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Abstract. This article uses a Pirrong-Jermakyan framework to value op-

tions on electricity, including daily strike, monthly strike, and spark spread

options. This framework posits that power prices depend on two state

variables–load and fuel prices. Although variations in load explain a large

fraction of variations in power spot prices, the model implies that power op-

tion prices do not vary strongly with load except very close to the expiry

of daily strike and spark spread options due to the strong mean reversion

in load. Load mean reversion also affects time decay, and the evolution of

implied volatilities over time. I also discuss how to modify the model to take

into account the impact of factors other than load and fuel prices (e.g., out-

ages) that affect power prices; I show that a relatively simple modification

can capture the effect of these factors on value if they are not very persistent

and not priced in equilibrium.
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1 Introduction

The valuation of contingent claims on electricity (such as power forwards and

options) presents acute challenges. As noted in Pirrong-Jermakyan (“PJ”)

(2005), the traditional approach to valuing derivatives is highly problematic

when applied to power markets. In this approach, the modeler posits a

stochastic process for the price of the claim underlying the derivative. Power

spot prices exhibit complex features that are very difficult to capture in an

SDDE, however. Even complicated models (e.g., Geman-Roncoroni, 2006)

exhibit some unrealistic features. Moreover, it is very difficult to estimate the

numerous parameters in these models. Furthermore, even if one estimates the

parameters for a reasonable power spot price model in the physical measure,

electricitymarkets are inherently incomplete because power is not properly an

asset; derivatives valuation therefore requires determination of an equivalent

measure. In addition, many interesting power contingent claims (such as the

value of a load serving contract or a power plant) are dependent on both price

and output. Valuing such claims in the traditional framework requires the

grafting of price and output processes. Given that price-output relations are

inherently non-linear, this is a complex endeavor, which is complicated even

further by the fact that output is not a traded asset and therefore requires

determination of an associated market price of risk.

Given these obstacles inherent in the traditional approach, Pirrong and

Jermakyan (“PJ”) advance an alternative power derivative pricing model.

The PJ model posits that power prices depend on two state variables, load

(i.e., demand/output) and fuel prices. It captures the non-linearities (e.g.,
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spikes) in power spot prices via the non-linear relation between load and

prices. Moreover, the model reproduces the seasonality, mean reversion, time

varying and random power price-fuel price correlations, and time varying load

and power price correlations found in electricity prices. Since load is a non-

tradeable, the model requires estimation of a market price of risk function,

but PJ show how to use standard inverse techniques for solving ill-posed

problems to estimate this function from observed forward prices.

Pirrong-Jermakyan (2005) focuses on the pricing of linear power contin-

gent claims (e.g., forward and futures prices). This article investigates the

pricing of options in this framework. I derive a valuation PDE that is appli-

cable to any power derivative, and solve this PDE numerically for a variety

of commonly traded power options, including monthly strike, daily strike,

and spark spread options under the realistic assumption that the correlation

between load and fuel forward prices is zero. This assumption allows the

computationally efficient solution of the PDE using a combination of finite

difference and quadrature methods.1

The most interesting finding of this analysis is that the strong mean re-

version in load exerts a decisive influence on the pricing of power options.

Even though variations in load are the single most important cause of varia-

tions in power spot prices, monthly strike options, and daily strike and spark

spread options with more than a few days to expiration, exhibit almost no

dependence on load. This occurs because strong load mean reversion implies

that the conditional distribution of load at expiry (and hence the conditional

1When the correlation is non-zero, the option value is most effectively determined using
Monte Carlo techniques.
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distribution of payoffs) is almost unaffected by current load shocks unless

(a) expiration is imminent, and (b) the claim underlying the option (e.g., a

forward price) matures soon after expiry. This further implies that monthly

strike options, and daily strike options with more than a few days to expiry

are effectively options on the price of fuel. Any time decay associated with

these options is attributable to the fuel factor, rather than load. Hence,

options with values that are linear in the fuel price, such as a spark spread

option, exhibit very little time decay until expiry looms.

Mean reversion also impacts the behavior of volatilities implied from op-

tion prices. In particular, it implies that: (a) implied volatilities for daily

strike options tend to rise sharply as time to expiration falls; (b) implied

volatilities for daily strike options depend on load only shortly before ex-

piration; and (c) power options (especially daily strikes) exhibit volatility

“smirks” that become more pronounced as time to expiration approaches.

The article also addresses the implications of the fact that although load

and fuel prices explain a large fraction of the variation in power spot prices,

they do not completely explain these variations. I show that if the differences

between spot prices and the best-fitting (non-linear) function of load and fuel

prices exhibit very little persistence (as is plausible), the model will produce

accurate option valuations if option payoffs depend on a forward price with

a day or more to expiry (e.g., a daily forward price). If the option payoff

depends on a shorter term forward price (e.g., an hour ahead forward), I

show how to modify the initial conditions used to solve the PDE to generate

more accurate option values, and identify the circumstances under which this

modification is justified.
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The remainder of this article is organized as follows. Section 2 sets out

the PJ valuation approach. Section 3 describes the types of power options

that I will value in this framework. Section 4 presents the computational

technique that I use to value these options, and section 5 describes the main

findings. Section 6 discusses various extensions of the model to handle real

world complications, such as the fact that other factors (e.g., generation

outages) also impact power prices. Section 7 summarizes the work.

2 The Pirrong-Jermakyan Valuation Approach

Although the traditional approach to valuing options is to write down a

stochastic process of the Price of the underlying claim, PJ (2005) point out

numerous deficiencies in this approach as applied to the valuation of power

derivatives. Instead, they propose a methodology that exploits the trans-

parency of fundamentals in power markets. In this approach, the price of

power is a function of two fundamental driving forces: the demand for power

(“load”), and the price of fuel used to generate it. Both variables are ob-

servable. Moreover, both clearly are important determinants of power prices.

It is more costly to produce electricity with relatively inefficient generating

units, as is necessary when demand is high. Similarly, it is more costly to

produce electricity when fuel prices are high. Since there should be a strong

relation between cost and price in deregulated markets, there should be a

strong relation between load and fuel prices on the one hand, and power

prices on the other.

That said, PJ also recognize that other factors impact power prices. For

instance, outages of generation and transmission assets, spatial variations in
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load, and path dependence in generation unit economics can cause prices

to vary in the absence of variations in fuel prices or load. Although these

factors are arguably of little importance when pricing linear power contingent

claims (e.g., forward contracts), they may be material when pricing options.

Fortunately, under certain assumptions the framework presented here can be

modified to address this issue. This modification is deferred to section 6.

Until then, I focus on the basic model in which the power price is a function

of load and fuel prices alone.

I treat load as a controlled process. Defining load as qt, note that qt ≤ X,

where X is physical capacity of the generating and transmission system.2 If

load exceeds this system capacity, the system may fail, imposing substantial

costs on power users. The operators of electric power systems (such as the

independent system operator in the PJM region) monitor load and intervene

to reduce power usage when load approaches levels that threaten the physical

reliability of the system.3 Under certain technical conditions (which are

assumed to hold herein), the arguments of Harrison and Taksar (1983) imply

2This characterization implicitly assumes that physical capacity is constant. Investment
in new capacity, planned maintenance, and random generation and transmission outages
cause variations in capacity. This framework is readily adapted to address this issue by
interpreting qt as capacity utilization and setting X = 1. Capacity utilization can vary in
response to changes in load and changes in capacity. This approach incorporates the effect
of outages, demand changes, and secular capacity growth on prices. The only obstacle
to implementation of this approach is that data on capacity availability is not readily
accessible. In ongoing research I am investigating treating capacity as a latent process,
and using Bayesian econometric techniques to extract information about the capacity
process from observed real time prices and load. The analysis of price-load relations in
section 3 implies that load variations explain most peak load price variations in PJM
prices, which suggests that at least over the short run ignoring capacity variation in this
market is not critical. This may not be true for all markets.

3See various PJM operating manuals available at www.pjm.com for information on
emergency procedures in PJM.

7



that under these circumstances the controlled load process will be a reflected

Brownian motion.4 Formally, the load will solve the following SDE:

dqt = αq(qt, t)qtdt + σqqtdut − dLu
t (1)

where Lu
t is the local time of the load on the capacity boundary.5 The process

Lu
t is increasing (i.e., dLu

t > 0) if and only if qt = X, with dLt = 0 otherwise.

That is, qt is reflected at X.

The dependence of the drift term αq(qt, t) on calendar time t reflects the

fact that output drift varies systematically both seasonally and within the

day. Moreover, the dependence of the drift on qt allows for mean reversion.

One specification that captures these features is:

αq(qt, t) = μ(t) + k[ln qt − θq(t)] (2)

In this expression, ln qt reverts to a time-varying mean θq(t). θq(t) can be

specified as a sum of sine terms to reflect seasonal, predictable variations

in electricity output. Alternatively, it can be represented as a function of

calendar time fitted using non-parametric econometric techniques. The pa-

rameter k ≤ 0 measures the speed of mean reversion; the larger |k|, the more

rapid the reversal of load shocks. The function μ(t) represents the portion of

load drift that depends only on time (particularly time of day). For instance,

given ln qt − θq(t), load tends to rise from around 3AM to 5PM and then fall

from 5PM to 3AM on summer days.

4The conditions are (1) there exists a “penalty function” h(q) that is convex in some
interval, but is infinite outside the interval, and (2) in the absence of any control, q would
evolve as the solution to dq = μdt +σdW . The penalty function can be interpreted as the
cost associated with large loads. If q > X, the system may fail, resulting in huge costs. I
thank Heber Farnsworth for making me aware of the Harrison-Taksar approach.

5This is an example of a Skorokhod Equation.
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The load volatility σq in (1) is represented as a constant, but it can

depend on qt and t. There is some empirical evidence of slight seasonality in

the variance of qt.

The second state variable is a fuel price. For some regions of the country,

natural gas is the marginal fuel. In other regions, coal is the marginal fuel.

In some regions, natural gas is the marginal fuel sometimes and coal is the

marginal fuel at others. I abstract from these complications and specify the

process for the marginal fuel price. The process for the forward price of the

marginal fuel is:
dft,T

ft,T
= αf (ft,T , t) + σf(ft,T , t)dzt (3)

where ft,T is the price of fuel for delivery on date T as of t and dz is a

standard Brownian motion. Note that fT,T is the spot price of fuel on date

T .

The processes {qt, ft,T , t ≥ 0} solve (1) and (3) under the “true” prob-

ability measure P . To price power contingent claims, we need to find an

equivalent measure Q under which deflated prices for claims with payoffs

that depend on qt and ft,T are martingales. Since P and Q must share sets

of measure 0, qt must reflect at X under Q as it does under P . Therefore,

under Q, qt solves the SDE:

dqt = [αq(qt, t)− σqλ(qt, t)]qtdt + σqqtdu∗
t − dLu

t

In this expression λ(qt, t) is the market price of risk function and du∗
t is a

Q martingale. Since fuel is a traded asset, under the equivalent measure

dft,T/ft,T = σfdz∗
t , where dz∗

t is a Q martingale. The change in the drift

functions is due to the change in measure.
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Define the discount factor Yt = exp(− ∫ t
0 rsds) where rs is the (assumed

deterministic) interest rate at time s. (Later we assume that the interest rate

is a constant r.) Under Q, the evolution of a deflated power price contingent

claim C is:

YtCt = Y0C0 +
∫ t

0
CsdYs +

∫ t

0
YsdCs

In this expression, Cs indicates the value of the derivative at time s and Ys

denotes the value of one dollar received at time s as of time 0. Using Ito’s

lemma, this can be rewritten as:

YtCt = C0 +
∫ t

0
Ys(AC +

∂C

∂s
− rsCs)ds+

∫ t

0
[
∂C

∂q
du∗

s +
∂C

∂f
dz∗

s ]−
∫ t

0
Ys

∂C

∂q
dLu

s

where A is an operator such that:

AC =
∂C

∂qt
[αq(qt, t) − σqλ(qt, t)]qt

+ .5
∂2C

∂q2
t

σ2
qq

2
t + .5

∂2C

∂f2
t,T

σ2
ff

2
t,T +

∂2C

∂qt∂ft,T
σfσqρqfqtft,T . (4)

For the deflated price of the power contingent claim to be a Q martingale,

it must be the case that:

E[
∫ t

0
Ys(AC +

∂C

∂s
− rsCs)ds] = 0

and

E[
∫ t

0
Ys

∂C

∂q
dLu

s ] = 0

for all t. Since (1) Yt > 0, and (2) dLu
t > 0 only when qt = X, with a constant

interest rate r, we can rewrite these conditions as:

AC +
∂C

∂t
− rC = 0 (5)
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and
∂C

∂q
= 0 when qt = X (6)

It is obvious that (5) and (6) are sufficient to ensure that C is a martingale

under Q; it is possible to show that these conditions are necessary as well.

Expression (6) is a boundary condition of the Neumann type. This bound-

ary condition is due to the reflecting barrier that is inherent in the physical

capacity constraints in the power market.6 The condition has an intuitive

interpretation. If load is at the upper boundary, it will fall almost certainly.

If the derivative of the contingent claim with respect to load is non-zero at

the boundary, arbitrage is possible. For instance, if the partial derivative

is positive, selling the contingent claim cannot generate a loss and almost

certainly generates a profit.

Expression (5) can be rewritten as the fundamental valuation PDE:7

rC =
∂C

∂t
+

∂C

∂qt
[αq(qt, t)− σqλ(qt, t)]qt

+ .5
∂2C

∂q2
t

σ2
qq

2
t + .5

∂2C

∂f2
t,T

σ2
ff

2
t,T +

∂2C

∂qt∂ft,T

σfσqρqfqtft,T (7)

This PDE must be solved subject to an initial condition that relates

the payoff to the relevant contingent claim to the state variables at option

expiry. There are many different types of electricity options (described in

more detail in section 3 below), but for the options considered herein, the

payoff is a function of some forward price (which could be an hourly, daily,

or monthly forward price, for instance) or spot price. Under the assumption

6If there is a lower bound on load (a minimum load constraint) there exists another
local time process and another Neumann-type boundary condition.

7Through a change of variables (to natural logarithms of the state variables) this equa-
tion can be transformed to one with constant coefficients on the second-order terms.
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that spot prices depend only on load and the fuel price, this implies that the

payoff to any option is also a function of the load and fuel price.

For claims with payoffs that depend on a spot price, the methodologies set

out in PJ (2005) can be used to relate the spot price to the state variables.8

Similarly, for a claim with a payoff that depends on forward prices, the PJ

model can be used to solve for these forward prices as a function of load and

fuel price. These forward prices in turn can be used to establish the relation

between option payoff and the state variables.

In either case, before valuing electricity options, it is first necessary to

implement the PJ inverse problem solution to determine the market price

of risk function λ(qt). The solution to the PDE (7) depends on this market

price of risk, which is not directly observable. Instead, it can be implied from

the observed forward prices in the marketplace. See PJ (2005) for details of

the calibration process.

3 Commonly Traded Power Options

There are a variety of electricity options traded (primarily on the OTC mar-

ket.) Among the most common are daily strike options, monthly strike op-

tions, and spark spread options. I consider each in turn.

3.1 Daily Strike Options

A daily strike option has a payoff that depends on the price of power on a

given day. Typically, these options have a payoff that depends on the price

8PJ set out two approaches, one using the bids of generators, the other using econo-
metric techniques, to establish this relation.
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of power for delivery during peak hours of a given day.

Daily strike options can by physically settled or cash settled. For a phys-

ically settled daily strike call option, upon exercise the owner effectively re-

ceives a long position in a daily forward contract that entitles him to receive

delivery of a fixed amount of power during the peak hours on that day. Upon

exercise, the owner of a put establishes a put position in a daily forward con-

tract. The option owner must decide to exercise prior to the beginning of

the delivery period (e.g., the day before delivery.)

A cash settled daily strike option can be constructed in many ways. For

instance, one can have a cash settled daily strike call in which the owner

is paid an amount equal to the maximum of zero or the difference between

the relevant daily forward as of the some date prior to the delivery period

and the strike price. As an example, the call owner’s payoff (determined on

Tuesday) may depend on Tuesday’s forward price for delivery on Wednesday.

Alternatively, a daily strike call can pay the difference between the average

spot price observed on the pricing date and the strike. For instance, the

daily strike call can pay the maximum of zero or the difference between the

average spot price observed on Wednesday and the strike price. In a market

with a centralized real time market (such as PJM) it is eminently feasible to

construct options with such a payoff structure.

The option payoff may depend appreciably on how the contract is written.

Specifically, as detailed in section 6, variations in realized spot prices driven

by highly transitory factors (other than load and fuel prices) would tend to

cause the expected payoff to the option that is based on realized spot prices

to exceed that for the option that is based on the forward price measured
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some time prior to the delivery period, which is assumed to depend only

on load and the fuel price. That section details some potential solutions to

this difficulty, but until then I focus on daily strike options with payoffs that

depend on a forward price. For such an option, the call payoff at exercise is

(Ft′,T (qt′, ft′,T ) − K)+ and the put payoff is (K − Ft′,T (qt′, ft′,T ))+.

3.2 Monthly Strike Options

Upon exercise, the holder of a monthly strike call receives a long position

in a monthly forward contract. For instance, upon exercise at the end of

June, the holder of a July monthly strike call receives a forward contract

for delivery of a fixed amount of power during the peak hours of the coming

July. Denoting the forward price as of exercise date t′ for delivery of peak

power on day j in the option month as Ft′,j, the payoff to the monthly strike

call is:

(

∑
j∈M Ft′,j∑
j∈M δj

−K)+

where M is the set of delivery dates in the contract month and δj is an

indicator variable taking a value of 1 when j ∈ M and zero otherwise.

3.3 Spark Spread Options

A spark spread call option has a payoff equal to the maximum of zero or

the difference between a forward price and the price of fuel multiplied by

a contractually specified heat rate. The heat rate is measured in terms of

megawatts (MW) per million British Thermal Units (mmBTU). The heat

rate measures the efficiency of a generating plant. The marginal cost of gen-

erating power from that plant equals its heat rate multiplied by its fuel price.
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Therefore, a spark spread option can be viewed as an option to burn fuel to

produce power because its payoff is based on the difference between the price

of power and the cost of generating it at a given heat rate. For this reason,

power plants are often viewed as bundles of spark spread options, although

spark spread options are also traded as stand-alone financial products.

Spark spread options raise some of the same issues relating to the timing

of exercise and physical settlement and cash settlement as daily strike options.

Specifically, if the spark spread option must be exercised at some time t′ prior

to the power delivery date T , the call payoff is (Ft′,T − ft′,T H∗)+ where H∗ is

the contractually specified heat rate, which effectively determines the strike.

If the payoff to a cash-settled option is based on realized spot prices over the

delivery period, the valuation approach applied herein may underestimate

its value because it ignores short-term price fluctuations driven by variables

other than load and fuel prices. Again, this issue is discussed in more detail

in section 6.

4 Valuation Methodology

4.1 Daily Strike and Monthly Strike Options

I value daily strike and monthly strike options by solving the PDE (7) using

a combination of finite difference and quadrature methods. I do so under

the assumption that the load-fuel correlation ρ equals zero. This assumption

is a reasonably accurate characterization of circumstances in many markets.

For example, during 2000-2005, the correlation between PJM load and the

NYMEX front month natural gas futures price is .04. Moreover, this assump-
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tion eases computation. Most common approaches to solving 2D PDEs, such

as the alternating direction implicit (ADI) method or the method described

below, do not readily handle ρ �= 0. Although it is possible to create orthog-

onalized state variables based on eigenvectors and eigenvalues, this transfor-

mation destroys the economic information contained in the boundary condi-

tions inherent in the underlying problem. For instance, the von Neumann

boundary condition in the problem in q-f space communicates valuable eco-

nomic information that is lost under this transformation. Therefore, when

the correlation is reliably different from zero, a Monte Carlo approach is

preferable to the finite difference method employed here.9 However, in the

(reasonable) case where ρ is close to zero, the finite difference and quadrature

approach is computationally efficient, and allows more accurate calculations

of the relevant “Greeks.” Moreover, it suffices to identify the effect of load

dynamics on the pricing of power options.

In general, the value of any contingent claim is the expectation under the

equivalent measure of the discounted present value of its payoffs. Thus, the

value at t of a daily strike call exercisable at t′, with t ≤ t′ < T , for instance,

is:

Ct = e−r(t′−t)Ẽt[Ft′,T −K]+

where Ẽt indicates the time-t expectation under Q. In the PJ model, more-

over, the forward price is a multiplicatively separable function of the fuel price

and some function of load, t, and T .10 Specifically, Ft′,T = ft′,TV (qt, t, T ).

9In the case of ρ �= 0, combination of Monte Carlo and finite difference methods may
be useful. The value of a claim with ρ = 0 determined using finite differences can be used
as a control variate in the Monte Carlo simulation which uses ρ �= 0.

10This result obtains because PJ assume that the spot price of power is a multiplica-
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Then:

Ct = e−r(t′−t)Ẽt[ft′,TV (qt′, t
′, T )− K]+

Given zero correlation between ft,T and qt, this becomes:

Ct = e−r(t′−t)Ẽf
t Ẽq

t [ft′,T V (qt′, t
′, T ) − K]+

where Ẽf
t indicates Q-expectations over ft′,T (conditional on ft,T ) and Ẽq

t in-

dicatesQ-expectations over qt′ (conditional on qt). Furthermore, the Feynmann-

Kac Theorem implies that there exists a function

u(qt, t, T |ft′,T ) = Ẽq
t e

−r(t′−t)[ft′,T V (qt′, t
′, T )− K]+

that satisfies:

ru =
∂u

∂t
+

∂u

∂qt
[αq(qt, t) − σqλ(qt, t)]qt + .5

∂2u

∂q2
t

σ2
qq

2
t (8)

This is a one dimensional PDE that is very easy to solve using an implicit

finite difference method. Given this solution, the value of the option is:

Ct =
∫ ∞

0
u(qt, t, T |ft′,T )φ(ft′,T |ft,T )dft′,T

where φ(.) is the (lognormal) density of the date-T fuel forward price at

exercise date t′ conditional on the current fuel price ft,T .

This derivation motivates the numerical methodology. First, I form a

valuation grid in time t = t1, . . . , t
′, fuel price f , and load q. The increments

in t equal δt, the increments in f equal δf , and the increments in q are

tively separable function of fuel price and load. This specification is motivated by the
conventional way of characterizing generation economics, in which the price of energy is
equal to the product of a fuel price and a heat rate, where the heat rate is a function of
load.
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denoted δq.11 For each value of f in the fuel price grid, I determine the time

t′ payoff to the option for all values of load in the q grid. Using this vector of

payoffs as an initial condition, I use a standard implicit solver to determine

u(qt, t, T |ft′,T ) for all t = t1, . . . , t
′ − 1. There is one solution vector for each

fuel price and each t in the valuation grid.

For each t, and each ft′,T in the fuel grid, I integrate these valuation

vectors multiplied by φ(ft′,T |ft,T) using a Gaussian quadrature.12 The result

of this integration produces the option value at each {t, ft,T , qt} in the grid.

This approach, which combines finite difference methods with quadrature

techniques similar to those of Andricopolous et al, (2003) is computationally

efficient and produces more stable results than an implementation of stan-

dard ADI; when using ADI, the magnitudes of the load drift and volatility

parameters for the PJM market result in instability around the locus of q-f

points where the option is just at the money, and around the upper boundary

for load.

For daily strike options, the initial conditions are determined as follows.

It is assumed that the option holder must decide to exercise the option the

day prior to the power delivery date, i.e., t′ = T − δt.13 Upon exercise, for a

11δt is set equal to one day (1/365 years) to capture effectively the seasonality inherent
in th valuation of a power derivative.

12When using Gaussian quadrature, it is necessary to interpolate the u(.|ft′,T ). I use
a cubic spline interpolation to mitigate the false volatility problem identified by Tavella
and Randall (2000). Moreover, using this quadrature method sometimes requires deter-
mination of C for values of ft′,T that are outside the valuation grid. Such values are
estimated by exploiting boundary conditions motivated by the economic characteristics of
the particular instrument. For instance, the value of the call converges to zero as the fuel
price approaches zero, and converges to e−r(t′−t)(ft,T V (qt, t, T ) − K) as ft,T approaches
infinity.

13This assumption can be readily modified.
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load q and fuel price f the holder of the call receives a payment equal to the

maximum of zero, or the difference (a) between the day-ahead forward price

Ft′,T (q, f) implied by the solution to the Pirrong-Jermakyan model calibrated

to the observed curve, and (b) the strike price.14

For monthly strike options, the delivery days in the month are first de-

termined at each f and q in the grid. For simplicity, I assume that delivery

occurs during the peak hours of each business day of the month. The option

is assumed to be exercisable on the business day prior to the first day of the

delivery month. On this date, the Pirrong-Jermakyan model forward price

for each day of the delivery month (calibrated to the forward curve as of the

valuation date) is determined. For instance, the prices of forwards expiring

on business days falling between 1 July and 31 July are determined as of

the expiry date of 30 June. The proceeds to the exercise of the call equal

the maximum of zero, or the difference between the average of these forward

prices and the option strike price.

4.2 Spark Spread Options

In the PJ model the forward price is a multiplicatively separable function of

the fuel forward price and a function of load. In this case, the payoff to the

spark spread option can be re-expressed as:

(Ft′,T − ft′,TH∗)+ = (ft′,TV (qt′, t
′, T )− ft′,TH∗)+ = ft′,T (V (qt′, t

′, T )−H∗)+.

Therefore, the payoff to the spark spread option is multiplicatively separa-

ble in load and fuel. Consequently, it is possible to utilize the PJ (2005)

14The daily strike put payoff is defined analogously.
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decomposition to write the value of the spark spread option as another mul-

tiplicatively separable function of the current fuel forward price and current

load. Specifically, denoting the spark spread option value as H(.):

H(qt, ft,T , t, T, H∗) = ft,TΦ(qt, t, T, H∗).

The Φ(.) function can be determined using a standard implicit solver with

(V (qt′, t
′, T )− H∗)+ as an initial condition.15

5 Results

The behavior of power options prices implied by this model is best understood

through the use of various figures and focus on a few salient results. The

behavior of the “Greeks” in particular sheds light on the economic factors

driving the option values.

In this regard, it bears noting that due to the two-dimensional nature of

the problem, there are a set of Greeks for each of the state variables. For

instance, there is a “load Delta” (∂C/∂q) and a “load Gamma” (∂2C/∂q2),

and a “fuel Delta” (∂C/∂f) and a “fuel Gamma” (∂2C/∂f2). The behavior

of the Gammas is of particular interest.

All option values in the figures are based on a calibrated PJ model. The

model is calibrated using estimates of load volatility σq, mean reversion pa-

rameter k, and average log load θq(t) estimated from PJM data for 1 Jan-

uary, 2000-31 May, 2005; see PJ (2005) for a description of the estimation

methodology. The model is calibrated to PJM power forward prices (from

15Due to the multiplicative separability, using the transformation presented in Pirrong-
Jermakyan (2005) it is possible to solve for Φ(.) even when ρ �= 0.
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the NYMEX ClearPort system) and natural gas forward prices for Texas

Eastern Pipeline Zone M-3 observed on 7 June, 2005 using the method of

Pirrong-Jermakyan. The fuel volatility is the implied volatility from the

at-the-money NYMEX natural gas futures options with delivery months cor-

responding to the maturity of the option being analyzed, as observed on 7

June, 2005.

The valuation grid has 100 points in the load and fuel dimensions. The

minimum fuel price is $1.00, and the maximum is $25.00. The minimum

load is the smallest PJM load observed in 1999-2005, and the maximum

load is the total amount of generation bid into PJM on 15 July, 2004 (the

date used to determine the payoff function for July forwards in the model

calibration–PJM bid data are available only with a six month lag.)

Figure 1 depicts the value of a daily strike call option expiring on 15 July,

2005, measured two days prior to expiration, as a function of fuel price and

load. The strike of this option is $85, which was the at-the-money strike

on 7 June, 2005. The horizontal plane dimensions are the fuel price f and

the load q (running into the chart from front to back). The option value

is increasing in fuel price and load, as would be expected. Thus, load and

fuel Deltas are both positive. Note too that there is noticeable convexity of

the option value in both f and q. That is, both load and fuel gammas are

positive. The load Gamma is noticeably large and positive for high levels of

load, and for high fuel prices.

Figure 2 depicts the value of the same option on 7 June, 2005, or approx-

imately 38 days prior to expiry. In the figure, the positive fuel Delta and

Gamma are readily apparent; the convexity in fuel price is especially evident
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for intermediate fuel prices (where the option is near-the-money).

However, the option value exhibits little dependence on load. In fact, the

load Delta and load Gamma are effectively zero. (When one plots the option

value as a function of load for a given fuel price in Matlab, the change in

the option value across the range of load values is smaller than the minimum

increment that can be depicted by the Matlab plotting function.) Indeed,

the zeroing out of the load Delta and Gamma occurs as time maturity falls

to as little as 7 or 8 days. Thus, despite the strong dependence of spot power

prices on load, daily strike options with maturities of more than a few days

exhibit virtually no dependence on load.

This phenomenon reflects the strong mean reversion in load. Due to this

strong mean reversion, the distribution of load for future dates conditional on

current load converges quite quickly to the unconditional load distribution.

Thus, for maturities beyond a few days, variations in current load convey

very little information about the distribution of load at expiry, and thus

such variations have little impact on the daily strike option value.

This analysis implies that for a week or more prior to daily strike option

expiration, such options are effectively options on fuel. Until expiration nears,

these options can be hedged using fuel forwards (to hedge fuel Delta) and

fuel options (to hedge fuel Gamma). In the last few days before expiry,

however, the option value exhibits progressively stronger dependence on load

(especially when load is high), and hedging requires the use of load-sensitive

claims (e.g., a forward to hedge load Delta, or another load-sensitive option

to hedge load Gamma).

The effects of load mean reversion on power option value is especially
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evident when one examines monthly strike options. Figure 3 depicts the

value of a July, 2005 monthly strike call option one day prior to expiry. Even

given this short maturity, there is only a slight load Delta, and virtually no

load Gamma. However, the non-zero fuel Delta and Gamma are evident. The

lack of load dependence reflects the fact that the payoff to the monthly strike

option depends on forward prices for delivery dates that are half-a-month on

average after option expiry. For all but the forward contracts maturing a few

days after the monthly strike option’s expiry, load has little impact on the

forward price. Hence, variations in load at expiry have little effect on most

of the daily forwards included in the monthly bundle.

Mean reversion also impacts option time decay. This is most evident for

a spark spread option. Note that due to their multiplicative separability in

load and fuel (and the separability of the forward price in these variables in

the PJ framework), conditional on q spark spread option values are linear in

the fuel price and hence have a fuel Gamma of zero. Thus, in contrast to

what is observed for monthly and daily strike options, this implies that there

is no time decay attributable to the fuel factor for a spark spread option.

Any time decay for this type of option is attributable to the impact of load.

With this in mind, consider figure 4, which depicts the value of Φ(qt, t, T )

for a spark spread call option with H∗ = 10 as a function of time to expiration

and load (with the load dimension running into the chart).16 The maximum

time to expiration on the chart is 60 days, and hence corresponds to a mid-

16The spark spread option value is extremely high when load is high close to expiration.
Therefore, to highlight the lack of time decay and avoid the impact of option values for
very high loads on the scaling of the figure, spark spread option values are presented only
for loads that are less than 15 percent above the mean load.
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August 2005 expiration date. Note that the option value is virtually constant

until a few days short of expiration. Thus, there is very little time decay until

very close to expiration. As the option nears expiry, however, for low loads

the option value declines precipitously. Conversely, for high loads (especially

very high loads) the value of the option increases dramatically.

These characteristics again reflect mean reversion in load. Well before

expiry, due to mean reversion the conditional distribution of load (the only

payoff relevant variable for the spark spread claim) changes virtually not at

all as time passes. This contrasts with the value of an option with a payoff

determined by a geometric Brownian motion (GBM), where the dispersion

in the conditional distribution of the payoff-relevant variable declines mono-

tonically as time passes. The stationarity of load translates into little time

decay.

Similar influences affect time decay for daily and monthly strike options.

These options exhibit time decay, but this reflects the dependence of payoffs

on a GBM–the fuel price. The dispersion in payoffs declines as time passes

for monthly and daily strikes due to the fall in the dispersion of fuel prices

at expiry. Holding fuel price at expiry constant, the passage of time does not

affect the variability in payoffs attributable to load. That is, ∂u/∂t is very

close to zero when a daily strike option has more than a few days prior to

expiry (regardless of the level of load), and is very close to zero immediately

prior to expiry even when a monthly strike option is at-the-money.

The strong mean reversion in load also impacts the behavior of implied

volatility for power options. Although the Black model is not well-suited

for pricing power options, practitioners still employ it for that purpose, and
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option values are often quoted in terms of implied volatilities.

One impact of load mean reversion is to cause implied volatilities for daily

strike options to rise systematically as expiration nears. This is depicted in

figures 5 and 6. Figure 5 depicts implied volatility as a function of q and f

when a daily strike option (struck at $85) has a month to expiration. Figure

6 presents the implied volatility surface for the same option with only 2 days

to expiration. The implied volatilities set the Black formula for an option

value with strike $85 and a forward price given by the PJ model for the

appropriate q and f equal to the daily strike option value implied by the

solution to (9) for that q and f .

Note that the implied volatility surface is markedly higher with shorter

time to expiration, especially for large values of f and q. This again reflects

mean reversion. Volatility measures the rate of information flow (Ross, 1989).

The constant volatility in a GBM process (that underlies the Black model)

means that the rate of information flow is constant over time. This is wildly

misleading for electricity. Strong mean reversion in load means that a load

shock today confers very little information about the distribution of load even

a few days hence. That is, one learns little new about the distribution in load

in a month based on an observation of current load. Virtually all of the load-

related information flow occurs in the last few days prior to expiration (and

variations in load explain upwards of 65 percent of PJM spot power price

fluctuations). The Black implied volatility effectively calculates an average

rate of information flow. For a power option, the average rate of information

flow over a long time prior to expiry is small, whereas the average rate of

information flow over a short time leading up to expiry of a daily strike option
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is large, because virtually all of the information flow occurs in these last few

days.

Note that the shape of the implied volatility surface also changes dramat-

ically as one nears expiry. A month prior to expiration, the implied volatility

depends on the level of the fuel price (with high fuel prices associated with

higher implieds in an S-shaped form), but does not vary with load. With

the short-dated option, however, the volatility surface is U-shaped in load for

low-to-moderate fuel prices, but sharply increasing in load for high fuel prices.

(The concavity at the upper load boundary reflects the von Neumann bound-

ary condition at the boundary.) This reflects the non-linear relation between

power prices and load. This non-linear relation causes (a) the volatility of

the spot power price to depend on the level of load (i.e., heteroscedasticity),

and (b) right skewness in the distribution of the spot price, with more pro-

nounced right skewness for high loads. The heteroscedasticity induces smiles

in volatilities (discussed in more detail below), and a greater the right skew

causes higher call option values and hence higher implied volatilities.

Not surprisingly, the shift in the volatility surface over time is much less

pronounced for monthly strike options. As noted earlier, much of the payoff

for a monthly strike option is determined by forward prices for forward con-

tracts with more than a few days to maturity. Thus, load shocks that occur

even in the days immediately prior to maturity of the monthly strike option

confer very little payoff-relevant information. The rate of information flow

days before the monthly strike’s expiry is therefore not markedly different

than the rate weeks before maturity. Indeed, the information flow is almost

entirely related to the price of fuel. Under the assumption that the fuel fu-
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tures price is a GBM, this implies that the implied volatility is effectively the

same regardless of time to expiry of the monthly strike option.

Mean reversion also affects the nature of volatility “smiles” and “smirks”

in power options. Long-maturity daily strike options exhibit no smile or

smirk–the implied volatility does not vary with strike.17 However, figure 7

demonstrates that (a) implied volatilities smirk for short dated daily strike

options, and (b) the smirk depends on load when time to expiry is small.

The figure depicts 3 smiles for a daily strike option expiring on 15 July with

2 days to expiry. The highest curve is for a load that is 5 percent below

the mean value (given by θq(t)) on this date. The curve with the lowest

values of implied volatility at the low strike is for a load that is at the mean

value on this date. The curve that cuts across the other two, and which is

somewhat U-shaped is for a load that is 5 percent above the mean. Each

smirk is centered on the at-the-money strike; since the relevant forward price

is different for different load levels this close to expiry, the at-the-money strike

differs across options. The figure is centered at the at-the-money strike, with

$1 increments between strikes. The smile is calculated assuming a fuel price

of $7, and a time to expiration of 2 days. Note that the smirk is towards

the call wing with loads at or below the mean (i.e., higher volatilities are

associated with higher strikes) but that it smiles more symmetrically the

17These options should exhibit smiles if fuel options do, as would be the case when
fuel prices exhibit stochastic volatility or jumps. In this case, the power option smile
will be related to the smile in fuel options. To see this, rewrite the option value as
C =

∫ ∞
0 v(ft′,T , t, T, K|qt′)g(qt′ |qt)dqt′ where g(.) is the distribution of qt′ conditional on

qt and v(.) is the value of a contingent claim with initial condition given by its payoff. For
instance, for a call this payoff is (ft′,T V (qt′ , t

′, T ) − K)+ which is the value of a call on
V (.) units of fuel and strike K. In the presence of stochastic volatility or jumps, the v(.)
function will exhibit a volatility skew, which will impact the skew of the power claim C.
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load is well above the mean. It should be noted, however, that the behavior

of the smile is also dependent on fuel prices. For some values of fuel price

and load, implied volatility can smirk towards the put wing, for instance.

Due to the general lack of load dependence for monthly strike options,

even when time to expiration is low, there is no pronounced smile or smirk

for these options.

The model implies power options exhibit other features that deserve com-

ment, but are which quite intuitive. These include:

• Daily and monthly strike option values are increasing in the volatility of

the fuel price σf . Since spark spread option prices are linear functions

of fuel forward prices, they do not vary with fuel price volatility.

• Daily and monthly strike and spark spread call option values are in-

creasing in the volatility of load σq. The increase is due to two factors.

First, an increase in load volatility increases the power forward price

due to the effect of Jensen’s inequality because the forward payoff is

a convex function of load. Second, holding the moneyness of the op-

tion constant (by increasing the call strike to off-set the impact of the

higher volatility on the forward price), the payoff to the option is a con-

vex function of load, so again a Jensen’s inequality effect implies that

the higher volatility is associated with a higher option value. For puts,

the effect of higher load volatility is ambiguous a priori because these

two effects work in opposite directions. However, a strike-compensated

increase in load volatility increases the put value.
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6 Complications

As noted earlier, although fuel prices and load are crucial determinants of

power prices, electricity spot prices depend on other factors as well. For

instance, outages of transmission or generation assets can influence power

prices. Thus, at any instant t, the power spot price reasonably has the form:

Pt = ft,tφ(qt) + εt

where εt is orthogonal to the fuel price and load and has an unconditional

mean of 0, and φ(.) is a non-linear function (given by the bid stack, for

instance.)

Moreover, it is also plausible that εt mean reverts very rapidly. Forced

outages, for instance, are typically of short duration.

Note that the date-T forward price at t < T is:

Ft,T = ẼtfT,TV (qT ) + ẼtεT

If εt mean reverts very rapidly (with a half-life measured in hours, for in-

stance), and this risk is not priced, then if T − t is as little as a day then

ẼtεT (which is conditional on εt) is very nearly zero. Hence, Ft,T can reason-

ably be considered a function of qt and ft,T alone. In this case, the model

implemented above, which assumes that exercise proceeds depend only on

load and the fuel price, will give accurate option values.

However, in some cases this is problematic. For instance, consider a call

option to purchase power during a particular hour that can be exercised

shortly before that hour. In that circumstance, the hour ahead forward price

for delivery in hour T as of t will depend on εt even if this shock mean reverts
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rapidly. Similarly, in the case of (say) a cash settled daily strike option where

the payoff is calculated using the realized spot prices during some hours, the

εt for these hours will affect the option payoff.

This problem can be addressed in a straightforward fashion based on

knowledge of the distribution of εt conditional on information available at

the time the option holder must exercise. Specifically, consider a call option

with strike K that has a payoff that depends on the spot price during a given

hour. For each qt and ft,t, calculate:

Ĉ(qt, ft,t) = Eε(ft,tφ(qt) + εt − K)+

where the subscript on the expectations operator denotes that the expec-

tation is over ε. If the ε risk is unpriced, the expectation is taken under

the physical measure. This measure can be calculated based on parame-

ters derived from a statistical analysis of the errors in a (non-linear) model

that relates observed power prices to observed load and fuel prices.18 The

resulting Ĉ function can be used as an initial condition in the finite difference-

quadrature solver described in section 4 above.

Other complications are not so readily handled. For instance, the model

valuations depend on the market price of risk function λ(qt). Given a λ(qt)

function calibrated to observable derivative price information (e.g., visible

forward prices), the solution to the PDE (7) solved subject to the appropriate

initial condition will give an option value that is consistent with contempo-

raneous forward prices used for calibration. However, as Joshi (2004) notes,

the market chooses λ(qt), and the market can change its mind. For instance,

18This relation can be estimated econometrically, or based on bid curves. Both methods
are discussed in Pirrong-Jermakyan (2005).
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changes in hedging pressure, driven perhaps by financial shocks to market

participants, can affect risk premia in the forward market. That is, such

shocks may affect λ(qt). As an example, the collapse of Enron and the subse-

quent deterioration in the financial condition of merchant energy firms plau-

sibly affected the market price of risk. Similarly, Bessembinder-Lemon and

Pirrong-Jermakyan (2005) note that changes in available generating capacity

and the changes supply of risk bearing capacity by financial intermediaries

can also affect the market price of risk function.

Variations in the market price of risk imply changes in the value of power

contingent claims. Although it is not difficult to calculate the sensitivity in

power claim values to changes in λ(.), this is not sufficient to quantify fully

the risk of a power option or forward position, as this risk depends on both

this sensitivity and the dynamics of λ(.). These dynamics are quite difficult

to model and estimate because (a) the process for estimating this function is

computationally expensive, (b) the function is typically non-linear, and (c)

the function is estimated statistically, and is hence subject to sampling error.

Thus, although the methodology set out here and in Pirrong-Jermakyan

(2005) can give consistent valuations of many power contingent claims at

a point in time, it cannot readily quantify all of the risks of power forwards

and options.

7 Summary and Conclusions

The Pirrong-Jermakyan model, which posits that power prices are a func-

tion of load and fuel prices, can be used to price a variety of options on

electricity. This article demonstrates that the behavior of one of these state
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variables–notably load–exerts a decisive impact on the pricing of these op-

tions. Specifically, load is strongly mean reverting. As a consequence, the

conditional distribution of load at option expiration does not vary substan-

tially with contemporaneous load with more than a few days to expiration

even though variations in load are the single most important cause of varia-

tions in power spot prices. This causes the prices of daily strike options (i.e.,

options on the delivery of power on a single day that are exercised shortly

before the delivery date) to vary little with load more than a few days to

expiration. Monthly strike options (i.e., options on the delivery of power

during a month that are exercised shortly before the delivery month) exhibit

almost no load dependence even as expiry nears. Mean reversion also im-

pacts option time decay; an option with a payoff that is proportional to the

fuel price (e.g., a spark spread option) exhibits virtually no time decay until

right before expiry.

The Pirrong-Jermakyan model assumes that variations in load and fuel

prices explain all variations in power prices. In reality, although these factors

are the most important determinants of power price movements, other vari-

ables impact power prices as well. Fluctuations in these variables are likely to

be highly transitory, so they can be ignored when determining forward prices

a few days before contract maturity, or when valuing options with payoffs

that depend on the prices of forwards maturing more than a day or two after

option expiry. This is not reasonable when valuing options with payoffs that

depend on very short term forward prices (e.g., a hour ahead forward), or on

spot prices. Under certain simplifying assumptions, however, it is possible

to modify the initial conditions to the Pirrong-Jermakyan valuation PDE
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to take into account transitory fluctuations in power prices attributable to

factors other than load and fuel prices, such as short-lived outages or out-

of-merit dispatch driven by transmission constraints and fluctuations in the

spatial pattern of load.
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