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Abstract

In this paper we conduct a close examination of the relationship between return shocks and

conditional volatility. We do so in a framework where the impact of return shocks on conditional

volatility is specified as a general function and estimated nonparametrically using implied volatility

data—the Market Volatility Index (VIX). This setup can provide a good description of the impact of

return shocks on conditional volatility, and it appears that the news impact curves implied by the VIX

data are useful in selecting ARCH specifications at the weekly frequency. We find that the

Exponential ARCH model of Nelson [Econometrica 59 (1991) 347] is capable of capturing most of

the asymmetric effect, when return shocks are relatively small. For large negative shocks, our

nonparametric function points to larger increases in conditional volatility than those predicted by a

standard EGARCH. Our empirical analysis further demonstrates that an EGARCH model with

separate coefficients for large and small negative shocks is better able to capture the asymmetric

effect. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the past several decades researchers have documented strong evidence that

volatility is asymmetric in equity markets: negative returns are generally associated with

upward revisions of the conditional volatility while positive returns are associated with

smaller upward or even downward revisions of the conditional volatility (see, for example,

Cox and Ross, 1976). Researchers (see Black, 1976; Christie, 1982; Schwert, 1989)

believe that the asymmetry could be due to changes in leverage in response to changes in

the value of equity. Others have argued that the asymmetry could arise from the feedback

from volatility to stock price when changes in volatility induce changes in risk premiums

(see Pindyck, 1984; French et al., 1987; Campbell and Hentschel, 1992; Wu, 2001). The

presence of asymmetric volatility is most apparent during a market crisis when large

declines in stock prices are associated with a significant increase in market volatility.

Asymmetric volatility can potentially explain the negative skewness in stock return data,

as discussed in Harvey and Siddique (1999).

Formal econometric models have been developed by researchers to capture asym-

metric volatility and currently two main classes of time series models allow for

asymmetric volatility. The first class is based on continuous-time stochastic volatility.

By accommodating a constant correlation between stock price and volatility diffusion,

these models generally produce estimates of a negative correlation between return and

return volatility (Bates, 1997; Bakshi et al., 1997). The second class of models extends

the ARCH models (see Bollerslev, 1986; Pagan and Schwert, 1990; Bollerslev et al.,

1992; Engle and Ng, 1993). For example, the exponential ARCH model of Nelson

(1991) and the asymmetric GARCH models of Glosten et al. (1993), referred to as GJR

below) and of Hentschel (1995) have been found to outperform significantly models

that do not accommodate the asymmetry. The threshold ARCH models of Rabe-

mananjara and Zakoian (1993) and Zakoian (1994) are motivated by and designed to

capture the asymmetry. Bekaert and Wu (2000) used the asymmetric BEKK model of

Baba et al. (1989) and Engle and Kroner (1995) to investigate asymmetric volatility

simultaneously at the market level and individual firm level for the Japanese equity

market. Asymmetric volatility was found to be significant both at the market level and

individual firm level.

These two classes of asymmetric volatility models both assume a parametric form

for the asymmetry. The continuous-time stochastic volatility models constrain the nega-

tive correlation between the instantaneous stock return and volatility to be a constant.

The exponential ARCH model specifies a negative exponential relationship between

conditional volatility and return shock. The asymmetric ARCH models essentially allow

negative and positive return shocks to have separate positive coefficients, with the for-

mer being larger than the latter. All of these models are able to capture the negative

correlation between volatility and returns, yet the exact relationship between return

and volatility is not well understood. For example, to make sure volatility is always

positive, asymmetric ARCH models generally do not allow volatility to decline for a

positive return shock. However, positive shocks may not affect or even reduce vo-

latility, rather than increase it. Moreover, it is not clear from the existing literature

whether we should model the relationship between negative return shocks and
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increases in volatility as linear, exponential, or other functional forms. Since asymmetric

volatility is important for time series modeling and derivative pricing, understanding the

exact nature of this relationship may have important implications (see Amin and Ng,

1994; Duan, 1995).

In this paper we extend the news impact curve analysis of Engle and Ng (1993) in order

to examine the relationship between return shocks and conditional volatility. We do so in a

partially linear framework where the impact of return shock on conditional volatility is

specified as a general function and estimated nonparametrically by using the implied

volatility as a proxy for conditional return volatility. Since we treat volatility as an

‘‘observable’’ in our analysis, we offer a novel approach to the analysis of the news impact

curve. Andersen and Bollerslev (1998) showed that ARCH models provide surprisingly

good estimates for conditional volatilities. We think that appropriately computed implied

volatilities directly incorporate market expectations and hence may provide better

estimates of future volatilities. This setup allows us to study this relationship from a

different direction and we hope that this analysis will help us better identify the exact

impact of return shocks on conditional volatility.

Our generalized partially linear model is estimated with returns and the Black and

Scholes (1973) implied volatilities of options on the S&P 100 Index. Specifically, the

implied volatility is the Market Volatility Index (VIX) constructed by Whaley (1993,

2000) for the Chicago Board Options Exchange. The VIX series represents the implied

volatility of a 30-calendar day (22-trading day) at-the-money option on the S&P 100

Index. The estimation results confirm the existence of asymmetric volatility: negative

return shocks are associated with increases in conditional volatility while positive return

shocks are generally uncorrelated with changes in conditional volatility. We find that the

exponential ARCH model is capable of capturing most of the asymmetric effect when

return shocks are relatively small. For larger negative shocks, however, our nonparametric

function points to larger increases in conditional volatility than those predicted by a

traditional EGARCH model. Our empirical analysis further demonstrates that an

EGARCH model with separate coefficients for large and small negative shocks is better

able to capture the asymmetric effect.

There are some issues associated with the use of implied volatilities. First of all, since

the true data generating process of the S&P 100 Index is likely to be more complicated

than the simple geometric Brownian motion assumed in the Black–Scholes model, the

implied volatility is at best a proxy for the true conditional volatility. Second, the

estimation of the implied volatilities from the option price data introduces further errors

in the volatility series. Fortunately, the measurement error problem can be handled

properly in our empirical analysis with the use of an instrumental variable. Third, the

implied volatility series is unlikely to be identical to the conditional volatility series

generated by models based on the historical prices of the underlying index, such as the

ARCH-class of models. However, if one assumes that the implied volatility is related to

the true conditional volatility process, knowledge of implied volatility will be helpful in

the specification analysis of the ARCH models.

The remainder of the article is organized as follows. Section 2 motivates and describes

the generalized partially linear asymmetric volatility model. The estimation methodology

is then introduced. We also discuss the choice of bandwidths in the nonparametric

G. Wu, Z. Xiao / Journal of Empirical Finance 9 (2002) 287–319 289



analysis. Section 3 provides data descriptions and conducts the estimation. We also

provide an analysis of stationarity and conduct specification tests on the generalized

partially linear model. Empirical results regarding asymmetric volatility are reported and

discussed. Section 4 attempts to utilize the generalized partially linear model to investigate

the performance of various EGARCH models. We also conduct a series of sign bias tests

on the specification of these models. Section 5 contains the concluding remarks. Some

technical details are included in Appendix A.

2. A generalized asymmetric volatility model

2.1. The model

Let’s consider a model of stock return rt,

rt ¼ lt�1 þ ut ¼ lt�1 þ rtnt;

where utjrt
fN(0,rt

2). The conditional variance rt
2 follows a stochastic process specified

as

r2
t ¼ a0 þ a1r

2
t�1 þ gðut�1Þ þ vt; ð1Þ

where vt is an error term which may contain errors in estimating rt. The relationship

between the volatility rt
2 and ut�1 is given by a general function g(ut�1). Setting

g(ut�1) = a2ut�1
2 , we see that model (1) becomes the important special case of GARCH(1,

1), which has been widely used in empirical research (see Bollerslev et al., 1992). In the

asymmetric GARCH model of Glosten et al. (1993), for example, g(ut�1) = a2ut�1
2 +a3

max(0, �ut�1)
2. Many other specifications for g(u) are proposed in the literature.

To ensure positive variance, we focus our partially linear analysis on the log volatility

process. The methodology can easily be extended to the variance process itself, but the

model needs to be constrained as in a GARCH setting. We may consider, as an alternative

to model (1), the following partially linear model:

ln rt ¼ a0 þ a1ln rt�1 þ gðut�1Þ þ et; ð2Þ

where et is an error term. The purpose of the partially linear analysis is to investigate

if a general functional form g(u) is implied by the options data. In the following

analysis we do not specify any functional form for g(u), but estimate it nonparamet-

rically.

To approach the estimation of g(u), we reparameterize the model (2) and denote b = (a0,
a1)V, xt = (1, ln rt�1)V, and yt = ln rt, then

yt ¼ bVxt þ gðut�1Þ þ et; ð3Þ

where et is an i.i.d. random variable independent of xt and ut�1, g(�) is an unknown real

function, and b is the vector of unknown parameters that we want to estimate. In this
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model, the mean response of log volatility ln rt is assumed to be linearly related to (1, ln

rt�1) and nonparametrically related to ut�1. We now describe the estimation method-

ology.

2.2. Estimation methodology

Partially linear models have been an important object of study in econometrics and

statistics for a long time. One primary approach is the penalized least squares method

employed by Wahba (1984), among others. Estimation of the parameters is obtained by

adding one penalized term to the ordinary nonlinear least squares to penalize for roughness

in the fitted g(�). Heckman (1986) and Chen (1985) proved that the estimate of b can

achieve the
ffiffiffi
n

p
convergence rate if x and g(�) are not related to each other. Rice (1986)

obtained the asymptotic bias of a partial smoothing spline estimator of b due to the

dependence between x and g(�) and showed that it is not generally possible to attain the ffiffiffi
n

p

convergence rate for b. Green and Yandell (1985) and Speckman (1988) suggested a

method of simultaneous equations to estimate both b and g(�). The
ffiffiffi
n

p
consistency and

asymptotic normality are established in Speckman (1988).

Robinson (1988) addressed the efficiency issue when the regression errors are

independently and identically distributed (i.i.d.) normal variates. In particular, he used

(higher order) Nadaraya–Watson kernel estimates to eliminate the unknown function g(�)
and introduced a feasible least squares estimator for b. Under regularity and smoothness

conditions,
ffiffiffi
n

p
consistency and asymptotic normality are obtained. When the errors are

normally i.i.d., this estimator achieves the semiparametric information bound. A higher

order asymptotic analysis on the estimator is given by Linton (1995). Fan and Li (1999)

established the
ffiffiffi
n

p
-consistent estimation and asymptotic normal distribution results under

b-mixing conditions.

Taking expectation of Eq. (3) conditional on ut�1, we have

Eð yt j ut�1Þ ¼ bVEðxt j ut�1Þ þ gðut�1Þ: ð4Þ

Thus, combining Eqs. (3) and (4) gives

yt � Eðyt j ut�1Þ ¼ bVðxt � Eðxt j ut�1ÞÞ þ et:

Denoting

y	t ¼ yt � Eð yt j ut�1Þ;

and

x	t ¼ xt � Eðxt j ut�1Þ;

we get the following parametric regression equation:

y	t ¼ bVx	t þ et: ð5Þ
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This equation shows that if we are able to obtain estimates of the conditional expect-

ations, we may be able to estimate the parameter b using the linear components of the

model. With b estimated, we will then be able to estimate g(�) by utilizing Eq. (4).

Estimation and inference of partially linear regression models have been widely studied.

Among different estimation methods, the semiparametric kernel method is probably one

of the most commonly used. This method was originally studied by Robinson (1988)

and has been extended in various directions. Under regularity conditions [see, Robinson

(1988); Fan and Li (1999), and references therein, for discussions on a wide range of

models and regularity conditions], the conditional expectations E( ytjut�1) and E(xtjut�1)

can be estimated nonparametrically by the standard Nadaraya–Watson kernel method:

E
�byt j ut�1

�
¼ 1

nh

Xn
j¼1

K
ut�1 � uj

h

� �
yj=f̂ ðut�1Þ;

E
�bxt j ut�1

�
¼ 1

nh

Xn
j¼1

K
ut�1 � uj

h

� �
xj=f̂ ðut�1Þ;

where

f̂ ðut�1Þ ¼
1

nh

Xn
j¼1

K
ut�1 � uj

h

� �
ð6Þ

is a consistent density estimator for f (ut�1) under bandwidth conditions, n is the sample

size, h is the bandwidth parameter, and K(�) is the kernel function satisfying the

properties that it is a real, even function, having support on [�1, 1],
R
K(u)du=1,R

ulK(u)du=0, for l=1, . . ., q�1, and
R
uqK(u)dua 0. q is defined as the characteristic

component of the corresponding kernel K(�). The requirement that K integrates to 1

makes f̂ (ut�1) an appropriate estimator of f (ut�1). Candidate kernel functions can be

found in standard econometric texts [also see Robinson (1988) on discussions of kernel

functions]. Define

ŷ	t ¼ yt � E
�byt j ut�1

�
; and x̂	t ¼ xt � E

�bxt j ut�1

�
; ð7Þ

then a least squares estimator for b is given by

b̂ ¼
hX

x̂	t x̂
	
t V
i�1hX

x̂	t ŷ
	
t

i
: ð8Þ

and g(ut�1) can be estimated based on b̂:

g̃ðut�1Þ ¼ E
�byt j ut�1

�
� b̂VE

�bxt j ut�1

�
: ð9Þ

Given data on yt, xt, and ut, the above procedure delivers
ffiffiffi
n

p
-consistent estimators of b

and g(u). However, notice that in our partially linear model (2), the conditional volatility
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rt has to be estimated. Specifically we use the VIX, which is a weighted average

implied volatility from the S&P 100 Index options.

However, the estimation in rt introduces an errors-in-variable problem so that the

estimator for b given by Eq. (8) is no longer consistent. As a result, the estimation of g(u)

based on Eq. (8) is not appropriate. To obtain a consistent estimator for b, an instrumental

variables estimator should be used [see Robinson (1988) and Liviatan (1963) for some

related discussion]. Suppose that zt is an appropriate instrumental variable of xt*, then b
can be consistently estimated by

b̂IV ¼
hX

ztx̂
	
t V
i�1hX

ztŷ
	
t

i
; ð10Þ

and the estimation of g(u) can then be constructed based on b̂IV.
We use the log difference of the total trading volume for the stocks in the S&P 100

Index as an instrument for volatility. Empirical evidence indicates that trading volume and

volatility are positively correlated [see, for example, Chen et al. (2001)]. We use the log

difference of the total trading volume as an instrument because the volume series is

generally not stationary but the log difference series is. In Section 3, we test for stationarity

for both series.

2.3. Bandwidth selection

The nonparametric estimates that are used in the partially linear regression estimation

entail a choice of bandwidth h. As long as the bandwidth parameter h converges to zero at

an appropriate rate, all such semiparametric estimators are (first order) asymptotically

equivalent (i.e., the estimators are
ffiffiffi
n

p
-consistent and have the same asymptotic normal

distribution). However, estimates from finite samples can vary considerably with band-

width choice. The finite sample performance of estimators can be quite satisfactory for

some bandwidth choices, but it is also easy to find examples where the estimators have

poor performance. Thus, it is useful to have rules that help us select bandwidth in an

appropriately defined ‘‘optimal’’ way.

Although the bandwidth parameter does not appear in the first order asymptotics, it

plays an important role in higher order asymptotics. Linton (1995) derived a second

order expansion for the partially linear regression estimator and proposed a feasible

method for optimal bandwidth selection in these models. The intuition of such an

optimal bandwidth selection is as follows: the standardized estimator R1=2 ffiffiffi
n

p ðb̂ � bÞ,
where R is the covariance matrix of the corresponding estimator, which is asymptotically

standard normal, can be represented by a stochastic Taylor expansion to the second order

as

R1=2
ffiffiffi
n

p
ðb̂ � bÞ ¼ U þ

ffiffiffi
n

p
h2qBþ 1ffiffiffiffiffi

nh
p V þ Opp

ffiffiffi
n

p
h2q þ 1ffiffiffiffiffi

nh
p

� �
;

where U is distributed as N(0,I ), B and V are O(1) and Op(1) quantities [Op(�) signifies
order in probability],

ffiffiffi
n

p
h2qB is the leading term of nonparametric estimation bias and
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1ffiffiffiffi
nh

p V is the leading term of nonparametric estimation variance, q is the characteristic

component determined by the kernel as defined in the above section. Notice that since

the bandwidth h converges to zero at a rate such that
ffiffiffi
n

p
h2q ! 0 and nh!1, bothffiffiffi

n
p

h2qB and 1ffiffiffiffi
nh

p V converge to zero and thus R1=2 ffiffiffi
n

p
ðb̂ � bÞ is asymptotically standard

normal. Consequently, it can be shown that the mean squared error of b̂ (standardized by

R) has the following moment expansion

MSEðb̂Þ ¼ 1

n
1þ nh4qBþ 1

nh
Vþ O nh4q þ 1

nh

� �
 �
;

where nh4qB and (1/nh)V are squared bias and variance, respectively [see Linton

(1995) for the exact formulae of these quantities]. Notice that the bandwidth parameter h

surfaces in the second order effect nh4qB+(1/nh)V and an optimal bandwidth choice

may be defined by minimizing the truncated mean squared error

1

n
1þ nh4qBþ 1

nh
V


 �
with respect to h. This bandwidth balances the order of magnitude of variance and

squared bias so that nh4q and (1/nh) are of the same order of magnitude. Linton (1995)

shows that the optimal bandwidth is

h	 ¼ ½V=ð4qBÞ
1=½4qþ1

n�2=½4qþ1
:

The quantities B and V are functions of nonparametric bias and variance and are

generally estimated by ‘‘plug-in’’ methods. Linton suggested the following two-step

bandwidth selection procedure for the partially linear regression models: firstly estimate

B and V (and thus V/(4qB)) by their sample analogs from a preliminary estimation

and denote the corresponding estimator by V=ð4qBÞˆ . Then ½V=ð4qBÞˆ 
1=½4qþ1

n�2=½4qþ1


defines the window used in the partially linear regression. [See Appendix A for

formulae of these estimators; also see Linton (1995) (Section 5) for a detailed discussion

on the data-dependent bandwidth selection and Hardle et al. (1992) for similar

methods].

3. Empirical estimation and results

3.1. Data description

We conduct our estimation using the Chicago Board of Options Exchange’s Market

Volatility Index (VIX) dataset and the corresponding returns data on the underlying S&P

100 Index. The sample period is from January 1986 to December 1999, and the analysis

is done on both the weekly and daily frequencies. Total trading volume for the stocks in

the S&P 100 Index was also collected for the sample period and the log difference series
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is used as an instrument for implied volatility. The source of the data is the Chicago

Board Options Exchange and the on-line data service Datastream.

The VIX series is constructed by Whaley (1993, 2000) for the Chicago Board Options

Exchange as a measure of ‘‘investor fear.’’ The series is an implied volatility computed

from the prices of options on the S&P 100 Index (OEX options). Given that option prices

are often quoted by the implied volatility and that the OEX options are the most actively

traded options contracts, the VIX to a large extent represents investors’ consensus view

about expected future stock market volatility. Specifically, the VIX is computed on a

minute-by-minute basis from the implied volatilities of the eight near-the-money, nearby,

and second nearby OEX option series. These implied volatilities are then weighted in such

a manner that the VIX represents the implied volatility of a 30-calendar day (22-trading

day) at-the-money OEX option.

Several authors have documented that the Black–Scholes implied volatilities from

short-dated, at-the-money option prices approximate conditional volatilities well, even

when volatility is stochastic and there is correlation between volatility and stock price

(Latane and Rendleman, 1976; Chiras and Manaster, 1978; Beckers, 1981). Although the

Black–Scholes model often produces biased prices for out-of-the-money options, the

pricing of near-the-money options provides good approximations, even when the true

underlying price follows a stochastic volatility process (Sheikh, 1991; Bakshi et al., 1997).

This result provides an easy method to back out a time-series of conditional volatilities for

empirical analyses and tests. Certainly, this conditional volatility series is unlikely to be

identical to the conditional volatility series generated by models based on the historical

Fig. 1. Return and implied volatility (VIX) of the S&P 100 Index. This figure shows the returns and (annualized)

implied volatility (VIX) of the S&P 100 stock index at weekly (upper panel) and daily frequencies. The sample is

from January 1986 to December 1999. Dashed line plots the volatility series.
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prices of the underlying index, such as the ARCH-class of models. Yet we believe that this

implied volatility time series contains valuable information that may be useful in guiding

our choice of ARCH models.

Fig. 1 shows the weekly and daily returns of the S&P 100 Index and the annualized

VIX series. We see that there is much variation in implied volatility and that it mostly

moves within the 10% to 30% range. One prominent exception, however, is the 1987

market crash when implied volatility reached a record high of 81.24% for the weekly data

and 150.19% for the daily data. Volatility is also higher in 1990 and early 1991, possibly

due to the Gulf War, and at the end of 1998 due to financial crises in Asia and Russia. The

return series shows a similar pattern, with relatively large negative return movement

during these volatile periods. In particular, during the 1987 market crash, we observe a

negative return of 15.80% for the weekly data and 23.69% for the daily data. Over the

entire weekly sample, there are 11 observations with negative returns larger than 5% in

magnitude. There are seven such observations for the daily sample.

The annualized VIX series was divided by the square root of 52 to obtain the weekly

series and by the square root of 260 to obtain the daily volatility series. Table 1 reports

some summary statistics of the volatility, return and trading volume data at weekly and

daily frequencies. AC(k) denotes autocorrelation of order k. Corr(1) is the sample

correlation between returns and the VIX series. Corr(2) is the sample correlation between

the VIX series and the log difference of the trading volume.

The mean returns for the weekly and daily series are both positive, indicating overall

upward trend in the S&P 100 Index. The means of the log difference of volume is also

Table 1

Summary statistics of the data

Weekly data Daily data

Return Volatility Volume Return Volatility Volume

Mean 0.0028 0.0278 0.0032 0.0006 0.0125 0.0004

Std. Dev. 0.0213 0.0099 0.2396 0.0110 0.0049 0.2408

Max 0.0669 0.1127 0.8722 0.0854 0.0931 1.3199

Min �0.1580 0.0127 �0.8279 �0.2369 0.0056 �1.6650

Skew �1.0672 2.4797 �0.1375 �3.1003 4.6371 �0.1794

Ex. Kurt 5.5448 13.7134 1.4365 66.8315 51.8265 3.5305

AC(1) �0.0287 0.9083 �0.3534 �0.0211 0.9417 �0.3554

AC(2) 0.0266 0.8220 �0.1202 �0.0508 0.8921 �0.0869

AC(3) �0.0190 0.7649 �0.0368 �0.0405 0.8756 �0.0112

AC(4) �0.0097 0.7243 0.0269 �0.0398 0.8541 �0.0703

AC(5) �0.0559 0.6937 0.0441 0.0226 0.8320 0.0850

AC(10) �0.0025 0.6005 0.1232 0.0116 0.7240 0.1127

Corr(1) �0.2427 �0.1584

Corr(2) 0.1702 0.1210

This table reports the summary statistics of returns, conditional volatility (VIX) of the S&P 100 Index, and daily

log difference of total trading volume for the stocks in the S&P 100 Index at weekly and daily frequencies. AC(k)

denotes autocorrelation of order k. Corr(1) is the sample correlation between returns and the VIX series. Corr(2) is

the sample correlation between the VIX series and the log difference of trading volume. The sample period is

from January 1986 to December 1999. The source of the data is the the Chicago Board Options Exchange and the

on-line data service Datastream.
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positive, with a large standard error, suggesting that total trading volume for stock in the

index is volatile and upward trending. It is interesting to note the negative skewness of

the return and the positive skewness of the conditional variance. The former has been

widely documented and volatility asymmetry can potentially account for this skewness.

The latter reflects the fact that volatility often increases quickly due to large return shocks

and decreases slowly. Such dynamics can be very well captured by the GARCH models

which provide an autoregressive mechanism and allow return shocks to impact condi-

tional volatility. The skewness for the S&P 100 Index from 1986 to 1999 is �1.067 for

the weekly series and �3.100 for the daily series, which are on the same order as those

for the S&P 500 futures prices from 1988 to 1993 reported by Bates (1997). The two

return series on the S&P 100 Index also exhibit excess kurtosis, in particular the daily

sample (66.832), which suggests a highly non-normal distribution. These sample moment

results generally are consistent with documented evidence on stock returns as discussed

in Campbell et al. (1997). Although there is little autocorrelation in the stock return, the

slow decaying autocorrelation of the conditional variance is characteristic of an

autoregressive process. Finally, the negative sample correlation between return and

conditional variance demonstrates the existence of volatility asymmetry. The positive cor-

relations between volatility and log difference of volume suggest that the log dif-

ference of volume may be an appropriate instrument.

3.2. Stationarity tests of the volume series

To avoid the errors-in-variable problem, we need an instrument in the estimation

problem (10) to produce a consistent estimate of the linear parameter b. Given that the log

difference of volume is correlated with volatility, the trading volume variable may act as an

instrument for volatility. Since the measurement error associated with the estimation of the

implied volatility is unlikely to be correlated with the trading volume, the use of the log

difference of volume as an instrument can be justified.

We test the stationarity/nonstationarity property of both the level of trading volume and

the log difference of the trading volume using the augmented Dickey–Fuller (ADF) unit

root test (Dickey and Fuller, 1979) and the KPSS (Kwiatkowski et al., 1992) stationarity

test. Recall that the ADF procedure considers the null hypothesis of a unit root, which is

unlikely to be rejected unless there is strong evidence against it. The KPSS test considers

the null hypothesis of stationarity against the unit root hypothesis. Thus it is useful to

perform both tests because the null hypotheses are different.

The parametric ADF t-ratio test is based on a long autoregression where the lag length

of the ADF regression should grow at a rate O(n1/3). We choose the lag length using the

BIC model selection criterion (Schwarz, 1978; Rissanen, 1978). The KPSS test is

semiparametric and entails the choice of a bandwidth. According to Monte Carlo evidence

in previous research, we consider three choices of bandwidth: M1=[4(n/100)1/4],

M2=[12(n/100)1/4], M3=[4(n/100)1/3].

Table 2 reports the testing results for the ADF test. The 5% level critical value is

�3.432, and the unit root hypothesis should be rejected if the calculated statistic is smaller

than this value. For the KPSS test, the 5% level critical value is 0.146 and the stationarity

hypothesis should be rejected if the calculated statistic is larger. Both tests indicate that the
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volume series is nonstationary in levels, but stationary in the log differences. Therefore,

we use the log difference of the total trading volume as an instrument instead of the

volume series.

3.3. Parameter estimates and specification tests

Due to the nonparametric nature of model (2), the intercept term a0 and the impact

function g(ut�1) cannot be separately identified. We are mainly interested in the impact

function g(ut�1), So we estimate a0+g(ut�1) together and constrain g(0) =0. The following

discussion on g(ut�1) is presented with this constraint imposed.

Before we move on to examine g(ut�1), let’s take a look at the AR(1) coefficient a1 in
the volatility Eq. (2). Table 3 reports the estimated coefficient for both the weekly and

daily data.

The coefficient is quite stable for different values of the bandwidths and shows that

conditional volatility exhibits strong first order autocorrelation. This persistence has been

documented by many time series models such as Duan (1995) and Nelson (1991). At the

weekly frequency, the 0.7811 coefficient for the optimal bandwidth is consistent with the

findings of most empirical studies using S&P 100 Index data. The standard error is

fairly small at 0.0307, signifying that the autoregressive effect is strong and the co-

efficient can be estimated accurately. For the daily data, the AR(1) coefficient is slightly

smaller. For the optimal bandwidth, a1 is estimated to be 0.6191 with a standard error of

0.0401. The estimated coefficient is smaller than those estimated by ARCH models and

may indicate the difference between daily volatility dynamics estimated by VIX and

ARCH models. The fact that the volatility persistence is partially captured by g(ut�1) in

the generalized partially linear model could also explain the smaller estimates.2 Overall,

our stochastic volatility model (2) is able to capture the strong autocorrelation of

volatilities.

To ensure that our generalized partially linear model is properly specified, we conduct

a series of diagnostics tests. Two groups of tests are performed on the estimated residual

êt from the partially linear volatility equation in order to check for autocorrelation and

conditional heteroskedasticity.

Table 2

Stationarity test of the volume series

ADF test KPSS test

M1 M2 M3

Volume �2.949 0.318 0.297 0.277

Change of volume �13.4354 0.0988 0.0924 0.0844

This table reports the stationarity test results for the total trading volume series and the log difference of the total

trading volume series. The 5% critical value for the ADF test is �3.432, and the null hypothesis of a unit root is

rejected if the test statistic is smaller (larger in magnitude). The 5% critical value for the KPSS test is 0.146, and

the stationarity hypothesis is rejected if the statistic is larger.

2 We thank the associate editor for pointing this out to us.
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The Box and Pierce (1970) Q-statistic is a test for autocorrelation in time series data.

By summing the squared autocorrelations, the Box–Pierce test is designed to detect

departure from zero autocorrelation in either directions and at all lags. Ljung and Box

(1978) provide a finite sample correction that yields a better fit to the Q-statistic for small

sample size. The selection of the number of autocorrelations (m) requires some care, and

generally it is good practice to specify several of them. We test for autocorrelation with

m=3, 6, and 12. Under the null hypothesis of no autocorrelation, the test statistics are all

distributed as vm
2.

Table 3

Parameter estimates of the model

Weekly VIX Data

Bandwidth h=0.0317 (optimal) h=0.02 h=0.05

a1 0.7811 0.7886 0.7856

Standard deviation 0.0307 0.0390 0.0435

Daily VIX Data

Bandwidth h=0.0262 (optimal) h=0.01 h=0.04

a1 0.6191 0.6394 0.5990

Standard deviation 0.0401 0.0371 0.0426

This table reports the parameter estimates of the partial linear model for both the weekly data and the daily data of

VIX index from January 1986 to December 1999. Standard errors are in parentheses.

Table 4

Specification tests of the partially linear model

Bandwidth Ljung–Box test ARCH test

m=3 m=6 m=12 q=3 q=6 q=12

Weekly VIX data

h=0.0317 7.987

(0.046)

9.834

(0.131)

12.325

(0.419)

7.498

(0.057)

9.622

(0.141)

11.700

(0.470)

h=0.02 7.467

(0.058)

9.433

(0.150)

11.539

(0.483)

7.119

(0.068)

9.289

(0.157)

10.843

(0.542)

h=0.05 9.006

(0.029)

10.134

(0.119)

13.295

(0.347)

8.598

(0.035)

9.529

(0.145)

12.300

(0.421)

Daily VIX data

h=0.0262 7.150

(0.067)

7.529

(0.274)

14.234

(0.285)

6.755

(0.080)

7.270

(0.296)

12.922

(0.374)

h=0.01 6.074

(0.108)

6.471

(0.372)

12.496

(0.406)

5.664

(0.129)

6.220

(0.398)

11.402

(0.494)

h=0.04 7.487

(0.057)

8.136

(0.228)

15.089

(0.236)

7.075

(0.069)

7.898

(0.245)

13.686

(0.321)

This table reports speficication results of the partially linear model for the weekly and daily VIX data. m is the

number of autocorrelations for the Ljung–Box test. q is the number of the order of ARCH effects. All tests are

distributed as chi-square with the degree of freedom equal to m or q. The p-values are in parentheses. The data are

from January 1986 to December 1999.
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In Table 4, we report the The Ljung–Box test statistics and their p-values. The upper

panel reports the results for the weekly data, where only two of the nine statistics are

significant at the 5% level (at 0.046 for m=3 and h=0.0317, and at 0.029 for m=3 and

h=0.05). Therefore, the null hypothesis of non-autocorrelation can be generally rejected at

the 5% level. The null hypothesis, however, cannot be rejected at the 1% level. The results

for the daily data are reported in the lower panel of Table 4. All nine statistics are

insignificant at the 5% level; hence, the null hypothesis of non-autocorrelation cannot be

rejected at that level.

We test for heteroskedasticity using the Lagrange multiplier ARCH test from Engle

(1982). The test is designed by Engle to detect the existence of qth order ARCH effects

(see also Breusch and Pagan, 1980). We specify several orders q of the ARCH effect.

The results are also presented in Table 4. For the weekly data only one of the nine

statistics is significant at the 5% level (at 0.035 for q=3 and h=0.05). For the daily data,

all nine statistics are insignificant at the 5% level. We conclude that the null hypothesis of

non-conditional heteroskedasticity in the residual series cannot be rejected. Overall, the

specification tests indicate that our partially linear models are properly specified for both

the weekly and daily data.

3.4. The nonparametric news impact curves

To interpret the estimates of the impact function g(ut) meaningfully, we need to

derive confidence bands around the estimated function. Notice that although b̂IV is
ffiffiffi
n

p
-

consistent, the convergence rate of E
�byt j ut�1

� �
and E

�bxt j ut�� is slower than the root-n

convergence rate of b̂IV. By standard results of nonparametric estimation, E
�byt j ut�1

�
and E

�bxt j ut� converge at rate n1/2h1/2, and thus ðb̂ � bÞVE
�bxt j ut�1

�
is of a smaller

order of magnitude. If we denote ft= ( yt, xt)V and c= (1,�bV)V, then under regularity

conditions,ffiffiffiffiffi
nh

p
½g̃ðut�1Þ � gðut�1Þ

¼

ffiffiffiffiffi
nh

p �
E
�byt j ut�1

�
� Eðyt j ut�1Þ

�
�
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�
� cV
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E
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�
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�
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�
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�

where Vf=E[ftftVjut�1]�E(ftjut�1)E(ftjut�1)V and K(�) is the kernel. Thus, the variance

of
ffiffiffiffiffi
nh

p
½g̃ðut�1Þ � gðut�1Þ
 can be asymptotically approximated by f̂ (ut�1)

�1ĉVV̂fĉ
R
K(u)2

and a confidence band can be constructed using this approximation. Notice that the

convergence rate of g̃(ut) is dominated by that of the nonparametric estimate and the

confidence band of g̃(ut) is wider than those from parametric models.

Figs. 2 and 3 display the estimated function and associated 95% confidence bands for

the weekly and daily data. They demonstrate that the function g(ut) displays a strong

asymmetric effect and has a similar shape for the weekly and daily samples. For both the
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weekly and daily data, we plot the log volatility news impact curves for the optimal

bandwidth and two bandwidths around the optimal bandwidth.

Fig. 2 plots the news impact curves from the weekly data, using the optimal bandwidth

0.0317 and two other bandwidths of 0.02 and 0.05. The estimation results are qualitatively

similar for the three different bandwidths. Fig. 3 plots the news impact curves from the

daily data, using the optimal bandwidth 0.0262 and two other bandwidths of 0.01 and

0.04. For both the weekly and daily data we have used a wide range of different

bandwidths and found that the choice of the bandwidth does not change our results

qualitatively.

It is important to note that log changes in volatility represent relative (or percentage)

changes in volatility. For the weekly data we see that for positive return shocks and

negative return shocks with magnitude less than 2%, conditional volatility does not change

very much. However, as the magnitude of a negative shock increases, the impact on

conditional volatility increases dramatically. For a 3% negative return shock, the impact on

log volatility is about 0.25, which translates into about 25% change from the current level

of volatility. For example, if the current annualized volatility level is about 20%, the

volatility would increase to 25% with the shock. When the size of the negative return

Fig. 2. Log volatility news impact curves for the weekly VIX data. This figure shows the volatility news impact

curves estimated using a nonparametric approach. The three panels differ in the bandwidths chosen for the

nonparametric estimation. The dashed lines denote the 95% confidence band.
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shock is 5%, conditional log volatility will increase by about 1, or about double the current

level of volatility. A 20% annualized volatility would increase to a level of about 40%. It is

likely that a larger negative return shock yields an even bigger impact on conditional

volatility.

For the daily data we see that for positive return shocks and negative return shocks with

magnitude less than 1%, conditional volatility does not change very much. However, as

the magnitude of a negative shock increases, its impact on conditional volatility increases

dramatically. For a 2% negative return shock, its impact on log volatility is about 0.1,

which translates into about 10% change from the current level of volatility. For example, if

the current annualized volatility level is about 20%, the volatility would increase to 22%

with the shock. When the size of the negative return shock is 3%, conditional log volatility

would increase by about 0.5, or about 50% change from the current level of volatility. A

20% annualized volatility would increase to a level of about 30%. Although a larger

negative return shock may yield an even bigger impact on conditional volatility, we do not

have enough sample points in the tail to be able to make a prediction at a very high

confidence level.

Fig. 3. Log volatility news impact curves for the daily VIX data. This figure shows the volatility news impact

curves estimated using a nonparametric approach. The three panels differ in the bandwidths chosen for the

nonparametric estimation. The dashed lines denote the 95% confidence band.
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In summary, the news impact curves estimated by the VIX data support the

asymmetric volatility findings based on returns data. Large negative return shocks

tend to have the most impact on conditional volatility as measured by implied

volatility, while smaller negative return shocks tend to increase conditional volatility

only slightly. These results are consistent with those from the ARCH models (see

Nelson, 1991; Glosten et al., 1993; Hentschel, 1995; Bekaert and Wu, 2000). Positive

return shocks, large or small, do not seem to have much impact on conditional

volatility.

This result could explain an interesting phenomenon in empirical research on

volatility dynamics: while there is much consensus that negative return shocks are

associated with increases in conditional volatility, researchers disagree over the role

positive return shocks play in volatility dynamics. Whereas a large positive return shock

may lead to a higher stock price—hence a lower leverage ratio and lower volatility—

either positive or negative large movements may lead to increases in conditional

volatility. Whether large positive return shocks increase or decrease volatility depends

on the net effect of these two forces. This could explain why g(ut) does not change

much for ut> 0 in Figs. 2 and 3. Furthermore, this result is consistent with high

volatility persistence during market turmoils. When the stock market experiences a

sharp decline, this large negative return shock usually leads to very high market

volatility. When the stock market rebounds, the large positive return does not seem

to reduce volatility immediately. Thus high volatility could not be reduced quickly

with large positive return shocks, as reflected in the high AR(1) coefficient reported

above.

4. Implications for EGARCH models

We now wish to determine if the estimated news impact function g(ut) can help

specify ARCH models. Even though volatilities implied by option prices are often

linked to estimated volatilities from ARCH models, it is not clear that the news

impact curves implied by the VIX data can be used to specify appropriate ARCH

models (see Latane and Rendleman, 1976; Chiras and Manaster, 1978; Beckers, 1981,

for properties of implied volatility). In general, the implied volatility series will not

be identical to the conditional volatility series generated by models based on histo-

rical returns, such as the ARCH-class of models. But if there is a close relationship

between the implied volatility process and that of a well-specified ARCH model,

then the analysis of the implied volatility will be helpful in the choice of ARCH

models.

In this section, we examine various EGARCH models inspired by our partially

linear analysis. Unfortunately we cannot include the nonparametrically estimated

function g(ut) in the ARCH model. The best alternative is to specify parametric

functions that are close to the nonparametrically estimated g(ut). A general high order

polynomial will not work since some specifications may imply explosive volatility

processes. So we use the nonparametrically estimated g(ut) to specify several plausible

EGARCH models and test the performance of these models. We also compare the

G. Wu, Z. Xiao / Journal of Empirical Finance 9 (2002) 287–319 303



implied news impact curves of these models with the nonparametrically estimated g(ut)

function.

4.1. Estimation of EGARCH models

We estimate seven exponential GARCH models using weekly and daily S&P 100 Index

returns from January 1986 to December 1999. The models have the same AR(1) mean

equation,

rt ¼ x0 þ x1rt�1 þ ut ¼ x0 þ x1rt�1 þ rtnt ntfNð0; 1Þ; ð11Þ

but differ in how the return shocks are specified. We consider different specifications of

volatility to allow for an appropriate type of shock in various applications, and to contrast

the empirical results of the models. For example, some models may allow for infinite

variance while others do not. The seven EGARCH models are

Model 1 : lnrt ¼ c0 þ c1lnrt�1 þ c2nt�1 þ c3 j nt�1 j; ð12Þ

Model 2 : lnrt ¼ c0 þ c1lnrt�1 þ c2ut�1 þ c3 j ut�1 j; ð13Þ

Model 3 : lnrt ¼ c0 þ c1lnrt�1 þ c2maxð0;�nt�1Þ2 þ c3maxð0; nt�1Þ2; ð14Þ

Model 4 : lnrt ¼ c0 þ c1lnrt�1 þ c2maxð0;�nt�1Þ2 þ c3maxð0; nt�1Þ; ð15Þ

Model 5 : lnrt ¼ c0 þ c1lnrt�1 þ c2maxð0;�ut�1Þ2 þ c3maxð0; ut�1Þ2; ð16Þ

Model 6 : lnrt ¼ c0 þ c1lnrt�1 þ c2maxð0;�ut�1Þ2 þ c3maxð0; ut�1Þ; ð17Þ

Model 7 : lnrt ¼ c0 þ c1lnrt�1 þ c2maxð0;�ut�1Þ þ c3maxð0; ut�1Þ

þ c4maxð0;�ut�1 þ hÞ: ð18Þ

In the estimation of the EGARCH models, we use the quasi-maximum likelihood

method (Bollerslev and Wooldridge, 1992), which is robust to nonnormal innovations,

although a Gaussian likelihood was maximized. We calculate the robust standard errors

(see White, 1982; Bollerslev and Wooldridge, 1992) and conduct specification tests of

each model.

Tables 5 and 6 report the parameter estimates of these seven models for the weekly and

daily data, respectively. We first consider the parameter estimates for the AR(1) mean Eq.

(11). For the weekly data, the estimates of the constant term x0 are similar across the seven

models and statistically significant. The maximum is 0.0033 and the minimum is 0.0024.
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The estimates of the AR(1) coefficient x1 are negative, either statistically insignificant or

weakly significant, indicating overall weak negative autocorrelation in weekly returns. For

the daily data, the estimates of the constant term x0 are also similar across the seven

models and statistically significant. The maximum is 0.0008 and the minimum is 0.0004.

The estimates of the AR(1) coefficient x1 are negative, all statistically insignificant except

for Model 6 (with a t-ratio of 1.99), indicating overall weak negative autocorrelation in

daily returns as well. The negative estimates of AR(1) coefficient x1 at the weekly and

Table 5

Estimated parameters of the weekly exponential ARCH models

x0 x1 c0 c1 c2 c3 c4

Model 1 0.0025

(0.0005)

�0.0736

(0.0293)

�0.6238

(0.1622)

0.9394

(0.0191)

�0.1154

(0.0259)

0.1966

(0.0296)

Model 2 0.0027

(0.0005)

�0.0646

(0.0296)

�1.3261

(0.2923)

0.8491

(0.0351)

�6.3557

(1.5464)

9.3712

(1.4994)

Model 3 0.0029

(0.0005)

�0.0814

(0.0299)

�0.7128

(0.2529)

0.9176

(0.0307)

0.1058

(0.0280)

0.0140

(0.0194)

Model 4 0.0029

(0.0005)

�0.0801

(0.0299)

�0.7785

(0.2278)

0.9088

(0.0281)

0.1136

(0.0240)

�0.0052

(0.0299)

Model 5 0.0029

(0.0005)

�0.0423

(0.0288)

�0.8633

(0.3156)

0.8936

(0.0399)

126.41

(39.302)

5.3009

(43.862)

Model 6 0.0033

(0.0005)

�0.0406

(0.0304)

�2.4294

(1.5403)

0.7022

(0.1908)

288.55

(147.94)

4.6351

(3.6713)

Model 7 0.0024

(0.0005)

�0.0543

(0.0295)

�1.3679

(0.2614)

0.8499

(0.0307)

8.803

(3.6475)

4.3849

(1.7201)

19.250

(5.2716)

This table reports the estimated parameters of the seven exponential ARCH models for the weekly data. Standard

errors are in parentheses. The data used are the daily S&P 100 Index returns from January 1986 to December

1999.

Table 6

Estimated parameters of the daily exponential ARCH models

x0 x1 c0 c1 c2 c3 c4

Model 1 0.0004

(0.0001)

�0.0173

(0.0130)

�0.4015

(0.0442)

0.9701

(0.0040)

�0.0912

(0.0080)

0.1692

(0.0129)

Model 2 0.0006

(0.0001)

�0.0150

(0.0127)

�0.9413

(0.0707)

0.9110

(0.0068)

�9.2991

(0.7499)

15.030

(1.0789)

Model 3 0.0006

(0.0001)

�0.0090

(0.0138)

�0.5980

(0.0669)

0.9429

(0.0067)

0.0777

(0.0061)

0.0494

(0.0065)

Model 4 0.0007

(0.0001)

�0.0136

(0.0134)

�0.5844

(0.0743)

0.9451

(0.0074)

0.0742

(0.0062)

0.0787

(0.0129)

Model 5 0.0008

(0.0001)

�0.0245

(0.0130)

�1.8180

(0.2172)

0.8084

(0.0234)

631.67

(51.022)

4.3300

(98.762)

Model 6 0.0008

(0.0001)

�0.0259

(0.0130)

�1.5534

(0.1438)

0.8400

(0.0151)

572.77

(40.396)

8.2700

(1.4370)

Model 7 0.0004

(0.0001)

�0.0054

(0.0127)

�0.8067

(0.0627)

0.9228

(0.0063)

23.439

(1.2917)

0.0492

(0.5072)

0.3852

(3.1953)

This table reports the estimated parameters of the seven exponential ARCH models for the daily data. Standard

errors are in parentheses. The data used are the daily S&P 100 Index returns from January 1986 to December

1999.
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daily level can be attributed to market microstructure effects such as the bid–ask spread

and non-synchronous trading (see Roll, 1984; Lo and MacKinlay, 1990; Campbell et al.,

1997).

We now examine the seven volatility equations.

4.1.1. Model 1

Model 1 is the exponential ARCH model of Nelson (1991), where the residuals in the

volatility equation are standardized with a mean of zero and variance of one. We use this

model as a benchmark for our analysis. The term c2, if negative, captures the asymmetric

effect of negative and positive return shocks. Indeed, c2 is estimated to be �0.1154 with

a standard error of (0.0259) for the weekly data, and �0.0912 (0.0080) for the daily

data.3 This is not surprising since the model was designed to capture the asymmetric

volatility effect. The estimate of c1 is large, at 0.9394 (0.0191) for the weekly data and

0.9701 (0.0040) for the daily data, suggesting that volatility persistence could be strong.

All estimated coefficients are statistically significant at both the weekly and daily

frequency.

4.1.2. Model 2

Model 2 differs from Model 1 in that the general return shock ut is used in the

volatility equation instead of the standardized residual nt. We consider this model since

the partially linear model specifies the news impact function with respect to the general

residuals, not standardized residuals. In this model, c2 is estimated to be �6.3557

(1.5464) for the weekly data and �9.2991 (0.7499) for the daily data, and both estimates

are statistically significant. Hence, the EGARCH model with non-standardized residuals

can also capture the asymmetry effect. Note that the estimated coefficients are much

larger since they are multiplied by smaller, non-standardized residuals. The estimate of

the coefficient c1 is large and statistically significant, at 0.8491 (0.0351) for the weekly

data and 0.9110 (0.0068) for the daily data. Interestingly, the use of non-standardized

residuals seems to reduce the size of the estimated coefficient for the lagged log

volatility. For example, the weekly c1, estimated at 0.8491 in this model, is much closer

to the corresponding coefficient in the partially linear model, estimated at 0.7811, than

c1 in Model 1, estimated at 0.9394. This could be due to the fact that some of the

persistence in volatility is captured in c2ut�1+c3jut�1j. To see this, note that this term can

be written as (c2nt�1+c3jnt�1j)rt�1.

4.1.3. Models 3 and 4

Models 3 and 4 specify a quadratic function for negative standardized shocks which

captures the increasing impact of larger return shocks (see Figs. 2 and 3). In Model 3,

asymmetric volatility is present when c2 is larger than c3. Indeed, for the weekly data c2 is
estimated to be 0.1058 with a standard error of (0.0280) while c3 is estimated to be

0.0140 with a standard error of (0.0194). For the daily data, c2 is estimated to be 0.0777

(0.0061) while c3 is estimated to be 0.0494 (0.0065). Hence, the quadratic EGARCH

model with standardized residuals can capture the asymmetry effect. All estimated

3 Standard errors are reported in parentheses.
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coefficients are statistically significant at both the weekly and daily frequency, except the

estimated c3 for the weekly data. The estimate of c1 is large, at 0.9176 (0.0307) for the

weekly data and 0.9429 (0.0067) for the daily data, again suggesting that volatility

persistence is strong.

Model 4 allows the negative return shocks to increase log volatility quadratically and

positive return shocks only linearly, so that asymmetric volatility is present when c2 is

large and c3 is close to zero or negative. For the weekly data c2 is estimated to be

statistically significant at 0.1136 (0.0240) while c3 is estimated to be �0.0052 (0.0299).

For the daily data, c2 is estimated to be 0.0742 (0.0062) while c3 is estimated to be

0.0787 (0.0129). Thus, at weekly frequency, Model 4 demonstrates asymmetric vola-

tility, while at daily frequency it does not. Note again that all estimates are statistically

significant at both the weekly and daily frequencies except that of c3 for the weekly

data.

4.1.4. Models 5 and 6

Models 5 and 6 are similar to Models 3 and 4, but general return shocks are used in

place of standardized innovations. In Model 5, asymmetric volatility is present when c2 is
larger than c3, and we estimate c2 to be 126.41 (39.302) and c3 to be 5.3009 (43.862) in

the weekly data. In the daily data, c2 is estimated to be 631.67 (51.022) and c3 is

estimated to be 4.3300 (98.762). Thus, the quadratic EGARCH model with non-

standardized residuals (Model 5) can capture the asymmetry effect. The estimated

coefficients for c2 and c3 are much larger than those in Models 3 and 4 since they are

multiplied by smaller, non-standardized residuals. The estimate of c1 is large, at 0.8936

(0.0399) in the weekly data and 0.8084 (0.0234) in the daily data, suggesting volatility

persistence could be strong. However, the use of non-standardized residuals appears to

reduce the size of the estimate, compared with the estimate of c1 in Model 3. The

estimate for c1 in Model 3 could be ‘‘biased’’ downward for the same reason as in Model

2 described above. All estimates are statistically significant at both the weekly and daily

frequency except that of c3.
In Model 6, asymmetric volatility is present when c2 is large and c3 is close to zero or

negative. We estimate c2 to be statistically significant at 288.55 (147.94) while the estimate

of c3 is insignificant at 4.6351 (3.6713) in the weekly data. In the daily data, c2 is

estimated to be 572.77 (40.396) while c3 is estimated to be 8.2700 (1.4370). All estimates

are statistically significant at both the weekly and daily frequency except that of c3 for the
weekly data. Again, it seems that the use of non-standardized residuals reduces the size of

the estimate, compared with Model 4 due to the presence of rt�1 in ut�1. In general, the

specification of the shock terms has an impact on the size of the estimate of c1, as we

compare the estimates from Models 2, 5 and 6. The weekly estimate of c1 in Model 6 is

even smaller than 0.7811, the corresponding coefficient in the partially linear model

estimated from the VIX data. In general, c1 is not invariant to the specification of the shock
function since c1 by itself is not sufficient to measure the persistence of volatility.

4.1.5. Model 7

Model 7 is a special case of the Engle and Ng (1993) partially nonparametric ARCH

model, whereby shocks larger than h have an additional linear impact on conditional
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volatility. Since the quadratic functions in Models 3 through 6 may imply that extreme

shocks have an excessive impact on volatility, a piecewise linear function may fit the data

better. Based on the estimated function g(ut) from the partially linear model, we set h to be

�0.03 for the weekly data and �0.02 for the daily data. The coefficient c4 measures the

additional impact that a negative return shock larger than h may have in predicting

volatility.

For the weekly data, c2 is estimated to be 8.803 (3.6475) and c3 is estimated to be

4.3849 (1.7201), implying that even for negative returns below h there is asymmetric

volatility effect. c4 is estimated to be 19.25 (5.2716), so that negative return shocks above

�3% increase volatility further. For the daily data, c2 is estimated to be 23.439 (1.2917)

and c3 is estimated to be 0.0492 (0.5072), indicating that the asymmetric volatility effect is

very strong. However, c4 is estimated to be statistically insignificant at 0.3852 (3.1953). It

seems that at the daily frequency, large negative returns do not increase volatility

additionally.

Overall, an important feature of the empirical results is that the estimated c1 in the seven
models are generally larger than the estimated a1 in the partial linear model (and other

nonlinear models). This is due to the fact that, in the partial linear model, some of the

Fig. 4. Implied news impact curves for weekly EGARCH models. This figure shows the volatility news impact

curves for the weekly EGARCH models. The news impact curve from the partially linear model for the weekly

VIX series is also plotted for comparison.
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persistence in volatility are captured by the nonlinear function g(�). The partial linear

model decomposes the volatility into two components and the nonlinear persistent

behavior in volatility is contained in the second component. Such a fact is important in

the presence of asymmetric persistency. In particular, the second component in the partial

linear model provides a more accurate persistence measure that reflects the asymmetric

dynamics in the implied volatility.

4.2. Implied news impact curves

To better understand how the EGARCH models capture asymmetric volatility, we plot

the implied news impact curves for the EGARCH models. The weekly and daily news

impact curves are plotted in Figs. 4 and 5, respectively. We only plot the news impact

curves for Models 2, 5, 6, and 7, since the functional form of Models 2, 5, and 6 is

identical to that of Models 1, 3 and 4, respectively. We plot the estimated news impact

function g(ut�1) implied by the VIX data for comparison.

Fig. 4 shows that the impact functions are very similar for positive return shocks at the

weekly frequency—positive shocks in all models increase volatility only marginally. For

Fig. 5. Implied news impact curves for daily EGARCH models. This figure shows the volatility news impact

curves for the daily EGARCH models. The news impact curve from the partially linear model for the daily VIX

series is also plotted for comparison.
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negative and positive return shocks, Models 6 and 7 produce results very similar to the

VIX model. Model 5, however, under-predicts the increase in volatility for large negative

return shocks, compared to the VIX model. Model 2, the linear EGARCH model, over-

predicts increases in volatility for small negative return shocks, yet under-predicts

increases in volatility for large negative return shocks, compared to the VIX model and

Models 6 and 7.

Fig. 5 shows that for positive return shocks at the daily frequency, the impact functions

are quite different from each other. Models 5 and 7 do not predict an increase in volatility

at all for positive return shocks, whereas Models 2 and 6 predict increases in volatility

larger than those from the VIX model. For negative return shocks, all models predict

increases in volatility larger than those from the VIX model. Models 5 and 6 are very close

to each other, and Model 7 is almost identical to the linear Model 2. These results indicate

that the daily EGARCH models are more difficult to estimate. This could be due to the fact

that at daily frequency, EGARCH model innovations are further away from conditional

normality as shown below in the specification tests.

To provide another perspective on the volatility behavior of the models, we plot the

news impact curves as in Engle and Ng (1993) [For more details, see Table 8 and

Fig. 6. Engle–Ng news impact curves for weekly EGARCH models. This figure shows the Engle and Ng (1993)

volatility news impact curves for the weekly EGARCH models. The news impact curves from the partially linear

model for the weekly VIX series and the GJR–GARCH model are also plotted for comparison. Volatilty at time

t�1 is assumed to be 2.78% for all models.
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associated discussion in Engle and Ng, pp. 1773]. The conditional volatility at time t�1

is assumed to be the same for all models and return shocks are applied to the model to

yield the predicted volatility at time t. We hold the time t�1 volatility to be the sample

average of the VIX index: 2.78% for the weekly data and 1.25% for the daily data,

corresponding to 20.43% and 20.16% on an annual basis. Figs. 6 and 7 plot the resulting

volatility level for the EGARCH models. The news impact curves from the partially

linear model for the VIX series and from the GJR-GARCH model are also plotted for

comparison.

For the weekly data, Fig. 6 shows that Model 7 matches the response function of the

partially linear model (VIX) most closely, at least for the range of return shocks plotted,

which is consistent with our findings above. For negative shocks larger than 6% in size,

Models 5 and 6 will likely generate very high increases in volatility, given the quadratic

functional form. This may not be appropriate for return shocks larger than 10% since it

will imply unreasonably high volatility. Since the partially linear model is based upon non-

parametric approximation of the function, we cannot draw conclusions on volatility

response for large negative shocks. The GJR-GARCH model is pretty flat, which reflects

a large coefficient estimated for the lagged variance (0.9516). Since this number is

Fig. 7. Engle–Ng news impact curves for daily EGARCH models. This figure shows the Engle and Ng (1993)

volatility news impact curves for the daily EGARCH models. The news impact curves from the partially linear

model for the daily VIX series and the GJR–GARCH are also plotted for comparison. Volatility at time t�1 is

assumed to be 1.25% for all models.
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unusually high for the weekly data, the GJR-GARCH response function should be

interpreted with care.

For the daily data, none of the models shown matches the partially linear VIX model

well. The GJR-GARCH model seems to be the only one that is close to matching the

VIX model for both the positive and negative shocks. The results in Fig. 7 further

indicate that the partially linear model does not seem to help in specifying GARCH

models.

4.3. Specification tests

To ensure that the seven EGARCH models are properly specified at the weekly and

daily frequencies, we conduct specification tests on the standardized residuals of these

models. Recall that we used the quasi-maximum likelihood method in estimating the

models (Bollerslev and Wooldridge, 1992). Although the method is robust to nonnormal

innovations, we conducted a normality test on the standardized residuals to check to

what extent normality was violated. The results in Tables 7 and 8 indicate that there is

weak evidence against normality in the weekly data, but stronger evidence in the daily

data. The p-values ranges from 0.001 for Model 5 to 0.036 for Model 1 at weekly

frequency. For the daily data, there is strong evidence against the null hypothesis of

normality since the p-values for all models are around 0.007, smaller than the 0.01

threshold.

Table 7

Specification tests of the weekly exponential ARCH models

Normality test Ljung–Box test ARCH test

m=3 m=6 m=12 q=3 q=6 q=12

Model 1 6.672

(0.036)

1.931

(0.586)

2.097

(0.910)

7.932

(0.790)

1.902

(0.592)

2.051

(0.914)

7.719

(0.806)

Model 2 6.9241

(0.031)

1.571

(0.665)

1.848

(0.933)

8.612

(0.735)

1.555

(0.669)

1.760

(0.940)

8.571

(0.739)

Model 3 7.049

(0.030)

2.033

(0.565)

2.094

(0.910)

6.352

(0.897)

2.001

(0.572)

2.026

(0.917)

6.220

(0.904)

Model 4 7.159

(0.028)

1.923

(0.588)

2.015

(0.918)

7.077

(0.852)

1.895

(0.594)

1.935

(0.925)

6.956

(0.860)

Model 5 13.719

(0.001)

1.885

(0.596)

2.386

(0.880)

6.583

(0.883)

1.891

(0.595)

2.399

(0.879)

6.782

(0.871)

Model 6 7.491

(0.024)

1.159

(0.762)

1.682

(0.946)

11.398

(0.495)

1.145

(0.766)

1.606

(0.952)

11.436

(0.491)

Model 7 7.507

(0.023)

1.005

(0.799)

1.258

(0.973)

10.366

(0.583)

1.003

(0.800)

1.215

(0.976)

10.185

(0.599)

This table reports speficication results of the seven exponential ARCH models for the weekly data. The test is

performed on the standardized residuals. The normality test is a Wald test for the skewness and excess kurtosis

coefficients to be jointly equal to zero. The p-values are based on the chi-square distribution with 2 degrees of

freedom. m is the number of autocorrelations for the Ljung–Box test. q is the number of the order of ARCH

effects. These tests are distributed as chi-square with the degrees of freedom equal to m or q. The p-values are in

parentheses. The data used are the weekly S&P 100 Index returns from January 1986 to December 1999.
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Moreover, if the models are properly specified, these residuals should be non-

autocorrelated and free of any conditional heteroskedasticity. As for the partially linear

model, we conduct the Ljung and Box (1978) test for autocorrelation and the Lagrange

multiplier ARCH test from Engle (1982) for conditional heteroskedasticity. The testing

results are reported in Tables 7 and 8 for the weekly and daily data, respectively.

In the weekly data, we never reject non-autocorrelation and conditional homoskedas-

ticity, indicating that all models seem to capture the conditional volatility dynamics well.

In the daily data, however, Model 5 is rejected based on both the Ljung–Box test and the

ARCH test. There is weak evidence against Model 6, based on the Ljung–Box test with

m=12.

4.4. Model performance tests

To measure the relative performance of the models, we compute the sum of squared

errors (SSE) and the sum of absolute errors (SAE) for the seven models and report them

in Table 9. In the upper panel of Table 9, we see that for the weekly data, the SSEs from

Model 1 to 4 are slightly larger than those from Models 5 to 7. Model 7 has the smallest

SSE at 0.3288. The results based on the SAE are similar. Overall, we find that Model 7

is the preferred model for the weekly data. For the daily data (lower panel), Model 7 is

again the preferred model based on the SSE. The sum of absolute errors for Model 7,

however, is slightly above those for Models 5 and 6. But recall that these two models are

Table 8

Specification tests of the daily exponential ARCH models

Normality test Ljung–Box test ARCH test

m=3 m=6 m=12 q=3 q=6 q=12

Model 1 9.932

(0.007)

1.488

(0.684)

1.874

(0.930)

5.119

(0.953)

1.499

(0.682)

1.830

(0.934)

5.129

(0.953)

Model 2 9.917

(0.007)

1.638

(0.650)

1.812

(0.936)

4.404

(0.974)

1.641

(0.649)

1.745

(0.941)

4.324

(0.976)

Model 3 9.939

(0.007)

1.622

(0.654)

2.001

(0.919)

4.992

(0.958)

1.617

(0.655)

1.996

(0.920)

5.026

(0.957)

Model 4 9.938

(0.007)

3.783

(0.285)

4.052

(0.669)

7.514

(0.821)

3.752

(0.289)

4.041

(0.671)

7.535

(0.820)

Model 5 9.832

(0.007)

7.994

(0.046)

18.556

(0.004)

43.850

(1.61E�5)

7.600

(0.055)

16.824

(0.009)

34.904

(0.0004)

Model 6 9.825

(0.006)

6.943

(0.073)

10.000

(0.124)

21.060

(0.049)

6.635

(0.084)

9.363

(0.154)

17.943

(0.117)

Model 7 9.883

(0.007)

3.246

(0.355)

3.480

(0.746)

6.871

(0.865)

3.255

(0.353)

3.469

(0.747)

6.768

(0.872)

This table reports specification results of the seven exponential ARCH models for the daily data. The test is

performed on the standardized residuals. The normality test is a Wald test for the skewness and excess kurtosis

coefficients to be jointly equal to zero. The p-values are based on the chi-square distribution with 2 degrees of

freedom. m is the number of autocorrelations for the Ljung–Box test. q is the number of the order of ARCH

effects. These tests are distributed as chi-square with the degrees of freedom equal to m or q. The p-values are in

parentheses. The data used are the daily S&P 100 Index returns from January 1986 to December 1999.
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Table 9

Sum of squared and absolute errors of exponential ARCH models

Sum of squared errors Sum of absolute errors

Weekly data

Model 1 0.3301 11.2884

Model 2 0.3298 11.2822

Model 3 0.3303 11.2698

Model 4 0.3302 11.2712

Model 5 0.3294 11.2745

Model 6 0.3295 11.2633

Model 7 0.3288 11.2624

Daily data

Model 1 0.4277 25.3851

Model 2 0.4275 25.3720

Model 3 0.4276 25.3786

Model 4 0.4276 25.3710

Model 5 0.4277 25.3615

Model 6 0.4277 25.3620

Model 7 0.4274 25.3694

This table reports the sum of squared errors (SSE) and sum of absolute errors (SAE) of the seven exponential

ARCH models. The data are the weekly and daily S&P 100 Index returns from January 1986 to December 1999.

Table 10

Sign and size bias tests of exponential ARCH models

Sign bias Positive size bias Negative size bias

Weekly data

Model 1 1.0551 �0.3618 0.0474

Model 2 1.2062 �0.1998 0.3248

Model 3 1.5381 �0.0370 0.2576

Model 4 1.8727 0.0877 0.2608

Model 5 0.6610 �0.1175 �0.2713

Model 6 1.6659 0.2027 0.0756

Model 7 0.2041 �0.5959 �0.6233

Daily data

Model 1 0.8893 �0.4573 0.1830

Model 2 0.8826 �0.4693 0.4444

Model 3 0.5554 �0.5639 �1.8689

Model 4 1.0200 0.0907 �1.8281

Model 5 1.0744 1.7418 �1.8899

Model 6 1.1631 0.5929 �1.9405

Model 7 1.0188 0.2380 0.4278

This table reports the t-statistics of the sign and size bias tests of the seven exponential ARCH models. The Engle

and Ng (1993) sign bias test, positive size bias test and negative bias test are designed to check volatility model

specifications with regard to return shocks. The data used are the weekly and daily S&P 100 Index returns from

January 1986 to December 1999.
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rejected by our specification tests for the daily data. The slightly lower SAE figures for

Models 5 and 6 could be due to the ability of these models to fit certain observations

well.

To further examine the specification of these models, we conduct the following three

tests described in Engle and Ng (1993): the sign bias test, the positive size bias test, and

the negative size bias test. These tests are designed to examine the impact of positive and

negative innovations on volatility not predicted by the model. If the models are properly

specified, then positive and negative innovations should not have an impact on the

squared standardized residuals. Under the null hypothesis, the statistics are distributed

under the Student t distribution.

We report the test statistics in Table 10; the weekly statistics are presented in the upper

panel. Looking at the weekly data, we reject the null hypothesis only for Model 4 by

using the sign bias test. In addition, there is some weak evidence against Model 6.

Looking at the daily data, we reject Models 3 to 6 by using the negative size bias test. A

close examination of these models reveals the cause of the rejection: although the

quadratic function allows large negative return shocks to have a large impact on

volatility, the impact is overestimated for very large negative return shocks. Model 7

also allows for a large impact for large shocks, but the increase in impact is linear, which

seems to be more appropriate for very large shocks.

To sum up the results of Sections 4.1–4.3 and this section, we note that Models 6

and 7 are closely related to the partially linear model at the weekly frequency. Thus,

the news impact curve implied by the weekly VIX data seems useful in selecting

ARCH specifications. At the daily frequency, however, the implied news impact curves

for EGARCH models are quite different from that for the VIX model. Overall, it

seems that the piecewise linear Model 7 is the most appropriate for modeling both the

weekly and daily conditional volatilities according to our specification and performance

tests.

5. Conclusions

In this paper we conducted a close examination of the relationship between return

shocks and conditional volatility. We did so in a framework where the impact of return

shocks on conditional volatility is specified as a general function and estimated

nonparametrically using implied volatility data—the VIX series. This setup can provide

a good description of the impact of return shocks on conditional volatility. The

estimation results confirm the existence of asymmetric volatility: negative return shocks

are associated with increases in conditional volatility while positive return shocks are

generally uncorrelated with changes in conditional volatility. It appears that the news

impact curves implied by the VIX data is useful in selecting ARCH specifications at the

weekly frequency. We find that the exponential ARCH model of Nelson (1991) is

capable of capturing most of the asymmetric effect, when return shocks are relatively

small. For large negative shocks, however, our nonparametric function points to larger

increases in conditional volatility than those predicted by a standard EGARCH model.

Our empirical analysis further demonstrates that an EGARCH model with separate
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coefficients for large and small negative shocks is better able to capture the asymmetric

effect.
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Appendix A. Bandwidth selection

The estimation with optimal bandwidth selection can be implemented by a two-step

procedure. In the first step, we use a simple bandwidth h0 to generate some preliminary

estimators. Then these estimators are ‘‘plugged into’’ the formula to obtain an estimator

for the optimal bandwidth. In order to obtain an estimator for the optimal bandwidth, we

need to estimate the quantities B and V, which are functions of nonparametric bias and

variance. Linton (1995) shows that V can be estimated by

h0
X
i

X
jai

X
kai;kaj

wkiwkj � 2wij

" #2

where

wij ¼ K
ui � uj

h0

� �
ðui � ujÞ2

Xn
l¼1

K
ui � ul

h0

� �
ðui � ulÞ2

" #
;

,

and B can be estimated by

r̂�2n�1
Xn
t¼1

b̂i1b̂i2

where

r̂2 ¼ 1

n

Xn
t¼1

�
yt � E

�eyt j ut�1

�
� b̃ðxt � E

�ext j ut�1

���2
;

and

B̂i1 ¼ h
�q
0

X
tai

witE
�ext j ut�1

�
� E

�exi j ui�1

�" #
;
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B̂i2 ¼ h
�q
0

X
tai

witg
�eut�1

�
� g

�eui�1

�" #
:

After substituting the estimates B̂ and V̂ into the following formula

h	 ¼ ½V=ð4qBÞ
1=½4qþ1

n�2=½4qþ1
;

we obtain an estimator for the optimal bandwidth.
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