗ -4.967∗∗ -1.795∗∗ -2.442∗∗

(-15.23) (-16.14) (-7.32) (-7.85)

Sq. Spread -110.500∗∗ -83.290∗∗

(-4.84) (-3.38)

%Zeros×Spread -58.820∗∗ -44.780∗∗

(-13.12) (-9.35)

N 1724502 1368375 1368172 1368172 1368172 1368172

adj. R2 0.082 0.329 0.360 0.413 0.465 0.469
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Table 6: Sort Performance of Idiosyncratic Volatility Residuals
The base idiosyncratic volatility is estimated relative to Fama and French (1993) using daily returns over

a one-month interval. Panel A presents the sort results of the residual of idiosyncratic volatility using the

spread, the squared spread, the percentage of zero returns, and the interaction between the spread and

the %zero returns. Panel B focuses on the quote midpoint return based idiosyncratic volatility estimate

using a linear and non-linear specification for the percentage of zero returns. The sample period runs

from 1984 to 2008. High-Low refers to the difference between the highest (High) and lowest idiosyncratic

volatility (Low) categories. The remaining columns are defined as follows: %Zeros is the proportion of zero

returns; Spread is the proportional bid-ask spread; Return is the monthly excess returns of the portfolios.

Abnormal performance is measured using the three-factor Fama-French model and using the four-factor

Carhart (Carhart, 1997) model. Newey and West (1987) robust t-statistics are in parentheses and significance

at the 1% level and 5% level is given by an ** and an *, respectively.

Residual Idiosyncratic
Rank Volatility(%) %Zeros Spread(%) Return(%)

Alpha(%)

Fama-French Carhart

Panel A: Residual Idiosyncratic Volatility (%Zeros, Spread, Sq. Spread, %Zeros×Spread)

Low -1.413∗∗ 7.712∗∗ 1.329∗∗ 0.632∗∗ 0.012 0.027
(-19.2) (7.70) (9.91) (3.07) (0.16) (0.32)

2 -0.872∗∗ 6.773∗∗ 0.655∗∗ 0.575∗∗ -0.006 -0.027
(-18.0) (9.22) (12.8) (2.66) (-0.10) (-0.46)

3 -0.371∗∗ 7.342∗∗ 0.655∗∗ 0.525 -0.057 -0.020
(-17.5) (9.17) (12.9) (1.86) (-0.83) (-0.24)

4 0.326∗∗ 7.719∗∗ 0.779∗∗ 0.583 0.091 0.167
(15.5) (9.17) (12.5) (1.62) (0.72) (1.42)

High 1.943∗∗ 8.645∗∗ 1.166∗∗ 0.129 -0.399 -0.245
(23.0) (9.28) (11.9) (0.27) (-1.77) (-1.14)

High - Low 3.356∗∗ 0.933 -0.163 -0.504 -0.411 -0.272
(21.4) (1.88) (-1.71) (-1.23) (-1.59) (-1.08)

Panel B: Residual MidQuote Idiosyncratic Volatility (%Zeros, Sq. %Zeros)

Low -1.939∗∗ 10.80∗∗ 0.753∗∗ 0.631∗∗ 0.061 0.037
(-26.8) (7.89) (12.4) (3.21) (0.99) (0.56)

2 -1.288∗∗ 6.795∗∗ 0.707∗∗ 0.578∗ -0.018 0.031
(-24.5) (8.74) (12.6) (2.44) (-0.34) (0.50)

3 -0.660∗∗ 6.231∗∗ 0.825∗∗ 0.608 0.006 0.109
(-21.3) (9.29) (12.1) (1.82) (0.06) (0.91)

4 0.207∗∗ 6.752∗∗ 1.119∗∗ 0.411 -0.195 0.002
(7.81) (9.35) (11.8) (1.00) (-1.27) (0.01)

High 15.47∗∗ 8.729∗∗ 3.237∗∗ -0.032 -0.585∗∗ -0.312
(3.04) (9.42) (4.70) (-0.07) (-2.85) (-1.49)

High - Low 17.41∗∗ -2.066∗∗ 2.484∗∗ -0.663 -0.647∗∗ -0.349
(3.40) (-3.17) (3.69) (-1.72) (-2.67) (-1.41)

44



Table 7: Sort Performance of Amihud Idiosyncratic Volatility Residuals
The base idiosyncratic volatility is estimated relative to Fama and French (1993) using daily returns over

a one-month interval. The first specification, shown in Panel A, is a residual of idiosyncratic volatility on

Amihud’s measure and the square of Amihud’s measure. The second specification, shown in Panel B, uses

the prior specification for the trade difficulty, but includes the percentage of zero returns. Both of these

specifications mimic the prior tables using the spread and the %zeros. The sample period runs from 1984

to 2008. High-Low refers to the difference between the portfolios with the highest residual idiosyncratic

volatility (High) and the lowest residual idiosyncratic volatility (Low). The remaining columns are defined

as follows: %Zeros is the proportion of zero returns; Spread is the proportional bid-ask spread; Return is the

monthly excess returns of the portfolios. Abnormal performance is measured by the three factor Fama-French

Alpha and by the four factor Carhart Alpha (Carhart, 1997). Newey and West (1987) robust t-statistics are

in parentheses and significance at the 1% level and 5% level is given by an ** and an *, respectively.

Residual Idiosyncratic
Rank Volatility(%) %Zeros Spread(%) Return(%)

Alpha(%)

Fama-French Carhart

Panel A: Residual Idiosyncratic Volatility (Amihud, Sq. Amihud)

Low -2.129∗∗ 7.069∗∗ 0.591∗∗ 0.716∗∗ 0.127 0.058
(-29.8) (9.34) (12.0) (3.65) (1.91) (0.82)

2 -1.471∗∗ 6.724∗∗ 0.798∗∗ 0.586∗ -0.094 -0.033
(-26.9) (9.11) (12.4) (2.32) (-1.18) (-0.49)

3 -0.711∗∗ 7.935∗∗ 1.112∗∗ 0.593 -0.072 0.044
(-27.1) (8.81) (11.9) (1.88) (-0.69) (0.50)

4 0.352∗∗ 9.752∗∗ 1.684∗∗ 0.206 -0.416∗∗ -0.201
(20.6) (8.64) (10.0) (0.50) (-2.68) (-1.33)

High 2.883∗∗ 12.58∗∗ 3.251∗∗ -0.437 -1.094∗∗ -0.680∗∗

(30.0) (8.80) (8.97) (-0.89) (-4.52) (-3.06)

High - Low 5.013∗∗ 5.510∗∗ 2.660∗∗ -1.153∗∗ -1.221∗∗ -0.738∗∗

(30.2) (7.26) (7.75) (-2.83) (-4.34) (-2.82)

Panel B: Residual Idiosyncratic Volatility (Amihud, Sq. Amihud, %Zeros)

Low -2.100∗∗ 7.545∗∗ 0.599∗∗ 0.690∗∗ 0.104 0.035
(-29.6) (9.18) (12.0) (3.51) (1.73) (0.55)

2 -1.449∗∗ 6.406∗∗ 0.768∗∗ 0.501∗ -0.179∗ -0.145∗

(-27.4) (8.94) (12.5) (2.00) (-2.47) (-2.20)

3 -0.703∗∗ 7.400∗∗ 1.053∗∗ 0.586 -0.064 0.045
(-27.2) (8.61) (12.3) (1.87) (-0.69) (0.52)

4 0.350∗∗ 9.207∗∗ 1.591∗∗ 0.220 -0.380∗ -0.212
(21.0) (8.45) (10.4) (0.53) (-2.56) (-1.48)

High 2.847∗∗ 12.07∗∗ 3.128∗∗ -0.479 -1.113∗∗ -0.699∗∗

(30.3) (8.73) (9.19) (-0.97) (-4.65) (-3.11)

High - Low 4.947∗∗ 4.529∗∗ 2.530∗∗ -1.169∗∗ -1.218∗∗ -0.735∗∗

(30.4) (6.30) (7.92) (-2.84) (-4.27) (-2.71)
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Table 8: Fama-MacBeth Regressions
We regress the return against lagged control variables that comprise risk, return reversal, and information

environment variables. Each of the regressions is value-weighted using lagged firm size as the weight. We

have 294 months in our sample that span from 1984:1 to 2008:6. We estimate the idiosyncratic volatility

using the Fama-French three factor model for all firms listed on the NYSE/Amex/NASDAQ exchanges. We

employ all three Fama-French risk factors measured contemporaneously. Lagged return (reversal) is the

prior month return and six-month momentum is the return measured from t-6 to t-2. Book-equity is taken

from the quarterly Compustat and monthly book-to-market is calculated using firm size each month. Firm

size is month-end price multiplied by the shares outstanding. Co-skewness is calculated using the relation:
E[εi,tε

2

M,t]√
E[ε2

i,t
]E[ε2

M,t
]

as recommended by Campbell and Siddique (2000). Analyst dispersion is the standard devi-

ation of the one-year ahead earnings forecast provided by I/B/E/S and is measured monthly. Institutional

holdings are taken from Thompson Financial’s recording of the 13-f filings. We measure the total percentage

of shares held by institutions estimated quarterly. We project the quarterly holdings for the next three

months to complete the monthly statistics. Leverage is the total debt divided by total debt plus the market

value of equity and is taken from Compustat and CRSP. Our liquidity variables are the proportional spread

(ask minus bid divided by the quote midpoint), the percentage of zero returns, and Amihud’s measure.

We use the CRSP-closing return idiosyncratic volatility estimated relative to the Fama and French (1993)

model as a baseline comparison. The CRSP residual idiosyncratic volatility is the residual of a regression

of the baseline CRSP-closing return idiosyncratic volatility on the spread, the squared spread, the %zero

returns, and the spread times the %zero returns. The midquote return idiosyncratic volatility uses the quote

midpoint to estimate the idiosyncratic volatility. Finally, the midquote residual idiosyncratic volatility uses

the residual of a regression of the midquote estimated idiosyncratic volatility on the %zero returns. Newey

and West (1987) robust t-statistics are in parentheses and significance at the 1% level and 5% level is given

by an ** and an *, respectively.
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Return (%)

1 2 3 4 5 6 7 8

Intercept 2.480∗∗ 2.040∗∗ 2.050∗∗ 2.170∗∗ 2.140∗∗ 1.400∗ 1.620∗ 1.240
(3.46) (2.97) (2.89) (3.28) (3.11) (2.14) (2.38) (1.85)

CRSP Closing Return -0.214∗∗ -0.149∗ -0.158∗ -0.156∗ -0.156∗

Idiosyncratic Volatility (-3.04) (-2.05) (-2.15) (-2.13) (-2.13)

CRSP Residual -0.105
Idiosyncratic Volatility (-1.51)

MidQuote Return -0.084
Idiosyncratic Volatility (-1.44)

MidQuote Residual -0.078

Idiosyncratic Volatility (-1.43)

βmkt 0.155 0.148 0.162 0.160 0.163 0.125 0.153 0.139
(0.90) (0.87) (0.93) (0.93) (0.94) (0.72) (0.90) (0.83)

βsmb -0.101∗ -0.113∗ -0.114∗ -0.107∗ -0.115∗ -0.114∗ -0.102 -0.103
(-1.99) (-2.08) (-2.11) (-2.00) (-2.13) (-2.07) (-1.87) (-1.83)

βhml -0.009 0.021 0.007 0.010 0.008 0.030 0.005 0.018

(-0.09) (0.22) (0.07) (0.10) (0.08) (0.30) (0.05) (0.19)

Lagged Return -2.030∗∗ -2.490∗∗ -2.230∗∗ -2.250∗∗ -2.320∗∗ -2.350∗∗ -2.270∗∗ -2.400∗∗

(-3.54) (-4.25) (-3.77) (-3.78) (-3.97) (-3.92) (-4.01) (-4.18)

6-Month Momentum 0.781∗ 0.630 0.672∗ 0.663∗ 0.685∗ 0.632 0.632 0.581
(2.52) (1.84) (2.02) (2.04) (2.11) (1.82) (1.89) (1.64)

Ln(Firm Size) -0.073 -0.068 -0.070 -0.074 -0.075 -0.043 -0.045 -0.035

(-1.79) (-1.52) (-1.53) (-1.69) (-1.67) (-0.97) (-1.00) (-0.76)

Ln(B/M) 0.124 0.166 0.145 0.149 0.151 0.169 0.138 0.159
(1.38) (1.62) (1.45) (1.48) (1.54) (1.65) (1.40) (1.57)

CoSkewness -0.143 -0.117 -0.126 -0.124 -0.119 -0.115 -0.167 -0.166
(-1.14) (-0.94) (-0.98) (-0.97) (-0.94) (-0.92) (-1.29) (-1.32)

Inst. Holdings(×100) 0.786∗∗ 0.741∗∗ 0.775∗∗ 0.735∗∗ 0.819∗∗ 0.752∗∗ 0.817∗∗

(3.07) (2.97) (3.20) (2.97) (3.25) (2.99) (3.16)

Leverage -0.504 -0.420 -0.426 -0.419 -0.500 -0.383 -0.460
(-1.58) (-1.37) (-1.38) (-1.37) (-1.57) (-1.22) (-1.42)

Analyst Dispersion(×0.01) -1.591∗∗ -1.560∗∗ -1.637∗∗ -1.435∗∗ -1.993∗∗ -1.728∗∗ -1.924∗∗

(-3.27) (-3.44) (-3.43) (-3.58) (-3.45) (-3.47) (-3.21)

Amihud 0.081

(0.03)

Spread -2.110 -9.750
(-0.38) (-0.83)

%Zeros 0.324

(0.39)

Sq. Spread(×0.01) -1.154

(-0.35)

%Zeros×Spread 10.100
(0.11)

N 1331479 701362 728664 728643 752591 677068 714839 664004

adj. R2 0.137 0.164 0.163 0.167 0.160 0.165 0.161 0.165
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Table 9: Sub-Period Fama-MacBeth Regressions
We regress the monthly return against lagged control variables that comprise risk, return reversal and mo-

mentum, and information environment variables. Each of the regressions is value-weighted using lagged firm

size as the weight. Four separate periods are examined. The period from 1997 to 2008 and the period from

2001 to 2008 correspond to regulatory changes that caused a sharp drop in liquidity costs. The period from

1992 to 1997 also shows a gradual reduction in liquidity costs, although for no explicit exogenous reason.

Finally, for completeness, we also include the period from 1984 to 1992. We measure the idiosyncratic volatil-

ity using the Fama-French three factor model for all firms listed on the NYSE/Amex/NASDAQ exchanges.

We employ all three Fama-French risk factors measured contemporaneously. Lagged returns (reversal) and

six-month momentum measure the prior period return effects. Book-to-market (B/M) is log scaled and

measures value versus growth effects, log scaled firm size measures extraneous risk effects, while co-skewness

measures downside risk. We also include the quote midpoint return based idiosyncratic volatility estimate

for the period (1984 to 1992), where the closing return based idiosyncratic volatility proved significant, to

illustrate the importance of liquidity costs on the estimation of idiosyncratic volatility. Newey and West

(1987) robust t-statistics are in parentheses and significance at the 1% level and 5% level is given by an **

and an *, respectively.

1984:01 - 1991:12 1992:01 - 2008:06 1997:06 - 2008:06 2001:04 - 2008:06

Return(%) Return(%) Return(%) Return(%) Return(%)

Intercept 2.920∗ 1.740 2.270∗ 2.810∗ 2.930∗

(2.56) (1.35) (2.50) (2.19) (2.53)

CRSP Closing Return -0.440∗∗ -0.105 -0.085 -0.085
Idiosyncratic Volatility (-5.62) (-1.19) (-0.69) (-0.50)

MidQuote Return -0.124
Idiosyncratic Volatility (-1.70)

βmkt 0.517∗∗ 0.493∗∗ -0.020 -0.099 -0.204
(3.22) (3.03) (-0.09) (-0.29) (-0.74)

βsmb -0.224∗∗ -0.214∗∗ -0.042 -0.054 0.017
(-3.25) (-3.18) (-0.66) (-0.60) (0.18)

βhml -0.092 -0.091 0.031 0.014 0.001
(-1.67) (-1.62) (0.21) (0.06) (0.01)

Lagged Return -1.930 -2.030 -2.070∗∗ -2.150∗ -2.060
(-1.74) (-1.83) (-3.13) (-2.58) (-1.74)

6-Month Momentum 0.295 0.112 1.020∗ 1.430∗∗ 1.040
(0.66) (0.21) (2.55) (2.90) (1.61)

Ln(Firm Size) -0.106 -0.060 -0.057 -0.098 -0.110
(-1.56) (-0.70) (-1.13) (-1.45) (-1.88)

Ln(B/M) -0.008 -0.078 0.189∗ 0.180 0.229
(-0.04) (-0.34) (1.99) (1.51) (1.97)

CoSkewness 0.085 -0.027 -0.253 -0.384 -0.542∗∗

(0.43) (-0.11) (-1.66) (-1.93) (-2.66)
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