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Respondents in a conjoint experiment sometimes are presented with
successive partial product profiles. First, the authors model how respon-
dents infer missing levels of product attributes in a partial conjoint profile
by developing a learning-based imputation model that nests several
extant models. The advantage of this approach over previous research is
that it infers missing levels of an attribute not only from prior levels of the
same attribute but also from prior levels of other attributes, especially
ones that match the attribute levels of the current product profile. Sec-
ond, the authors provide an empirical demonstration of their approach
and test whether learning in conjoint studies occurs; to what extent; and
in what manner it affects responses, partworths, and the relative impor-
tance of attributes. They show that the relative importance of attribute
partworths can shift when subjects evaluate partial profiles, which sug-
gests that consumers may construct rather than retrieve partworths and
are sensitive to the order in which the profiles are presented. Finally, the
results show that consumers’ imputation processes can be influenced by
manipulating their prior information about a product category. This
research is of both theoretical and practical importance. Theoretically,
this research sheds light on how customers integrate different sources of
information in evaluating products with incomplete attribute information;
practically, it highlights the potential pitfalls of imputing missing attribute
levels using simple rules and develops a better behavioral model for
describing and predicting customers’ ratings for partial conjoint profiles.

A Learning-Based Model for Imputing
Missing Levels in Partial Conjoint Profiles

Conjoint analysis is perhaps the most celebrated research
tool in marketing. It has been applied to solve a wide vari-
ety of marketing problems, ranging from understanding
consumer preferences, to estimating product demand, to
designing a new product line. The method involves present-
ing customers with a carefully chosen test set of product
profiles from the universal set (as defined by the levels of
the attributes) and collecting their preferences, which could

be ratings, rankings, or profiles, for those profiles in the test
set. The power of the method lies in its ability to extrapolate
customers’ preferences from this test set to the universal set.
Conjoint analysis works better when the test set is small and
the preference task difficulty is low. Both factors can be
influenced significantly by the number of product attributes.

If the number of attributes is large (as for many high-tech
durable products), a full-factorial experiment would require
respondents to assess their preferences for many profiles,
each consisting of many attributes. The large test set prob-
lem can be solved by means of a fractional design (Green,
Carroll, and Carmone 1978; Plackett and Burman 1946)
that divides the test set among several respondents in a
common customer segment.

There are two ways to solve the task difficulty problem.
The first way is to use a self-explicated conjoint analysis
(Green 1984), in which consumers rate the importance of
the attributes and then evaluate the attractiveness of each
attribute level. By multiplying the normalized importance
and attractiveness ratings, the researcher can derive a con-
sumer’s overall preference for any profile. This approach
typically requires the respondent to answer a smaller set of
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questions than a full-profile judgment task does, and it
avoids the complexity of judging a profile with too many
attributes. However, the self-explicated conjoint analysis
method has its own problems, including that respondents’
attribute importance ratings are not always consistent with
their preference decisions. That is, the experimental condi-
tion of separating attribute and level ratings is artificial
because real-life purchase decisions are made on whole
products.

The second solution is to use orthogonal subsets of all the
attributes (Green 1974), or partial-profile conjoint analysis.
Because profiles with a smaller number of attributes may be
easier to rate, the partial-profile conjoint analysis approach
decreases the difficulty of the rating task; however, it may
increase the number of profiles needed to determine con-
sumers’ utility functions. The partial-profile conjoint analy-
sis approach typically assumes that the attributes that are
missing do not influence product evaluation, but several
studies cast doubt on this assumption (e.g., Broniarczyk and
Alba 1994; Feldman and Lynch 1988; Huber and McCann
1982). Consequently, standard rating conjoint analysis
methods that are applied to partial profiles may not produce
a highly predictive utility function.

In this article, we investigate how subjects impute miss-
ing attribute levels when they evaluate partial conjoint pro-
files. Our goals are to understand the dependency of ratings
of current profiles on all available attribute information (in
both the current and the previously shown profiles), includ-
ing a person’s prior knowledge, and to provide insights into
how consumers may impute missing levels when evaluating
partial conjoint profiles.

We relax the “null effect for missing attribute” assump-
tion and develop a probabilistic model of how respondents
impute values for missing attributes based on their priors
over the set of attribute levels, a given attribute’s previously
shown values, the previously shown values of other attrib-
utes, and the covariation among attributes (both a priori and
learned within the task itself). We conceptualize how con-
sumers infer missing values through a pattern-matching and
learning process. Our model assumes that consumers learn
and update after each stimulus (partial profile) about the
pattern underlying the product attributes, their levels, and
the correlations between them. How are strengths of pat-
terns formed and updated? We assume that consumers have
prior knowledge about the patterns and use knowledge
about the product profiles acquired through the conjoint
task to update their strengths. It is this dynamic process of
learning about the attribute level occurrences and covaria-
tion among attributes that we model and focus on in this
article.

We call the fundamental kernel of this updating structure
a “pattern-matching” learning model. That is, the respon-
dent uses previously shown profiles that exhibit certain pat-
terns among the attributes to infer the missing attribute lev-
els in the current profile. In essence, this approach can be
viewed as a time-varying, multiway contingency table of
latent counts for imputation (Little and Rubin 1987). Con-
sequently, the order in which profiles are presented matters
in predicting preference ratings.

We model how people rate partial conjoint profiles over
time. Although rating-based methods may currently be less
common than choice-based methods in practice (Wittink

1We thank an anonymous reviewer for pointing out the link between our
study and these approaches.

and Cattin 1989), our study is relevant for common applica-
tions of conjoint analysis in at least three ways:1

1. Our research can influence the way that adaptive conjoint
analysis (ACA) is used in practice. The ACA engine (e.g.,
Equation 2 in the ACA 5.0 Technical Report [Sawtooth Soft-
ware 2002]) requires continuous strength of preference data,
treated as a rating score, obtained for pairwise partial pro-
files. Although ACA can handle up to 30 attributes, each pro-
file should contain no more than 5 attributes, a practice that
has been brought into question by others (e.g., Green,
Krieger, and Agarwal 1991; Johnson 1991). Our work is
directly applicable to the ACA engine, which selects profile
pairs on the basis of utility balance, and if those utilities are
influenced by the missing attributes that do not cancel across
choice pairs because of covariation, learning, and so forth,
the resultant partworths may be biased. Our model helps
quantify these biases or select pairs that have the highest
likelihood of canceling out those missing attributes.

2. Our research has implications for the hybrid approach pro-
posed by Srinivasan and Park (1997) and subsequently
extended by Ter Hofstede, Kim, and Wedel (2002). Both
share the same data structure, in which the authors use a sub-
set of the most important attributes, based on self-explicated
data, in a subsequent full-profile conjoint study. Respondents
are aware of all the attributes before they rate the profiles that
contain only a subset of attributes. In this manner, the pro-
files shown in the approaches are partial, and our model
sheds light on the role of those attributes that are excluded in
the rating task.

3. Our study is also relevant for choice-based conjoint methods,
despite the assumption of ignorability across pairs of not
shown attributes (Elrod, Louviere, and Davey 1992). Con-
ceptually, all profiles, even if they are called full, have miss-
ing attributes that could be inferred. Therefore, despite the
common practice of stating that “respondents were instructed
that profiles were similar in every respect except possibly for
those attributes shown in the profile description,” it is an
open empirical question whether respondents do or, possibly
more important, can follow this instruction. Our model can
verify whether subjects are able to ignore the levels of those
attributes that are not included in the study.

The rest of this article is composed of four sections. In
the next section, we develop our imputation model. We then
explain the design of our experiment. Next, we estimate our
model on two sets of experimental data and report the
results. In the last section, we conclude with caveats and
provide directions for further research.

THE IMPUTATION MODEL

Notation and Model Setup

We investigate how I respondents (indexed by i = 1, …, I)
rate a series of product profiles (partial or full) in a conjoint
experiment. Each product profile is characterized by J
attributes (indexed by j = 1, …, J), and each attribute j has
two levels. Each respondent i rates T profiles (denoted by
Mi(t), t = 1, …, T) one by one. Respondent i’s rating for
product profile Mi(t) is given by yi(t). Profile Mi(t) takes a
level of xij(t) = 1 or 0 for attribute j. We denote whether
attribute j is missing in the tth profile shown to respondent i
by rij(t). If attribute j is missing in profile Mi(t), rij(t) is 0;
otherwise, rij(t) is 1. The basic premise of our model is that
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respondent i does not ignore a missing attribute level but
rather constructs an imputed value for it. Let x′ij(t) be that
imputed value, determined as follows:

Note that Ixij(t) is a random variable that takes the value
of 1 or 0 (or, in general, the possible values of xij(t)), and
the imputation modeling effort is to determine its probabil-
ity distribution over the possible levels. If an attribute is not
missing (i.e., rij(t) = 1), we assume that the shown attribute
level xij(t) occurs with probability 1.

To determine the partworths of the attributes, we postu-
late a regression with heterogeneous coefficients given by

where βij is respondent i’s partworth for attribute j.
Johnson, Levin, and their colleagues (Johnson 1987;

Johnson and Levin 1985; Levin et al. 1986), however, sug-
gest that subjects have different partworths for the same
attribute when it is missing compared with when it is not.
To control for this, we modify regression Equation 1 to
yield the following:

In Table 1, we show the model’s partworths in different
conditions. If subjects have different partworths when an
attribute is missing, then β′ij will be significantly different
from 0. Thus, our model nests the work of Johnson, Levin,
and others and generalizes theirs by including the imputed
attribute levels x′ij(t) when rij(t) = 0.

Basic Ideas

In Table 2, we show a hypothetical example that intro-
duces the basic ideas of our imputation model and demon-
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strates current extant models. There are four attributes (i.e.,
J = 4) and three profiles, that is, Mi(1), Mi(2), Mi(3). Each
profile has one missing attribute (denoted as MA), where
subject i rates Mi(1), Mi(2), and Mi(3) sequentially. At time
t = 3, xi1(3) = 1, xi3(3) = 1, and xi4(3) = 0. Attribute 2 is
missing at time t = 3, and we denote its imputed level, 1 or
0, by x′i2(3). In a real experiment, the respondent views a
product profile at time 3 with only Attributes 1, 3, and 4 and
does not see “MA” for Attribute 2; we include it in Table 2
only to describe the design.

Assume that the subject has finished rating profiles Mi(1)
and Mi(2) and that profile Mi(3) is the current product pro-
file. To investigate how information from different attributes
might influence the imputed value for Attribute 2 at t = 3,
we divide the attributes into three types: (1) the omnipresent
(OM) set, (2) the presence-manipulated (PM) set with pres-
ent attributes (nonmissing PM), and (3) the PM set with
missing attributes (missing PM). The OM attributes are
always presented, whereas the PM attributes may or may
not be. A PM attribute is called a “nonmissing PM attrib-
ute” if it is not missing in the current conjoint profile and a
“missing PM attribute” if it is missing in the current con-
joint profile, though it may not be missing in others. In pro-
file Mi(3), Attribute 1 is an OM attribute, Attributes 3 and 4
are nonmissing PM attributes, and Attribute 2 is a missing
PM attribute. Existing models use only prior information
(values) from the currently missing PM attribute (Attribute
2) for imputation of the missing level xi2(3). Our model
uses all three sources: missing and nonmissing PM and OM
attributes.

There are several different ways to treat missing attribute
levels. The first way is to assume that respondents ignore
them (Green 1974). Such an assumption implies that all the
MAs in Table 1 are filled in as 0 (the default level). For-
mally, this assumption leads to the following prediction of
the missing attribute level: Pr[x′i2(3) = 0] = 1 and
Pr[x′i2(3) = 1] = 0. Note that in this case, the imputation
process of the missing levels depends on which level is
coded as 0, a potential theoretical problem.

An alternative approach is to assume that respondents
impute values using all available information. That is,
people infer the levels of the missing attributes from previ-
ously viewed product profiles and weight each profile pat-
tern accordingly. This latter view is consistent with the
work of Meyer (1981), who shows that when a subject has
no information about certain attributes, he or she does not
ignore that attribute but rather assigns it a score equal to his
or her adaptation level.

There are two common ways to model how consumers
make inferences about missing attribute levels. The first
way is based on the so-called recency effect (Lynch and
Srull 1982); people assume that the missing attribute level
is the last level of the same attribute they saw. According
to such a model, in Table 2, Attribute 2 in profile Mi(3)
takes level 1 (following the level of Attribute 2 in profile
Mi(2)). Formally, we have Pr[x′i2(3) = 0] = 0 and
Pr[x′i2(3) = 1] = 1.

The second commonly used imputation approach is the
averaging model (Yamagishi and Hill 1981); people impute
the missing attribute level by averaging all the previously
shown levels of the missing attribute. For example, in Table
2, this yields Pr[x′i2(3) = 0] = 1⁄2 and Pr[x′i2(3) = 1] = 1⁄2.

Table 1
PARTWORTHS OF THE SAME ATTRIBUTE

Attribute Level

High: x′ij(t) = 1 Low: x′ij(t) = 0

Attribute Shown? Yes βij + β′ij β′ij
No βij 0

Table 2
AN ILLUSTRATIVE EXAMPLE

OM PM

Time (t) Attribute 1 Attribute 2 Attribute 3 Attribute 4

1 1 0 MA* 1
2 0 1 1 MA
3 1 MA 1 0

*MA = missing attribute.
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Figure 1
THREE CLASSES OF MODELS

A: IMPUTING FROM MISSING PM ONLY

B: IMPUTING FROM MISSING AND NONMISSING PM

C: IMPUTING FROM OM, MISSING PM, AND NONMISSING PM
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2Note that if Mi(2) were the first profile and Mi(1) were the second pro-
file, the prediction of the recency model would be reversed; that is,
Pr[x′i2(3) = 1 = 0]. The averaging model, however, would give the same
prediction.

In imputing the missing values, the recency and averag-
ing models make strong assumptions about the similarity
between the current and previous profiles. The recency-
based model assumes that the current profile is similar only
to the most recently shown profile and is dissimilar from the
rest.2 The averaging model assumes that the current profile
is equally similar to all the previously shown profiles. How-
ever, we expect that some previously shown profiles are
more similar (“count more” in imputing) to the current pro-
file than others.

These models use only prior data from Attribute 2 to
impute x′i2(3). By doing so, they ignore two important
pieces of information. First, there is the complete set of pat-
terns shown to the subjects [Mi(1), Mi(2)], not just the val-
ues for Attribute 2 [xi2(1), xi2(2)]. Some of these patterns
might occur more frequently, so their values for Attribute 2
might be more salient and memorable. Second, levels of
other attributes from the current profile (i.e., Mi(3)) might
be diagnostic about the missing level. For example, if
Attribute 1 is negatively correlated with Attribute 2, as in
Table 2, a respondent might infer a 0 for Attribute 2 from a
1 in Attribute 1. Such a correlation structure could be based
on people’s long-term memory or learning in the conjoint
task. Huber and McCann (1982) show that people use their
belief about the correlation structure between price and
quality to infer the missing price or quality when either one
is missing. Broniarczyk and Alba (1994) also show that
consumers’ intuitions (priors) influence their inference
making. Our model captures these covariances, as well as
the priors they already have, in a parsimonious way.

As do existing models, our imputation model derives
probabilities that the missing PM Attribute 2 in profile
Mi(3) takes a value of 1 or 0. The parameterization of the
probabilities is based on the work of Hoch, Bradlow, and
Wansink (1999), who describe a similarity measure
between a pair of categorical objects (conjoint profiles in
this research), and Camerer and Ho (1998, 1999) and Ho
and Chong (2003), who describe how learning and memory
decay occur over time. The two basic concepts we use here
are what we call “pattern matching” and “experience count”
(EC). We combine them to yield our imputation model,
which defines the probabilities over the missing attribute
levels.

We develop three potential classes of models (Figure 1)
to demonstrate how the generality of our model is built
sequentially, using varying information sources. The model
in Figure 1, Panel A, uses only previously shown informa-
tion about the missing PM attribute (i.e., j = 2) to impute
missing levels. It is a natural extension of the recency and
averaging model that allows for decay. The imputation is
based on historical levels of Attribute 2 (0 in profile Mi(1)
and 1 in profile Mi(2)), but the more recent level (1 in pro-
file Mi(2)) may be more influential. To capture the recency
effect in a decay-weighed averaging model, we introduce a
decay parameter, λ2 (0 < λ2 ≤ 1; the subscript denotes
Attribute 2). We also introduce the EC concept (Camerer
and Ho 1999), such that Nij(t|l) denotes respondent i’s latent
EC of attribute j at time t, taking level l.

As illustrated in Figure 1, Panel A, Ni2(3|0) = λ2
2 because

Mi(1) has an observed level of 0 for Attribute 2 at time 1
(i.e., xi2(1) = 0). If x′i2(3) were to be imputed as 0, λ2 would
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3This is an assumption/limitation of our approach that we discuss subse-
quently as an area for further research.

have a power of 2 because there are two periods of time dif-
ference between profile Mi(1) and profile Mi(3), during
which they would match on PM Attribute 2. Similarly,
Ni2(3|1) = λ2 because Mi(2) has xi2(2) = 1 and would match
with x′i2(3) if it were to be imputed as a 1. Therefore, the
probability that x′i2(3) takes level 1 or 0 is as follows:

The averaging model is a special case of this class of mod-
els in which λ2 = 1. The recency model has λ2 → 0, with
Pr[x′i2(3) = 1] → 1 and Pr[x′i2(3) = 0] → 0.

The more general model in Figure 1, Panel B, uses infor-
mation from both the missing and nonmissing PM attributes
(Attributes 3 and 4). That is, in addition to using informa-
tion from Attribute 2 itself, we use possible conditional
match patterns between profiles on the nonmissing PM
attributes. Because we assume that the missing attribute lev-
els are not used for imputation,3 we only need to check
whether there is a match between [xi3(3)] and [xi3(2)] and
between [xi4(3)] and [xi4(1)]. Because [xi3(3)] and [xi3(2)]
match, we expect Mi(2) to influence imputation more than
Mi(1) on Mi(3). We add another decay parameter, λ3 (0 <
λ3 ≤ 1), to capture this reinforcement. Consequently,
Ni2(3|1) becomes λ2 + λ3, whereas Ni2(3|0) stays the same.
The probability that x′i2(3) is imputed as 1 or 0 now
becomes:

Note that Pr[x′i2(3) = 1] becomes larger, compared with
Figure 1, Panel A, because Mi(2), compared with Mi(1), is
more similar to Mi(3) than when we consider only the miss-
ing PM attribute.

The model in Figure 1, Panel C, uses all of the available
information from both the PM and OM attributes to impute
the missing level. Following the same procedure, the ECs
are Ni2(3|0) =λ1

2 +λ2
2 and Ni2(3|1) =λ2 +λ3 . The correspon-

ding probabilities become

The most general model, Figure 1, Panel C, has two desir-
able properties: First, it uses all available information in the
previously shown and current profiles in a sensible way.
Furthermore, the model highlights the potential pitfalls of
the averaging and recency models. For example, it implies
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that these simpler models would yield the same prediction
if Mi(3) were to take any of these patterns {[1, MA, 1, 1],
[1, MA, 1, 0], [1, MA, 0, 1], [1, MA, 0, 0], [0, MA, 1, 1], [0,
MA, 1, 0], [0, MA, 0, 1], [0, MA, 0, 0]}, which seems very
unlikely. Second, it enables respondents to apply different
weights to different attributes, depending on their
preference.

General Formulation

In general, the pattern matching between two profiles can
be formally defined as follows: Assume rij(t) = 0 and the
level of attribute j at time t for respondent i is to be imputed.
For each possible level of x′ij(t), we consider all previously
shown profiles (t′ < t) that have attribute j of the same value
(i.e., xij(t′) = x′ij(t)). That is, we find all t′ in which the indi-
cator function I[xij(t′), xij(t)] = 1. In addition, we set I[xij′
(t), xij′ (t′)] equal to 1 for those profiles Mi(t′) that have a
match along a different attribute j′ with the current profile
Mi(t) but also on the missing PM attribute j. We call this a
conditional match-up model, because the pairs of profiles
must match on the missing PM attribute for it to be added to
the EC.

It is also important to note the following properties of our
pattern-matching approach: (1) We do not match profiles
based on imputed values of previous attributes or, in the
case in which more than one attribute is missing, imputed
values of the missing PM attribute(s) j′ ≠ j. (2) The way we
match a given pattern is binary (yes it matched/no it did
not). Although a metric-based degree of matching model is
possible, we chose a binary Hamming metric approach
because it is parsimonious, easy to describe, and cognitively
simple.

Let Nij(t|lj) denote the latent EC of respondent i for attrib-
ute j to take level lj at time t. With attribute j as the missing
PM attribute, our model for Nij(t|lj) in complete generality
is given by

where Nij(0|lj) denotes the prior count of person i on attrib-
ute j, level lj at time 0, and 0 < λi(j,j′) ≤ 1 is the decay param-
eter for person i relating attribute j′ (j′ = 1, …, J) to j. In
addition, Nij(0|lj) allows for the possibility of prior knowl-
edge of the marginal frequency of attribute levels and prior
correlation between attribute levels.

In our experimental results, we fit a fairly general
(reduced-form) version of the model (Equation 3) with the
following set of specifications for λij. This version corre-
sponds to Table 3, an example with digital cameras in which
j = {1, 2, 3, 4} are PM attributes (delay between shots, stor-
age media, maximum resolution, and camera size) and j =
{5, 6} are OM attributes (price and mini-movie).
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Table 3
DIGITAL CAMERA ATTRIBUTES

Attribute Delay Between Shots Storage Media Maximum Resolution Camera Size Price Mini-Movie

Level 0 Four seconds Floppy disk 800 × 600 SLR* $239 No
Level 1 Two seconds Removable memory 1024 × 768 Medium $159 Yes

*SLR = single-lens reflex camera, larger than “medium.”

Note that λi6 is included in the model, as we describe sub-
sequently, because of a prior manipulation of the covariance
between price and maximum resolution.

This structure defines the entire imputation process for
partial-profile conjoint designs as a time-varying latent con-
tingency table with counts, Nij(t|lj), given in Equation 3.
Thus, Pr[x′ij(t) = lj], lj = 1 or 0, is given by

That is, the probability that a given attribute level is
imputed when the attribute is missing is its proportion of
the total EC for that attribute. Because Nij(t|lj) incorporates
information across patterns to reinforce each pattern and
allows for differing importance across time, this model sat-
isfies our basic pattern-matching and reinforcement require-
ments. When multiple attributes are missing, we assume
independence of counts to derive the joint probability of the
missing pattern; however, the counts correlated as attribute
levels that occur together have counts that will be updated
together and prior counts that are related.

We denote the vector of imputed values at time t by a row
vector x′′i(t) = [x′i1(t), x′i2(t), …, x′iJ(t)]. For a conjoint
design with J attributes, in which each attribute has two lev-
els, the imputed value vector x′′i(t) may assume one of the
K = 2J possible potential profiles. We denote these potential
profiles by Zk (k = 1, …, K), and we determine the proba-
bility that x′′i(t) equals potential profile Zk as follows:

Heterogeneity

We allow the rate of information decay for a specific
attribute pattern to be individual and attribute specific and
recognize that considerable heterogeneity is likely to exist
across people in their decay attribute imputation parame-
ters, λim (m = 1, …, J). In addition, the basic parameters of

( ) Pr Pr ( )5 ′ =  = ′ = x (t)i Z x tk ij j
j

l
==

∏
1

J

.

( ) Pr ( )4 ′ =  =x tij jl

11 1if andr t

x t

ij

ij j

( )

( ) ,

=

′ = l

( )

( )

0 1if and

, and

r t

x t

N

ij

ij j

i

=

′ ≠ l

jj j

ij ij
ij

t

N t N t
r t

( | )

( | ) ( | )
( ) .

l

0 1
0if

+
=

















λ λi(j j ) ij j j, j PM; j , ,, ′ = ′ = ′ ∈ ∀ =if 1 2 33 4

5

,

j j, j PMi(j j ) i

;

;,λ λ′ = ′ ≠ ′ ∈if and

λλ λi(j j ) i j, ′ = =if maximum resolution6 aand j = price.′

4We are aware that a more general setup would be to allow the βs to fol-
low a multivariate normal distribution with nonzero, off-diagonal covari-
ances. The current setup avoids overparameterization of the model. It is
commonly used in economics literature (e.g., Berry, Levinsohn, and Pakes
1995).

the conjoint model, the individual conjoint intercepts αi, the
attribute partworths βij and β′ij, and the residual variances
may contain considerable heterogeneity yet share common-
alities across the population of inference. To account for
this heterogeneity in a coherent fashion, we nest our model
in a Bayesian framework (Gelfand and Smith 1990). From
Equation 2, we have the following:

We use an AR(1) (first-order autoregressive) model to cap-
ture the potential correlation of error terms over time (that
is, people may anchor somewhat on the previously provided
rating):

where ui(t) ~ N(0, σi
2). In addition, we assume εi(0) = 0, ∀ i.

Prior and hyperprior specifications for the conjoint
parameters (∀ i, j) are given by4

and prior specification for the attribute decay parameters,
0 < λim ≤ 1, is given by

We assume that the prior ECs of each respondent follow
a Poisson distribution with parameters varying by respon-
dents and attribute levels:

with slightly informative priors on ζi and ωj. We note that
N(µ, σ2) denotes a normal distribution with mean µ and
variance σ2; U(g, h) a uniform distribution with a lower
bound g and an upper bound h; Inv – Γ(⋅,⋅) an inverse
gamma distribution with corresponding parameters; and
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5To assess the ability of our most general model (Model 6) to recover
the true underlying model structure, we ran a simulation study using syn-
thetic data. The simulation results indicate that the model is able to recover
the underlying conjoint regression coefficients (αi, βij, β′ij, and γi) very
accurately and the imputation parameters (λs) with reasonable accuracy.
Details are available from the authors on request.

6Because of the complexity of the model, the lack of familiarity that
readers may have with the WinBUGS software program, and a desire for
other researchers to apply our model easily, we have included an annotated
version of the WinBUGS code for our most general model in an online
appendix (see http://mktgweb.wharton.upenn.edu/ebradlow/research_files.
htm).

Beta(a, b) a beta distribution with parameters a, b. To com-
plete the model specification, we placed slightly informa-
tive hyperpriors on σα2, σjβ2, and σjβ′2, ∀ j (inverse gamma
distribution: Inv – Γ(.001, .001)); β�j and β�j

′, ∀ j (normal dis-
tribution: N(0, 1000)); and (am, bm) (uniform distribution:
U(0, 1000)). Sensitivity analyses indicate that the results
were not affected by the exact choice of uninformative
hyperprior values.

To summarize, let the imputation model parameters be
denoted by row vectors λλi = [λi1, λi2, …, λi6] (the length of
λλi varies with different models as described in the experi-
mental section) and the conjoint parameters by ββi = [βi1,
βi2, …, βi6] and ββ′′i = [β′i1, β′i2, …, β′i6]. Given Pr[x′′i(t) =
Zk] from Equation 5, the likelihood function is as follows:

That is, we integrate the conjoint regression model with
respect to the imputation model by sticking in the consid-
ered value for attribute j to person i for all possible profiles
and weight them by their probability of being the imputed
corresponding level. We use the notation [εi(t)|Zk] to
emphasize that the value of εi(t) is conditional on profile Zk.
Although there are 26 potential profiles in our study, at each
time t, only two profiles have nonzero Pr[x′′i(t) = Zk] in the
one-missing attribute case, and only four do in the two-
missing attributes case.

We derived inferences from all models by obtaining pos-
terior samples using a Markov chain Monte Carlo sampler.
We performed all computation using the software package
WinBUGS (Bayesian inference using Gibbs sampling;
Spiegelhalter et al. 1996).5 The results reported in the
experimental section are the posterior means we obtained
from aggregating the draws of three runs of the sampler
from different starting points with a burn-in period of 6000
draws and a total run length of 10,000 draws. We assessed
convergence using the F-test approach of Gelman and
Rubin (1992).6

EXPERIMENT

We designed an experiment to provide a basic demon-
stration of our model for rating conjoint data with missing
attributes. Our interest is in providing not only a demonstra-

( ) ( , , , , , , )

e

8

1

2

2

2

L i i i

i

α γ σ

πσ

ββ ββ λλi i i iy′ =

xxp
( )| ( )

−
  − −{ }









ε γ ε
σ

i k i i

i

t Z t 1

2

2

2

















× ′ =

==
∑∏
kt

Z

1

2

1

20 6

Pr x (t)i kk 

















.

7We note that a better design would have been to assign people ran-
domly, not sections. In Study 2, we use random assignment.

tion of our approach but also a preliminary understanding of
the following questions:

•Do people use missing attributes and their levels to evaluate
products?

•If yes, do they infer missing attribute levels from all the infor-
mation they learn about the product profiles, and do they rein-
force patterns?

We assume that a consumer has minimal prior informa-
tion about the product, though we estimate this as given in
Equation 7. Therefore, we are able to impose a prior struc-
ture that varies across respondents in a systematic way.
First, through a learning process, we create a prior for each
respondent by controlling the products that he or she sees in
a learning phase. Second, we ask participants to rate prod-
ucts with (or without, in the control group) missing attrib-
utes. Another control group, which worked on a self-
explicated conjoint task, acts as a second baseline.

Stimulus

We selected digital cameras for this experiment because
we wanted a relatively new product category for which the
frequency of attribute levels and the correlation structure of
the attributes are mostly unknown. Therefore, we could
manipulate the frequencies and impose a prior as we
desired. According to our demographic questions, less than
10% of our subjects owned digital cameras or claimed to
have extensive prior expertise. We chose digital cameras
with six attributes as the full-profile task because our
research indicated that digital cameras could be described
well using six features. A summary of the digital camera
attributes we used are listed in Table 3. In our experimental
condition, all attributes are simplified to have two realistic
levels. This product setup provides a stylized empirical test
of our model.

Experimental Groups

The experiment was designed to run on a university net-
work. A total of 130 undergraduate students from a large
East Coast U.S. university participated in the experiment.
Subjects were obtained from six sections of a large class;
these sections were assigned randomly, as follows: one sec-
tion each to receive the self-explicated and full-profile (zero
missing) cases and two sections each to receive the one-
missing and two-missing-attributes cases. This assignment
resulted in four groups of 17, 23, 47, and 43 respondents,
respectively.7 Group size differences were due to different
section sizes and the participation rate of students in those
sections. Across the conditions, less than 10% owned digital
cameras, 40% were women, and 60% were men.

The experiment was composed of two phases: learning
(prior) and rating. In the learning phase, we provided the
subjects with text information about digital cameras and
their attributes and then showed them 20 digital camera pro-
files listed in a single table. We controlled the subjects’ pri-
ors by manipulating the digital camera profiles they saw in
the learning phase. In the rating session, we asked the sub-
jects to rate, on a 0–9 Likert scale, the attractiveness of dif-
ferent digital cameras (some with partial product profiles,
depending on the treatment condition).
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Learning Phase

In the learning phase, we showed all subjects 20 digital
camera profiles. The priors of the subjects before the rating
phase were manipulated by the learning phase profiles. The
purpose of this learning phase manipulation is twofold.
First, if the relationship between, for example, price and
maximum resolution (as we describe next) can be influ-
enced by showing subjects profiles of a given structure,
then managerial practice suggests that prior manipulations
of this type could be valuable. Second, we wanted to test
our model for a given attribute correlation. For example, as
we manipulated the priors between digital camera price and
maximum resolution, we wanted to test whether λi6 affects
the EC for resolution when it is missing. (Note that price is
never missing because it is an OM attribute.)

We assigned each subject randomly to 1 of 11 prior coin-
cidence structures that represented a different level of coin-
cidence between price and maximum resolution (the coinci-
dences between other attributes remained orthogonal).
Specifically, subjects were assigned to read a table with a
specific coincidence value (between 0 and 10) between
price and maximum resolution. For example, a coincidence
value of 10 indicates that among the 10 profiles that have
low price ($159), all have low resolution (800 × 600); a
value of zero would indicate that among the 10 profiles that
have low price ($159), all of them have high resolution
(1024 × 768). Such a coincidence structure could affect
Pr[x′ij(t) = lj] if the learning phase carries over to the rating
phase. That is, we empirically test our ability to manipulate
the rating phase data by covarying price and maximum res-
olution at the 0, 1, …, 10 levels in the learning phase and
then by estimating λi6 in our model and finding its correla-
tion with the subject’s prior manipulation.

To ensure that subjects followed and attended to all infor-
mation in the table of 20 learning profiles provided, we
asked them to count five of the pairwise coincidences after
they had read the tables. Among the five questions, one
asked the subjects to count the coincidence between the
price $159 and maximum resolution 800 × 600 (the manip-
ulated coincidence), whereas the other four questions were
randomly chosen to ask the subjects to count other coinci-
dences. The sequences of these questions were randomized
so as not to bias the results. Subjects’ responses to these
questions suggested that they had paid attention to the coin-
cidence counts.

Rating Phase

In the rating phase, the design is orthogonal. In the one-
or two-missing-attributes group, one or two of four PM
attributes are removed from the designed conjoint cards,
respectively. We fixed two attributes to be OM because we
wanted to determine the impact of imputation of missing
levels on observed attribute partworths. We used a
Plackett–Burman design (Green, Carroll, and Carmone
1978; Plackett and Burman 1946) to create the profile
cards. The sequences in which the profile cards were shown
were generated randomly and varied across respondent.
Each subject saw 24 profiles in the rating phase. Debriefing
questions after the experiments provided evidence that the
subjects noticed that attributes are missing and used them in
their ratings. Response time was recorded, which could be
used as a proxy for the difficulty of the task. Each response

time was the time (in seconds) between subjects’ keying in
of successive rating score responses. An analysis of the
response time data across missing attribute conditions (0, 1,
and 2) indicates that respondents in the two-missing-
attributes case spent considerably less time than did respon-
dents in either of the other two cases (p < .01 ), correspon-
ding to an average of 31 seconds less across the 24 profile
rating tasks. No significant differences were found in
response time between the zero- and one-missing-attribute
conditions.

RESULTS

We used the first 20 profiles for each subject to calibrate
the model and the last 4 as holdouts for validation. We esti-
mated a total of six models with differing degrees of gener-
ality, grouped into four categories: (1) prior models; (2)
imputation based on missing PM attributes only; (3) impu-
tation based on missing and nonmissing PM attributes; and
(4) imputation based on the OM attribute (price), missing,
and nonmissing PM attributes. In Table 4, we show these
models and their relationships for both the one- and two-
missing-attributes cases. We estimated the models using the
Bayesian hierarchical structure described in the “Hetero-
geneity” section.

In Table 5, we show the relative performance for the six
models. We also show results for the three extant models
(ignore, recency, and averaging), as well as one model in
each of the three classes (Models 4, 5, and 6). For each
model, we report the log of the marginal likelihood as com-
puted by the log of the harmonic mean of the likelihood val-
ues (Congdon 2001, p. 475) and the mean absolute errors
(MAE), both in-sample and out-of-sample. Using all three
measures, our models (Models 4–6) perform better than
prior models (Models 1–3). Specifically, Models 4–6 con-
sistently perform better as more information is used for
imputation.

Imputation Based on Missing PM Attributes

As we discussed previously, the extant models assume
that subjects ignore the missing attribute, use the most
recent occurrence of a missing attribute, or compute the
average of all past occurrences. Of Models 1–3, the averag-
ing model (Model 3) performs better in terms of log-
marginal likelihood and in-sample and out-of-sample MAE.
Model 4 relaxes the assumptions of Model 3; it allows a
separate λ for each missing PM attribute, which decays
geometrically.

Compared with the averaging model, Model 4 performs
better in terms of the log-marginal likelihood, in-sample
MAE, and out-of-sample MAE. Such results suggest that
the relaxation of allowing for heterogeneous geometric
decay helps in terms of model performance and better cap-
tures the actual rating process when missing attributes exist.

Imputation Based on Missing and Nonmissing PM
Attributes

The preceding models assume that subjects impute a
missing level of an attribute using only information within
that PM attribute. A natural extension is to account for
covariation from the nonmissing PM attributes. In Model 5,
we assume that each attribute takes a different λ when it is
present and when it is missing; however, the value of λ is
assumed to be common across all PM attributes when they
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Number of 
Individual-

Level Reso- Nonmissing Mini-
Model Category Model Parameters Delay Storage lution Size PM Price Movie

Prior Models 1§ 12 — — —

2† 12 — — —

3‡ 12 — — —

Imputed based on missing PM 4 14 λi1 λi2 λi3 λi4 — — —

Imputed based on missing and 
nonmissing PM 5 17 λi1 λi2 λi3 λi4 λi5 — —

Imputed based on OM and 
missing and nonmissing PM 6 18 λi1 λi2 λi3 λi4 λi5 λi6 —

§Ignore/missing model.
†Recency model.
‡Averaging model.

Table 4
DESCRIPTION OF MODELS

—

λi1 = λI2 = λi3 = λi4 → 0

1

Missing PM

λ Values of PM Attributes

λ Values of OM
Attributes

Table 5
PERFORMANCE OF DIFFERENT MODELS

Log-Harmonic Log-Harmonic
Mean of Out-of- Mean of Out-of-

Model Likelihood In-Sample Sample Likelihood In-Sample Sample

1 –1285 .807 1.366 –1232 .861 1.382
2 –1245 .778 1.386 –1187 .823 1.390
3 –977 .733 1.314 –685 .500 1.381
4 –904 .694 1.310 –580 .461 1.360
5 –884 .602 1.292 –513 .459 1.341
6 –782 .580 1.281 –356 .434 1.300

One Missing Two Missing

MAEMAE

are nonmissing. As we indicate in Table 5, Model 5 fits bet-
ter than Models 1–4 in terms of log-marginal likelihoods,
in-sample MAE, and out-of-sample MAE.

Imputation Based on OM Attribute, Missing, and
Nonmissing PM Attributes

To test fully whether subjects use all information when
inferring missing attribute levels, in addition to the last set of
models, we add price (the OM attribute) to impute the miss-
ing level of maximum resolution. Recall that we manipulated
the correlation structure between price and resolution in the
learning phase. Model 6 extends Model 5 by allowing price
to be used in the imputation process for missing maximum
resolution levels. This relaxation improves the log harmonic
mean likelihood, as well as the in-sample and out-of-sample
MAE. The results suggest that subjects use OM attributes to
infer missing attribute levels; whether this inference goes
beyond price is an open question. Model 6 outperforms Mod-
els 1–3 significantly by all the measures we consider in Table
5. Specifically, Model 6 decreases the out-of-sample MAE
by 4.1%, 5.3%, and 6.5% over Models 1–3, respectively, in
the one-missing-attribute case and by 1.6%, 3.0%, and 5.9%,
respectively, in the two-missing-attributes case.

We also performed a more detailed analysis at the indi-
vidual level between the estimated effect λi6 (price and
maximum resolution) and the prior manipulated covariation
between price and maximum resolution (0, 1, …, 10). First,

we note that λi6 is significantly different from zero (the
[2.5%, 97.5%] percentile of its posterior is [.151, .315] in
the one-missing-attribute case and [.628, .863] in the two-
missing-attributes case), suggesting significant effects
overall. Second, analysis at the individual level (without
shrinkage) indicates a significant effect in the one-missing-
attribute case (correlation = .345, p = .017) and insignifi-
cance in the two-missing-attributes case between the prior
manipulation and λi6. Overall, these findings suggest that
the subjects’ priors can be manipulated to influence the way
they infer missing attributes, but to what extent remains an
open empirical question.

We provide the average and the standard deviations of the
best-fitting model (Model 6) λ values in Table 6. The esti-
mated λ values are different in the one- and two-missing-
attributes cases, which is not surprising; when different
numbers of attributes are missing, the weights that reflect
how information from nonmissing attributes is used change
accordingly.

Note that all the λ values are significantly larger than 0
and smaller than 1, thus indicating that the actual imputation
procedure is different from the pure effect of Models 1–3.

Estimated Partworths and Priors

In Table 7, we report the mean and standard deviation of
the partworths of Model 6, the best-fitting model. Elements
β′ij (j = 1, …, 4, ∀ i) are the partworths of the attributes
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Table 6
λS OF THE BEST-FITTING MODEL (MODEL 6)

Missing PM
Nonmissing OM 

Model Values Delay Storage Resolution Size PM (Price)

One missing Average .306 .095 .829 .240 .977 .247
S.D. .056 .066 .044 .067 .018 .046

Two missing Average .981 .429 .032 .070 .697 .743
S.D. .012 .091 .018 .061 .074 .070

Notes: S.D. = standard deviation.

Table 7
AVERAGE AND STANDARD DEVIATION (S.D.) OF THE PARTWORTHS OF THE BEST-FITTING MODEL (MODEL 6)

Model Coefficients Delay Storage Resolution Size Price Mini-Movie Intercept

One missing βij Mean 1.328 .046 1.384 .092 .829 1.296 .592
S.D. .124 .182 .133 .144 .124 .158 (.426)

β′ij Mean .844 .745 .876 .737 — —
S.D. .117 .145 .124 .136 — —

Two missing βij Mean 1.001 .565 1.267 .469 1.000 1.085 .526
S.D. .004 .177 .088 .150 .004 .130 (.140)

β′ij Mean 1.196 1.238 1.168 1.119 — —
S.D. .065 .106 .063 .063 — —

when they take level 0 and are present (compared with tak-
ing level 0 and not being present, or being imputed as a
zero); βij + β′ij (j = 1, …, 4, ∀ i) are the partworths of the
attributes when they take level 1 and are present (compared
with taking level 0 and not being present). To compare our
results with traditional conjoint partworths, therefore, we
note that with all attributes present and the “low”-level
attributes coded as zero (as is standard), the partworths rep-
resent the difference in utility between the high- and low-
attribute levels. To align with our case, the traditional part-
worths from our model are βij (j = 1, …, 4, ∀ i), that is, the
effect of being high when shown less the effect of being low
when shown.

As we mentioned previously, we get a bonus, in that we
can assess the effect of imputed versus not imputed attribute
levels in our conjoint design, in addition to level 1 (high)
versus level 0 (low) effects. In our model, these are the part-
worths β′ij. We find that all elements β′ij (j = 1, …, 4, ∀ i)
have a 95% posterior interval that does not contain 0, which
means that when an attribute is present, it is given signifi-
cantly greater weight. This finding is consistent with extant
research (Johnson 1987; Levin et al. 1986; Louviere and
Johnson 1990; Meyer 1981). Alternatively, we note that the
combined tests (present or not, levels 1 or 0) for each of the
attributes suggest that it is not the attribute level inferred but
the presence of the attribute that influences the weight put
on the attribute. We believe this is an interesting area for
additional study.

In Table 8, we report the relative importance of (tradi-
tional) partworths, such as when a high level is shown ver-

sus when a low level is shown, from both Model 6 and the
case when there are no missing attributes. Although we
observe relatively high stability in the rankings (e.g., stor-
age and size are always last, resolution is always most
important, and the other three are relatively close in impor-
tance), there are changes in the magnitude of the relative
importance of the partworths. The finding that partworths
themselves are biased (compared with the full-profile con-
dition) is consistent with extant research (Johnson 1987;
Levin et al. 1986; Louviere and Johnson 1990). However,
becasue we also find that the relative rankings stay fairly
stable, there is prima facie evidence that similar rating pro-
cesses are occurring. In the two-missing-attributes case,
when fewer attribute levels are available for imputation, the
more important attributes in the zero-missing-attributes case
become less important, and the less important ones become
more important. Thus, there is a regression effect in part-
worths when subjects evaluate partial profiles when less
information is provided.

We note that a way to interpret the observed changes in
partworths is that consumers construct rather than retrieve
utilities. Because the set of all available information
changes with successive profiles, the utilities can change,
even for identical profiles, if they appear at different points
in time. This view is not new and has been established by
consumer researchers (Bettman and Zins 1977; Payne,
Bettman, and Johnson 1992).

Finally, we report on the model results with regard to the
carryover effect from ones rating’s error, εi(t – 1), to another
and from the priors Nij(0|lj). The AR(1) carryover effect is

Table 8
COMPARISON OF RELATIVE IMPORTANCE OF PARTWORTHS

Model Delay Storage Resolution Size Price Mini-Movie

None missing .126 .029 .317 .056 .198 .275
One missing, Model 6 (βij) .267 .009 .278 .018 .167 .261
Two missing, Model 6 (βij) .186 .105 .235 .087 .186 .201
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Table 10
PERFORMANCE OF DIFFERENT MODELS (NO LEARNING)

One Missing

Log-Harmonic
Mean of 

Model Likelihood In-Sample Out-of-Sample

1 –582 .905 1.182
2 –599 .928 1.214
3 –526 .866 1.182
4 –459 .820 1.177
5 –424 .808 1.167
6 –414 .802 1.159

MAE

8We thank an anonymous reviewer for suggesting this and the second
study.

statistically significant with a mean of γ ≈ .1 (in both the
one- and two-missing-attributes cases), which suggests that
people anchor somewhat on previous values. This result
also suggests that the order in which previous profiles are
presented influences subjects’ ratings of a current profile.

None of the estimated prior parameters ζi (i = 1, …, 47)
or ωj (j = 1, …, 6) is significantly different from zero
according to the [2.5%, 97.5%] percentile of their posterior
draws in the one-missing-attribute case, an indication that
the subjects have weak priors for the product category. Con-
sequently, as we show in Table 9, the average values of the
prior ECs are typically small for Model 6. These initial ECs
thus exert minor influence on the imputation of the early
profiles but decay quickly when more profiles are shown.
However, some of the prior parameters become significant
in the two-missing-attributes case. Specifically, the ωs for
resolution and size, the PM attributes people are probably
most familiar with, are fairly significant. Thus, when less
information becomes available, people may depend more
on their priors to make judgments. This finding certainly
requires further study beyond the empirical example pro-
vided here.

Robustness of Results

In our experiment, we impose a prior on subjects’ beliefs
about the relationship between price and maximum resolu-
tion in the learning phase and subsequently measure
whether it exists in the calibration phase. Our process of
having people count relationships between pairs of attrib-
utes (which would normally not be done in practice) may
bias people toward imputing attribute levels when they are
missing, due to priming.8 To check whether our results are
robust to this manipulation, we ran a second study, with
zero- and one-missing-attribute cases only, that does not
include a learning phase; in all other ways, it was identical
to the first study. Our goal was to demonstrate the existence
of imputation (as in the first experiment) and replicate the
patterns of superiority of Models 4–6 over Models 1–3.

Specifically, 91 subjects from a large West Coast U.S.
university, to partially fulfill requirements for a course,
were obtained for our conjoint computer-based study of
digital cameras with the same six attributes as in our first
study. Subjects were randomly assigned to either the zero-
missing-attributes case as a baseline (41 subjects) or the

one-missing-attribute case (50 subjects). As in Study 1, the
first 20 rating tasks were used to calibrate the model, the
remaining 4 for out-of-sample validation. Profiles were pre-
sented in a random order within each design.

We present a detailed set of findings for this study in
Tables 10, 11, and 12, but at a summary level, our findings
are as follows: We find an identical pattern of overall fit,
both in-sample and out-of-sample, to that for Study 1, in
that the recency model has the worst fit, followed by the
model that ignores the missing attributes and the averaging
model, and then the three learning-based models. Other
findings, such as the mean value of γ = .167 and the pattern
of relative partworths for Model 6 (the best-fitting model),
indicate that our findings are robust overall to the learning
phase manipulation and are replicated.

CONCLUSION AND FURTHER RESEARCH

We develop a learning model to describe how consumers
impute missing levels in partial conjoint profiles. In our
model, consumers match patterns and develop inferences on
the basis of their prior exposures. Our model extends aver-

Table 9
AVERAGE OF ESTIMATED PRIORS Nij(0|⋅)

Models One Missing Two Missing

Levels 0 1 0 1

Delay 1.025 .931 4.198 2.461
Storage .194 .722 2.898 4.812
Resolution .422 .539 10.068 16.816
Size .453 .441 4.439 4.858
Price .967 1.004 2.062 2.006
Mini-Movie 1.005 1.017 2.002 2.022

Table 11
COMPARISON OF RELATIVE IMPORTANCE OF PARTWORTHS (NO LEARNING)

Model Delay Storage Resolution Size Price Mini-Movie

None missing .144 .114 .308 .026 .190 .217
One missing, Model 6 (βij) .162 .114 .254 .028 .204 .237

Table 12
AVERAGE OF λS OF THE BEST-FITTING MODEL (MODEL 6, NO LEARNING)

Missing PM

Model Values Delay Storage Resolution Size Nonmissing PM OM (Price)

One missing Average .624 .126 .555 .037 .065 .598
Standard Deviation .092 .037 .068 .013 .027 .128
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aging and recency models and shows that consumers may
infer missing attribute levels using both missing and non-
missing attribute information. We show that our best-fitting
models outperform the prior models both in-sample and
out-of-sample.

The ignore model is inadequate because consumers
appear to consider missing attribute levels. Neither the aver-
aging nor the recency model performs significantly better
because consumers impute missing attribute levels using
prior levels of nonmissing attributes (PM or OM). At the
same time, significant correlation between the manipulated
coincidence in the learning phase and the estimated decay
parameter provides evidence that consumers’ priors could
be influenced by communication and experience. Conse-
quently, managers may be able to influence the overall
attractiveness of a product to a consumer by making con-
sumers learn prior knowledge that favors the product.

This research has two caveats. First, the product used in
our experiment has only six attributes, each with two levels.
Thus, our study is best considered a demonstration of the
potential of our imputation model for predicting preferences
in more complicated product categories. Second, our rating-
based conjoint experiment does not provide direct evidence
of the applicability of our model to choice-based conjoint,
though theoretically, such application is possible, as we
described previously.

We foresee at least three research opportunities:

1. An interesting area to pursue is modeling the trade-off
between the number of profiles and the number of attributes
shown in each profile. From an econometrics perspective, it
would be interesting to keep the total number of attribute lev-
els shown fixed and determine how different combinations of
the number of attributes and profiles lead to different levels
of information content.

2. We assume here a pattern-matching model in which attrib-
utes either match or do not (0/1). A more general distance
model can explicitly account for the relative differences
between attribute levels. Such machinery is already in mar-
keters’ toolboxes; multiple dimensional scaling studies are
used for such purposes. Thus, two promising areas for future
studies would be to (a) combine conjoint analysis and multi-
ple dimensional scaling studies to impute missing attribute
levels and (b) create a latent perceptual mapping model for
missing attribute levels in conjoint.

3. As we mentioned previously and as has been shown in prior
research, missing attributes may change the relative impor-
tance of attributes. Although our work confirms this hypothe-
sis, and for the most important attributes, whether this is true
generally is unclear, and what may moderate this effect may
be of interest. Thus, it would be interesting to conduct studies
to determine the degree of this change and its moderating
variables.

In conclusion, we believe that the general theoretical
framework presented here, as well as its empirical valida-
tions, is a good first step that we hope will lead to a stream
of managerially important research.
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