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Volatility in equity markets is asymmetric: contemporaneous return and conditional return
volatility are negatively correlated. In this article I develop an asymmetric volatility
model where dividend growth and dividend volatility are the two state variables of the
economy. The model allows both the leverage effect and the volatility feedback effect,
the two popular explanations of asymmetry. The model is estimated by the simulated
method of moments. I find that both the leverage effect and volatility feedback are
important determinants of asymmetric volatility, and volatility feedback is significant
both statistically and economically.

The relationship between stock price and its volatility has long interested
financial researchers. Empirically, returns and conditional variance of next
period’s returns are negatively correlated. That is, negative (positive) returns
are generally associated with upward (downward) revisions of the condi-
tional volatility. This empirical phenomenon is often referred to as asymmet-
ric volatility in the literature [see Engle and Ng (1993), Zakoian (1994), and
Wu and Xiao (1999)].

The presence of asymmetric volatility is most apparent during stock mar-
ket crashes when a large decline in stock price is associated with a significant
increase in market volatility. Formal econometric models have been devel-
oped by researchers to capture asymmetric volatility. For example, asymmet-
ric ARCH models of Nelson (1991) and Glosten, Jagannathan, and Runkle
(1993) have been found to significantly outperform their counterparts that
do not accommodate the asymmetry. Moreover, continuous-time stochas-
tic volatility models generally produce estimates of a negative correlation
between return and return volatility [Bakshi, Cao, and Chen (1997) and Bates
(1997); for a review of the literature on asymmetric volatility, see Bekaert
and Wu (2000)].
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It is the purpose of this article to provide a formal explanation to the
observed negative correlation between return and return volatility and to
analyze its economic significance. Black (1976) and Christie (1982) were
among the first to document and explain the asymmetric volatility prop-
erty of individual stock returns in the U.S. equity markets. The explanation
they put forth is the leverage effect hypothesis: A drop in the value of the
stock (negative return) increases financial leverage, which makes the stock
riskier and increases its volatility. Although, to many, “leverage effects” have
become synonymous with asymmetric volatility, the asymmetric nature of
the volatility response to return shocks could simply reflect the existence
of time-varying risk premiums [Pindyck, (1984) and French, Schwert and
Stambaugh (1987)]. If volatility is priced, an anticipated increase in volatil-
ity raises the required return on equity, leading to an immediate stock price
decline. This is often referred to as the “volatility feedback effect.”

Certainly the leverage effect and the volatility feedback effect could both
be at work. Suppose an event such as foreign market turmoil has raised
traders’ expectation of volatility in the domestic market. The effect of such
volatility shock is often reflected in traders’ reluctance to buy and willing-
ness to sell in anticipation of a volatile market. As a result, stock prices
have to drop to balance the buying and selling volume. Thus an anticipated
increase in volatility leads to an immediate price drop, as predicted by the
volatility feedback hypothesis. This drop in stock price raises the leverage
ratio, which by the leverage effect hypothesis brings about a further increase
in volatility and therefore a further drop in price. This process can go on
indefinitely. Bekaert and Wu (2000) examined asymmetric volatility in the
Japanese equity market. Using a general empirical framework based on a
multivariate GARCH-in-mean model, they also tried to differentiate between
the two main explanations for the asymmetry. They concluded that volatility
feedback was the dominant cause of the asymmetry for the Japanese stock
market.

One of the most important contributions toward a better understanding of
volatility feedback is Campbell and Hentschel (1992). Despite much research
on the subject, they were the first to present a fully worked-out model of the
feedback mechanism. They modeled dividend process as a quadratic GARCH
(QGARCH) process and linked dividend volatility to return by assuming a
linear relation between the two. The key feature of their model is that return
is positively linear in dividend shock and negatively linear in the square of
the dividend shock. The model is able to produce asymmetric volatility and
explain the negative skewness and excess kurtosis of the data.

To fully understand the impact of volatility feedback, we need to model
dividend volatility as a separate factor. Even though Campbell and Hentschel
discussed “news about dividends” and “news about volatility,” the latter is
just the square of the former in their model. As acknowledged by the authors,
the feedback parameter is constrained to be small, since otherwise the model
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would not be able to account for rebounds following large stock market
crashes. Thus it is possible that the feedback effect is more pronounced than
that captured by their model. My model estimation suggests this is indeed
the case.

In this article I develop a volatility feedback model where the growth of a
firm’s dividend follows a stochastic volatility process, that is, dividend shock
and dividend volatility shock are two separate sources of uncertainty. Note
that the changing volatility of dividends is a plausible cause of asymmetric
volatility. When the volatility of dividends increases, the riskiness of the firm
increases since it is the claim to the stream of dividends. A drop in stock price
occurs immediately due to the higher expected return required to compensate
for the added risk. Since the volatility of the stock increases as well, return
and volatility are negatively correlated. By assuming dividend growth to be a
stochastic volatility process, we are able to examine the individual impact of
dividend news and dividend volatility news on return and return variance. An
important implication of the model is that the changing uncertainty regarding
dividends drives both the stock return and the volatility of the stock return.
When the uncertainty increases, stock volatility increases and the stock price
drops. Thus volatility asymmetry is generated independent of the leverage
effect. Another feature of my model is that I allow innovations of dividend
growth and dividend volatility to be correlated. This captures the leverage
effect. Finally, I note that in this model a piece of good (bad) news regarding
dividends is always reflected positively (negatively) in the stock return and
there is no constraint on the size of the feedback parameter.

This article makes the following contributions to the research on asym-
metric volatility. First, I develop an asymmetric volatility model from the
basic pricing relation which holds in an arbitrage-free economy. The model
nests the two popular explanations of the asymmetry: the leverage effect and
the volatility feedback effect. The empirical analyses suggest the leverage
effect is an important source of asymmetric volatility. In addition, volatil-
ity feedback is also a main determinant of asymmetric volatility. Second,
since I specify a stochastic volatility dividend process, there are two state
variables in the model, which extends the classical Campbell and Hentschel
(1992) one-factor volatility feedback framework. Third, I examine and estab-
lish the economic significance of volatility feedback. The estimated structural
model shows that the volatility feedback effect is stronger than previously
documented.

The article proceeds as follows. Section 1 develops a model of asymmetric
volatility in an equilibrium asset pricing framework. Section 2 describes the
estimation method and the data, conducts the empirical exercise, and dis-
cusses the economic significance of volatility feedback. Section 3 contains
concluding remarks. Some technical details are included in the appendix.
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1. A Model of Asymmetric Volatility

1.1 The model
Similar to Turnbull and Milne (1991) and Constantinides (1992), my theo-
retical framework begins with the pricing kernel: the stochastic process for
state-contingent claims prices. I do so because the documented discrepan-
cies between representative agent theories and observed asset prices have
been linked to the variability of the pricing kernel. Hansen and Jagannathan
(1991) found that observed asset returns imply substantially larger standard
deviations of the pricing kernel than we get from representative agent the-
ory with power utility and a reasonable level of risk aversion. Starting with a
suitable pricing kernel makes it possible for us to derive an empirically inter-
esting model that allows close examination of the dynamics that generates
asymmetric volatility. Moreover, due to the presence of stochastic volatil-
ity in the dividend growth process, we need to have a simple structure that
provides an interpretable solution to the model.

From Duffie (1996, Chapter 1) we know that, in the absence of arbitrage,
the state pricing density exists,

1 = Et
[
mt+1Rt+1

]
, (1)

where Rt+1 = (Pt+1 +Dt+1)/Pt , and mt+1 is the state pricing density at time
t + 1. I assume the pricing kernel to be

mt+1 = exp
(
−rf − 1

2
σ 2
m,t + εm,t+1

)
, εm,t+1|It ∼ N(0, σ 2

m,t ). (2)

This particular functional form has been used for asset pricing purposes by
researchers. Amin and Ng (1993), for example, used this pricing density to
derive an option pricing formula for ARCH processes.1 The variance σ 2

m, t

is an exogenous process. For simplicity, I assume the risk-free rate to be
constant. Let gt = ln(Dt+1/Dt) be the growth rate of the dividend, which
follows a stochastic volatility process,{

gt+1 = α0 + α1gt + εd,t+1, εd,t+1|It ∼ N(0, σ 2
d,t ),

σ 2
d,t+1 = β0 + β1σ

2
d,t + σd,tυt+1, υt+1 ∼ N(0, η2

v).
(3)

I allow the shocks to the dividend and its volatility to be correlated:
corr(εd, t+1, υt+1) = ρl , which captures the leverage effect. This is the basic

1 This pricing density is related to that of Constantinides (1992), whose focus is on capturing interest rate
term structure dynamics. My interest is in stochastic volatility in the pricing kernel and the asset payoff
structure. I do not have those “N” terms in his specification, but allow the volatility term to be time varying
and stochastic, which he assumed to be constant. As in Constantinides (1992) and Backus and Zin (1994),
my pricing kernel does not follow directly from a representative agent economy with power utility. A more
general, multivariate version of this pricing kernel is explored in Backus et al. (1997). See also Bekaert and
Grenadier (1997) for possible extensions to my model.

840



Determinants of Asymmetric Volatility

model setup. Note that the variance follows a square-root process which
guarantees positivity as the time interval shrinks to zero.

Now I derive the return on firm value and its variance as functions of
dividend growth and dividend variance. I allow the firm to have systematic
risk by specifying the covariance between dividend growth and the pricing
density to be covt (εd,t+1, εm,t+1) = ρmσ

2
d,t . Note that if ρm < 0, dividend

growth is slower in states where dividends are more valuable due to the
negative correlation. This specification implies that the variance risk of the
firm is systematic and must be priced.

To solve the model, I apply the Campbell and Shiller (1988) approxima-
tion. Let pt = lnPt and dt = lnDt,

rt+1 = lnRt+1

= k + ρpt+1 + (1 − ρ)dt+1 − pt (4)

= k + ρ(pt+1 − dt+1)+ gt+1 − (pt − dt ), (5)

where parameter ρ is the average ratio of the stock price to the sum of the
stock price and the dividend, a number slightly smaller than one, and k is a
constant related to ρ.

Substituting Equations (2) and (5) into Equation (1), we obtain

1 = Et exp

[
−rf − 1

2
σ 2
m,t + εm,t+1 + k + ρ(pt+1 − dt+1)

+ gt+1 − (pt − dt )
]
. (6)

This equation is solved in the following proposition. The proof is provided
in the appendix.

Proposition 1. The linear solution to the log price:dividend ratio is

pt − dt = c0 + c1gt + c2σ
2
d,t , (7)

where the parameters are

c1 = α1

1 − ρα1

(8)

c2 = (1 − ρα1)(1 − ρβ1)− ρηvρl
(1 − ρα1)ρ

2η2
v

±
√[
(1 − ρα1)(ρβ1 − 1)+ ρηvρl

]2 − ρ2η2
v[1 + 2ρm(1 − ρα1)]

(1 − ρα1)ρ
2η2
v

(9)

c0 = (−rf + k)(1 − ρα1)+ α0

(1 − ρα1)(1 − ρ) + ρβ0

(1 − ρ)c2. (10)
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Furthermore, the linear solution to the return process is

rt+1 = rf + λ1σ
2
d,t + λ2εd,t+1 − λ3σd,tvt+1, (11)

where the parameters are

λ1 = −(1 − ρβ1)c2 (12)

λ2 = 1

1 − ρ2

(13)

λ3 = −ρc2. (14)

Note that for c2, there are two roots. For there to be volatility feedback in
the model, only the negative root is feasible. The first term is positive since it
has a positive denominator and the numerator is positive when ρl < 0. Recall
that the negative correlation captures the leverage effect. It is straightforward
to compute the conditional variance of returns,

σ 2
r,t = (λ2

2 + λ2
3η

2
v − 2λ2λ3ηvρl)σ

2
d,t . (15)

With ρl < 0, the term in the parenthesis is positive. Therefore σ 2
r, t+1 is

proportional to σ 2
d, t+1. I would like to point out here that λ3 measures the

feedback effect. If it is positive, then a positive (negative) realization of vt+1,
which corresponds to a larger (smaller) than expected conditional variance
of the return σ 2

r, t+1, has a negative (positive) impact on the return. Moreover,
since εd, t+1 is negatively correlated to vt+1 due to the leverage effect, a
positive (negative) realization of vt+1 is more likely to be associated with
a negative (positive) εd,t+1. Thus the volatility feedback effect is reinforced
by the leverage effect. I summarize some interesting results in the following
proposition. The proof is provided in the appendix.

Proposition 2. If dividend growth and its variance are stationary (−1 <
α1 < 1,−1 < β1 < 1), and the firm’s systematic risk parameter ρm is
sufficiently large in size such that ρm < − 1

2(1−ρα1)
, then volatility feedback

exists. Specifically,

(i) Et
[
rt+1

]
is positively related to dividend variance σ 2

d,t , that is, λ1 > 0;
(ii) rt+1 is positively related to dividend growth shock εd,t+1, that is,

λ2 > 0;
(iii) rt+1 is negatively related to vt+1, σ 2

d,t+1 and σ 2
r,t+1, that is, λ3 > 0.

In this model, return variance is driven by dividend variance. By (i),
expected return is positively related to dividend variance, a feature which
is similar to the key assumption of the Campbell and Hentschel (1992)
model: expected return of the stock is a linear function of the variance of div-
idend news. This assumption, although reasonable as shown by the authors,
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seems to be unusual at the outset since the conventional assumption is that
expected return is a linear function of the return variance instead of the div-
idend variance. The proposition shows that they are actually consistent with
each other. Moreover, we see that a positive risk-return relation exists in this
model, that is, expected return is positively related to the conditional vari-
ance of the return. I would like to note that an appropriate measure of risk
premium is the expected log return plus one-half the conditional variance of
log returns, that is, we need to compute the expected returns adjusted for
Jensen’s inequality:

Risk premium =
(
λ1 − λ2λ3ηvρl +

λ2
2 + λ2

3η
2
v

2

)
σ 2
d,t . (16)

By (ii), good news in dividend growth is immediately reflected in a price
increase, and vice versa for bad news. News regarding dividend growth itself,
however, does not affect return variance directly. However, since εd,t+1 and
vt+1 are correlated, a shock to dividend growth is likely to be associated with
a shock in variance. When this correlation is negative, it captures the lever-
age effect. By (iii), rt+1 and σ 2

d,t+1 are negatively correlated. Thus volatility
asymmetry is also generated via dividend variance shocks. Note that since
rt+1 is also affected by dividend growth shocks, this negative correlation is
not perfect.

1.2 The asymmetry property of the model
In this section I further explore the asymmetry property of the volatility
feedback model,

rt+1 = Et(rt+1)+ λ2εd,t+1 − λ3σd,tvt+1, (17)

where Et(rt+1) = rf +λ1σ
2
d,t . The first term in the equation is the conditional

mean. It is a linear function of the dividend variance. The second term reflects
the impact of dividend news. The last term, which is the focus of our interest,
shows the impact of a shock to dividend volatility. I prove below that it
captures the volatility feedback effect.

Rearranging Equation (4) to relate pt to pt+1 and dt+1, we solve forward
and impose the “no bubble” transversality condition to obtain

pt = k

1 − ρ + (1 − ρ)Et
∞∑
j=0

ρjdt+1+j − Et
∞∑
j=0

ρj rt+1+j .
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Using this equation to substitute out pt and pt+1 in Equation (4) we get

rt+1 − Etrt+1 = (Et+1 − Et)
∞∑
j=0

ρjgt+1+j − (Et+1 − Et)
∞∑
j=1

ρj rt+1+j . (18)

Campbell and Hentschel call the first term on the right-hand side of the
above equation “news about dividends” and the second term “news about
future returns.” Note that Equation (18) is not an economic model, but rather
is derived from an accurate approximation of an identity. Therefore any return
shock can be decomposed into two parts: changing expected future dividend
growth rates and changing expected future returns. In models (1)–(3), the
state variables of the economy are the dividend growth rate and its vari-
ance. The following proposition establishes the dividend news effect and the
volatility feedback effect. The proof is provided in the appendix.

Proposition 3. In the asymmetric volatility model [Equation (17)], news
about future dividends is captured by λ2εd, t+1, that is,

(Et+1 − Et)
∞∑
j=0

ρjgt+1+j = λ2εd, t+1. (19)

More importantly, news about future returns is captured by λ3σd, tvt+1, that is,
changes in expected future returns are effected through a shock to dividend
volatility, or the volatility feedback,

(Et+1 − Et)
∞∑
j=1

ρj rt+1+j = λ3σd,tvt+1. (20)

This simple proposition makes a strong statement: An unexpected change
in dividend volatility changes expected future returns, which in turn has
an immediate impact on the current stock price. To be more specific, if
β1 > 0, so volatility is positively autocorrelated, then an unexpected increase
(decrease) in dividend volatility will increase expected future returns, which
in turn will increase (decrease) the risk premia for future periods and lead
to a price decline (increase). This is an impact on stock return separate from
the dividend shock itself, although these two shocks are correlated. Just as
in Campbell and Hentschel (1992), the shock described as “dividend news”
may well contain news about future discount rates that are not being driven
by volatility. As the empirical results will show below, the “dividend news”
term has an estimated volatility close to the volatility of returns themselves.
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The conditional correlation between return and return variance is computed
to be

Corrt (rt+1, σ
2
r, t+1) = λ2ρl√

λ2
2 + λ2

3η
2
v − 2λ2λ3ηvρl

− λ3ηv√
λ2

2 + λ2
3η

2
v − 2λ2λ3ηvρl

. (21)

This correlation consists of two components. The first is due to the leverage
effect, which is negative if ρl < 0. The second term is due to the volatil-
ity feedback, which is negative if λ3 > 0. Higher negative correlation is
associated with a larger feedback parameter λ3 and a larger leverage effect
parameter ρl. If there is no volatility feedback effect, λ3 = 0, this term
becomes zero. The negative correlation between return and variance is gen-
erated only by the leverage effect, and Corrt (rt+1, σ

2
r, t+1) = ρl . If there is no

leverage effect, ρl = 0, then the volatility feedback effect is the sole source
of asymmetric volatility, Corrt (rt+1, σ

2
r, t+1) = −λ3ηv/

√
λ2

2 + λ2
3η

2
v .

A concept closely related to volatility asymmetry is distributional skew-
ness. For the standard continuous-time stochastic volatility model with mean-
reverting square-root volatility process, Das and Sundaram (1997) found that
the sign of skewness is determined by that of the coefficient of correlation
between stock price and volatility, and the size of skewness is proportional
to the coefficient [see also Bakshi, Cao, and Chen (1997) and Bates (1997)].
My discrete-time model is conditionally normally distributed. However, it
converges in continuous-time to the case discussed by Das and Sundaram.
Thus my model could explain the cause of empirical regularities such as the
“smile” of implied volatilities in high-frequency data [Rubinstein (1994) and
Jackwerth and Rubinstein (1996)].

My derived volatility feedback model [Equation (17)] is similar in form to
the key Equation (12) in Campbell and Hentschel (1992), which is

rt+1 = λ̄0 + λ̄1σ
2
d,t + λ̄2εd, t+1 − λ̄3

(
ε2
d, t+1 − σ 2

d, t

)
, (22)

where λ̄i > 0, i = 0, 1, 2, 3, are the parameters. The dividend innovation
εd, t+1 is distributed as

εd, t+1 ∼ N(0, σ 2
d, t ), (23)

σ 2
d, t = a0 + a1(εd, t − b)2 + a2σ

2
d, t−1. (24)

The main difference between their model and mine is that they assume a
quadratic GARCH (Q-GARCH) process for the variance of dividend while
I let the variance be stochastic. Campbell and Hentschel’s main focus is to
generate conditional skewness, which motivates their Q-GARCH specifica-
tion of the variance process. My objective is to understand the mechanism
that causes asymmetric volatility. I therefore model dividend volatility as a
separate process.
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2. Estimation and Empirical Results

2.1 Data and estimation methodology
In this section I apply the volatility feedback model to the U.S. stock market
data. The log return series are the monthly returns on the value-weighted
CRSP index from January 1926 to December 1997, and the weekly returns
from July 1962 to December 1997 constructed from the daily series. I do
not use the daily series since market microstructure issues such as nonsyn-
chronous trading and transaction costs are likely to induce spurious autocor-
relations in the daily returns. It is difficult, if possible, to separately identify
the induced autocorrelations from the autocorrelations implied by my struc-
tural model. The risk-free rate is proxied by the 1 month Treasury bill yields.
Table 1 reports some summary statistics of the monthly and weekly data, each
with two subsamples.

To estimate my Equations (3) and (11), I encounter the problem of not
being able to observe the dividend volatility.2 Yet the data-generating pro-
cess of the model is well specified by the model. This constitutes a nat-
ural setting for the simulated method of moments estimation [Duffie and
Singleton (1993)]. I apply the method developed by Gallant and Tauchen
(1996, 1998a, b) which they named efficient method of moments (EMM).
An added benefit of the EMM approach is that it provides a systematic way
to test the specification of the structural model. The tests are able to show if
the model dynamics fit the observed returns data well.

I implement the following strategies to estimate the model parameters ϕ
(or structural parameters) using EMM. I first select a set of moments of
returns to be used in the estimation and choose an initial value of the model
parameters. Following Gallant and Tauchen (1996, 1998a), I use the scores

2 In an earlier version of the article, the author used implied volatility from the S&P 500 index options data as
a proxy for conditional volatility. Yet that approach only allows a very short sample period due to a lack of
options data. Since volatility feedback effect works through expected returns, which are hard to measure with
a short sample, I opt to use more than 70 years of data on the CRSP value-weighted index.

Table 1
Summary statistics of the data

No. of
Sample period observations Mean (×103) Variance (×103) Skewness Excess kurtosis

Monthly data

260130–971231 864 9.8791 3.0160 0.2336 8.1192
620703–791231 312 8.7241 5.3603 0.4302 5.8478
800102–971231 552 10.5320 1.6971 −0.3937 2.3503

Weekly data

620706–971231 1853 2.3894 0.3669 −0.2751 4.0244
620706–791228 913 1.6993 0.3707 −0.0284 3.7643
800104–971231 940 3.0596 0.3626 −0.5215 4.3690

This table lists moments of the monthly and weekly returns on the value-weighted CRSP index. Sample mean, variance,
skewness, and excess kurtosis are reported. Mean and variance have been multiplied by 1000.
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of the likelihood function from the seminonparametric (SNP) framework as
the moment conditions for the EMM estimator. A long time series of returns
is then simulated using the chosen value of ϕ. I compute the sample versions
of the selected moments using the historical time series and the simulated
series, and then compute the difference between the two. The EMM estimate
of ϕ is the set of values that minimizes the difference. I now discuss the
estimation procedure in detail.

2.2 Efficient method of moments estimation
I would like to estimate the following equations,


rt+1 = rf + λ1σ

2
d,t + λ2εd,t+1 − λ3σd,tvt+1,

gt+1 = α0 + α1gt + εd,t+1, εd,t+1|It ∼ N(0, σ 2
d,t ),

σ 2
d,t+1 = β0 + β1σ

2
d,t + σd,tυt+1, υt+1 ∼ N(0, η2

v),

(25)

where λi(i = 1, 2, 3) is given in Equations (12)–(14). The original set of
parameters for the model is ϕ = (ρ, α0, α1, β0, β1, ρl, ρm, ηv)

′. However, not
all these parameters are well identified in the model. For example, the long-
run mean of dividend variance (β0/(1−β1)) is not identified from the standard
deviation of the volatility innovation ηv. To estimate the model efficiently,
I fix ρ at the sample average ratio of the index to the sum of the index and the
dividend (0.9965 and 0.9992 for the monthly and weekly data, respectively).
The long-run means of the log dividend growth (α0/(1−α1)) are fixed at the
sample mean of the log dividend growth (0.0048 and 0.0011, respectively, or
5.91% annual rate). I fix the annualized long-run mean of dividend volatility
(β0/(1 − β1) ) to be 18%. In the volatility feedback model the volatility of
dividend growth and that of stock return are scaled versions of each other. In
the estimated monthly model, this implies an annualized stock return volatil-
ity of about 20%. To check the robustness of the results I varied the long-run
mean from 12% to 25% and found the results remain the same qualitatively.
All my conclusions are valid with slightly different long-run volatility values.
The set of parameters to be estimated is now ϕ = (α1, β1, ρl, ρm, ηv)

′. Note
that based on estimates of the above model, all claims of the propositions
can be verified, the volatility feedback mechanism can be examined, and the
asymmetry correlation [Equation (21)] can be computed. These are the key
parameters for my analysis.

Instead of the common practice of selecting a few low-order moments on
an ad hoc basis, EMM presents a systematic approach to generating moment
conditions, that is, using the expectation under the structural model of the
score from an auxiliary model as the vector of moment conditions. The score
is the derivative of the log density of the auxiliary model with respect to the
parameters of the auxiliary model. Formally, let f (yt |xt−1, ω0) denote the
conditional density of y associated with the auxiliary description of the data.
The maximum likelihood estimator of the parameter vector ω0 with sample
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size T (ωT ) sets the score to zero,

1

T

T∑
t=1

∂

∂ω
log f (yt |xt−1, ωT ) = 0. (26)

The sample mean on the left-hand side converges to E[∂ log f (yt |xt−1, ω0)/

∂ω] under certain regularity conditions. It follows that if the structural model,
which was developed in Sections 1.1 and 1.2, is correctly specified, then the
sample mean of the score evaluated at y ′s simulated from the model (ŷs),

mT (ϕ, ωT ) = 1

Ts

Ts∑
s=1

∂

∂ω
log f (ŷs |x̂s−1, ωT ), (27)

where Ts is the simulation size, should also be approximately zero. The GMM
estimator of the structural model parameter vector is

ϕT = arg min
ϕ∈R

m′
T (ϕ, ωT )(IT )

−1mT (ϕ, ωT ), (28)

where (IT )
−1 is the weighting matrix. Certainly ω must have at least as many

elements as ϕ, and overidentifying restrictions may be used to test for the
overall specification of the model.

The auxiliary model I use is the seminonparametric (SNP) framework pro-
posed by Gallant and Tauchen (1998b). The method employs a Hermite poly-
nomial series expansion to approximate the conditional density of a process,
and nests directly the Gaussian VAR model, the semiparametric VAR model,
the Gaussian ARCH model, and the semiparametric GARCH model. There-
fore it should be able to fit well the distribution of stock returns. The aux-
iliary model need not nest my structural model for the EMM estimator to
be consistent for the structural parameters. If it does, then the estimator is
as efficient as the maximum likelihood estimator. Gallant and Long (1997)
show that if my auxiliary model closely approximates the actual distribution
of the data but does not nest it, the EMM estimator of the structural model
is nearly fully efficient.

Gallant and Tauchen (1996) showed that under correct specification of
the structural model, the optimized objective function is asymptotically
chi-squared with degrees of freedom equal to the difference of the lengths
of ω and ϕ. This allows a formal testing of the overall fitting of the structural
model. Another added benefit of the SNP-EMM framework is the ability to
test individually how well the structural model fits each score. The simulated
SNP scores, evaluated at the estimated SNP-EMM parameters, are asymp-
totically normally distributed with zero mean. Thus standard t-statistics can
be formed that have a standard normal asymptotic distribution. An indication
of failure to fit a particular score can often be traced to the inability of the
structural model to fit a certain aspect of the observed dynamics, such as the
degree of the ARCH effect.
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I will first search for an SNP auxiliary model that adequately describes the
return process of the CRSP index based on the Schwarz Bayes BIC informa-
tion criterion [Schwarz (1978)]. Experiences with the SNP-EMM framework
tell me that I should find a parsimonious SNP model that adequately cap-
tures the dynamics of the historical data. I then use EMM to estimate the
structural parameters ϕ. The structural model specification is tested using the
overidentifying restrictions and individual scores. The implication for volatil-
ity asymmetry is analyzed and discussed.

The general form of the SNP conditional density is constructed as follows.
Let the return data be yt , x

′
t = (y ′

t , y
′
t−1, · · · , y ′

t−Lµ) for some lag length Lµ,
and z be a standard normal random variable. Define the location-scale shift
yt = Rx,t−1zt + µx,t−1, where /x,t−1 = R2

x,t−1 is the variance and µx,t−1 is
the linear function µx,t−1 = b0 + Bxt−1. Let P(z) be a Hermite polynomial
of order Kz. The SNP conditional density has the form

f (yt |xt−1, ω0) = c(xt−1)
[P(zt |xt−1)

]2
n(zt ), (29)

where c(xt−1) = 1/
∫

[P(z|xt−1)]
2φ(z)dz is a constant of proportionality

which makes Equation (29) integrate to one, and n(zt ) is the density function
of the standard normal distribution.

The SNP model I have chosen is a “non-Gaussian, AR(1), GARCH(1,1)”
model. Its parameters are ω = (A2, A3, A4, ψ1, ψ2, τ1, τ2, τ3)

′. The condi-
tional mean is modeled as AR(1), µx,t−1 = ψ1 + ψ2xt−1. The conditional
variance is GARCH (1,1),3 Rx, t−1 = τ1 + τ2|yt−1 − µx, t−1| + τ3Rx, t−2. The
“non-Gaussian” term refers to the fact that the conditional density is a prod-
uct of a Gaussian density with a polynomial term as shown in Equation (29).
The polynomial term is a third-order Hermite polynomial, squared to ensure
positivity. A1 is normalized to 1, while (A2, A3, A4) are parameters for the
first- to third-order polynomials. The total number of parameters in the SNP
model, or the length of ω, is 8. Since there are five parameters to estimate in
the structural model, there are three overidentifying restrictions in the GMM
objective function.

Table 2 reports the estimated parameters of the SNP auxiliary model for
both the monthly and weekly datasets. The model captures strong GARCH
effects present in the data, as well as an autoregressive component in the
mean. There is also evidence of non-Gaussian dynamics as represented by
the statistically significant A3 and A4 for the monthly data and A2, A3,
and A4 for the weekly data.

2.3 Basic estimation results
Table 3 lists the parameter estimates of the structural model, their standard
deviations, and the t-ratios. All original parameter estimates are statistically
significant at the 95% level, except α1 for the monthly data.

3 The SNP version of the GARCH model is different from that by Bollerslev (1986). It works with absolute
errors and standard deviations.

849



The Review of Financial Studies / v 14 n 3 2001

Table 2
SNP parameter estimates

Parameters Estimates Standard errors t-statistics

Monthly data (January 1926–December 1997)

A2 −0.0665 0.0421 −1.581
A3 −0.0964 0.0294 −3.269
A4 −0.0309 0.0076 −4.039
ψ1 0.2189 0.0372 5.876
ψ2 0.0502 0.0306 1.641
τ1 0.0813 0.0118 6.842
τ2 0.2095 0.0203 10.320
τ3 0.7756 0.0158 49.041

Weekly data (July 1962–December 1997)

A2 −0.0737 0.0253 −2.916
A3 −0.0924 0.0222 −4.166
A4 −0.0322 0.0056 −5.764
ψ1 0.2416 0.0206 11.735
ψ2 0.0216 0.0205 1.051
τ1 0.1126 0.0108 10.400
τ2 0.2262 0.0154 14.698
τ3 0.7350 0.0132 55.856

This table lists the estimated parameters of the SNP model used in the EMM estimation.
Ai ’s are the parameters for the Hermite polynomials; ψi ’s are the parameters for the
autoregressive conditional mean; and τi ’s are the parameters for the GARCH conditional
variance. Standard errors and t-statistics are also listed. The upper panel reports the
results for the monthly dataset and the lower panel for the weekly dataset.

Table 3
EMM model parameter estimates

Parameters Estimates Standard errors t-statistics

Monthly data (January 1926–December 1997)

α0 0.0058 0.0007 8.169
α1 −0.2147 0.1486 −1.445
β0 1.287E-4 1.257E-4 1.024
β1 0.9531 0.0458 20.812
ρl −0.8679 0.1402 −6.192
ρm −3.9057 1.1614 −3.363
ηv 0.0058 0.0026 2.264
λ1 2.1087 0.5191 4.062
λ2 0.8238 0.2405 3.425
λ3 41.732 20.371 2.049

Weekly data (July 1962–December 1997)

α0 0.0013 3.530E-5 37.875
α1 −0.2567 0.0332 −7.737
β0 2.160E-5 6.948E-6 3.109
β1 0.9640 0.0116 83.247
ρl −0.5265 0.1699 −3.098
ρm −2.2964 0.8969 −2.561
ηv 0.0033 0.0008 4.413
λ1 1.0918 0.4523 2.414
λ2 0.7956 0.0913 8.714
λ3 29.667 14.718 2.016

This table lists the estimated parameters of the volatility feedback model using EMM.
Standard errors and t-statistics are also listed. The upper panel reports the results for the
monthly dataset and the lower panel for the weekly dataset.
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Table 4 lists the chi-squared test statistic of the overidentifying restrictions
and the SNP scores for the structural model. Associated with each element
of the SNP parameter vector is an element of the sample score. Each ele-
ment should be close to zero if the structural model adequately captures
the dynamics that are present in the observed data. In the upper panel of
Table 4, note that all sample scores for the monthly data are not statistically
significantly different from zero. So are all the t-tests for the weekly data,
except A4, which has a t-statistic of 1.891. The estimated volatility feedback
model is able to fit monthly and weekly return series very well. Nearly all
moment conditions are satisfied.

The chi-squared test statistic (with three degrees of freedom) for the
monthly data is 8.426, which has a p-value of 0.076. Hence the structural
model is not rejected at the 95% level. The chi-squared test statistic for the
weekly data is 25.885, which is rejected at the 95% level. However, my
experience with EMM estimation is that the overall chi-squared test tends to
overreject models, as compared to tests on individual moments. Of course,
it is possible that my structural model is not rich enough to capture all
return dynamics in the weekly data. In summary, the testing results show that
my volatility feedback model, developed from a set of simplifying assump-
tions and being conditionally normal, is overall capable of generating a time
series that is “close” in terms of moments to the observed monthly data and
weekly data.

Table 4
Fitted SNP scores and chi-squared statistics

Parameters Score Standard errors t-statistics

Monthly data (January 1926–December 1997)

A2 −1.6111 2.5126 −0.641
A3 −4.8283 4.6100 −1.047
A4 −8.1962 11.4757 −0.714
ψ1 −1.4732 1.9442 −0.758
ψ2 1.4645 1.2198 1.201
τ1 −17.6075 10.9982 −1.601
τ2 −5.9363 7.0789 −0.839
τ3 −16.4238 11.2574 −1.459

χ 2(3) 8.426

Weekly data (July 1962–December 1997)

A2 −0.4795 2.8213 −0.170
A3 −8.7901 5.4114 −1.624
A4 −24.3445 12.8761 −1.891
ψ1 0.0599 2.0104 0.030
ψ2 1.5647 1.2672 1.235
τ1 −15.732 9.2363 −1.703
τ2 −6.6937 6.8910 −0.971
τ3 −16.9402 9.9728 −1.699

χ 2(3) 25.885

This table lists the fitted SNP scores, their standard errors and t-statistics, using estimated
SNP and EMM parameters. The t-statistics are used to test if the individual scores are
significantly different from zero. The chi-squared statistics test the overall specification
of the volatility feedback model. The upper panel reports the results for the monthly
dataset and the lower panel for the weekly dataset.
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Substitute values for the λi’s, the estimated models for the monthly and
weekly data are

Monthly model:



rt+1 = 0.003 + 2.1087σ 2

d,t + 0.8238εd,t+1 − 41.732σd,t vt+1,

gt+1 = 0.0058 − 0.2147gt + εd,t+1, εd,t+1|It ∼ N(0, σ 2
d,t ),

σ 2
d,t+1 = 0.00013 + 0.9530σ 2

d,t + σd,tυt+1, υt+1 ∼ N(0, 0.00582).

(30)

Weekly model:



rt+1 = 0.0005 + 1.0918σ 2

d,t + 0.7956εd,t+1 − 29.667σd,t vt+1,

gt+1 = 0.00134 − 0.2567gt + εd,t+1, εd,t+1|It ∼ N(0, σ 2
d,t ),

σ 2
d,t+1 = 0.0000216 + 0.964σ 2

d,t + σd,tυt+1, υt+1 ∼ N(0, 0.00332).

(31)

All estimated model parameters for both the weekly and monthly data are
statistically significant at the 95% level, except α1 and β0 for the monthly
data. Standard errors and the t-statistics for all parameters and coefficients
are reported in Table 3. The estimated models [Equations (30) and (31)] show
that returns are positively linear in the dividend variance. Therefore, volatility
risk is priced in the model and returns are proportional to the amount of
risk taken. Returns are also positively linearly related to shocks in dividend
growth. Any positive dividend growth shock is reflected immediately as a
positive return shock, regardless of the size of the shock. Therefore, “good
news about dividends” is always good news for the stock itself. Finally I
observe that the dividend variance process is persistent, which is necessary
to capture the GARCH effect in the return data.

I now turn my attention to the most important aspect of the model: its
implications for volatility asymmetry. Equation (15) shows that if there is
a positive shock to the variance of dividend growth, that is, the uncertainty
regarding dividend growth increases unexpectedly, it leads to an increase
in the return variance immediately (σr,t = 1.0408σd,t for the monthly data).
Simultaneously, it has an immediate negative impact on the stock return, gen-
erating volatility asymmetry. This is clearly shown in the estimated Equations
(30) and (31). The opposite happens if there is a negative shock to the vari-
ance of dividend growth. Thus volatility asymmetry, which is the existence
of a negative correlation between return and return variance, is generated via
shocks to the dividend variance.

2.4 The economic significance of volatility feedback
In this section I explore further the economic significance of volatility feed-
back for stock return itself. I would like to note that the estimated model
obviously has the property that risk premium is positively related to the con-
ditional return variance σ 2

r,t , as is clear from Equation (16). Higher risk is
therefore compensated by higher expected return. In Figure 1 I plot the esti-
mated risk premium for the monthly and weekly data. The conditional return
variance is estimated by the simple sample variance approach, with a rolling
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Figure 1
Estimated risk premium
This figure plots the estimated risk premium over the sample periods. The risk premium is the expected excess
log return plus one-half the conditional variance. The upper and lower panels are results for the monthly and
weekly data, respectively.

window of 20 and 10 periods for the monthly and weekly datasets, respec-
tively. Certainly there are numerous ways to estimate conditional variance.
Our qualitative conclusions regarding risk premia and the following decom-
position of returns and asymmetry correlation do not change with a different
variance estimation method.

From Equation (21), we see that the negative correlation between stock
return and variance consists of two components. The first is due to the
leverage effect, which is negative since the leverage correlation coefficient ρl
is estimated to be negative. The second term is due to the volatility feed-
back effect, which is negative since λ3 is positive. For the monthly data,
ρl = −0.8679 with a standard error (henceforth s.e.) of 0.1402. Overall the
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asymmetry correlation, corrt (rt+1, σ
2
r,t+1), is estimated to be −0.9194 (s.e.

0.0960). Of the total correlation, −0.6868 (s.e. 0.1518) comes from the
leverage effect and −0.2326 (s.e. 0.0625) comes from volatility feedback.
Thus both the leverage effect and the volatility feedback effect are statisti-
cally significant. The leverage effect contributes more than twice as much
to the negative correlation between return and return variance as the volatil-
ity feedback effect does. For the weekly data, ρl = −0.5265 (s.e. 0.1699).
Overall the asymmetry correlation is −0.6074 (s.e. 0.1429) with −0.4919
(s.e. 0.1414) from the leverage effect and −0.1155 (s.e. 0.0713) from the
volatility feedback effect.

Figure 2 shows the correlation between return and conditional variance
as a function of the leverage correlation parameter ρl . The figure plots the
asymmetry correlation as well as the two components against ρl while hold-
ing other parameters at the estimated level. It is clear from the figure that the
leverage effect contribution to volatility asymmetry increases with ρl . The
contribution from volatility feedback, however, is fairly stable. In fact, its
contribution to asymmetric volatility declines slightly as the leverage effect
becomes stronger.

The total return (rt+1) in the volatility feedback model [Equation (17)]
consists of three parts: the conditional mean is the sum of the risk-free rate
and λ1σ

2
d,t , which is proportional to the risk premium; the impact of the divi-

dend news (λ2εd,t+1); and the volatility feedback effect (−λ3σd,tvt+1). To help
understand the economic significance of volatility feedback, I decompose his-
torical returns into three parts and plot them in Figure 3 for the monthly data
and Figure 4 for the weekly data. The scales of the individual panels in the
figures are identical, except for expected returns, so that it is easy to see the
relative magnitude of each part. The plots show clearly the relative impor-
tance of each part in generating the return series. We see that the expected
return is of a smaller order of magnitude, and relatively stable compared
to the other three plots. The news about dividends term seems to have the
biggest impact on returns. The volatility feedback term is clearly economi-
cally significant, yet the magnitude of the feedback shock is usually less than
half of the dividend news. However, the volatility feedback effect can be very
large when innovations to volatility are large, such as in September 1974 and
October 1987. The estimated model predicts that if return volatility increases
unexpectedly by 10%, for example, from an annual rate of 20% to 22%, it
will lead to a −2.81% return shock for the monthly data and −0.54% for the
weekly data. If return volatility increases unexpectedly by 25% (e.g., from
an annual rate of 20% to 25%), the implied drop is 7.52% for the monthly
data and 1.45% for the weekly data. Hence, volatility feedback can be very
important during volatile periods of the market. Its importance in determin-
ing the return dynamics under stable market conditions, however, seems to
be secondary to dividend innovation itself.
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Figure 2
Asymmetry correlation and its components as a function of ρl
This figure shows the correlation between return and conditional variance as a function of the leverage corre-
lation parameter ρl . The upper and lower panels are results for the monthly and weekly data, respectively. The
total asymmetry correlation in Equation (21) is the sum of negative correlations caused by the leverage effect
and the volatility feedback effect. The figure plots the asymmetry correlation as well as the two components
against ρl while holding other parameters at the estimated level. The estimated ρl equals −0.8679 for the
monthly data and −0.5265 for the weekly data.

Since volatilities tend to increase quickly but decline slowly, we gen-
erally see more negative return feedbacks than positive return feedbacks.
This phenomenon is linked to the existence of negative skewness in stock
returns. Even though our model has conditionally normally distributed innova-
tions, the feedback mechanism can produce negative skewness for multiperiod
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Figure 3
Monthly return components as implied by the volatility feedback model
This figure shows the historical monthly returns with estimates of the contributions of the three components
as implied by our volatility feedback model [Equation (30)]: expected returns, return shocks from dividend
news, and volatility feedback.

returns. Yet since the innovation to volatility is conditionally symmetric, the
induced negative skewness is weak.

3. Conclusion

Volatility in equity markets is asymmetric: contemporaneous returns and con-
ditional return volatility are negatively correlated. In this article I develop
a volatility feedback model where dividend growth and dividend volatility
are the two state variables. The model is estimated by simulated method of
moments. I find that volatility feedback is significant both statistically and
economically. I also find that the leverage effect and volatility feedback effect
both play very important roles in generating asymmetric volatility. For the
monthly and weekly CRSP value-weighted index, the leverage effect con-
tributes more to the negative correlation between return and return volatility.
I find dividend news and volatility feedback are both important in gener-
ating returns. Volatility feedback can be very large during volatile periods
of the market. Its importance in determining the return dynamics under sta-
ble market conditions, however, seems to be secondary to dividend innova-
tion itself.
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Figure 4
Weekly return components as implied by the volatility feedback model
This figure shows the historical weekly returns with estimates of the contributions of the three components
as implied by our volatility feedback model [Equation (31)]: expected returns, return shocks from dividend
news, and volatility feedback.

Appendix: Proof of Propositions

Proof of Proposition 1. We first postulate a solution to the log price-dividend ratio in terms
of the state variables. We then verify this solution and solve for the parameters of the solution.
The linear solution takes the following form,

pt − dt = c0 + c1gt + c2σ
2
d,t .

Substituting this solution to Equation (6), we get

1 = Et exp
[
A(·)],

where

A(·) = −rf − 1

2
σ 2
m,t + εm,t+1 + k + ρ(c0 + c1gt+1 + c2σ

2
d,t+1)

+ gt+1 − (c0 + c1gt + c2σ
2
d,t ). (32)

Since A(·) is a normal random variable, we must have

Et
[
A(·)] + 1

2
var

[
A(·)] = 0. (33)
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Substituting Equations (32) and (3) into Equation (33), we obtain

0 =
[

− rf + k + (ρ − 1)c0 + (ρc1 + 1)α0 + ρc2β0

]
+

[
(ρc1 + 1)α1 − c1

]
gt

+
[
(ρβ1 − 1)c2 + 1

2
(ρc1 + 1)2 + 1

2
ρ2c2

2η
2
v + (ρc1 + 1)ρηvρlc2 + (ρc1 + 1)ρm

]
σ 2
d,t

Note that for this equation to hold, the terms in the three brackets must be identically zero, since
gt and σ 2

d,t are random variables. Solving the resulting three equations produces the solution to
the log price:dividend ratio.

To prove the second part of the proposition we simply substitute the log price:dividend ratio
solution [Equation (7) and Equation (3)] into the return equation [Equation (5)]. Q.E.D

Proof of Proposition 2. We first note that λ3 = −ρc2. Since ρ is the average ratio of the stock
price to the sum of the stock price and the dividend, it is a positive number smaller than one.
For λ3 to be positive, c2 has to be negative. Since ρl is likely to be a negative number due to
the leverage effect, only the negative root in Equation (9) is feasible. Moreover, the second term
in the equation must be larger than the first term, which leads to

ρ2η2
v[2ρm(1 − ρα1)+ 1] < 0.

This is clearly satisfied given ρm < − 1
2(1−ρα1)

.
Since λ1 = −(1 − ρβ1)c2, it is clearly positive. Finally, since λ2 = 1

1−ρα1
, it is positive.

Q.E.D.

Proof of Proposition 3. We derive the news about volatility term [Equation (20)]. The news
about dividends term [Equation (19)] can be derived in a similar fashion:

(Et+1 − Et)
∞∑
j=1

ρj rt+1+j = Et+1

∞∑
j=1

ρj rt+1+j − Et
∞∑
j=1

ρj rt+1+j .

Substituting in Equation (11) and taking expectations we get

(Et+1 − Et)
∞∑
j=1

ρj rt+1+j = λ1

∞∑
j=1

ρj
[
Et+1(σ

2
d,t+j )− Et(σ 2

d,t+j )
]

= λ1ρσd,t vd,t+1

∞∑
j=0

ρjβ
j

1

= λ1ρ

1 − ρβ1

σd, t vd, t+1.

Note that λ1 = −(1 − ρβ1)c2, we finally obtain

(Et+1 − Et)
∞∑
j=1

ρj rt+1+j = −ρc2σd,t vd,t+1 = λ3σd,t vd,t+1. Q.E.D.
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