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Journal of Economic Literature 
Vol. XXXVI (June 1998) pp. 669-721 

Nonparametric Regression Techniques 
in Economics 

ADONIS YATCHEW' 

1. Introduction 

1.1 Setting the Stage 

1.1.1 Benefits of Nonparametric Esti- 
mation. If economics is the dismal sci- 
ence, then econometrics is its ill-fated 
offspring. The limited number of strong 
implications derived from economic 
theory, the all but complete inability to 
perform controlled experiments, the 
paucity of durable empirical results, the 
errant predictions, the bottomless res- 
ervoir of difficult to measure but poten- 
tially relevant variables-these do not 
set a pleasant working environment for 
the empirical analyst in economics. 

When one contrasts the overall qual- 
ity of economic data and empirical in- 
ferences with the plethora of sophisti- 
cated econometric theory already 
available, it would appear difficult to 
justify learning (or teaching) techniques 
where the regression function depends 

on an infinite number of unknown pa- 
rameters. (Nonparametric regression 
typically assumes little else about the 
shape of the regression function beyond 
some degree of smoothness.) Yet, we 
will argue that it is because such tools 
lead to more durable inferences that 
they will become an enduring-even in- 
dispensable-element of every econo- 
mist's tool kit, in much the same way 
that linear and nonlinear regression are 
today. After all, reliable empirical re- 
sults are essential to the formulation of 
sound policy. 

From the point of view of a pure data 
analyst, the added value of nonparamet- 
ric techniques consists in their ability to 
deliver estimators and inference proce- 
dures that are less dependent on func- 
tional form assumptions. They are also 
useful for exploratory data analysis and 
as a supplement to parametric proce- 
dures. If one has reservations about a 
particular parametric form, specifica- 
tion tests against nonparametric alter- 
natives can provide reassurance. 

From the point of view of the econo- 
mist/econometrician, such techniques 
possess additional appeal in that most 
implications of economic theory are 
nonparametric. Typically, theoretical 
arguments exclude or include variables, 
they imply monotonicity, concavity, or 
homogeneity of various sorts, or they 
embody more comDlex structure such as 

1 Department of Economics, University of 
Toronto. The author is grateful to Andrey Feuer- 
verg;er, Zvi Griliches, James MacKinnon, Angelo 
Me ino, John Pencavel and particularly to Frank 
Wolak for their patient reading and insightful 
comments. The statistics and econometrics litera- 
ture on nonparametric regression is massive and 
inevitably many interesting and important results 
have been given little or no exposure in this intro- 
duction to the subiect. The author regrets this 
state of affairs and hopes that his lacunae will be 
corrected in complementary and more artful re- 
views by other writers. The author may be con- 
tacted at yatchew@chass.utoronto.ca. 
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the implications of the maximization hy- 
pothesis. They almost never imply a 
specific functional form (the pure quan- 
tity theory of mioney equation being one 
exception). This paper will therefore fo- 
cus some considerable attention on con- 
strained nonparametric regression esti- 
mation and testing. 

In some cases, the researcher may 
feel comfortable with a particular para- 
metric form for one portion of the re- 
gression function, but less confident 
about the shape of another portion. 
Such varying prior beliefs call for com- 
bining parametric and nonparametric 
techniques to yield semiparametric re- 
gression models (these have been stud- 
ied extensively). Inclusion of the non- 
parametric component may avoid 
inconsistent estimation which could re- 
sult from incorrect parameterization. 

1.1.2 An Appetizer for the Reluctant 
Palate. For those who have never con- 
sidered using a nonparametric regres- 
sion technique, we suggest the follow- 
ing elementary procedure, much of 
which can be implemented in any stan- 
dard econometric package. Suppose you 
are given data (yi,zi,x1). .. (yT,zT,xT) on the 
model y = zf3 +f(x) + e where for simplic- 
ity all variables are assumed to be sca- 
lars. The Ct are i.i.d. with mean 0 and 
variance (y2 given (z,x). The x's are 
drawn from a distribution with support, 
say, the unit interval. Most important, 
the data are rearranged so that 
XI < ... < XT. All that is known about f is 
that its first derivative is bounded by a 
constant, say L. Suppose that we first 
difference to obtain 

yt - yt-1 = (Zt - Zt-1)f 

+ (f(Xt) -f(xt-I)) + ?t-t - (1.1) 

As sample size increases-packing the unit 
interval with x's-the typical difference 
xt - xt-1 shrinks at a rate of about IIT so 
that f(xti1) tends to cancel f(xt). (This is 

because the bound on the first derivative 
implies that If(xt) -f(xti1) I < L I xt - xt- I .) 
As long as z is not perfectly correlated 
with x, the ordinary least squares estima- 
tor of f3 using the differenced data, that is 

X(yt - yt-i) (Zt - Zt-i) 

Pdiff = Xzzt)2 (1.2) 
y(Zt - Zt_1)2 

has the approximate sampling distribu- 
tion 

fdiff N Nf(Vj 1 PI ) 1.3 

where y2 is the conditional variance of z 
given x.2 

We have applied this estimator to 
data on the costs of distributing elec- 
tricity (Figure 1). Factors which can 
influence distribution costs include cus- 
tomer density (greater distance be- 
tween customers increases costs), the 
remaining life of physical plant (newer 
assets require less maintenance), and 
wage rates. These are among the "z" 
variables which appear parametrically 
in the model. However, the nature of 
scale economies is unclear-the effect 
on costs could be constant, declining 
to an asymptote or even U-shaped. 
Indeed, important regulatory decisions 
(such as merger policy) may involve 
determining the minimum efficient 
scale. 

In the left panel, we estimate the cost 
function parametrically, incorporating a 
quadratic term for the scale variable "x" 
which we measure using the number of 
customers of each utility. In the right 
panel, we report the coefficient esti- 
mates of the z variables after applying 
the differencing estimator (1.2), suit- 
ably generalized to allow for vector z. 
There is moderate change in coefficients. 

2 Throughout the paper, the symbol - will de- 
note that a random variable has the indicated ap- 
proximate distribution and the symbol _ will indi- 
cate approximate equality. 
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Figure 1. Returns to Scale in Electricity Distribution 

Model: Restructuring, vertical unbundling, and deregulation of electricity industries have led to reexamination of scale 
economies in electricity distribution. The efficiency of small (usually municipal) distributors that exist in the U.S., Norway, 
New Zealand, Germany and Canada is at issue. The objective is to assess scale economies. The model is given by y = z i + 
f(x) + ? where y is variable costs of distribution per customer (COST PER CUST). The vector z includes: customer density 
(rural distribution is more expensive) as measured by average distance between customers (DIST); load per customer 
(LOAD); local generation per customer (GEN); remaining life of assets (LIFE) - older plants require more maintenance; 
assets per customer (ASSETS); and a proxy for labour wage rates (WAGE). The scale of operation, x, is measured by the 
number of customers served (CUST). The scale effect may be nonlinear, (e.g., decreasing to an asymptote or U-shaped), 
hence the inclusion of a nonparametric componentf (x). 
Data: 265 municipal distributors in Ontario, Canada which vary in size from tiny ones serving 200 customers to the largest 
serving 218,000 (a 'customer' can be a household, or a commercial, industrial or governmental entity). 

ESTIMATED MODELS 

PARAMETRIC: Quadratic scale effect SEMIPARAMETRIC: Smooth scale effect 

y= a + Z 3 + y1x + y2x2 + ? Y = z 3 +f(x) + ? 

OLS Differencing Estimator1 
Coefficient Standard Error Coefficient Standard Error 

oc 15.987 37.002 
DIST 3.719 1.248 ADIST 2.568 1.560 
LOAD 1.920 .661 ALOAD .437 .912 
GEN -.051 .023 AGEN .0005 .032 
LIFE -5.663 .798 ALIFE -4.470 1.070 
ASSETS .037 .005 AASSETS .030 .0072 
WAGE .003 .0007 AWAGE .003 .00086 

71 -.00154 .00024 
72 .1x10-7 .14x10-8 

R2 .45 

ESTIMATED IMPACT OF SCALE ON DOLLAR COSTS PER CUSTOMER PER YEAR 

, 200 Kernel 
w34 - - - - - - Quadratic 0 
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1 aarodrds htx < .t . o . -0 XT,. the al vaibe difeecedAw= - w0 , foloe by orinr lesqurs 
Standard ~ eror mutple by XTS as per eqato (13) Deenen vaial is A- COS PE CUST. 

0~~~~~~~ 

0 0 

500 1000 5000 10000 50000 100000 

CUSTOMERS 

1Data reordered so that x, ? ... ? XT, then all variables differenced A wt = Wt- Wtl1, followed by ordinary least squares. 
Standard errors multiplied by Vfi75, as per equation (1.3). Dependent variable is A COST PER CUST. 
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Though the "differencing estimator" 
of f3 does not require estimation of f, 
one can visually assess whether there is 
a potentially interesting relationship em- 
bodied in f by producing a scatter-plot 
of yt - Ztdiff against xt as we have done 
in Figure 1. In addition, we ,plot two 
curves-the quadratic estimate y 2x + 72x2, 
(it does not look quadratic because x is 
scaled logarithmically) and a nonpara- 
metric estimate using the "kernel" tech- 
nique, which we will later discuss in de- 
tail. The two estimates are strikingly 
similar, suggesting that the quadratic 
specification is adequate (we will later 
provide formal tests of this proposi- 
tion). Note further that the standard er- 
rors of the differencing estimator are 
larger than the pure parametric ones, as 
one would expect from (1.3). 

For the most efficient nonparametric 
estimator, the 1.5 factor in equation 
(1.3) is replaced by 1, thus the relative 
efficiency of this differencing estimator 
is 66.7 percent (=1/1.5). Later we will 
outline how asymptotic efficiency can 
be achieved by using higher order dif- 
ferences. 

Our analysis of this partial linear 
model has been divided into two parts: 
first we analyzed the parametric portion 
of the model, all of which can be done 
in a standard econometric package; 
then we estimated the nonparametric 
portion of the model (estimators for 
which are widely available in statistical 
packages such as S-Plus). This modular 
approach will be a theme of the paper, 
since it permits one to use existing soft- 
ware and to adapt a variety of paramet- 
ric or purely nonparametric procedures 
to this setting. 

We make one final observation on the 
differencing idea which we exploit in 
this paper because of its simplicity. 
Nonparametric procedures estimate the 
value of the regression function at a 
given point by using neighboring obser- 

vations. For the approach described 
here, the implicit estimate of f(xt) is 
f(xt-i). 

1.1.3 Objectives of the Paper. Why 
have nonparametric regression methods 
not yet infiltrated the applied literature 
to the degree one might expect, particu- 
larly since other nonparametric tech- 
niques are used without hesitation? Af- 
ter all, anyone using the central limit 
theorem to do inference on a mean 
from an unknown distribution has en- 
gaged in semiparametric inference. The 
same is true if the mean is a linear func- 
tion of some explanatory variables, but 
the distribution of the residuals remains 
unknown, Even the histogram, which 
we teach in introductory courses, is a 
nonparametric estimator of the underly- 
ing density. 

True, nonparametric regression has 
not thus far uncovered any particularly 
startling empirical phenomena that 
were hitherto inaccessible to parametric 
practitioners.3 But this does not explain 
the absence of greater use in explora- 
tory data analysis, as a confirmatory 
tool, or as a supplement to the standard 
parametric fare. Several factors have in- 
fluenced this relatively slow penetration 
rate at the same time that there has 
been an explosion of theoretical results 
in this area. 

First, nonparametric regression tech- 
niques are theoretically more complex 
than the usual tool kit of linear and non- 
linear parametric modelling methods. 

Second, nonparametric regression 
techniques are computationally inten- 
sive and they require large (in some 
cases astronomically large) data sets, 
since relationships are "discovered" 
by examining nearby observations. 
("Nearby" better not be too far away.) 

3 Some may be surprised by the apparent ab- 
sence of scale economies in electricity distribution 
(Figure 1). After all, the so-called "wires business" 
is a natural monopoly. 
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Third, a unified framework for con- 
strained estimation and testing of eco- 
nomic models using nonparametric re- 
gression is still in the incipient stage. As 
a consequence, software which will han- 
dle such procedures in an automated 
fashion does not yet exist. 

A central objective of this paper is to 
demonstrate that these barriers are in- 
deed substantially lower than might first 
appear. We comment on each in turn. 

First, we deal with the issue of 
theoretical sophistication. Nonparamet- 
ric regression typically involves either 
local averaging or some form of least 
squares estimation. Both ideas are fa- 
miliar from parametric modelling, and 
indeed a significant portion of the the- 
ory of nonparametric regression in- 
volves straightforward extenision of 
results and techniques familiar to 
parametric practitioners. Unfortunately, 
nonparametric methods also have criti- 
cal elements that are not present in the 
pure parametric setting. Most impor- 
tant among these are the "curse of di- 
mensionality" and the need to select the 
value of a "smoothing parameter." Tak- 
ing as a premise that a technique is un- 
likely to be used (or worse, unlikely to 
be used correctly) without a rudimen- 
tary understanding and intuitive grasp 
of the basic theory, we set out, wher- 
ever possible, simple arguments sup- 
porting the theoretical propositions. 

Second is the issue of computation. 
The precipitous drops in computing 
costs, data storage, and even data col- 
lection (the latter through the prolifera- 
tion of automated data collection tech- 
nologies) are effectively eliminating this 
as a barrier to the use of nonparametric 
regression techniques. We believe that 
the forthcoming industry standard (be it 
a local averaging estimator, a least 
squares estimator, or a hybrid) will be 
coupled with computer-intensive infer- 
ence techniques, such as the bootstrap. 

However, for the interested applied 
economist, there is no need to wait for 
future software developments. Many of 
the procedures outlined in this paper 
can be implemented using off-the-shelf 
software, in particular S-Plus (see for 
example, William Venables and Brian 
Ripley 1994), and XploTe (see Wolf- 
gang Hardle, Sigbert Klinke, and Ber- 
win Turlach 1995). 

Third is the issue of constrained esti- 
mation and hypothesis testing. In a 
parametric setting, constraints can be 
imposed on parameters relatively easily, 
and many hypotheses can then be tested 
(for example, by comparing restricted 
and unrestricted sums of squared re- 
siduals) . 

In a nonparametric setting, imposing 
constraints on the estimator is often 
more difficult. However, if a restricted 
estimator is obtained, one can examine 
the estimated residuals to see whether 
they constitute pure error or whether 
they are related to the explanatory vari- 
ables. If it is the latter, then this sug- 
gests invalidity of the constraints. (For- 
mal testing can proceed by performing 
a regression of the estimated residuals 
on all the explanatory variables.) 

In summary, our overarching objec- 
tive is to increase the accessibility of 
nonparametric techniques to econo- 
mists. To pursue this main goal, our 
three subsidiary objectives are to pro- 
vide implementation details for a few 
relatively simple nonparametric regres- 
sion estimation and inference tech- 
niques, to summarize central theoret- 
ical results which we hope will make 
the techniques more intelligible, and to 
outline procedures for constrained esti- 
mation and hypothesis testing. 

1.1.4 Charting the Terrain Ahead. 
The structure and contenit of the paper 
is thus driven by the objectives men- 
tioned above. The remainder of the In- 
troduction, entitled Background and 
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Overview, categorizes various kinds of 
regression models, from parametric at 
the simple extreme, through semipara- 
metric models, to various kinds of non- 
parametric models which may incorpo- 
rate additional structure (such as 
additive separability or monotonicity). 
The section then discusses the "curse of 
dimensionality" a phenomenon which 
has no counterpart in a parametric set- 
ting. Following this, two naive nonpara- 
metric regression estimators are intro- 
duced-the first based on local 
averaging, the second on least squares. 
The section closes with a glimpse of es- 
sential theoretical results. Upon com- 
pletion of the Background and Over- 
view, the reader should have an 
appreciation of the range of models un- 
der study, the two most basic estimation 
principles, the theoretical challenges, 
and a minimal set of theoretical results. 

The second section of the paper de- 
tails two nonparametric regression esti- 
mators-the kernel estimator which is 
based on the principle of local averag- 
ing; and nonparametric least squares, 
which is closely related to spline esti- 
mation. The section also summarizes 
their main statistical properties. 

The third section focuses on The Par- 
tial Linear Model which we believe to 
be the most likely "entry level" model 
for economists. This section describes 
three distinct estimators. In addition to 
the partial linear model, the class of 
semiparametric specifications includes 
other important subclasses such as 
partial parametric and index models. 
Despite the prominence of index mod- 
els in the econometric literature, we 
have not included them in this paper, 
essentially because of space limitations. 
A foothold into that literature may be 
established by reading Thomas Stoker 
(1991). See also James L. Powell (1994) 
and references therein. 

The fourth section of the paper dis- 

cusses constrained estimation and hy- 
pothesis testing. 

In the fifth section of the paper, Ex- 
tensions and Technical Details, we col- 
lect a variety of topics. The partial lin- 
ear model is revisited yet again, this 
time to demonstrate that the parametric 
and nonparametric portions can be ana- 
lyzed separately. Thus, a variety of 
purely nonparametric procedures can 
be grafted onto the nonparametric por- 
tion of the partial linear model. The 
role of various constraints implied by 
economic theory is discussed. The sec- 
tion also includes a note on available 
computer software, and directions for 
further reading. 

Section 6 presents our conclusions. 
We will from time to time make use 

of a number of mathematical ideas deal- 
ing with sequences of numbers and of 
random variables. We have summarized 
these in Appendix A. Throughout the 
paper, equations of particular signifi- 
cance or usefulness are indicated by 
equation numbers set in boldface type. 

1.2 Background and Overview 

1.2.1 Categorization of Models. Con- 
sider the model y =f(x) + s where ? is 
i.i.d. with mean 0 and variance ag given 
x. Iff is known only to lie in a family of 
smooth functions -3 then the model is 
nonparametric. If f satisfies some addi- 
tional properties (such as monotonicity, 
concavity, homogeneity or symmetry) 
and hence lies in 3 c 3, we will say that 
the model is constrained nonparamet- 
ric. If we can partition x into two sub- 
sets xa and Xb, such that f is of the form 
fa(Xa)+fb(xb), then it is called additively 
separable. 

Next we turn to semiparametric mod- 
els. In this paper we will focus on the 
partial linear model already introduced. 
(See Figure 2 for categorization of vari- 
ous kinds of regression models.) 
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Figure 2. Categorization of Regression Functions 

Parametric - Linear Semiparametric - Partial Linear 

Linear y =x + (pictured above) Partial Linear y = z,B +f(x) + e fe 3 (pictured above) 
Nonlinear y = g (X;j)+c, g known Partial Parametnrc y = g (z;4) +f(x) + F. g known,fe 3 

Index Models y =f (z) + e, fe 3 

Additively Separable Nonparametric 

I - 

Smooth y =f(xa)+fb(xb)+ , fa+fb e Smooth y =fx) + , fe 3 (pictured above) 
Smooth and Constrained y = f (x) + F, fe .3 

3 is a smooth family of functions. Z is a smooth family with additional constraints such as monotonicity, concavity, 
symmetry or other constraints. 

1.2.2 The Curse of Dimensionality 
and the Need for Large Data Sets. In 
comparison to parametric estimation, 
nonparametric procedures can impose 
enormous data requirements. To gain 
an appreciation of the problem as well 
as remedies for it, we begin with a de- 
terministic framework. Suppose the ob- 

jective is to approximate a function f. If 
it is known to be linear in one variable, 
two observations are sufficient to deter- 
mine the entire function; three are suf- 
ficient iff is linear in two variables. Iff 
is of the form g(x;,) where g is known 
and : is an unknown k-dimensional vec- 
tor, then k judiciously selected points 
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are usually sufficient to solve for P. No 
further observations on the function are 
necessary. 

Let us turn to the pure nonparamet- 
ric case. Suppose f, defined on the 
unit interval, is known only to have a 
first derivative, bounded by L (i.e., 
supxF_[o,l]If' I <L). If we sample f at T 
equidistant points and approximate f at 
any point by the closest point at which 
we have an evaluation, then our ap- 
proximation error cannot exceed 1/2L/T. 
Increasing the density of points reduces 
approximation error at a rate O(1/T). 

Now suppose f is a function on the 
unit square and that it has derivatives 
bounded in all directions by L. In order 
to approximate the function, we need to 
sample throughout its domain. If we 
distribute T points uniformly on the 
unit square, each will "occupy" an area 
1T and the typical distance between 
points will be 1/T 1/2 so that the approxi- 
mation error is now O(1/T '/2). Repeat- 
ing this argument for functions of k 
variables, the typical distance between 
points becomes 1/T A- and the approxi- 
mation error is O(1/T 1k). In general, 
this method of approximation yields er- 
ror proportional to the distance to the 
nearest observation. 

For T = 100, the approximation error 
is 10 times larger in two dimensions 
than in one and 40 times larger in five 
dimensions. Put another way, 100 ob- 
servations in one dimension would yield 
the same accuracy as 10,000 observa- 
tions would in two dimensions and 10 
billion would yield in five dimensions. 
One begins to see the virtues of para- 
metric modelling. 

We will consider three types of re- 
strictions which substantially reduce 
approximation error: a partial linear 
structure, additive separability, and 
smoothness assumptions. 

Suppose a regression function de- 
fined on the unit square has the partial 

linear form z, +f(x) (the function f is 
unknown except for a derivative 
bound). In this case, we need two evalu- 
ations along the z axis to completely de- 
termine P (see the "Semiparametric" 
surface in Figure 2). Furthermore, T 
equidistant evaluations along the x axis 
will ensure that f can be approximated 
with error O(1/T) so that the approxi- 
mation error for the regression function 
as a whole is also O(1/T), the same as if 
it were a nonparametric function of one 
variable. 

Next, consider an additively separa- 
ble function on the unit square: 

f(Xa,Xb) =fa(Xa) +fb(xb), where the func- 
tionsfa and fb satisfy a derivative bound 
(fb(O) = 0 is imposed as an identification 
condition). If we take 2T observations, 
T along each axis, then fa and fb can 
be approximated with error O(1/T), 
so approximation error for f is also 
O(1/T), once again the same as if f 
were a nonparametric function of one 
variable. 

The following proposition should now 
be plausible-for partially linear or ad- 
ditively separable models, the approxi- 
mation error depends on the maximum 
dimension of the pure nonparametric 
components of the model. 

Smoothness can also reduce approxi- 
mation error. Suppose f is twice differ- 
entiable on the unit interval withf' and 
f" bounded by L and we evaluate f at T 
equidistant values of x. Consider ap- 
proximnation of f at xoe [xt,xt + 1]. Using a 
Taylor expansion we have 

f(xo) =f(xt) +f '(Xt)(xo - Xt) 
2 

+ 1/2f "(x*)(xo - xt) x*E [Xt,Xol. (1.4) 

If we approximate f(xo) using f(xt) + 
f'(xt)(xo - Xt) the error is O(X0 - Xt)2 = 

O(1/T2). Of course we do not observe 
f'(xt). However, the bound on the second 
derivative implies that f(xt) - [f(xt+ ) - 

f(xt)]/[xt + 1 - xt] is O(1/T) so that 
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f(xo) = (1.5) 

f(xt) + jf(Xt + 1) -ffi(Xt)] (X1) + O1 

This local linear approximation involves 
nothing more than joining the observed 
points with straight lines. If third order 
(kth order) derivatives are bounded, then 
local quadratic (k-i order polynomial) 
approximations will reduce the error fur- 
ther. 

In this section, we have used the ele- 
mentary idea that if a function is 
smooth, its value at a given point can be 
approximated reasonably well by using 
evaluations of the function at neighbor- 
ing points. This idea is fundamental to 
nonparamnetric estimation where of 
course f is combined with noise to yield 
the observed data. All of the results il- 
lustrated in this section have analogues 
in the nonparametric setting. Data re- 
quirements grow very rapidly as the di- 
mension of the nonparametric compo- 
nent increases. The rate of convergence 
(that is, the rate at which we learn 
about the unknown regression function) 
can be improved using semiparametric 
structure (we illustrate the partial lin- 
ear model but similar results hold for 
partial parametric or index models), ad- 
ditive separability, and smoothness as- 
sumptions. Finally, the curse of dimen- 
sionality underscores the paramount 
importance of procedures which vali- 
date models with faster rates of conver- 
gence. Among these are specification 
tests of a parametric null against a non- 
parametric alternative, and significance 
tests which may reduce the number of 
explanatory variables. 

1.2.3 Local Averaging Estimnators vs 
Optimiz.ation Estimnators. Our first ob- 
jective will be to estimnate y =f(x) + E 

given data (yi,xi) ... (yT,xT). For the 
moment we will assume that x is a sca- 
lar. 

Local averaging estimators are exten- 

sions of conventional estimators of loca- 
tion to a nonparametric regression set- 
ting. If one divides the scatterplot into 
vertical bands, then one can compute 
local means (or medians) as approxima- 
tions to the regression function. A more 
appealing alternative is to have the 
"band" or "window" move along the x 
axis, computing a moving average along 
the way. The wider the band (for the 
moment we set aside the issue of band- 
width selection), the smoother the esti- 
mate, as may be seen in Figure 3 where 
solid lines depict local averaging esti- 
mates. (If one were in a vessel, the 
"sea" represented by the solid line in 
the bottom panel would be the most 
placid.) Suppose then we define the es- 
timator to be 

f(x?) =T,Yt= 
N(xto) (1.6) 

f(xo) +TX, (f(xt)-f(xo)) + , 
ToN(x,) 0N(xJ) 

where summations are taken over ob- 
servations in the neighborhood N(xo) 
around xo determined by the bandwidth, 
and To is the number of elements in 
N(xo). Conditional on the x's, the bias of 
the estimator consists of the second term 
and the variance is determined by the 
third term. The mean squared error (that 
is, the bias squared plus the variance) is 
given by 

2 
E @(xo) -ff(xo)] 

t) y. (1.7) =To E f(t)-f(,x) j+ TO (.7 ?N(x,)? 

Mean squared error can be minimized by 
increasing the bandwidth of the neigh- 
borhood N(xo) until the increase in bias 
squared is offset by the reduction in vari- 
ance. (The latter declines since To in- 
creases as the bandwidth widens.) This 
trade-off between bias and variance is il- 
lustrated in Figure 4 (which continues 
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Figure 3 Naive Local Averaging 
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Figure 4 Bias-Variance Tradeoff 
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the example of Figure 3). In the first 
panel, local averaging is taking place us- 
ing just 5 percent of the data at each 
point (since the bandwidth is .05 and 100 
x's are uniformly spaced on the interval 
[0,1]). The solid line is E[tx)] and the 
estimator exhibits little bias-it coin- 

cides almost perfectly with the true re- 
gression function (the dashed line). The 
broken lines on either side correspond to 
two times the standard errors of the esti- 
mator at each point- 2(Var[ fx)])/2. In 
the second panel the bandwidth is sub- 
stantially broader; we are now averaging 
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about 15 percent of the data at each 
point. The standard error curves are 
tighter but some bias has been intro- 
duced. The E [Aftx)] no longer coincides 
perfectly with the true regression curve. 
In the third panel, averaging is taking 
place over 40 percent of the data. The 
standard error curves are even tighter, 
but now there is substantial bias, particu- 
larly at the peaks and valleys of the true 
regression function. The expectation of 
the estimator E[fAx)] is fairly flat, while 
the true regression function undulates 
widely around it. 

A more general formulation of local 
averaging estimators modifies (1.6) as 
follows: 

T 

f(xo) = W wt(x0)yt. (1.8) 

The estimate of the regression function 
at xo is a weighted sum of the yt where 
the weights wt(xo) depend on xo. (A 
number of local averaging estimators 
can be put in this form including ker- 
nel, nearest neighbor and regresso- 
gram.) Since one would expect that ob- 
servations close to xo would have condi- 
tional means similar tof(xo), it is natural 
to assign higher weights to these obser- 
vations and lower weights to those that 
are farther away. Local averaging estima- 
tors have the advantage that as long as 
the weights are known, or can be easily 
calculated, f is also easy to calculate. 
The disadvantage of such estimators is 
that it is often difficult to impose addi- 
tional structure on the estimating func- 
tionf. 

Optimization estimators, on the other 
hand, are more amenable to incor- 
porating additional structure. As a 
prelude to our later discussion, consider 
the following naive estimator. Given 
data (yI,xi) ... (yT,XT) on yt =f(xt) + et, 

where xte [0,1], suppose If'i< L and we 
solve 

min T X(yt - yt)2 
A1 .,T t 

A A 
Yt - YS < L s,t = 1, ... ,T. (I. 9) 
Xt-XS 

Here At is the estimate of f at xt andf is 
a piecewise linear function joining the 

Yt with slope not exceeding the deriva- 
tive bound L. Under general conditions 
this estimator will be consistent. Fur- 
thermore, adding monotonicity or con- 
cavity constraints, at least at the points 
where we have data, is straightforward. 
As additional structure is imposed, the 
estimator becomes smoother and its fit 
to the true regression function improves 
(see Figure 5). 

1.2.4 A Bird's-Eye View of Important 
Theoretical Results. The non/semipara- 
metric literature contains a large num- 
ber of theoretical results. Here we 
summarize, in crude form, the main 
categories of results that are of par- 
ticular interest to the applied re- 
searcher. 

Computability of Estimators. Our 
preliminary exposition of local averag- 
ing estimators suggests that their com- 
putation is generally straightforward. 
The naive optimization estimator con- 
sidered above can also be calculated 
easily, even with additional constraints 
on the regression function. What is 
more surprising is that estimators which 
minimize the sum of squared residuals 
over (fairly general) infinite dimen- 
sional classes of smooth functions 
can be obtained by solving finite di- 
mensional (often quadratic) optimiza- 
tion problems. (See Sections 2.1 and 
2.2.) 

Consistency. In nonparametric re- 
gression, smoothness conditions (in par- 
ticular, bounds on derivatives), play a 
central role in assuring consistency of 
the estimator. They are also critical in 
determining the rate of convergence as 
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Figure 5 Naive Nonparametric Least Squares 
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The simulations were performed using GAMS -General Algebraic Modelling System (A. Brooke, D. Kendrick, and 
A. Meerhaus 1992). 
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well as certain distributional results.4 
With sufficient smoothness, derivatives 
of the regression function can be esti- 
mated consistently, sometimes by dif- 
ferentiating the estimator of the func- 
tion itself. (See Sections 2.1 and 2.2.) 

Rate of Convergence. How quickly 
does one "discover" the true regression 
function? In a parametric setting, the 
rate at which the variance of estimators 
goes to zero is typically 1/T.5 It does 
not depend on the number of explana- 
tory variables. For nonparametric esti- 
mators, convergence slows dramatically 
as the number of explanatory variables 
increases (recall our earlier discussion 
of the curse of dimensionality), but this 
is ameliorated somewhat if the function 
is differentiable. The optimal rate at 
which a nonparametric estimator can con- 
verge to the true regression function is 
given by (see Charles J. Stone 1980, 1982) 

[f(X) -f(X)]2 dx= OPT2m/(2n + d)j ( 0) 

wheremn equals the degree of differenti- 
ability of f and d is the dimension of x. 
For a twice differentiable function of 
one variable, (1.10) implies an optimal 
rate of convergence of Op(TV5) (a case 
which will recur repeatedly); for a func- 
tion of two variables it is Op(lT2/3). 

Local averaging and nonparametric 

least squares estimators can be con- 
structed which achieve the optimal rate 
of convergence (see Sections 2.1 and 2.2.). 
Rate of convergence also plays an im- 
portant role in certain test procedures. 

If the model is additively separable 
or partially linear, then the rate of con- 
vergence of the optimal estimator de- 
pends on the nonparametric component 
of the model with the highest dimen- 
sion (Stone 1985, 1986). For example, 
for the additively separable model 
y =fa(Xa) +fb(xb) + E where Xa, Xb are sca- 
lars, the convergence rate is the same as 
if the regression function were a non- 
parametric function of one variable. 
The same is true for the partial linear 
model y = zI3 +f(x) + E where x and z are 
scalars. Estimators of E can be con- 
structed for which the variance shrinks 
at the parametric rate 1/T and which 
are asymptotically normal. We have al- 
ready seen a simple differencing esti- 
mator with this property (see Sections 3 
and 4.3 for further discussion). 

For the hybrid regression function 
f(z, Xa, Xb, xc) = Z4 + fa(Xa) + fb(xb) + fc(xc) 
where Xa, Xb, xc are of dimension da, 
db,dc, respectively, the optimal rate of 
convergence for the regression as a 
whole is the same as for a nonparamet- 
ric regression model with number of 
variables equal to max {da, db, dc}. 

Constraints such as monotonicity or 
concavity do not enhance the (large 
sample) rate of convergence if enough 
smoothness is imposed on the model 
(see, Section 4.4). They can improve 
performance of the estimator if strong 
smoothness assumptions are not made 
or if the dataset is of moderate size 
(recall Figure 5). 

Bias-Variance Trade-Off. By increas- 
ing the number of observations over 
which averaging is taking place, one can 
reduce the variance of a local averaging 
estimator. But as progressively less 
similar observations are introduced, the 

4 For example, in proving these results for mini- 
mrization estimators, smoothness is used to ensure 
that uniform (over classes of functions) laws of 
large numbers and uniform central limit theorems 
apply; see Richard Dudley (1984), David Pollard 
(1984), and Donald W.K. Andrews (1994a). 

5 In the i.i.d. setting, if y = ,t + E, Var(y-) = G2/T 
hence g - = Op(T-'2). For the linear regression 
model y = + r3x + ? we have: 

J@t + rx - Q - r3x)2dx = (o - oc)2Jdx + (,B - ,)2Jx2dx 

+ 2(ox - f- )Jxdx = 0p(1/T), 

since A, are unbiased and Var(&),Var(f) and 
Cov(&r3) converge to 0 at 1/T. The same rate of 
convergence usually applies to general parametric 
forms of the regression function. 
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estimator generally becomes more bi- 
ased. The objective is to minimize the 
mean squared error (variance plus bias 
squared). For nonparametric estimators 
which achieve optimal rates of conver- 
gence, the square of the bias and the 
variance converge to zero at the same 
rate (see Section 2.1 below). (In para- 
metric settings the former converges to 
zero much more quickly than the lat- 
ter.) Unfortunately, this property com- 
plicates the construction of confidence 
intervals and test procedures. 

Asymptotic Distributions of Estima- 
tors. For a wide variety of nonparamet- 
ric estimators, the estimate of the 
regression function at a point is ap- 
proximately normally distributed. The 
joint distribution at a collection of 
points is joint normally distributed, as 
are various functionals such as the aver- 
age sum of squared residuals. (See Sec- 
tions 2.1 and 2.2 below.) 

How Much to Smooth. Smoothness 
parameters such as the bandwidth can 
be selected optimally by choosing the 
value which minimizes out-of-sample 
prediction error. The technique, known 
as cross-validation, will be discussed be- 
low (see Section 2.3). 

Testing Procedures. A variety of 
specification tests of parametric or 
semiparametric null hypotheses against 
nonparametric or semiparametric alter- 
natives are available. Some nonparamet- 
ric tests of significance are also avail- 
able. There are also tests of additive 
separability, monotonicity, homogene- 
ity, concavity and maximization hypo- 
theses. The validity of bootstrap infer- 
ence procedures has been proved in a 
number of cases. A fairly unified testing 
theory can be constructed using condi- 
tional moment tests. 

1.3 Reprise 

In this introductory part of the paper, 
we have argued that nonparametric 

regression estimation techniques are 
based upon principles which should be 
familiar to the applied economist-in 
particular, the notion of a local average 
and the principle of least squares. We 
have also introduced naive implementa- 
tions of each of these principles for 
models with a single explanatory vari- 
able. 

Of course, very few relationships of in- 
terest to economists are so simple. Both 
principles have natural implementations 
in the presence of multiple explanatory 
variables. Unfortunately, our ability to 
accurately estimate the relationship de- 
teriorates as the number of such vari- 
ables increases. This "curse of dimen- 
sionality" canl be mitigated somewhat by 
introducing additional structure such as 
a semiparametric specification, by as- 
suming higher order differentiability, or 
by imposing additive separability. 

2. Nonparametric Regression 

2.1 Kernel Estimators 

2.1.1 Estimation. We continue with 
our nonparametric regression model 
y =f(x) + , where for the time being x is 
a scalar. A conceptually convenient way 
to construct local averaging weights for 
substitution into (1.8) is to use a uni- 
modal function centered at zero, which 
declines in either direction at a rate 
controlled by a scale parameter. Natural 
candidates for such functions, which are 
commonly known as kernels, are prob- 
ability density functions. Let K be a 
bounded function which integrates to 
one and is symmetric around zero. De- 
fine the weights to be 

I 
K tXj 

wt(xo) = (2.1) 

TK Xt XoJ 
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The shape of the weights (which, by con- 
struction, sum to one) is determined by 
K, while their magnitude is controlled by 
X which is known as the bandwidth. A 
large value of X results in greater weight 
being put on observations that are far 
from x,. Using (1.8) the nonparametric 
regression function estimator (first sug- 
gested by E.A. Nadaraya 1964 and G.S. 
Watson 1964) becomes 

-,T K 
x o yt XT~ LXY 

fix0) = (2.2) 

XK Xt XoJ XTE I 

A variety of other kernels are available 
(see Figure 6). Generally, selection of 
the kernel is less important than selec- 
tion of the bandwidth over which obser- 
vations are averaged. The simplest is the 
uniform kernel (a.k.a. rectangular or box 
kernel), which takes a value of 1 on 
[- 1/2,1/2] and 0 elsewhere. We focus on it 
next as it will provide us with the clear- 
est insights. 

2.1.2 Uniform Kernel, x's Uniformly 
Distributed on [0,1]. In order to garner 
some intuition, in addition to working 
with a uniform kernel, assume for the 
moment that x is uniformly distributed 
on the unit interval. If we draw T obser- 
vations on x, then the proportion of ob- 
servations falling in an interval of width 
X will be approximately X and the num- 
ber will be approximately XT.6 

More formally, define the neighbor- 
hood around xo as N(xo) = fxt XtE [Xo - 

A/2, xo + A/2]} and note that there are 
roughly AT observations in N(xo). For 

the uniform kernel, the denominator of 
(2.2) will be about 1 and the estimator 
fxO) becomes a simple average of the yt 
over the neighborhood N(xo). (For ex- 
ample, if the bandwidth equals .2, one 
is averaging about .2T observations or 
about 20 percent of the data to obtain 
the estimate.) Thus, we have 

f(xo) -Xyt 
N(x0) 

_1 1 

XT X f(xt) + et 

Nff(x0) XTN (Xt-X)(23 
fN(xo ) 

+f (Xo) (Xt - Xo) + 2T3t. 
2TN(Xo) N(x) 

1 ~~~~2 
-ff(xo) + '/2f t(Xo)7T E (Xt - Xo) 

N(xf) 

+ 
2kT J: ( +t T E et. 

N(xN) 

We have applied a second order Taylor 
series.7 Next, we rewrite (2.3) as 8 

6 Two conditions are imposed on X. The first is 
X - 0 which ensures that averaging takes place 
over a shrinking bandwidth, thus eventually elimi- 
nating bias. The second is XT -> which ensures 
that the number of observations being averaged 
grows, which allows the variance of the estimate to 

ecline to 0. 

7In particular, f(xt) =f(x,) + f '(xo)(xt - xo) + 
1/2f'(xo)(xt - xO)2 + O(Xt - xO)2. We are obviously as- 
suming second order derivatives exist. 

8 Consider a random variable Uz which is uni- 
formly distributed on an interval of width X cen- 
tered at 0. Then Var(Ux) = X2/12. To obtain (2.4) 

from (2.3) it is useful to think of 
I 

Y (Xt - xo) 
xtSN(Xo) 

as an average of XT such random variables, in 
which case the average has mean 0 and variance 
X/12T. Thus, the second term in the third line 
of (2.3) converges to 0 fast enough so that for 
our purposes we can set it to 0. Next, think of 
I 

I (Xt - xo)2 as an estimator of the variance of 
xteN(xo) 

Us. The estimator converges quickly enough so 
that the second term of the last equation of (2.3) 
can be approximated by 1/24f "(xo)X2. 
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Figure 6. Alternative Kernel Functions 
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f(x) _f(x) +24- 2f '"(xo) + X E (2.4) 
N(xo) 

The last term is an average of about XT 
independent and identical random vari- 

ables so that its variance is 62/XT and we 
have: 

J(Xo) =f(Xo) + 0(k2) + ?p (XT) (2.5) 
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The bias E(f(x,) -f(x0)) is approximated 
by the second term of (2.4) and the 
Var(f(x0)) is approximately Y?JXT so that 
the mean squared error (the sum of the 
bias squared and the variance) at a point 
xo is 

E[f(xo) -f(xo)] = O(X4) TO J (2.6) 

The approximation embodied in (2.4) 
yields dividends immediately. As long as 
X -* 0 and AT -* oo, the second and third 
terms go to zero and we have a consis- 
tent estimator. 

The rate at which fixo) -f(xo) - 0 de- 
pends on which of the second or third 
terms in (2.4) converge to zero more 
slowly. Optimality is achieved when the 
bias squared and the variance shrink to 
zero at the same rate. Using (2.5) one 
can see that this occurs if 0(X2) = 

Op((TX)-?/2 ) which implies that optimal- 
ity can be achieved by choosing X= 
O(T-1/5). In this case 

Axo) f(xo) + T2/) PT2/5) (27) 

Equivalently, we could have solved for 
the optimal rate using (2.6). Setting 
Q(X4) = O(1/XT) and solving we again ob- 
tain A = O(rl/5). Substituting into (2.6) 
yields a rate of convergence for the mean 
squared error at a point xo of E[f(xO) - 

f(x0)]2 = O(T4/5). This in turn underpins 
the following: 

f[(x) -f(X)]2dx = Op{T 4/5 (2.8) 

a rather pleasant result in that it satisfies 
Stone's optimal rate of convergence, 
equation (1.10) above (m=2, d=1). 

Applying a central limit theorem9 to 
the last term of (2.4), we have: 

(AT)1/2 (XO) -f(xO) 

- 2f "(Xo) -N(O,a?) (2.9) 

If we select X optimally, say, A= =-1/5 
then (XT)/2X2 = 1 and the construction of 
a confidence interval for f(xo) is compli- 
cated by the presence of the term involv- 
ing f"(x0) (which would need to be esti- 
mated). However, if we select X to go 
to zero faster than T-r15 (for example, 
X = T-1/4), then (XT)?/2X2 -> 0 and (2.9) be- 
comes (XT)(/2(xo) -f(xA)) N(0y2). Intui- 
tively, the bandwidth is shrinking fast 
enough so that the bias is small relative 
to the variance (see (2.5) above). In this 
case, a 95 percent confidence interval for 
f(xo) is approximatelyAix0) ? 1.966/(XT)?2. 

Let us pause for a moment. In this 
section, we have illustrated three essen- 
tial results for a simple kernel estima- 
tor: that it is consistent; that by averag- 
ing over a neighborhood which shrinks 
at an appropriate rate it achieves the 
optimal rate of convergence, and that it 
is asymptotically normal. 

2.1.3 General Kernel, x's Distributed 
with General Distribution p(x). For a 
general kernel and assuming that the x's 
are random with probability density 
p(x), the Nadaraya-Watson kernel esti- 
mator (2.2) is consistent. The numera- 
tor converges to f(xo)p(xo) and the de- 
nominator converges to p(xo). 

The rate of convergence is optimized 
if X = O(T'15) in which case the inte- 
grated squared error converges at the 
optimal rate Op(T-4/5) as in (2.8). Confi- 
dence intervals may be constructed us- 
ing: 

(AXT)/2f(xo) -f(to) - 1/2 aKk2 f (Xo) 

+2fo(x)PVo) -N b kN0, (2.10) 
p(xo))) p(xo)) 

9One must be a little bit careful because the 
rnumber of Ct being summed is random. See, for 
example, Robert Serfling (1980, p. 32). 
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where p(.) is the density of x and 

aK =u2K(u)du bK =K2(u)du (2.11) 

If the bandwidth converges to zero at 
the optimal rate, then estimates of the 
first two derivatives off, the density of x 
and its first derivative, as well as the 
variance of the residual must all be ob- 
tained in order to construct a confidence 
interval which in large samples will have 
the correct coverage probability.10 

Again, the bias term in (2.10) can be 
made to disappear asymptotically by 
permitting the bandwidth to shrink at a 
rate that is faster than the optimal rate. 
Averaging over a narrower range re- 
duces the bias but increases the vari- 
ance of the estimator. 

An alternative, which takes account 
of both bias and variance terms without 
requiring their calculation, is based on 
the bootstrap. Figure 7 provides imple- 
mentation details for both asymptotic 
and bootstrap confidence intervals. 

Thus far we have discussed confi- 
dence intervals for f at a point. A more 
interesting graphic for nonparametric 
estimation is a confidence band or rib- 
bon around the estimated function. The 
plausibility of an alternative specifica- 
tion (such as a parametric estimate, a 
monotone, or concave estimate) could 
then be assessed by superimposing the 
latter on the graph to see if it falls 
within the band.11 

Figure 8 provides nonparamnetric ker- 
nel estimates of the Engel curve relating 
expenditure on food to income. The 90 
percent uniform confidence band was con- 
structed using the reguncb function in 
XploRe (Hardle, Klinke and Turlach 

1995). Also displayed is an estimated 
linear regression function which falls 
within the nonparametric confidence 
band at all but extreme levels of income. 

2.1.4 Kernel Estimation of Functions 
of Several Variables. In economics, it is 
rarely the case that one is interested in 
a function of a single variable. Even if 
we are comfortable incorporating most 
of our explanatory variables parametri- 
cally (for example, within a partial lin- 
ear model), there may be more than 
one variable entering nonparametri- 
cally. The effect of geographic location 
(a two-dimensional variable) provides one 
such example (see Figure 11 below). 

Suppose then that f is a function of 
two variables. We are given data 
(yi,xI) ... (YT,XT) where Xt = (Xtl,Xt2) on 
the model yt =f(xtl,xt2) +Et and we will 
assume f is' a function on the unit 
square [0,1]2. We want to estimatef(xo) 
by averaging nearby observations; in 
particular we will average observations 
falling in a square of dimension X -AX 
which is centered at xo. If the xt are 
drawn from a uniform distribution on 
the unit square, there will be (approxi- 
mately) X2T observations in the neigh- 
borhood defined by N(xo) = {Xt I Xtl E xol 

_ X/2, Xt2 E Xo2 ? X/2}. (For example, any 
square with sides A,= .5 has area .25 and 
will capture about 25 percent of the ob- 
servations.) Consider then: 

A 1 
f(xo) = X2T I yt 

N(xo) 

1 1 
- X f(xt) + 2I t 
2TN(xo) 2TN(Xo) (2.12) 

ffi(xo) + O(2) + 1 t 
+2TN(xo) 

=f(Xo) + O(X2) + Op{X T/ 

10 See Hardle and Linton (1994, p. 2310). The 
normality result in (2.10) extends to the case 
where one is interested in the joint distribution of 
estimates at a vector of points. 

11 See Hardle and Oliver Linton (1994, p. 2317), 
Peter Hall (1993), and Randall Eubank and Paul 
Speckman (1993). 
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Figure 7. Confidence Intervals for Kernel Estimators - Implementation 

ASYMPTOTIC CONFIDENCE INTERVAL ATf (X0) 

1. Select X so that T"15 X -4 0, e.g. X = 0 (T-1"4). This ensures that the bias term does not appear in the limiting 
distribution (2.10). 

2. Select a kernel K and calculate bK = fK2(u)du. For the uniform kernel on [ 1/2,1/2] bK = 1. 

3. Estimatef using the Nadaraya-Watson estimator (2.2). 

4. Calculate 62= 1/T E (yt-f(xt)2. 
5. Estimate p (xo) using denominator of (2.2). If the uniform kernel is used, p3 (xo) equals the numver of xt in the 

interval xo?+X/2 divided by X. 
6. Calculate the confidence interval atf (xo) using f(xo) ?1.96 bK )e 

p5 (x0)XT 

BOOTSTRAP CONFIDENCE INTERVAL* ATf (X0) 

1. Estimatef using the optimal bandwith X = 0 (T-1"5), call this estimatefx, then calculate the residuals gt = yt-f(xt). 
2. Re-estimatef using a wider bandwidth, say X, (which will result in some oversmoothing) and call this estimatef. 

Resample the estimated residuals gt using the 'wild' bootstrap to obtain bootstrap residuals qB and construct a 
bootstrap dataset yt =fx (xe) + ?, t=.T. 

3. Estimatef (x0) using the bootstrap data and X = 0 (T-"15) to obtainf B (xo). Repeat the resampling many times and 
obtain the .025 and .975 quantiles of the distribution offB (xo). The result yields a 95% confindence interval for f (xo) 
which has the correct coverage probability in large sampites. 

*For the theory underlying this bootstrap methodology see Hardle (1990, Th. 4.2.2, and pp. 106-7, 247). See also 
Appendix B of this paper. 

What we have done here is to mimic the 
reasoning in equations (2.3)-(2.5) but 
this time for the bivariate case. (We have 
assumed that f is twice differentiable, 
but have spared the reader the Taylor 
series expansion.) However, there is a 
subtle difference. The bias term is still 
proportional to X2, but the variance term 
is now OA(I/XT?) rather than Op(1/(XT)?') 
since we are averaging approximately X2T 
values ofEt, 

Hence for consistency, we now need 
->O 0 and AT '/2 -> o. As before, conver- 

gence of Afxo) tof(xo) is fastest when the 
bias and variance terms go to zero at 
the same rate, that is when X = O(T-1/6). 
The second and third terms of the last 
line of (2.12) are then Op(T-'/3) and 
J [f(x) -f(x)]2dx = Op(T-2/3) which is opti- 
mal (see (1.10) above). 

More generally, if the xt are d-dimen- 
sional with probability density p(x) de- 
fined on the unit cube in Rd, and we are 

using a kernel K then the estimator in 
(2.2) becomes 

T d 
Kt 1 xoij 

A XdT~ ~j=! 
f(xo) = . (2.13) 

1 
T H K CXoj j 

Again, if K is the uniform kernel on [-1/2, 
1/2], then the product of the kernels 
(hence the term product kernel) is 
one only if xtic [xoi - X/2, xoi + X/2] for 
i= 1,... ,d, that is only if xt falls in the d- 
dimensional cube centred at xo with sides 
of length B. 

Above we have introduced a simple 
kernel estimator for functions of several 
variables which averages observations 
over a cube centered at xo. A multitude 
of variations and alternatives exists. For 
example, one could select different 
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Figutre 8. Engel Curve Estimation 

MODEL: y =f(X) + ? where y is expendituire on food, x is income (units are in 104 Canadian dollars). 

DATA: the data consist of a sample of 1058 two-parent households with two children below 16 years of age. 
Source, 1992 Survey of Family Expenditures, Household Survey Division, Statistics Canada. 

ESTIMATED MODELS 

1.2 

1.0 . 

0.8- 

0.6 .-. 

0.4- .., ' - ...... 

0.2- 

0.0 2.0 4.0 6.0 8.0 10.0 

Linear Model and Kernel Estimate with 90% Uniform Confidence Band 

Estimation and graphics produced using XploRe (Hairdle, Klinke, and Turlach 1995). Uniform confidence band use 
routine reguncb. 

bandwidths for each dimension so that 
averaging would take place over rec- 
tangular cubes rather than over per- 
fect cubes. Or, one might select differ- 
ent kernels for each dimension. Still 
more generally, one could average over 
non-rectangular regions such as spheres 
or ellipsoids. For details in a multivari- 
ate density estimation setting, see for 
example, David Scott (1992, pp.149- 
55). 

2.2 Nonparametric Least Squares 12 

2.2.1 Estimation. In order to imple- 
ment nonparametric least squares esti- 
mators, we will need a tractable way to 
impose constraints on various order de- 
rivatives. Let Cn be the set of functions 

12 S line function estimation, which is closely 
related to nonparametric least squares, is a widely 
used technique. We begin with an exposition of 
the latter, then- explain its relationship to the 
former. 
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that have continuous derivatives up to 
order m (for expositional purposes we 
restrict these functions to the unit in- 
terval). A measure of smoothness that is 
particularly convenient is given by the 
Sobolev norm: 

lIf If Sob= [f 2 + (f ')2 + (f ")2 

1/2 

+ ... + (f(m))2] (2.14) 

where (in) denotes the mth order deriva- 
tive. A small value of the norm implies 
that neither the function, nor any of its 
derivatives up to order m can be too 
large over a significant portion of the do- 
main. Indeed, bounding this norm im- 
plies that all lower order derivatives are 
bounded in supnorm.13 (Recall from 
Section 1.2 and Figure 5 that even 
bounding the first derivative produces a 
consistent nonparametric least squares 
estimator.) 

Suppose we take our estimating set 3 
to be the set of functions in Cm for 
which the square of the Sobolev norm is 
bounded by say L, that is, 3Z = {fe Cnl, 
2If < lob < L}. The task of finding the 

function in 3 that best fits the data 
would appear to be daunting. After all, 
3 is an infinite dimensional family. 
What is remarkable is that the solutionf 
that satisfies 

s= min 4 , [yt-f(xt)] 
f t 

s.t. 2If ob < L (2.15) 

can be obtained by minimizing a quad- 
ratic objective function subject to a 
quadratic constraint. The solution is of 
the form f = 41 'trx, where rX., rXT are 
functions computable from x, XT and 
e = (1, C--, T) is obtained by solving 

1 
min - [y - Rc]' [y - Rc] s.t. c'Rc < L (2.16) 

c T 

where y is the Txl vector of observations 
on the dependent variable and R is a TxT 
matrix that is computable from xi, ..., XT. 
Note that even though one is estimating 
T parameters to fit T observations, the 
parameters are constrained so that there 
is no immediate reason to expect perfect 
fit.14 

Repeating the main point: the infi- 
nite dimensional nonparametric least 
squares problem (2.15) may be solved 
by solving the finite dimensional opti- 
mization problem (2.16). Furthermore, 
if x is a vector, the Sobolev norm (2.14) 
generalizes to include various order 
partial derivatives. The optimization 
problem has the same quadratic struc- 
ture as in the one-dimensional case 
above, and the functions r.17 ...IrXT as 
well as the matrix R are directly com- 
putable from the data xi, ..., XT. 

Our Returns to Scale in Electricity 
Distribution example, which we con- 
tinue in Figure 10 below, illustrates a 
nonparametric least squares estimator 
of f. We have imposed a fourth order 
Sobolev norm (m=4 in equation [2.14]), 
which implies at least three bounded 
derivatives. As one can see, the non- 
parametric least squares estimate is 
very similar to the quadratic estimate of 
the scale effect. 

2.2.2 Properties of Estimator15 The 
main statistical properties of the proce- 
dure are these: f is a consistent estima- 
tor of f, indeed low order derivatives of 
f consistently estimate the correspond- 
ing derivatives of f. The rate at which f 

13 That is, there exist constants Lz such that for 
all frZ, sup, I Ji) < L ,i = 1, ..., in - 1, where 3 is de- 
fined momentarily. This result flows from the 
Sobolev Imbedding Theorem. 

14 The rx, are called representor functions and 
R, the matrix of inner products of the rX,, the rep- 
resentor matrix. See Grace Wahba (1990) for de- 
tails. An efficient algorithm for solving the optimi- 
zation problem in (2.16) may be found in Gene 
Golub and Charles Van Loan (1989, p. 564). 

15 These results may be proved using empirical 
processes theory as discussed in Dudley (1984) 
and Pollard (1984). 
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converges to f satisfies equation (1.10). 
These optimal convergence results are 
useful in producing consistent tests of a 
broad range of hypotheses. 

The average minimum sum of 
squared residuals s2 is a consistent esti- 
mator of the residual variance y2 . Fur- 
thermore, in large samples, S2 is indis- 
tinguishable from the true average sum 
of squared residuals in the sense that 

V/2(s2 - 
I 

, 2) - 0 (2.17) 

in probability. Next, since T'/2(1/T I?t2 

-2) -4 N(0,Vai(?2)) (just apply an ordi- 
nary central limit theorem), equation 
(2.17) implies 

7T'/2(S2 - (y2) - N(0,Var(?2)) (2.18) 

As we shall see below, this result lies 
at the heart of demonstrating that non- 
parametric least squares can be used to 
produce T'/2 consistent normal estima- 
tors in the partial linear model. 

Finally, the estimator being consid- 
ered here is closely related to spline 
function estimators. Assume for the mo- 
ment fl > 0 is a given constant16 and 
consider the penalized least squares 
problem: 

min - [yt-f(xt)] + IIf1ISob* (2.19) 

The criterion function trades off fidelity 
to the data against smoothness of the 
function f. There is a penalty for select- 
ing functions which fit the data ex- 
tremely well but as a consequence are 
very rough (recall that the Sobolev norm 
measures the smoothness of a function 
and its derivatives). A larger il results in 
a smoother function being selected. 

If one solves (2.15), our nonparamet- 
ric least squares problem; takes the La- 
grangian multiplier, say il associated 
with the smoothness constraint; then 

uses it in solving (2.19), the resulting f 
will be identical.17 

2.3 Selection of Smoothing Parameter18 

2.3.1 Kernel Estimation. We now turn 
to selection of smoothing parameters 
for kernel estimators. If the bandwidth 
X is too large, then oversmoothing will 
exacerbate bias and eliminate important 
features of the regression function. Se- 
lection of a value of X that is too small 
will cause the estimator to track the 
current data too closely, thus impairing 
the prediction accuracy of the esti- 
mated regression function when applied 
to new data (recall Figures 3 and 4). To 
obtain a good estimate of f we would 
like to select X to minimize the mean 
integrated squared error: 

2 

MISE(X) = EJ Lf(x;X) -f(x)j dx (2.20) 

where we write Ax;X) to explicitly denote 
that the kernel estimator depends on the 
choice of X. Of course we do not observe 
f so the MISE cannot be minimized di- 
rectly. Nor will selecting X by minimiz- 
ing the estimate of the residual variance 

62(X = 
I 

[yt_( A; 
2 

t t= 1 (2.21) 

lead to a useful result-the minimum of 
(2.21) occurs when X is reduced to the 
point where the data are fit perfectly. 
However, this idea can be modified to 
produce useful results. Consider a slight 
variation on (2.21) known as the cross- 
validation function: 

CV(X) = T E [yt -f-t(Xt;X)] (2.22) 
t= 1 

16 Actually, it is selected using cross-validation, 
a procedure which we discuss shortly. 

17 In their simplest incarnation, spline estima- 
tors use f(f ")2 as the measure of smoothness. See 
Eubank (1988) and Wahba (1990). 

18 Cross-validation was first proposed for the 
kernel estimator by Clark (1975) and for spline 
estimation by Wahba and Wold (1975). 
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The only difference between (2.21) and 
(2.22) is that the kernel estimator is sub- 
scripted with a curious "-t" which is used 
to denote that f-t is obtained by omnit- 
ting the tth observation. Thus the esti- 
mate of f at each point xt is obtained by 
estimating the regression function using 
all other observations, then predicting 
the value off at the omitted observation. 
(For a given value of X, CV(X) requires 
calculation of T separate kernel esti- 
mates.) 19 

This subtle change results in some ex- 
tremely propitious properties (see, for 
example, Hardle and James Marron 
1985, Hardle, Hall, and Marron 1988). 
In particular, suppose an optimal X, say 
XOPT, could be chosen to minimize 
(2.20). Let X be the value that mini- 
mizes (2.22). Then MISE (%) / MISE (XOPT) 

converges to one; that is, in large sam- 
ples, selecting X through cross-valida- 
tion is as good as knowing the X that 
minimizes the integrated mean squared 
error. 

2.3.2 Non parametric Least Squares. 
The heuristics of selection of the 
smoothness bound for nonparametric 
least squares are similar. If we select L 
in (2.15) to be much larger than the 
true norm, then our estimator will be 
less efficient though it will be consis- 
tent. If we select a bound that is smaller 
than the true norm, then our estimator 
will generally be inconsistent. The 
cross-validation function is defined as 

CV(L) =- [Yt -f-001 (2.23) 
t= 1 

where At is obtained by solving 

mnin - , [yi -f(xi)] 

s.t. If| 2 <ob L. (2.24) 

Note the subtle change from 2.15. 
The interpretation of the smoothing 

parameter is somewhat different. In 
kernel estimation it corresponds to the 
width of the interval over which averag- 
ing takes place; in nonparametric least 
squares it is the diameter of the set of 
functions over which estimation takes 
place. 

Figure 9 illustrates the behavior of 
the cross-validation function for both 
kernel and nonparametric least squares 
estimators. The data generating mecha- 
nism is given by the model yt = xt + t, 
et - N(O,.O1), t = 1,... 25 where xt are 
equally spaced on the interval [0,1]. 
The minimum of the cross-validation 
function for the kernel estimator is 
approximately .25. Thus, at a typical 
point xo the optimal kernel estimator 
f(xO) will involve about 25 percent of the 
observations. 

For the nonparametric least squares 
cross-validation function, note first that 
the square of the Sobolev norm (2.14) 
of the true regression function is given 
by 1J x2 + 1 = 11/3. Thus, L = 11/3 would be 
the smallest value which would ensure 
consistency of the nonparametric least 
squares problem (2.15). In the simula- 
tions (Figure 9), the minimum of the 
cross-validation function is between 1.4 
and 1.5.20 

2.3.3 Further Comments. A number 
of researchers have investigated alter- 
nate procedures for selecting the 
smoothing parameter. Unlike the case 
of kernel estimation of density func- 
tions, no convenient rules of thumb 

19 The notion that out-of-sample prediction is a 
useful criterion for estimation and testing is, of 
course, quite generally applied in statistics. In the 
simplest case, one can imagine dividing a sample 
in two, using one part to estimate the model, and 
the other to assess its accuracy or validity. This 
naive approach, however, does not make optimal 
use of the data, a problem that is resolved through 
the cross-validation device. 

20 For optimality results on cross-validation in 
a spline setting, see Li (1986,1987) and Wahba 
(1990, p. 47). 
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Figutre 9. Selection of Smoothlinig Parameters 

KERNEL: - CROSS-VALIDATION FUNCTION 
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Data generating mechanism: yt =Xt + Et, Et - N (0,.01), t=1,...25, where xt are equally spaced on the interval [0,11. Kernel 
cross-validation performned using XploRe function regcvl, see Hardle, Klinke, and Turlach (1995, p. 88). Nonparametric 
least squares cross-validation performned using Fortran code wvitteni by the author. 
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are available for kernel regression.21 
However, by simply trying different val- 
ues for the smoothing parameter and 
visually examining the resulting esti- 
mate of the* regression function, one 
can often obtain a useful indication of 
whether one is over- or under-smooth- 
ing. 

Furthermore, cross-validation can be 
automated relatively easily. The kernel 
cross-validation function in Figure 9 
was obtained using the regcvl in XploRe. 
S-Plus uses cross-validation to produce 
its spline estimates, and other auto- 
mated procedures are also available.22 

2.4 Reprise 

This portion of the paper focussed 
on developing the kernel estimator (an 
example of a local averaging estimator) 
and on a nonparametric least squares 
estimator closely related to spline esti- 
mation. The statistical properties of the 
former are relatively easy to derive us- 
ing basic techniques. For example, it is 
straightforward to demonstrate that ker- 
nel estimators are consistent and ap- 
proximately normally distributed. If the 
estimator is to achieve the optimal rate 
of convergence, then its bias squared 
and variance must go to zero at the 
same rate, which complicates the con- 
struction of confidence intervals. De- 
spite the somewhat burdensome nota- 
tion, for example, equation (2.13), 
kernel estimation of functions of several 
variables is conceptually straightfor- 
ward-for example, with a uniform 
kernel, averages are taken over a 
square (or cube) rather than over an in- 
terval. 

Derivation of the properties of non- 

parametric least squares or spline esti- 
mators is considerably more difficult 
and we have merely asserted them. 
Such estimators are consistent and 
achieve optimal rates of convergence. 
They also have considerable appeal 
since it is relatively easy to impose addi- 
tional structure on such estimators. (We 
will devote attention to constrained es- 
timation and hypothesis testing in Sec- 
tion 4 below.) 

Both local averaging and least 
squares estimation require the selection 
of a smoothing parameter. In kernel es- 
timation, it is the neighborhood (or 
bandwidth or window) over which aver- 
aging is to take place. In nonparametric 
least squares it is the diameter of the 
ball of functions over which estimation 
is to take place. Selection of the 
smoothing parameter is performed by 
trying different values and selecting the 
one that minimizes (out-of-sample) pre- 
diction error, a technique known as 
cross-validation. 

It should be emphasized that in this 
section we have introduced but two 
nonparametric regression estimators. A 
wide variety of others exists (see for ex- 
ample Hardle 1990, Ch.3 and Jianqing 
Fan and Irene Gijbels 1996, Ch. 2 for 
overviews). 

3. The Partial Linear Model 

3.1. Estimation 

3.1.1 Introduction. Given i.i.d. data 
(y1x1,Z1), ..i . ) (yT,xT,zT) consider the semi- 
parametric regression model which was 
discussed in the opening section of the 
paper: 

y = Z +f(x) + ?, (3.1) 

where E(y I z,x) = zIP +f(x), 62 = Var[y z,x]. 
The function f is not known to lie in a 
particular parametric family. An early 
and important application of this model 
was that of Robert Engle, Clive Granger, 

21 For "rules of thumb" in a kernel density set- 
ting, see Scott (1992, ch. 6). For alternatives to 
cross-validation in nonparametric regression set- 
ting, see for example, Simonoff (1996, p. 197 and 
references therein). 

22 See Venables and Ripley (1994, p. 250). 
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John Rice, and Andrew Weiss (1986), 
who used it to study the impact of 
weather on electricity demand. 

Peter Robinson's (1988) influential 
paper demonstrates that the parameter 
a can be estimated at parametric rates, 
that is, - , = Op(77?2), despite the pres- 
ence of the nonparametric function f. 
Specifically, Robinson rewrites (3.1) 
conditioning on x: 

y - E(y I x) = y - E(z I x)f -f(x) 

= [z-E(z Ix)]p+?. (3.2) 

If E(y I x) and E(z I x) are known, then or- 
dinary least squares on (3.2) yields an es- 
timate of 3 which is asymptotically nor- 
mal with variance y2/Ty2 where (y2 is the 
variance of the z conditional on x. Of 
course, the regression functions E(y I x) 
and E(z I x) are generally not even known 
to have particular parametric forms. Ro- 
binson then produces nonparametric 
(kernel) estimators of E(y I x) and E(z I x) 
that converge sufficiently quickly so that 
their substitution in the OLS estimator 
does not affect its asymptotic distri- 
bution.23 

3.1.2 Nonparametric Least Squares. 
Returning to (3.1), consider the condi- 
tional distribution of y,z Ix where all 
variables are scalars: 

z =E(z Ix)+u =g(x)+u 
y=E(y Ix)+v=h(x)+v 

= (g(x)03 +f(x)) + (up + C) (3.3) 

To simplify exposition we assume both 
conditional models are homoscedastic so 
that 

CV .U> 
L 

v .] (T 2P2 
+ 22j (3.4) 

Under sufficient smoothness assump- 
tions, the nonparametric least squares 

estimator (2.15) can be applied equation 
by equation. The sample variances 
su2=fUA2/T, sv2= IA2/T are Tl/2 consistent 
asymptotically normal estimators of 
the corresponding population variances 

y2, (using equation [2.18]). It can also 
be demonstrated that StlV = IUA At/T is a 
T'/2 consistent asymptotically normal 
estimator of alv. In summary, the 
sample analogue to (3.4), that is, the ma- 
trix of estimated variances and covari- 
ances, is T'/2 consistent asymptotically 
normal. 

Now v3 = , so that it is fairly 
straightforward to show that its sample 
analogue , = sUV/sS is also T1/2 consistent 
asymptotically normal. Furthermore, its 
variance is given by 6y2/T(y2, the same 
variance attained by the Robinson esti- 
mator. 

Thus, inference may be conducted 
using - N(p,62/T(y2). Alternatively, the 
bootstrap may be used to obtain stan- 
dard errors and critical values (see 
Mammen and Van de Geer 1995, and 
Yatchew and Bos 1997).24 

3.1.3 The Differencing Estimnator 
Revisited25. In the introduction to this 
paper, we outlined an estimator of f3 
which involves reordering the data so 
that the x's are in increasing order, 
then differencing to remove the non- 
parametric effect. The estimator is 
given by: 

5dzff X(yt - yt-1) (Zt - Zt-1) 

(zt- Zt_1)2 

23 For general results of this nature, see Whit- 
ney Newey (1994). See also Linton (1995b) who 
analyzes higher order properties of :. 

24 We note that one can perform semiparametric 
least squares on the model (3.1) by minimizing the 
sum of squared residuals with respect to P and f 
subject to a smoothness constraint on f, but the 
resulting estimator of P would not in general con- 
verge at T-V2. See Hung Chen (1988). 

25 The idea of differencing to remove a nonpara- 
metric effect in pure nonparametric models has 
been used by John Rice (1984), Yatchew (1988), 
Peter Hall, J.W. Kay, and D.M. Titterington 
(1990), and others. Powell (1987) and Hyungtaik 
Ahn and Powell (1993), among others, use the 
idea in the partial linear model. 
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We asserted that Jif- N(P,1.52/ToU), 
which has 66.7 percent (1/1.5) efficiency 
relative to the efficient estimator (for ex- 
ample, Robinson 1988). In this section 
we sketch out the main idea of the proof 
of this result and provide an estimator 
based on higher order differencing 
which is asymptotically efficient. 

Using (3.3) to substitute for yt and zt 
in IAdiff and then rearranging terms we 
have 

T'12(5ditff- 

For/2 Y(xt) -ffxt-i) + _t - Et-1) 

* Wxt) 9 (Xt-1) + Ut - Ut-1)1 

/ D,(gxO - g(xt_1) + ut - ut_1)2 (3.6) 

For simplicity, consider the case where 
the xt are equally spaced on the unit in- 
terval. We assume that first derivatives 
of f and g are bounded by L . Then: 

T1'/2 4 X(f(xt) -f(xt-1))(g(xt) - g(xt-)) 

T'/2 L2_ 
< T XL2lxt - xt_112 =L2 (3.7) 

and 

FT'/21 
Var [ T ut(f(xt) -f(xt-i))j 

= Xt)-f(Xt_1)2 < T2 (3.8) 

Thus (3.7) and (3.8) converge to 0. Using 
similar arguments one can show that all 
terms in (3.6) which involve 
(f(xt)-f(xtij)) or (g(xt)-g(xtij)) converge 
to 0 sufficiently quickly so that (3.6) is 
approximately 

TT/2'(Ip( )t - Et-1)(ut - ut-1) 

T112(Rdiff - P) = 
1 
4X(ut - ut-i)2 (39) 

The denominator converges to 2oy and 
the numerator has mean zero and vari- 

ance 6csy2cs2. Thus, the ratio is asymptoti- 
cally normal with mean zero and vari- 
ance given by 602y2 /(2oy)2 =1.5- 2/o 

We now have an explanation for the 
1.5 factor in the introduction to the 
paper (which comes as no surprise to 
time series practitioners). By differenc- 
ing we have introduced an MA(1) 
process in the residuals. Applying 
ordinary least squares to the differ- 
enced data is, as a result, less efficient. 
(But beware, do not attempt to apply 
generalized least squares for then you 
will reverse the beneficial effects of 
differencing.) Thus the simplicity of dif- 
ferencing is purchased at the price 
of some lost efficiency relative to the 
kernel-based procedures or the non- 
parametric least squares procedures 
above. 

Fortunately, efficiency can be im- 
proved substantially by using higher or- 
der differences (see Yatchew 1997). Fix 
the order of differencing m. Consider 
now the following generalization of the 
estimator in (3.5): 

in in 
E,jyt_ -f2dzt-j 

t j= f j=O 

~diff 2 (3.10) 
in 

E Idjzt j 
J=0 

whlere do,...,dm are differencing weights 
satisfying the conditions lYondi = O and 
l;on d = 1. The first condition ensures 
that differencing removes the nonpara- 
metric effect in large samples. The 
second ensures that the variance of 
the residual: in the transformed model 
is the same as in the original model. 
(Thus, the weights for the simplest dif- 
ferencing estimator (3.5) which were 
do= 1, di = -1, would be normalized to 
do= .7071 di=-.7071. ) 
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TABLE 1 
OPTIMAL DIFFERENCING WEIGHTS 

1 (0.7071,-0.7071) 

2 (0.8090, -0.5000, -0.3090) 

3 (0.8582, -0.3832, -0.2809, -0.1942) 

4 (0.8873, -0.3099, -0.2464, -0.1901, -0.1409) 

5 (0.9064, -0.2600, -0.2167, -0.1774, -0.1420, -0.1103) 

6 (0.9200, -0.2238, -0.1925, -0.1635, -0.1369, -0.1126, -0.0906) 

7 (0.9302, -0.1965, -0.1728, -0.1506, -0.1299, -0.1107, -0.0930, 0.0768) 

8 (0.9380, -0.1751, -0.1565, -0.1389, -0.1224, -0.1069, -0.0925, -0.0791, -0.0666) 

9 (0.9443, -0.1578, -0.1429, -0.1287, -0.1152, -0.1025, -0.0905, -0.0792, -0.0687, -0.0588) 

10 (0.9494, -0.1437,-0.1314,-0.1197, -0.1085, -0.0978, -0.0877, -0.0782,-0.0691, -0.0606, -0.0527) 

In contrast to those in Hall et al (1990), the above optimal weight sequences decline in absolute value towards zero. 

If the weights do0...d. are chosen op- 
timally, it can be shown that 

fd ff- N j( (1 + +2 4 (3.11) 

By increasing the order of differencing 
from 1 to 2 to 3, the efficiency of the 
estimator relative to the Robinson proce- 
dure improves from 66.7 percent 
(=1/1.5) to 80 percent (=1/1.25) to 85.7 
percent (= 1/1.167). Optimal differencing 
weights do not have analytic expres- 
sions but are tabulated (up to m = 10) in 
Table 1. 

Suppose z the parametric variable is 
a vector, but x the nonparametric vari- 
able continues to be a scalar. Fix the 
order of differencing m. Select the dif- 
ferencing weights do0..dm optimally (as 
indicated above). Define Ay to be the 
(T-m)xl vector whose elements are 
[Ay]t = YjZo djyt y and AZ to be the 
(T-m)xp matrix with entries [AZ]ti= 

1el= djzt i. Then, 

fdiff = [AZ'AZL'AZ'Ay 

NI,{1 + 2 J (l31) 

Define the following: 

Sdiff= 4x(Ay t - AztjdifJ2 (3.13) 

A 

-AZ'AZ (3.14) 
T 

Then sdiff converges to E and lu,diff con- 
verges to 1,, the conditional covariance 
matrix of z given x. If x is a vector, then re- 
ordering so that xt and xt-1 are close is not 
unique. Nevertheless, for reasonable order- 
ing rules, the procedure works as long as 
the dimension of x does not exceed 3. 

3.1.4 Examples. We have already in- 
troduced an example on Returns to 
Scale in Electricity Distribution (Fig- 
ure 1). We extend it here to include 
second order optimal differencing and 
Hal White's (1985) heteroscedasticity 
consistent standard errors (Figure 10). 

As an additional example with a two 
dimensional nonparamnetric variable x, 
we consider Hedonic Prices of Housing 
Attributes (Figure 11). Parametric 
variables include lot size, area of 
living space and presence of various 
amenities. The location effect, which 
has no natural parametric specification, 
is incorporated nonparametrically. 
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Figure 10. Returns to Scale in Electricity Distribution (Colntinued) 

ESTIMATED MODELS 

PARAMETRIC: Quadratic scale effect SEMIPARAMETRIC: Smooth scale effect 

y=a + Z f +71X +y2X2 + E Y = a + Z 8 +f(X) + ? 

OLS First Order Differencing 2 Second Order OptimalDifferencing3 

Coeff SE Coeff SE HCSE Coeff SE 

oc 15.987 37.002 
DIST 3.719 1.248 ADIST 2.568 1.560 1.890 ADIST 3.998 1.377 

LOAD 1.920 .661 ALOAD .437 .912 .854 ALOAD .562 .814 

GEN -.051 .023 AGEN .0005 .032 .030 AGEN -.004 .028 

LIFE -5.663 .798 ALIFE -4.470 1.072 .899 ALIFE -5.107 .955 

AsSETS .037 .005 AAsSETS .030 .0072 .006 AAsSETS .030 .0064 

WAGE .003 .0007 AWAGE .003 .00086 .00074 AWAGE .003 .00078 

'Yl -.00154 .00024 

2 lX.1X10-7 .14X10-8 
R2 .45 

1259.751 ' 1249 7 2 1255.4 S,L 
s~~~~~~diff 129.sdiff 15. 

ESTIMATED IMPACT OF SCALE ON DOLLAR COSTS PER CUSTOMER PER YEAR4 

, 200 - Kernel 
__ ~ ~ ~ ---Nonparmn LS i 

H~~ 150 - - - - ~Spline 
0 H^ 150 1 A- _ _ Quadratic /1 

0 0 = 1000- o 0 o 0 

Z 0 00000~~~ 0 00 %Co0 000 0 0 
0 
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~~~~~~~~ o 

? ? b 
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00 O 0 8a 0 ? 8 ? 0 ? 

0 o 0 X 00 0 G 0 0 

0- 0' ' 

_ I ~ ~ I l I I I 

500 1 0 5000 10000 50000 100000 

CUSTOMERS 

S22 
Under the null hypothesis that scale has no effect (f is constant), sres = 1508.5. 2Data reordered so that x1 < ... < XT, 

(T=265). Then all variables differenced A wt = wt - wt1l, followed by ordinary least squares. SE's obtained by multiplying 
OLS standard errors by x'T5, (set mn=1 in equation [3.12]). HCSE's are heteroscedasticity consistent standard errors. 
Dependent variable is A COST PER CUST. 3Data reordered so that x1 < ... < XT, then all variables differenced A wt = .809wt - 

.5wt - .309wt-2, followed by ordinary least squares. OLS standard errors multiplied by V12 (set m = 2 in equation [3.12]). 
Dependent variable is A COST PER CUST. 4Kernel and spline estimates obtained using ksmooth and snooth.spline functions 
in S-Plus. Dependent variable is Yt - Zt diff where diff is calculated using first order differencing. Nonparametric least 
squares applied using fourth order Sobolev norm. The quadratic estimate is from the parametric model above. 

3.2 Reprise 

In this portion of the paper, we have 
focussed on the partial linear model 

y = zf3 +f(x) + e. Three distinct estima- 
tors of f3 have been discussed-the first 
two involve initial nonparametric esti- 
mation using either kernel or nonpara- 
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Figure 11. Hedonic Plices of Housing Attributes 

The semiparametric model was estimated by Michael Ho (1995) using semniparametric least squares; the dependent variable 
y is SALE PRICE; z variables in clude lot size (LOTAREA), square footage of housing (USESPC), number of bedrooms (NRBED), 
average neighborhood income (AVGINC), distance to highway (DHwY), presence of garage (GRGE), fireplace (FRPLC), or 
luxury appointments (Lux). A critical determinant of price is location which has no natural parametric specification (indeed 
most urban areas have multi-modal location premnia), thus the inclusion of a nonparametric functionf (xl,x2) where x1,x2 are 
location coordinates. The data consist of 92 detached homes in the Ottawa area which sold during 1987. 

ESTIMATED MODELS 

PARAMETRIC: Linear location effects SEMIPARAMETRIC: Smooth location effect 
y= C+Z+71+1y+Y2X2+Y y=Z+f(Xl,X2) + 

OLS First Order Differencing 2 Second Order OptimalDifferencing 3 
Coeff S E Coeff S E HCSE Coeff S E 

oc 74.0 18.0 
FRPLC 11.7 6.2 AFRPLC 11.3 6.0 5.7 AFRPLC 8.4 6.0 

GRGE 11.8 5.1 AGRGE 2.5 5.5 4.1 AGRGE 7.3 5.1 
Lux 60.7 10.5 ALux 55.3 10.8 15.4 ALux 52.6 10.3 
AVGINC .478 .22 AAVGINC .152 .35 .22 AAVGINC .10 .29 

DHWY -15.3 6.7 ADHWY -5.0 15.9 9.2 ADHWY -1.4 11.2 
LOTAREA 3.2 2.3 ALOTAREA 4.1 2.3 2.0 ALOTAREA 5.6 2.2 

NRBED 6.6 4.9 ANRBED 3.3 4.9 3.6 ANRBED 2.5 4.5 

USESPC 21.1 11.0 AUSESPC 36.5 12.0 9.3 AUSESPC 36.5 11.1 

'Yl 7.5 2.2 

7'2 -3.2 2.5 
R2 .62 

424.3' Sdiff 309.2 Sdiff 324.8 

DATA WITH PARAMETRIC EFFECT REMOVED ESTIMATED LOCATION EFFECTS4 

1 Under the null that location has no effect, (f is constant), s2 =507.4. 2Data reordered using nearest neighbor algorithm 
for (x1t,x2t), t= 1,...,T (T=92). Then all variables differenced A wt = wt - wt-1, followed by ordinary least squares. Standard 
errors multiplied by Vi7f (set m=1 in equation [3.12]). HCSE's are heteroscedasticity consistent standard errors. 
Dependent variable is A SALE PRICE. 3Data reordered according to nearest neighbor algorithm, then all variables 
differenced A wt = .809wt - .5wtvl - .309wt-2, followed by ordinary least squares. OLS standard errors multiplied by V12 
(set m = 2 in equation [3.12]). Dependent variable is A SALE PRICE. 4Smoothed estimate obtained using loess function in 
S-Plus. Dependent variable is Yt - Zt diff where ldifcis calculated using first order differencing. 
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metric least squares methods. The third 
estimator, which is based on differenc- 
ing, circumvents this initial step. Each 
estimator has a variance that shrinks to 
zero at 1/T (indeed, each is T'/2-consis- 
tent) as well as being asymptotically 
normal. The relative efficiency of the 
differencing estimator improves with 
higher order of differencing, if "opti- 
mal" differencing weights are used. 

The partial linear model discussed 
above is part of the much larger class of 
semiparametric models. The most 
closely related are partial parametric 
models, y = g(z;f) +f(x) + F, where ,u is a 
known function but f and f3 remain un- 
known. Each of the techniques de- 
scribed above may be used to obtain T'/2 

consistent estimators in partial paramet- 
ric models. 

An important class of semiparametric 
models is index models which are of the 
form y =f(xf3) +F; x and f3 are vectors. 
Both f and 3 are unknown (x: is the 'in- 
dex', in this case linear); T'/2 consistent 
estimation of ,B is also possible (see 
Hidehiko Ichiinura 1993, as well as 
Roger Klein and Richard Spady 1993). 
Other important references on semi- 
parametric models include Stoker 
(1991), Gary Chamberlain (1992), An- 
drews (1994b), Newey (1994), Linton 
(1995a), and Joel Horowitz (1996). 

4. Constrained Estimation and 
Hypothesis Testing 

4.1 Introduction 

Economic theory rarely dictates a 
specific functional form. Instead, it 
typically specifies a collection of poten- 
tially related variables and general func- 
tional properties of the relationship. 
For example, economic theory may im- 
ply that the impact of a given variable is 
positive or negative (monotonicity), that 
doubling of prices and incomes should 
not alter consumption patterns (homo- 

geneity of degree zero), that a propor- 
tionate increase in all inputs will in- 
crease output by the same proportion 
(constant returns to scale or, equiva- 
lently, homogeneity of degree one), that 
the effect of one explanatory variable 
does not depend on the level of another 
(additive separability), that the relation- 
ship possesses certain curvature proper- 
ties such as concavity or convexity or 
that observed consumption patterns re- 
sult from optimization of utility subject 
to a budget constraint (the maximiza- 
tion hypothesis). 

Empirical investigation is then re- 
quired to assess whether one or another 
variable is significant or whether a par- 
ticular property holds. In parametric re- 
gression modelling, a functional form is 
selected and properties are tested by 
imposing restrictions on the parame- 
ters. However, rejection of a hypothesis 
may be a consequence of the specific 
functional form that has been selected 
(but not implied by economic theory). 
Thus, while the translog production 
function is richer and more flexible 
than the Cobb-Douglas, it may not 
capture all the interesting features of 
the production process and may indeed 
lead to incorrect rejection of restric- 
tions. Nonparametric procedures, on the 
other hand, provide both richer families 
of functions and more robust tests for 
assessing the implications of economic 
theory. Within this framework it is also 
possible to test whether a specific para- 
metric form is adequate. 

In the following sections, we there- 
fore focus on the imposition of addi- 
tional constraints on nonparametric re- 
gression estimation, such as separability 
and monotonicity, and on testing of hy- 
potheses, particularly specification and 
significance 26 

26We will not consider tests on the stochastic 
structure of the residuals, such as heteroscedastic- 
ity or autocorrelation. 
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However, before proceeding, we pro- 
vide some standardized notation (the 
ideas are illustrated graphically in Fig- 
ure 12). Begin with the true model: 

y =f(X) + E. (4.1) 
We will maintain that f lies in the set 3 
which is a smooth set of functions. We 
will want to estimate f subject to con- 
straints of the form f E Z c 3 where the 
set 3 combines smoothness with addi- 
tional functional properties. We denote 
the restricted estimator as fres with cor- 
responding estimated residual variance: 

s2 IILS t il\2. (4.2) 
8res T jres(Xt) (. 

Our general null and alternative hy- 
potheses will be of the form: 

Ho: fe Z (4.3) 

We will assume that Ares converges to 
some functionf in the restricted set S.27 
When the null hypothesis is true,f andf 
are identical (since fe 3), and the re- 
stricted estimator converges tof=f. 

One final important notational con- 
vention. Since certain tests will depend 
on the difference between the true re- 
gression_function and the closest func- 
tion in 3, we will reserve special nota- 
tion for it. In particular: 

fA =f-f (4.4) 
If the null hypothesis is true, fA = 0. 

4.2 Specification Tests 

To fix an objective, let us return mo- 
mentarily to Figure 10, Returns to Scale 
in Electricity Distribution. Four esti- 
mates of the scale effect are illustrated: 
kernel, nonparametric least squares, 
spline, and a simple quadratic model. 
Inspection suggests that the quadratic 

provides a fit strikingly similar to all 
three nonparamnetric estimates (indeed, 
it tracks the nonparametric least 
squares estimate very closely). This is 
reinforced by the observation that the 
estimate of the residual variance does 
not decrease markedly as one moves 
from the completely parametric model 
(S2es = 1259.75) to the differencing esti- 
mator (sd2if= 1249.7). Our objective will be 
to parlay these casual observations into 
a formal test of the quadratic specifica- 
tion.28 

4.2.1 A Simple Differencing Test of 
Specification. To motivate our first and 
simplest test we return to the idea of 
differencing, but this time in a purely 
nonparametric setting. Suppose one is 
given data (yi,xl)... (yT,,xT ) on the model 
y =f(x) +F- where all variables are sca- 
lars, Et are i.i.d. with mean 0, variance 
oTF, and independent of x. The x's are 
drawn from a distribution with support, 
say the unit interval, and once again 
we have rearranged the data so that 
x1 < ... < XT. If we first difference to ob- 
tain yt - yt-i =f(xt) -f(xt-i) + Et - Et-i and 
define 

8kff= 2TX (yt-yt-i)2, (4.5) 

then as the typical distance between xt 
and xt-i goes to zero, s2i converges to 
GE. Suppose under the null, the regres- 

sion function is hypothesized to be quad- 
ratic and we obtain an estimate of the 
variance 

sres =2.d (yt - A- AL 
A 

-2X)2. (4.6) 

If the null hypothesis is true, then 

Tl 
2 ̂

 N(0 1). (4.7) 
sdiff 

27 For example, f could be the closest function in 
3 tof in the sense thatf satisfies minf( g -_f )2 d.x. 

grZ 

28 There is a huge literature on specification 
testing. See James MacKinnon (1992) and White 
(1994). In this section we focus specifically on 
tests where the alternative involves a nonparamet- 
ric component to the regression function. 
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Figure 12. Constrained and Unconstrained Estimation and Testing 

Ho IS TRUE 

*f=f 

HO IS FALSE 

rr- 

3 is the unrestricted set of functions, Z is the restricted set of functions. Let f be the closest function in Z3 to the true 
regression functionf. If Ho is true, thenf lies in 3 andf =f If Ho is false, then the differencefA =f -f?# 0. 

If the null is false, V grows large.29 
The test procedure may be applied not 

only in a pure nonparametric setting, but 
also to the partial linear model 
y = zf +f(x) + c. To test the quadratic 
specification for the scale effect in elec- 
tricity distribution costs, obtain s2 by 
regressing y on z, x and x2. ObtainSdiff 

29 Higher order differencing may also be used 
to obtain s2 . See also Plosser, Schwert, and 
White (1982) who propose specification tests that 
are based on differencing but that do not involve 
reordering of the data. 
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Figure 13. Differencing Test of Specification - Implementation 

HYPOTHESES: given data (y1,xl). .(YT,XT) on the model y =f(x) + ?, test parametric null against nonparametric alternative. 
Below, the parametric null is a quadratic function. 

STATITIC: T"2(S2 - s2 ) 
S T A T S T I C V = T 112 res d iff - N (0 ,1I) u n d e r H 0 

(2 s0ff 

TEST PROCEDURE 

1. Reorder data so that x1 < ... < XT 

2. Calculate s2= I I (Yt- Yt_1)2 

3. Perform restricted regression of y on x and x2 to obtain jo + i Xt + Y2Xt2. 

4. Calculate S2 = I 1 (Y - ' X Xt2)2 esT Yt YoY X07t-Y2X). 

5. Calculate V and perform one-sided test comparing to critical value from a N(O,1) 

Application to Returns to Scale in Electricity Distribution (See Figure 10). The model is y = z +f(x) + ? and we wish to 
test a quadratic specification for f. First, obtain a T1"2 consistent estimator of f such as the differencing estimator of 
equation (3.12). Calculate yt-ztp and apply the above procedures to this newly defined dependent variable. Using S-Plus 
we obtain V = .131 which supports a quadratic model or the scale effect. To test significance of the nonparametric varable 
specify a constant function forf. In this case we obtain V = 3.37 so that the scale variable is significant. 

_~~~~~~~~~~~~~~~~~~~( _6 _2 
6_ 

_ 
CtC Notes: The derivation of the distribution of V is straightforward. In large samples, Sjff- 2T (_t- t-1)2 4- T t f - 

and S2 1 I 
E p2 Hence, the numerator of V is approximately T112 T E ?tet wl wich using a central hmit theorem is 

re (O,-o4) The denominator converges 
toT 

2 

which usigr centimi theorem 
s 

N(0,U4). The denominator converges to a2. Test may be genieralized using higher order differencing to obtain 2df 

by applying equation (3.13). The value 
of the test statistic is V=.131 in which 
case the quadratic model appears to be 
adequate. (See Figure 13 for an imple- 
mentation summary.) 

A test of significance of the nonpara- 
metric variable x is a special case of the 
above procedure-in this case the null 
hypothesis is that f is a constant func- 
tion. Regressing y only on z we obtain 
S2es = 1508.5 in which case V=3.37 so 
that scale is a statistically significant 
factor in the costs of distributing elec- 
tricity. 

The procedure described above may 
be applied if x is two- or three-dimen- 
sional, but more sophisticated rules for 
reordering the data so that the x's 
are close, are required. The test is gen- 
erally not valid if the dimension of x ex- 
ceeds 3. 

4.2.2 A Conditional Momnent Test of 
Specification. Qi Li (1994) and John Xu 
Zheng (1996) propose a conditional mo- 
ment test of specification against a 

parametric null. This test may be moti- 
vated by writing 

y -flx) =f(x) -f(x) + E =fA(x) + E. (4.8) 

We assume that the restricted regression 
estimator fres estimates f consistently 
and note that if the null hypothesis is 
true, that is, if f E Z3 then fA = O. Thus, if 
we do an "auxiliary" regression of the esti- 
mated residuals yt -fres(xt) on xt to esti- 
mate fA and perform a significance test, 
then we will have a test of the null hy- 
pothesisfe (.30 

In fact, the moment condition that 
we will consider involves a slight vari- 
ation on this idea. Consider the follow- 
ing: 

Eg,x[(y -f (x))fA(x)px(x)] 

= Exf A (x)px(x) ? 0 (4.9) 

30 This idea, of course, is not new and has been 
exploited extensively for purposes of specification 
testing in parametric regression models (see for 
example, MacKinnon 1992). 
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where px(x) is the density of x. Recall 
that the numerator of the kernel estima- 
tor in equation (2.2) consistently esti- 
mates the product of the regression 
function and the density of x. Thus, a 
sample analogue for the left expression 
of (4.9) may be obtained by calculating 

U= (yt -fres(Xt)) K>xT (ys 

-fres(xs))K r tjjj (4.10) 

To interpret this expression, note that 
the term in square brackets may be 
thought of as an estimator of fA(xt)px(xt). 
If the null hypothesis is true, then 

T2I/2U N(O, 2a4 I p2(x)f K2(u)), (4.11) 

where a2 = Var(U) = 2a4 f p2(x)f K2(u)/XT2 
may be estimated using 

A2 2 
E (yt -fre.s(Xt))2(ys 

t ~ t 

= A~2T4 ?f_e(- KKX XtJ(4.12) 

so that U/a N(0,1). Both U and au are 
relatively straightforward quadratic forms 
which involve the residuals from the 
parametric regression. 

Returning to our example on Returns 
to Scale in Electricity Distribution, 
Figure 14 plots the estimated residu- 
als from the regression of y on z, x and 
x2. Casual observation suggests that there 
is no further relationship between y 
and x. 

Testing the quadratic specification 
formally, we obtain U/u =.168 so that 
the null hypothesis is not rejected. As 
with the differencing test, we can per- 
form a nonparametric test of signifi- 
cance of the x variable by inserting a 
constant function forf in the restricted 
model. In this case, U/8u= 2.82, indi- 
cating significance of the scale variable. 

The test generalizes readily to the 
case where x is a vector and the boot- 
strap may be used to obtain critical val- 
ues. 

4.2.3 Other Specification Tests. Bier- 
ens (1990) considers a moment condi- 
tion of the form 

EF,x[e'rx(y -f(x)) 

= Ex[erx(ftx) -f (x))] (4.13) 

which for (almost) any real number t 

does not equal 0 if the null hypothesis is 
false. (The expressions equal 0 if the null 
is true since f=f.) Bierens proposes a 
test based on a sample analogue of the 
left expression. 

Hardle and Mammen (1993) base their 
specification test on the integrated squared 
difference IT = I (fres(X) - funr(X))2 dx where 
A 

funr, the unrestricted estimator, is a kernel 
estimator of f. The restricted estimator 

fres is (for technical reasons a smoothed 
version of) the parametric estimator of 
f. In simulations, Hardle and Mammen 
find that the nornmal approximation to 
the distribution of their test statistic is 
substantially inferior to bootstrapping 
the critical values of the test statistic. 
They denmonstrate that the "wild" boot- 
strap (see Appendix B) yields a test pro- 
cedure that has correct asymptotic size 
under the null and is consistent under 
the alternative. (They also demnonstrate 
that conventional bootstrap procedures 
fail.) The test can be applied to circum- 
stances where x is a vector and where E 

is heteroscedastic. 
Yongmiao Hong and White (1995) 

propose tests based on series expan- 
sions, in particular the flexible Fourier 
form (Ronald Gallant 1981). The unre- 
stricted regression model is given by 

f(x) = 6o + 61x + 62x2 

?lT 

+ X jyicos(Jx) + y2jsin(jx) (4.14) 
j=1 
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Figure 14. Conditional Moment Test of Specification - Implementation 

HYPOTHESES: given data (Y1,X1)... (YT,XT) on the model y =f(x) + ?, test parametric null against nonparametric alternative. 
Below, the parametric null is a quadratic function. 

STATISTIC: We implement using the uniform kernel so that fK2 = 1. With only slight abuse of notation, let Kst be the st-th 
entry of the kernel matrix defined below. 

UYt-i0-1Xt-i2Xt = , - E Yo - YIX, - ,12 t 2 4J2X)S 

TEST PROCEDURE 

2 ~~~~~~2 1. Perform (restricted) regression y on x and x2 to obtain o - Yi St - Y2 Xtr 

2. Calculate the kernel matrix Kst as follows: 
Kst = 1 if I x, - xtI < k/2 s?t (note that diagonal elements Ktt =0) 
Kst = 0 othervise 

3. Calculate U 

4. Define (u = Var (U) = 2 J4fp2(X)/kT2 and estimate it using 

au = T422 S (Yt - Y o - 71 Xt - 72 Xt)2(yS -70 - y1x5 - - 2 x2 

(Note that since we are using the uniform kernel, K2 = K,t) 
5. Perform a one sided test comparing U/lu to the critical value from the N (0,1). 

APPLICATION TO RETURNS TO SCALE IN ELECTRICITY DISTRIBUTION: (See Figure 10). Under the alternative, the model 
is y = z4 +f (x) + ? which we wish to test against y = 4 + Yo + YI x + y2x2 + ?. Heuristically, we want to perform a 
nonparametric regression of the estimated residuals from the latter on x. Visual examination of these residuals (below) 
suggests no relationship with x. Implementing in S-Plus we obtain U/du= .168 indicating acceptance of a quadratic model 
for the scale effect. To test significance, specify a constant function forf In this case we obtain U/lu = 2.82 so that the 
scale variable is significant. 

ESTIMATED RESIDUALS FROM PARAMETRIC REGRESSION: t = Yt - Zt - Yo - YlVt- 2Xt2 
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where the number of unknown coeffi- 
cients nT= 3 + 2n* increases with sample 
size. The rate at which nT is permitted to 
grow depends on the null hypothesis be- 

ing tested. The test statistic is based on 
the difference between s 2 the estimate 
of the residual variance obtained from 
(4.14), and s2S which is obtained by esti- 
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mating the parametric model under the 
null. 

Other procedures not discussed here 
but worthy of note include those of 
A. Azzalini, Adrian Bowman and Hardle 
(1989), Eubank and Clifford Spiegel- 
man (1990), B.J. Lee (1991), Jeffrey 
Wooldridge (1992), Pedro Gozalo 
(1993), Yoon-Jae Whang and Andrews 
(1993), and Horowitz and HWrdle 
(1994). 

4.2.4 Significance Tests. The simplest 
nonparametric significance tests are 
those where the null hypothesis is of 
the form f(x) = g1; g is a constant. In this 
case, the null model is entirely paramet- 
ric and so all specification testing meth- 
odologies described above immediately 
yield tests of significance of this kind. If 
x is a vector, then this null hypothesis 
corresponds to testing the joint signifi- 
cance of all the explanatory variables.31 

What is more challenging (and much 
more useful) is the derivation of tests of 
significance for a subset of the explana- 
tory variables. In this case, the null hy- 
pothesis involves a nonparametric com- 
ponent and so the above tests can no 
longer be directly applied. (For exam- 
ple, suppose one is estimating the 
model y =f(xl,x2) + F and the null hy- 
pothesis is that y =f(xi) + e.) However, 
the conditional moment test may be ex- 
tended to this case. (See, for example, 
Fan and Li 1996.) 

4.3 Additive Separability 

The curse of dimensionality which 
haunts nonparametric estimation has 
focussed attention on improving the rate 
of convergence of nonparametric esti- 
mators. Additive models which in the 
simplest case are of the form f(Xa,Xb) = 

fa(Xa) +fb(xb) provide a useful compromise 

between a more rapid rate of conver- 
gence and a loss in the richness of the 
set of functions that can be approxi- 
mated.32 For example, if xa and Xb are 
scalars, then the optimal rate of conver- 
gence that a nonparametric estimator 
can achieve is the same as if f were a 
function of only one variable. On the 
other hand, the additive model does 
not encompass such relatively common 
specifications as the multiplicative model 

f(xa,Xb) = Xa ' Xb. 

An important and useful feature of 
additive models is the ease with which 
the effects of different variables may be 
summarized. Consider, for example, per 
capita gasoline consumption as a func- 
tion of per capita disposable income 
and the price of gasoline. If the two ef- 
fects are indeed additive, then they may 
be represented on separate graphs. As 
may be seen in Figure 15, price has a 
strong negative effect on demand, while 
income a strong positive effect. (The 
data are from Jeffrey Simonoff 1996, 
Appendix A.) 

4.3.1 A General Estimation Algo- 
rithm-Backfitting. A powerful and 
general algorithm used to estimate ad- 
ditively separable models is motivated 
by the observation that 

E[y-fa(Xa) I Xb] =fb(xb) 

and E[y-fb(Xb) I Xa] =fa(xa). (4.15) 

If f is a good estimate Offa then we may 
estimate fbA by nonparametric regres- 
sion of y -fa(xa) on Xb. (A parallel argu- 
ment holds for estimation Of fa.) Begin- 
ning with these observations, the algo- 
rithm in Table 2 has been widely 
studied. The initial estimates fa may 
be set to zero or to the estimates from a 
parametric procedure (such as a linear 
regression). 

31 See Stoker (1989) who, in addition to propos- 
ing tests of significance, develops tests of symme- 
try and homogeneity, and general tests of additive 
derivative constraints. 

32 See for example, Stone (1985, 1986); Andreas 
Buja, Trevor Hastie, and Robert Tibshirani (1987); 
and Hastie and Tibshirani (1987, 1990). 
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Figure 15. Gasoline Consumption 

MODEL: given the model y =.fa(xa) +fb(xb) + 6, where y is per capita gasoline consumption, Xa, Xb are per capita income 
and the real price of gasoline. Data are from Simonoff (1996). The procedure uses the back-fitting algoiithm applying 
spline estimation to each component. Estimiation is performed using the gam function in S-Plus. Partial residuals are 
given by Yt -fb(xbt) and yt -fa(xat) respectively. Bands represent point-wise standard errors. 

ESTIMATED EFFECT OF PER CAPITA INCOME ON GASOLINE CONSUMPTION 

l l l l l l l l l l l l l l l ll l l l l l111 1 11 1 1 

ESTIMATED EFFECT OF REAL PRICE OF GASOLINE ON CONSUMPTION 

4'~~~~~~~~~~*_o ? ' *~~~~~~~~~~~~~~~~C 

The procedure may be generalized in 
the obvious fashion to additively separa- 
ble models with more than two additive 
terms where each term may be a func- 
tion of several variables. Parametric 
components may also be included. As- 
suming that optimal nonparametric esti- 
mators are applied to each component, 
the rate of convergence of the esti- 

mated regression function equals the 
rate of convergence of the component 
with the largest number of explanatory 
variables. 

In performing the component non- 
parametric regressions, a variety of 
techniques may be used, including ker- 
nel and spline estimation. Indeed, the 
algorithm is particularly versatile in that 
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TABLE 2 
THE BACKFITTING ALGORITHM 

Initialization Select initial estimatesf , fj 
Iteration Obtainf by nonparainetiic 

regression of y -f 'b-(xb) cni xa 

Obtainf by nonpaarametric 
regression of y -f ' (xa) on xb 

Convergence Continue iteration until there is 
little change in individual 
function estimates 

Note: See Hastie and Tibshirani (1990, Ch. 4 and 
references therein). 

different techniques may be selected 
for different components. For example, 

fa may be estimated using kernel regres- 
sion and fb using nonparametric least 
squares (or even nonparainetric least 
squares subject to constraints). The al- 
gorithm is available in S-Plus using 
the function gain (generalized additive 
model) which we have applied in Figure 
15. 

4.3.2 Further Comments. It is also 
possible to estimate the component 
functions simultaneously using nonpara- 
metric least squares or spline proce- 
dures. For example, the infinite dimen- 
sional optimization problem 

mi 
I 

E [Yt-fa(xat) -fb(Xbt)]2 
Ta1 t. 

s.t. |fl+fb 0b?L (4.16) 

can be rewritten as a finite dimensional 
optimization problem with a quadratic 
objective function and a quadratic con- 
straint. A similar procedure is available if 
the model is multiplicatively separable, 
for example, f(xai,xb) =fa(xa) . Jb(Xb). Note 
that this restriction is useful in imuposing 
homotheticity.33 

4.4 Monotonicity 

Economnic theory often leads to pre- 
dictions that a certain effect should be 
positive or negative. (Indeed, one of the 
most common complaints expressed by 
students in econometrics is that despite 
all their efforts, coefficient estimates 
are of the wrong sign.) The imposition 
and testing of inequality constraints on 
coefficients of parametric models is a 
well-studied problem (see Frank Wolak 
1989 and references therein). The in- 
position of monotonicity restrictions in 
nonparanietric regression has also been 
studied extensively. The isotonic regres- 
sion literature, in the simplest case, 
considers least squares regression sub- 
ject only to monotonicity constraints: 
that is, given data (yixi) ... (YT,XT) on the 
model yt =f(xt) + ?t, solve 

mi-in T1' (yt- _ t)2 
(T t 

Ys At for xs < Xt. (4.17) 

This literature goes back several de- 
cades (see for example, Richard Barlow 
et al 1972, and Tim Robertson et al 
1988). 

Monotonicity combined with smooth- 
ness assumptions has been studied 
by Hari Mukarjee (1988), Mammen 
(1991), and Mukarjee and Steven Stern 
(1994). See also Ian Wright and Edward 
Wegman (1980), Florencio Utreras 
(1984), Wing Wong (1984), Miguel Vil- 
lalobas and Wahba (1987), John Rainsay 
(1988), and Steven Goldman and Paul 
Ruud (1992). 

4.4.1 Why Monotonicity May Not En- 
hance the Rate of Convergence. Sup- 
pose we are interested in imiiposing and 
testing inonotonicity while mnaintaining 
smoothness. That is, the unrestricted set 
3 consists of smooth functions while the 
restricted set Z imnposes in addition 
iionotonicity (recall Figure 12). If the 

33 For related work see Daniel Barry (1993), 
Eubank et al, (1995), and Gozalo and Linton 
(1997). 
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true regression function is strictly 
monotone, then monotonicity con- 
straints will not improve the rate of 
convergence.34 

To see why this is the case, consider 
the following example in a simplified 
parametric setting. Suppose we are 
estimating the model y = t + ? subject 
to the constraint t < 2. The usual (un- 
constrained) estimator of t is the 
sample mean y. An estimator p which 
incorporates the inequality constraint 
would set =j if j <2, and A =2 if y> 2. 
If the true mean is, say, 1.5, then as 
sample size increases, the probability 
that the unconstrained estimator equals 
the constrained estimator goes to one. 
Thus, the constraint becomes nonbind- 
ing. 

In nonparametric regression, an 
analogous result holds. If the true func- 
tion is strictly monotone (that is, if the 
first derivative is bounded away from 
zero), then with sufficient smoothness 
assumptions, the monotonicity restric- 
tions become nonbinding as sample size 
increases. (Thus if the first derivative is 
estimated consistently, as sample size 
increases, the derivative estimate will 
also be bounded away from zero with 
probability going to 1.) The constrained 
estimator then has the same conver- 
gence rate as the unconstrained estima- 
tor.35 This negative finding, however, 
does not imiply that inonotonicity will 
be uninformative in small samples or in 
the absence of smoothness assumptions. 
(Nor does it preclude testing for the 
presence of this property.) Indeed, one 
could argue that given the paucitv of a 
priori information present in nonpara- 
metric estimation, any additional con- 
straints should be exploited as far as 

possible, particularly in moderately sized 
samples. (Recall Figure 5 where the im- 
position of monotonicity results in bet- 
ter fit.) 

4.4.2 Procedures for Coinbining 
Smnoothness with Monotonicity. M am- 
men (1991) analyzes two estimators 
which combine smoothing with mono- 
tonicity constraints in estimation. The 
first estimator consists of two steps: 
smoothing of the data by applying a 
kernel estimator, followed by deter- 
mination of the closest set of mono- 
tonic points to the smoothed points. 
That is, given data (yi,xi),...., (yT,xT), let 
(IJx)O.(, f(T,xT) be the set of points ob- 
tained by applying a kernel estimator, 
then solve 

m F Al (y-t)2 

gL1,.,,OTT t 

YS -?t for x, <xt. (4.18) 

The second estimator examined by Main- 
men reverses the two steps.36 An alter- 
native approach involves augmenting the 
nonparametric least squares optimization 
problem (2.15) or (2.16) with monotonic- 
ity constraints. 

4.4.3 Further Commeents. Concavity 
restrictions can be imposed on nonpara- 
metric least squares. If sufficient de- 
rivatives are bounded and if the true re- 
gression function is strictly concave, 
then the concavity constraints will not 
enhance the large sample rate of con- 
vergence. 

Considerably more complex systems 
of constraints, such as the inequalities 
of Sydney Afriat (1967) which embody 
the implications of demand theory, can 
also be imposed on nonparametric least 
squares estimators. 

Finally, techniques for estimating sev- 
34 Van de Geer (1990) demonstrates that if 

one iiniposes monotonicity only, as in (4.17), then 
= Op(-2/3(log T)2/3). 

35 Utreras (1984), and Mammen (1991) find this 
result for different estinmators. 

36 The optimization problem (4.18) may be im- 
plemented in GAMS (Brooke et al. 1992). Iimiple- 
mentation is also available in XploRe (Hardle et al 
1995), using the function mnonreg. 
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eral nonparametric regressions (which 
may be "similar in shape") have been 
developed. Applications include Engel 
curve modelling and panel data. (See 
Coenraad Pinkse and Robinson 1995; 
Ramsay and Bernard Silverman 1997; 
Yatchew 1998.) 

4.5 Reprise 

Section 4 of the paper has focussed 
on constrained estimation and hypothe- 
sis testing. Because of the curse of di- 
mensionality and the consequences for 
convergence rates, it is extremely desir- 
able to improve the accuracy of esti- 
mates by validating parametric specifi- 
cations. Accordingly, we have provided 
implementation details for two specifi- 
cation tests where the alternative is 
nonparametric. Reducing the number 
of explanatory variables or imposing a 
separable structure also enhances con- 
vergence rates. For this purpose, tests 
of significance and separability are use- 
ful. 

The discussion of estimation subject 
to monotonicity constraints underlines 
one of the advantages of the nonpara- 
metric least squares estimator: such 
constraints can be imposed relatively 
easily. Indeed, estimation subject to 
concavity constraints and other imnpli- 
cations of economic theory can also be 
incorporated into nonparametric least 
squares or the related spline estimation 
procedures with little difficulty. 

As in parametric approaches, a gen- 
eral inethodology for testing hypotheses 
can be based upon an examination of 
the residuals from the constrained re- 
gression. If the null hypothesis is true, 
these residuals should be unrelated to 
the explanatory variables. Thus, the 
procedure involves a nonparametric 
regression of the constrained residuals 
on all explanatory variables. The re- 
sulting test, which can be applied in 
a wide variety of circumstances, is 

based on a conditional moment proce- 
dure.37 

5. Extensions And Technical Details 

5.1 Modular Analysis of the Partial 
Linear Model 

The watchful reader may have no- 
ticed that our applications of the partial 
linear model y = z +f(x) + ? leave some 
untidy loose ends. Typically our analysis 
is divided into two components: first we 
obtain a Tl'/2-consistent estimate of f3 and 
undertake inference procedures on f3 as 
iff were not present in the model. Then 
we analyze f by performing nonpara- 
metric estimation and inference on 
the newly constructed data (y*,xt) = (yt - 

A 

Ztl3,xt) as if D were known. Is such a 
modular approach valid? Separate 
analysis of the parametric portion is jus- 
tified by virtue of results like (1.3) or 
(3.12). However, we have to this point 
not commented on the appropriateness 
of our analysis of the nonparametric 
part. 

Suspicion mounts if one reflects for a 
moment on the case wheref is paramet- 
ric; for example, y = zj3 + x5 + ?. Suppose 
one obtains a T'/2-consistent estimate of 
f3 (say by doing ordinary least squares 
on the whole model), then one applies 
ordinary least squares to the con- 
structed data set (yt -ZtJ,,xt) to obtain & 

Assume further that (yt,zt,xt) are sam- 
pled randomly from a joint distribution 
and that x and z are correlated. The es- 
timate of the variance of 8 produced by 
a standard software package (Y/E t) 
will be incorrect. To see this, rewrite 
the estimator as 

37For related papers on nonparametric estima- 
tion and testing with constraints such as additive 
separability, monotonicity, concavity or demand 
theory, see also Larry Epstein and Yatchew 
(1985), Hal Varian (1985, 1990), Rosa Matzkin 
(1994, and references therein), Jerry Hausman 
and Newey (1995), and Yatchew and Bos (1997). 
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A TI(ytztf3)xt 
6= 

1x2 

T1 1 

TEX? A TEXZ 
=+ 1 + P-). 1 

T X2 Txt2 

+ Op('/2) + Op(/2) (1) (5.1) 
=+Op(l) 0P(1)' 

There are two random terms, each of 
the same order (the first is due to the 
variation in C; the second results from 
using D instead of ,B) and if one esti- 
mates Var(8) using c/Xx, then one is in- 
corporating only the first one. Indeed, 
two-stage estimation in purely paramet- 
ric models often involves adjusting sec- 
ond stage standard errors based on a 
first-stage procedure. 

The partial linear model does not suf- 
fer from this additional burden. Essen- 
tially, the reason is that the parametric 
portion of the model converges more 
quickly than the nonparametric portion 
so that analysis of the nonparametric 
portion can proceed as if the parametric 
portion were known. To see this a little 
more precisely, suppose we perform a 
kernel regression of Yt - z4J on xt where 
we assume uniformly distributed x's and 
the uniform kernel. Then, recalling 
(2.3) we have 

f( ) Yt E zt 
N(x0) 

= f(xt)+ 1 Xt+ )Zt 

kTN~(X7 kTN(X%) kTN(Xo) 

-f(xo) + 1/2f"t(xo) AT X(Xt - Xo)2 

N(xo) 

+ Xett + (- T) XZt. (5.2) 
(xo) N(x,) 

Each summation will have approximately 
kT terms, so that in each case we are cal- 
culating a simple average. Recall that the 
term involving the second derivative cor- 
responds to the bias (see Section 2.1), 
the next corresponds to the variance 
term, and the last is the term arising out 
of the two-stage estimation procedure. 
Following (2.5), 

f(XO) -fl(xo) 

= O(X2) + Op((kT)-'/2) + Op(f/2)Op(1) 

= O(T-2/5) + Op(T-2/5) + Op(T'1/2)0p(i) 

if X = O(T-1/5). (5.3) 

Consistency of the kernel estimator is 
unaffected, since all three terms con- 
verge to zero (we continue to require 
k -4O, T X -oo). The optimal rate of 
convergence is unaffected-k = O(T-1/5) 
still minimizes the rate at which the 
(sum of the) three terms converge to 
zero. The order of each of the first two 
terms is Op(T-275), while the third termn 
converges to zero more quickly and inde- 
pendently of A. Confidence intervals may 
also be constructed as before (see 2.9), 
since 

(U)/2(f(Xo) -f(xo)) 

= O((QT)'/2X2) + Op(l) + Op(kl/2) (5.4) 

= 0(1) + Op(l) + Op(T-1110) if X = O(T-1"5) 

and the third term goes to zero, albeit 
slowly. If the optimal bandwidth k= 
O(T-1/5) is selected, then confidence in- 
tervals must correct for a bias term. 

Returning to nonparametric least 
squares estimation (Section 2.2), if we 

A 

regress y* = yt - zt4 on xt, the estimator 
f remains consistent and its rate of con- 
vergence is unchanged. 

The practical point is that we can 
separate the analysis of the parametric 
portion of the model from the analysis 
of the nonparametric portion. Given a 
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T'l/2-consistent estimate of 1, we may 
construct the new dependent variable, 

A 

yt= - Zt4, set aside the original yt, and 
analyze the data (y*,xt) as if they came 
from the pure nonparametric model 
yt =f(xt) + Et. None of the large sample 
properties that we have discussed will 
be affected. This holds true regardless 
of the dimension of the parametric vari- 
able z. 

Where does this leave us? Since ft de- 
pends on A, variation in the latter will 
affect variation in the former. The argu- 
ments in this section merely state that 
in large samples, the impact of the vari- 
ation in 3 is small relative to the impact 
of the other terms in equation (5.2). If 
we want to obtain better approxima- 
tions to our sampling distributions (for 
example by using the bootstrap), then 
we may not want to ignore the term as- 9 ~~~A 
sociated with prior estimation of , the 
last term in (5.2) and (5.3). 

5.2 The Value of Constrained Estimation 

Since economic theory rarely pro- 
vides parametric functional forms, ex- 
ploratory data analysis and testing 
which rationalizes a specific parametric 
regression function is particularly bene- 
ficial. In this connection we have out- 
lined two specification tests and refer- 
enced a variety of others. 

Even though parametric specification 
is not its forte, economic theory does 
play a role in producing other valuable 
restrictions on the regression function. 

By specifying which variables are poten- 
tially relevant to an equation, and ex- 
cluding myriad others from considera- 
tion, rate of convergence is improved. 
(Exclusion restrictions may come dis- 
guised, for example, as homogeneity of 
degree zero.) The imposition of ex- 
clusion restrictions on either local av- 
eraging or minimization estimators is 
straightforward-one simply reduces the 
dimensionality of the regression func- 

tion. Other restrictions which may be 
driven by considerations of economic 
theory and which enhance convergence 
rates are additive separability and semi- 
parametric modelling. Monotonicity 
and concavity restrictions do not en- 
hance the (large sample) rate of conver- 
gence if sufficient smoothness is im- 
posed, but are beneficial in small 
samples. Alternatively, their presence 
can be used to reduce the dependency 
on smoothness assumptions. 

Figure 16 illustrates the conse- 
quences of imposing progressively more 
stringent restrictions on a model which, 
unbeknownst to the investigator, is lin- 
ear in one variable. The benefits of 
learning that the model is a function of 
one variable rather than two are evi- 
dent. The expected mean squared error 
(EMSE), given fixed sample size, de- 
clines by more than 40 percent as one 
moves from the smooth two-dimen- 
sional to a smooth one-dimensional 
model. This observation underscores 
the importance of powerful significance 
tests for nonparametric models. As ex- 
pected, separability and partial linearity 
can also substantially improve the accu- 
racy of the estimator. 

5.3 Computer Software and Further 
Reading 

Extensive software already in exist- 
ence can perform many nonparametric 
procedures automatically. Most of the 
kernel estimation in this paper was per- 
formed in S-Plus, a statistical program- 
ming language with extensive graphical 
capabilities. S-Plus also performs a vari- 
ety of other nonparametric techniques, 
including spline and nearest neighbor 
estimation, and the estimation of addi- 
tively separable models. Within S-Plus, 
it is straightforward to implement the 
differencing estimator, confidence in- 
tervals for nonparametric function esti- 
mators, and bootstrapping procedures, 
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Figure 16. Constrained Estimation - Simulated Expected Mean Squared Error 

SIMULATED EMSE: E [f (x ( tt)gxb))2] 
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Sobolev smoothness norms are of fourth order. In each case, 1000 replications were performned 

as well as the tests we have discussed. 
An excellent reference is Venables and 
Ripley (1994) 38 Other useful refer- 
ences include Phil Spector (1994) and 
John Chambers and Hastie (1993). 
(Complete reference manuals for the 

software are of course available, but 
this is not the place to start.) 

XploRe is a relatively newer package 
with considerable nonparametric and 
semiparametric capabilities and good 
graphical functions. Hardle, Klinke, and 
Turlach (1995) provide a fine introduc- 
tion to its capabilities. XploRe performs 
a variety of nonparametric regression 

38The volume of Hacrdle (1990), which focusses 
specifically on nonparametric techniques, contains 
numerous implementation algorithms. 
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procedures such as kernel, nearest 
neighbor, and isotonic regression. The 
logical learning sequence is to begin 
with S-Plus prior to attempting to use 
XploRe. 

The nonparametric least squares pro- 
cedures described in this paper require 
two steps. First, one must calculate the 
representor matrices that enter into the 
optimization problem. (The author uses 
Fortran for this purpose.) The resulting 
constrained optimization problems them- 
selves may be solved in GAMS-General 
Algebraic Modelling System (Brooke, 
Kendrick and Meerhaus 1992). This 
software is designed to solve a wide 
range of linear, nonlinear and integer 
programming problems and is suffi- 
ciently versatile so that bootstrap re- 
sampling can be fully automated. It is 
not specifically designed for statistical 
use and presently has no graphic capa- 
bilities. 

We note that the computational bur- 
den of bootstrap techniques will not 
limit their use in nonparametric estima- 
tion, since the bootstrap is particularly 
amenable to parallel computation. Thus, 
estimation could proceed simultane- 
ously on individual bootstrap samples. 

There exist a number of papers and 
monographs that survey various aspects 
of the nonparametric/semiparametric 
literatures. Hardle's (1990) book pro- 
vides a good introductory treatment 
of nonparametric regression. Wahba's 
(1990) monograph is a standard refer- 
ence on spline estimation. Miguel Del- 
gado and Robinson (1992) provide a 
valuable survey of semiparametric re- 
gression. See also Stoker (1991). Aman 
Ullah and Hrishikesh Vinod (1993) and 
Theo Gasser, Joachim Engel and Burk- 
hardt Seifert (1993) provide useful sur- 
veys of nonparametric regression in the 
Handbook of Statistics series. Papers by 
Andrews (1994a), Hardle and Linton 
(1994), Matzkin (1994), and Powell 

(1994) in the Handbook of Econo- 
metrics series provide fine overviews of 
various aspects related to nonparamet- 
ric/semiparametric estimation and test- 
ing. See also Linton (1995a) who re- 
views semiparametric estimation. Fan 
and Gijbels (1996) provide a fine intro- 
duction to local polynomial modelling, a 
technique which has recently been gain- 
ing popularity. 

6. Conclusions 

The averaging of identically distrib- 
uted objects to estimate the mean of an 
unknown distribution involves working 
in a nonparametric setting. So does the 
use of sample moments to estimate 
population moments (method of mo- 
ment estimation), the application of the 
central limit theorem to do inference 
on a characteristic of a population, or 
the construction of a histogram. All 
these are familiar to most applied 
economists. Parametric estimation such 
as ordinary least squares is also widely 
applied. And we routinely examine 
residuals, often subjecting them to 
diagnostic tests or auxiliary regres- 
sions to see if anything else is going 
on that is not being captured by the 
model. 

Nonparametric regression techniques 
draw upon many of these ideas. When 
identical objects are not available, one 
looks at similar objects to draw infer- 
ences. Thus kernel estimation averages 
similarly distributed objects to estimate 
the collection of conditional means 
known as the regression function. Non- 
parametric least squares (which is 
closely related to spline estimation) 
minimizes the sum of squared residuals 
but searches over a richer set of func- 
tions (typically a set of smooth func- 
tions) than the family of straight lines. 
Tests on residuals (for example, the 
conditional moment specification test 
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we have described) provide a means of 
assessing a broad range of hypotheses 
such as whether the sign of the slope of 
a relationship changes or whether the 
relationship is additive, concave, or ho- 
mothetic. 

But there are also profound differ- 
ences between conventional and non- 
parametric regression techniques. A 
common question asked in introductory 
econometrics courses is how one would 
distribute x's on the unit interval if one 
wanted to learn as much as possible 
about a linear relationship. The answer 
is that one wants to maximize the vari- 
ation of the x's and this is done by di- 
viding the x's between the end points. 
The further apart they are, the better.39 
In paramnetric regression, knowing the 
relationship accurately at a relatively 
small number of points allows one to in- 
fer the parameters and then to use the 
model equation to interpolate or ex- 
trapolate elsewhere. Not so for non- 
parametric regression. Knowing the 
conditional means at the end points re- 
veals little of what transpires in be- 
tween. Accurate knowledge of the rela- 
tionship must be acquired in small 
neighborhoods covering the whole do- 
main, and so the x's are best distributed 
throughout the unit interval. (-In this 
business, one learns about an individual 
by looking at close neighbors.) 

Estimation problems emerge as the 
number of explanatory variables in- 
creases (the so-called curse of dimen- 
sionality). For a fixed number of obser- 
vations, "neighbors" are much further 
apart in higher dimensions than in 
lower. For example, 100 x's dispersed in 
the unit cube are more than 20 times 
farther apart than on the unit interval 
(Figure 17). If similarity declines pro- 
portionately with distance, then averag- 

ing over "neighbors" will produce much 
less accurate estimates in higher dimen- 
sions. 

In a sense, nonparametric regression 
is truly empirical in spirit because data 
must be experienced pretty much every- 
where. (The word empiricism descends 
from a word which means experience.) 
Interpolation is only deemed reliable 
among close neighbors, and extrapola- 
tion outside the observed domain is 
considered entirely speculative. 

Averaging similar (but not identically 
distributed) observations introduces 
bias. One is tempted to increase the 
number of observations being averaged 
in order to reduce variance, but this in- 
creases bias as progressively less similar 
observations are added to the mix. The 
balance is struck when the increase in 
bias (squared) is offset by the reduction 
in variance. 

A true sceptic would claim that since 
economic theory yields little in the way 
of specific functional forms, all relation- 
ships and all variables should be inves 
tigated nonparametrically. (Symmetric 
treatment of various x's also has an 
aesthetic, even egalitarian, appeal.) For 
applied economists this is neither rea- 
sonable nor practical. The potential 
relevance of numerous variables would 
conspire with the curse of dimensional- 
ity to lead to a state of nihilism-noth- 
ing of significance could be said about 
anything. Fortunately, we often have 
much stronger priors about the influ- 
ence of some variables than others, and 
so semiparametric specifications such as 
the partial linear model provide a prom- 
ising route. The "curse" also increases 
the importance of procedures which 
would confirm a parametric model 
(specification tests) or reduce the num- 
ber of explanatory variables (signifi- 
cance tests). 

This paper introduces procedures 
that are relatively simple. In some 

39 For the model y = cc + xA3 + c, Var(,) = y2/y (Xt - 

-y)2. 
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Figure 17. The Curse of Dimensionality 
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On the uilit interval, 100 equally spaced x's will be a distance of only .01 from each other. Allow the x's to spread out on the 
unit square and the distance to the nearest neighbor increases to .1(= 1/1001/2). Distribute them uniformly in the three- 
dimensional unit cube and the distance increases further to .215(= 1/1001/3). 

cases, more powerful but more complex 
techniques are available. But increased 
use of even simple nonparametric tech- 
niques is part of an endogenous process 
where greater use will cause software 
developers to add more of them to 
econometric packages. This in turn will 
drive further use and further software 
development. However, the ultimate 
test of nonparametric regression tech- 
niques resides in their ability to dis- 
cover new and unusual relationships. 
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APPENDIX A 

Some Useful Mathematical Background 

Suppose aT,T = 1,...,o is a sequence of 
numbers. Then the sequence aT is of 
smaller order than the sequence Tr, 
written aT= O(T-r) if TraT converges to 
zero. For example, if aT= T-1/4 then 
aT = o(T-1/5) since T1'5 T-1/4 _ O. A se- 
quence is o(1) if it converges to 0. 

The sequence aT is the same order as 
the sequence T-r, written aT =O(T-r) if 
TraT is a bounded sequence. For ex- 
ample, the sequence aT - 7 T-114 + 

3 T-115= O(T-1/5) since T'15aT converges 
to 3 and hence is a bounded sequence. 
A sequence is 0(1) if it is bounded. 

Now suppose aT,T= 1,...,oo is a se- 
quence of random variables. Then, 
aT = Op(T-r) if TraT converges in prob- 
ability to zero. For example, let aT = E= 

1/ETxle1?t where et are independently 
and identically distributed with mean 
zero and variance y2. Then E(?T) = 0, 
Var(?T) = (52/T. Since the mean is 0 and 
the variance converges to 0, the se- 
quence TT converges in probability to 0 
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and is op(l). Furthermore, for any r < 1/2, 

= op(T-r) since Var(TrT`) = o?/Tl-2r 

converges to 0. 
Next, write aT = Op(T-r) if TraT is 

bounded in probability.1 For example, 
suppose ThaT converges to a random 
variable with finite mean and variance, 
then aT= Op(T-r). Thus, using the cen- 
tral limit theorem T"1?2T converges to a 
N(O, 52) in which case -ET= Op(T-'/2) and 
T'1/2T- Op(l). 

Suppose yt = ty + Et where gty is a con- 
stant and define the sample mean based 

on T observations YT. Then YT= OP(gy + 

?T) = ,uC + OP(ET) = 0(1) + Op(T-7?) and 
T12(YT - Ay) = T'/2ET = Op(l). 

Let ?T be a sequence of real numbers 
converging to zero.2 Typically we con- 
sider sequences of the form ?T=T-r 
where 0 < r < 1. Let aT= ITMT Et/lTT be 
the average of the first kTT = Tl-r values 
of -t. For example, if T= 100, r= 1/5 
then we are averaging the first 39.8 - 
40 observations. Then, E[aT] = 0 and 
VarfaT] = 6?2 /T = y2/T1. Hence, aT = 

OP((XTT)-'/2) = Op(T-'/2(1-r)). 

APPENDIX B 

Nonparametric Regression and the 
Bootstrap 

Bootstrap procedures, which were in- 
troduced by Efron (1979), are simula- 
tiorn-based techniques which provide, 
among other things, estimates of vari- 
ability, confidence intervals, and critical 
values for test procedures. In part, be- 
cause the simulated sampling distri- 
butions are constructed from correctly 
sized samples, bootstrap techniques are 
often more accurate than those based 
on asymptotic distribution theory. In 
maniy circumstances they are also sim- 
pler to implement. 

The fundamental idea is to create 
replications by treating the existing data 
set (say of size T) as a population from 
which samples (of size T) are obtained. 
In the bootstrap world, sampling from 
the original data becomes the data-gen- 
erating mechanism. Variation in esti- 
mates results from the fact that upon 
selection, each data point is replaced 
within the population. Although the 

bootstrap requires resampling many 
times, calculations need not be done se- 
rially, but can be done contemporane- 
ously, making the bootstrap particularly 
suitable to parallel processing. 

The monograph by Efron and Tibshi- 
rani (1993) contains a readable intro- 
duction to the bootstrap. Beran and 
Ducharme (1991) provide an approach- 
able treatment of the large sample va- 
lidity of the bootstrap. Hall (1992) dem- 
onstrates that the bootstrap often yields 
superior finite sample performance 
than the usual asymptotic distribution 
theory. Shao and Tu (1995) provide a 
survey of recent developments. 

Suppose we have data (yi,x) ... (YT,XT) 
on the model y =f(x) + ? where f may or 
may not lie in a parametric family. A 
joint resampling methodology involves 
drawing i.i.d. observations with replace- 
ment from the original collection of or- 
dered pairs. 

Residual resampling, on the other 
hand, proceeds as follows. First, f is es- 
timated using, say, Af The estimated re- 
siduals are assembled and recentered by 
subtracting off their mean to produce 

?t= t -f(Xt) - T I(Ys -f(xs))/T. One then 
samples independently from these to 
construct a bootstrap data set: (yB,x),. 
(YT,XT) where ytj =f(xt) + AtB. The "B" Su- 

1 That is, for any 8> 0, no matter how small, 
there exists a constant A8 and a point in the 
sequence T8, such that for all T> T8, 
Prob[ I aT I > A8] < 8. 

2 Although throughout the paper the bandwidth 
X depends on T, we have suppressed the T sub- 
script. 
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perscript signifies a bootstrap observa- 
tion. Statistics that are of interest are then 
computed using the bootstrap dataset. 

An alternative residual resampling 
methodology, known as the "wild" boot- 
strap, is useful in heteroscedastic and in 
certain nonparametric regression set- 
tings. In this case, for each residual 
F=yt -(Xt) estimated from the original 
data one creates a two-point distri- 
bution for a random variable, say ot, 

with the probability distribution 

cot Prob(wt) 

?_ (I - 5)/2 (5 + 5-) /IO 

The random variable 0t has the proper- 
ties E(ot) = 0, E(o2) - At2, E(o3) t . One 
then draws from this distribution to ob- 
tain F_B for t= 1, ..., T. The bootstrap 
data set (yB,X,), ..., (yB,xT) is then con- 
structed, where yt =-frxt) + -tB, and statis- 
tics of interest are calculated. See Wu 
(1986) and Hardle (1990, pp. 106-8, 
247). 

Hardle (1990) discusses various appli- 
cations of the bootstrap in a nonpara- 
metric setting and provides algorithms. 
See also Hall (1992, pp. 224-34), Hall 
(1993), Mammen (1992), LePage and 
Billard (1992), Hardle and Mammeri 
(1993), Li (1995), and Yatchew and Bos 
(1997). 
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