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INVITED PAPER 

JACKKNIFE, BOOTSTRAP AND OTHER RESAMPLING 
METHODS IN REGRESSION ANALYSIS' 

BY C. F. J. Wu 

University of Wisconsin-Madison 

Motivated by a representation for the least squares estimator, we pro- 
pose a class of weighted jackknife variance estimators for the least squares 
estimator by deleting any fixed number of observations at a time. They are 
unbiased for homoscedastic errors and a special case, the delete-one jackknife, 
is almost unbiased for heteroscedastic errors. The method is extended to 
cover nonlinear parameters, regression M-estimators, nonlinear regression 
and generalized linear models. Interval estimators can be constructed from 
the jackknife histogram. Three bootstrap methods are considered. Two are 
shown to give biased variance estimators and one does not have the bias- 
robustness property enjoyed by the weighted delete-one jackknife. A general 
method for resampling residuals is proposed. It gives variance estimators that 
are bias-robust. Several bias-reducing estimators are proposed. Some simula- 
tion results are reported. 
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1. Introduction and summary. Statistical inference based on data resam- 
pling has drawn a great deal of attention in recent years. Most of the theoretical 
work thus far has been for the independent and identically distributed (i.i.d.) 
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case. Resampling methods justifiable in the i.i.d. case may not work in more 
complex situations. The main objective of this paper is to study these methods in 
the context of regression models, and to propose new methods that take into 
account special features of regression data. 

Four resampling methods for regression problems are reviewed in Section 2; 
three of them deal with resampling from the (y, x) pairs. Two main problems 
with this group of methods are that they neglect the unbalanced nature of 
regression data and the choice of the resample size is restrictive. The fourth 
method is to bootstrap the residuals. It depends on the exchangeability of the 
errors and is not robust against error variance heteroscedasticity. 

We propose in Section 4 a class of weighted jackknife methods, which do not 
have the problenms just mentioned. Its two salient features are the flexible choice 
of resample size and the weighting scheme. Advantages for the first will be 
discussed in the next paragraph. We now discuss the second feature. For linear 
regression models (2.1), the proposed variance estimators v,, r (4.1) and i3 r (4.3) 
are, apart from a scalar factor, weighted sums of squares of the difference 
between the subset estimate and the full-data estimate (over all the subsets of 
size r). The weight is proportional to the determinant of the XTX matrix for the 
subset. This choice of weight is motivated by a representation result (Theorem 1 
in Section 3), which says that the full-data least squares estimator (LSE) is a 
weighted average, using the same weight, of the subset LSE over the same 
subsets. (A more general representation for any symmetric resampling procedure 
is given in Theorem 2.) For linear parameters, V,J r and 'EJ, r are unbiased for 
estimating the variance of the LSE for homoscedastic errors (Theorem 3). A 
special case, the delete-one jackknife (i.e., subset size = sample size - 1), and 
another delete-one jackknife variance estimator (Hinkley (1977)) with a different 
choice of weights, are both almost unbiased for estimating the variance of the 
LSE for heteroscedastic errors (Theorems 5 and 6). The latter estimator is, 
however, biased for unbalance designs as shown in the simulation study. We also 
show in Theorem 4 that VJ, k, that is VJ, r with the subset size r equal to the 
number of /3 parameters in the linear model (2.1), and a more general version v,, k 

(4.12) are identical to the usual variance estimator 62(XTX)-1 (2.9). Since 
a 2(X TX) is not a consistent estimator for the variance of the LSE when the 
errors are heteroscedastic, the result suggests that, for the purpose of robustness, 
the subset size inVJ r should not be too small. 

Why do we consider jackknifing with a general choice of subset size? To 
answer this, let us review the delete-one jackknife, which is often synonymous 
with the jackknife in the literature. The delete-one jackknife works fine for bias 
and variance estimation in the case of smooth estimators (see Miller's review 
(1974a)), but for nonsmooth estimators such as the sample median, it is known to 
give inconsistent variance estimators. Another disadvantage is that the normal- 
ized histogram of {O(i)})', where 6(i) is obtained from the original estimate 6 by 
deleting the ith observation, does not in general converge to standard normal. 
Therefore, one cannot construct valid confidence intervals without estimating 
variance. Wu (1985) proves that, for the one sample mean and nonnonnal errors, 
asymptotic normality is obtained iff d, the number of observations deleted, and 
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n - d, both diverge to co. Beyond normality, interval estimators based on the 
histogram of the resample estimates, unlike the symmetric t-intervals, take into 
account the possible skewness of the original estimator 0 and often possess 
desirable second-order properties (Singh (1981); Beran (1982); Abramovitch and 
Singh (1985); Efron (1985); Wu (1985)). Jackknifing with a flexible choice of 
subset size will allow this prospect to be exploited (see (4.6)). 

Other resampling methods are studied in Section 6. The variable jackknife is 
an extension of the jackknife by allowing different subset sizes. The variance 
estimator vt, r (4.1) is extended to this situation. Two bootstrap methods for 
variance estimation are considered. A simple example is given to show that they 
do not, in general, give unbiased variance estimators even in the equal variance 
case. Careless use of the unweighted bootstrap can lead to an inconsistent and 
upward-biased variance estimator (see (6.14) to (6.17)). 

In Section 7 a general method for resampling residuals is proposed by 
retaining an important feature of the jackknife. Unlike the method of bootstrap- 
ping residuals (2.7)-(2.8), it gives variance estimators that are unbiased for 
heteroscedastic errors. A special case, called the balanced residuals method, 
resembles the balanced half-samples method (McCarthy (1969)) for stratified 
samples and is worth further investigation in view of its more efficient and 
systematic use of the resamples. 

In Section 8 the weighted jackknife method of Section 4 is extended to 
regression M-estimators, nonlinear regression and generalized linear models. 
The only essential change for the last two models is in the choice of weights, i.e., 
to replace the determinant of the XTX matrix of the subset by that of the 
(estimated) Fisher information matrix of the subset. Note that the Fisher 
information matrix for the linear model (2.1) with i.i.d. errors is proportional to 
XTX. 

The issue of bias reduction for nonlinear parameter 6 = g(,1) is studied in 
Section 9. It is shown that bias reduction is achievable if and only if there exists 
an unbiased estimator for the variance of the LSE /3 (apart from lower-order 
terms). Based on this connection, several estimators of the bias of 0 = g(,/) are 
proposed as natural counterparts of the variance estimators considered before. 

Several estimators are compared in a simulation study, assuming a quadratic 
regression model. Criteria for the simulation comparison include the bias of 
estimating the variance-covariance matrix of /3, the bias of estimating a nonlin- 
ear parameter 6, the coverage probability and length of the interval estimators 
of 6. For the last two criteria, Fieller's method and the t-interval with the 
linearization variance estimator are included for comparison. The simulation 
results are summarized at the end of Section 10. Concluding remarks and further 
questions are given in Section 11. 

2. Review of past work. We define a linear model by yi = x[T/ + eV, where 
xi is a k x 1 deterministic vector, /3 is the k x i vector of parameters and ei are 
uncorrelated errors with mean zero and variance av. Writing y = (Y1,..., Yn)T, 

e = (e1,..., en)T and X = [x1, xn]T, it can be rewritten as 
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bias-reducing property for which the i.i.d. jackknife is acclaimed. A more general 
treatment of this property will be given in Section 9. 

The delete-one jackknife method has, however, several disadvantages as 
described in Section 1. We propose instead a class of weighted modifications, 
allowing for the deletion of an arbitrary number of observations. Many of its 
members, including the delete-one method, share the desirable properties of 
Hinkley's weighted modification mentioned previously. However, unlike VH(1), all 
the variance estimators in the class are unbiased for 0 = 13 and a2 a2. 

Instead of recomputing the point estimate by deleting observation(s) each 
time, Efron (1979) advocated the use of simple random sampling with replace- 
ment (i.i.d. sampling) for resampling data and gave it a catchy name " bootstrap." 
Two bootstrap methods were considered for the regression model (2.1). 

One is based on drawing an i.i.d. sample {e*}n from the normalized residuals 
{ri/(1 - kn- )1/2},, where ri = yi - x['4" is the ith residual. Define the bootstrap 
observation y* - xi + e*, by treating 4 as the "true" parameter and 
{ri(1 - kn- 1)1/2) as the "population" of errors. The bootstrap LSE is 

(2.7) *=(XTX) XTy*. 

For a nonlinear estimator 0 g( 3), the bootstrap variance estimator is defined 
as 

(2.8) Vb = E*(0* 6)(0* - =)T, 0* = g(*), 13* in (2.7), 

where the asterisk (*) denotes i.i.d. sampling (or bootstrap sampling) from the 
population of normalized residuals. Note that 0* - 0 is unweighted. For 0 = , 
it is easy to see (Efron (1979)) that 

E*,B* = 1A 

(2.9) 
1 n 

V=tV = 2(XTX)Y A2 =r2 
n-k 1I ' 

that is, the bootstrap variance estimator is identical to the usual variance 
estimator v. Therefore, for homoscedastic errors a= a2 vb is unbiased. But for 
heteroscedastic errors (unequal a? in (2.1)), Vb is in general biased and incon- 
sistent since the true variance of the LSE , is 

Var(,) ( XTX<) Ea2XiXi(XTX)-. 

This difficulty with Vb is due to its very nature. The drawing of i.i.d. samples 
from {r/(1 - kn-1)1/2) depends on the assumption that the residuals r, are 
fairly exchangeable. Any inherent heterogeneity among ri is lost in the process of 
i.i.d. sampling and will not be reflected in Vb. On the other hand, the jackknife 
method, by not mixing the residuals, allows the heterogeneity of ri and 67 to be 
reflected in its variance estimate. This robustness aspect will be studied in 
Section 5. 
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Confidence intervals for 6 can be obtained from the histogram of 6 * in (2.8). 
Repeat (2.7) and (2.8) B times. Define CDFB(t) to be the unweighted empirical 
distribution function based on the B bootstrap estimates {6*b}b= 1.The bootstrap 
percentile method (Efron (1982)) consists of taking 

(2.10) [CDFB- (a), CDFB- 1(1 - a)] 

as an approximate 1 - 2a central confidence interval for 6. The interval (2.10) is 
computed with a continuity correction. 

The second bootstrap method is based on drawing i.i.d. sample {y*, x*n from 
the pairs {(yi, xi)}'. Compute the bootstrap LSE, 

n -1n 

(2.11) XX* = *T X 

and the unweighted bootstrap variance estimator 

(2.12) v* = E*(O* - 6)(* 0 - )Tg 8 
(4) 

6*=g(13*), ,B* in (2.11), 
where * denotes i.i.d. sampling from t(yi, xi)}'. Recognizing the nonrobustness of 
the first bootstrap method, Efron and Gong (1983) seemed to favor the second 
method. However, like the unweighted jackknife vJ (2.3), the estimator (2.12) 
suffers from neglecting the unbalanced nature of the regression data {yi, xi). 
Simple examples will be given in Section 6.2 to demonstrate its inconsistency and 
bias (even when a 2 = a2). The simulation study of Section 10 does not paint a 
bright picture for v*. A weighted modification to (2.12), inspired by the proposed 
weighted jackknife, is considered in (6.12). It gives generally biased variance 
estimators. However, the bias is very small for the particular example in the 
simulation study. 

3. A class of representations for the least squares estimator. To 
motivate the general result, let us first consider the simple linear regression 
model y, = a + /3xi + e , i = 1,..., n. The LSE /B of the slope parameter has 
several equivalent expressions, 

n n 
A 

E ( Y - )(Xi _-x)/ E (xi _ x-)2 
1 1 

n n 

(3.1) = (X Xj)l E (xi 
_ 

Xj)2 
i<j i<j 

= Suijgii, 
i<j 

where f3 = (y1 - y1)/(xi - x1) are pairwise slopes for xi + x1, ui, - 

(Xi - xj)2/1'< j(xi - xj)2 and ui jlij is defined to be zero for xi = xj. One can 
interpret /8 as a weighted average of the LSE 3ij based on the (i, j) pairs of 
observations, with weight proportional to (xi - xj)2, which happens to be the 
determinant of the XTX matrix of the (i, j) pair. 
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From (3.8) and (3.9), the jth element of the right side of (3.5) equals 

(3.10) E*IXTD*X(i)( y)I _ 
E * XSI IDs IDXsi)( y); 

E*IXTD*Xi E*2kIXSI2ID'I 

where D.* = diag(Pi*,..., Pi*) is the diagonal submatrix of D * corresponding to 
s and (3.10) follows from Lemma 1(i). Since E*ID*I = E*(I1*=P,*) = ak> 0 
independent of s from the assumption (A), (3.10) equals 

EkiXsi 1XS')() |XTx (Y)1 

k IXS2 IXTXI 

which is the jth element of ,B. This completes the proof. Ol 

4. General weighted jackknife in regression. We propose in this section 
a general weighted jackknife method that does not have some of the undesirable 
properties possessed by the three existing methods discussed in Section 2. 

Our proposal is mathematically motivated by the representation (3.2) for the 
LSE /3, which can be rewritten as 

2 rIXsXsI(/s- ,B) = 0. 

As its second-order analog, we propose 

(4.1) VJ r(O) n rrWs(Q' 0, )(_ O )T 6) x TXsl -rWs 1 

(4.2) = (r 
2 

k + 1 IXTXl11rIXXss ( O )( 6s ) 

as a jackknife estimator of the variance of 0 = g(/3), where g is a smooth 
function of 3, OS = g( ,s) and Er is the summation over all the subsets of size r. 
Throughout the paper, w, denotes the weight defined in (4.1). Fornula (4.2) 
follows from (4.1) by Lemma 1(ii). In (4.1) and (4.2), XTXs are assumed 
nonsingular for all s. In (4.1) the scale factor /r - k + 1 / n - r is applied 
externally to Os - 9 after the transformation g. Another variance estimator is 
obtained by applying the same factor internally to Ps - P,) 

(4.3) v3Jr(A) = A rWs( - )( ) - T 

(4.4) 88=g(S)R AS n -r Ps) 

Under reasonable smoothness conditions on g, both vJ,r(0) and i3, r(0) will be 
close to the linearized jackknife variance estimator g'(P )Tvj r(,/)g'( 4), where 
g'( /) is the derivative of g at /B. 

The linearization (or 8-method) variance estimator is given by 

(4.5) Vin= g=( )TVg (P ) , given in (2.9). 
It is based on the assumption of homoscedastic errors. A simulation comparison 
of these estimators will be given in Section 10. 



RESAMPLING INFERENCE IN REGRESSION 1271 

If r is chosen to be (n + k - 1)/2, the scale factor (r - k + 1)/(n - r) 
becomes one and vJ, r = 3J, r. For k = 1, the subset is a half-sample. 

Three features of v,J r and j, r deserve further discussion. 

(i) The weight is proportional to the determinant of the Fisher information 
matrix of the subset. This is because the information matrix of the model 
YS = XS'/ + e, for s is cX'TX8, where c is the Fisher information of the error 
term e,. It is a scalar weight no matter what the dimension of 6 = g(,B). This 
interpretation of w, in (4.1) allows vJ r or 3J r to be extended to general 
nonlinear situations. See Section 8. 

(ii) Flexible choice of subset size and construction of histogram for interval 
estimation. The choice of subset size is general. As pointed out in Section 1, 
there are theoretical difficulties in using the delete-one jackknife for interval 
estimation and for variance estimation for nonsmooth estimators such as the 
sample median. For the one-sample problem the jackknife with r around 0.72n 
was shown to possess a desirable second-order asymptotic property (Wu (1985)). 

One advantage of the bootstrap over the delete-one jackknife is that the 
former can construct interval estimates (see (2.10)) based on the bootstrap 
histogram, which reflects the skewness of the original point estimator. This 
advantage is shared by the general jackknife. A weighted jackknife distribution 
can be constructed as follows. 

(1) Draw subsets sl,..., s, of size r randomly without replacement. 
(2) Construct a weighted empirical distribution function CDFJ(t) based on 

g(/38), Zs defined in (4.4), i = 1(1)J, with weight proportional to IXTXJiI. 
Similar to the bootstrap percentile method (2.10) is the jackknife percentile 

method consisting of taking 

(4.6) [CDFJ-1(a),CDFJ-1(1 - a)] 

as an appropriate 1 - 2a central confidence interval for 6. Since CDFJ(t) is 
discrete, (4.6) is computed with a continuity correction. For multiparameters 0, a 
confidence region can be similarly constructed once the shape of the region is 
determined. Efron ((1982), Chapter 10) considered other modifications to the 
bootstrap percentile method. Similar modifications to the jackknife percentile 
method can be obtained in a straightforward manner. Here the external scaling 
method (4.1) is not appealing since the histogram of {g(psi)} has a wrong scale 
and stretching or shrinking by the factor jr - k + 1 / Vn - r seems arbitrary. 
On the other hand, the internal scaling method (4.3) does not perform well in the 
simulation study (Section 10). One may use r = (n + k - 1)/2 to avoid use of 
the scale factor. 

(iii) The scale factor ( = (r - k + 1)/(n - r). For general r, the resampling 
error SB- ,B has a different stochastic order from that of the sampling error 
/3 - ,B. This is corrected by multiplying As- /3 by A. In fact, from the 
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unbiasedness of vt,, r() (to be proved in Theorem 3), 

(4.7) rwsVar(V(s - 
A 

_)) = Var(/3 - /A), 

where the weight w, is proportional to IX"XTI. In particular, for k = 1, since w, 
is constant, this reduces to Var(g(/,3 - /3)) = Var(, - /3). In general if the 
weights w, in (4.7) are uniformly bounded away from 0 and 1, (4.7) implies 

(4.8) Var(g( As - A)) = Var( A _ /)(J + 0(1)) for all s. 

The implementation of the proposed jackknife method may be quite cumber- 
some since (n) computations are required. As in the bootstrap method, Monte 
Carlo approximation by randomly selecting J distinct subsets, J << (n), can be 
used. Construction of VJ,r or EJ, r from these J subsamples is obvious. 

We now turn to the theoretical aspect of the proposed jackknife method. Its 
use for bias reduction will be studied in Section 9. For the linear parameter 
0 = 3, VJ r(/f), which is identical to J, r(J), has three properties. For simplicity 
we use V3, r for VJ, r(/). 

(i) It is unbiased for Var(,B) if Var(e) = a2I (Theorem 3). 
(ii) A suitably defined version of VJ, k is identical to the usual variance 

estimator a62(XTX)-1 (2.9) (Theorem 4). 
(iii) VJ n- I is robust against error variance heteroscedasticity (Section 5). 

THEOREM 3. If Var(e) = a2I in (2.1), 

(4.9) E(VJ r) = a2(XTX)-l = Var(,B). 

PROOF. From 

-s A (X XXS) Xs (ys 
- X S) (S 

A 

where r8 = ys- Xs/3 is the residual vector for s, 

IXSTXS IAS- ) ( A- ) = ITX:xsI(TXS? ) XsTr rsTXs(xs7Xsy)' 

and its expectation is 

(4.10) 
s (IS- X5(XTX)XS)X8(XTXS) 

= |Xs XS|(Xs XS) - IXsXSI(X XX), 

where Is is the identity matrix for s. From Lemma 2, 

(4.11) 2 rIXs[Xs (XsTXs) 
n k + ( )|XTX|(XTX) 

and from Lemma 1(ii), 

r TXsl(XTX)Y = ( k )IXTXI(XTX)Y 
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which, together with (4.10), imply 

E(2r1XTXsI(/3s - (r k + 1)xTx(xTx 

and thus the result. Ol 

When the subset size r equals the number of parameters k, the jackknife 
variance estimator VJ, k can be redefined without the additional assumption that 
XSTXs is nonsingular for any s. For a subset s of size k, 

Ps Xs Ys, P-s - = XS-r, rs = Ys - XI 

and 

IXSTXSi( ( - A ) ( A) = IXSI2XS- rrs T(XlT) - (adj X8)r8rsT(adj Xs) T. 

Note that adj Xs, the adjoint of Xs, is always defined, whereas IXsIXs- is 
defined only for nonsingular Xs. This suggests defining a more general variance 
estimator for r = k, 

(4.12) V,k = 
(n - k)jXTXI Ek(adj Xs)rsrsT(adj XS)T 

Note that VJ,k in (4.1) requires the nonsingularity of Xs"^Xs for every s while 
VJ k is well-defined without additional restriction. For Vi, k we can establish the 
following coincidental result, which also implies the conclusion of Theorem 3 for 

VJ, k. 

THEOREM 4. The estimator V, k is identical to the estimator v = a2(XTX) 1. 

PROOF. Note that 

(4.13) (adj X.)rJ = [(-1) YjIX()I LI(rSI)I 

(4.14) (z(-1)irS]IXS(g)I) -(iXS(rS)1)i, 

where X(() is the matrix obtained by deleting the jth row and the ith column of 
Xs, rsj = jth element of rs and XsL)(rs) is the matrix obtained by replacing the 
ith column of Xs by rs. The last equation of (4.14) follows from a standard 
expansion of determinant (Noble (1969), page 208). From (4.14), the (i, j)th 
element of the matrix Yk(adj Xs)rsrs(adj Xs)T in (4.12) is equal to 

(4.15) 1kIXS( r8 )j Xs(i( r8)I = Ix(i)(r)TX()(r)L 

where X(')(r) is the matrix obtained by replacing the ith column of X by the 
residual vector r = y - X/3. Since Xs(L)(rs) is the k x k submatrix of X(i)(r) 
with rows corresponding to s, (4.15) follows from Lemma 1(i). Noting that r is 
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orthogonal to the other columns of X(i)(r) from the normal equation XTr = 0, 
the (i, j)th element of X(i)(r)TX(i)(r) is rTr, and the other elements in its ith 
row and jth column are zero. This gives 

(4.16) IX(i)(r)TX(i)(r)l = ( 1) i+iTrX(i)TX(i)% 

where X(i) is the submatrix of X with its ith column deleted. From (4.12), (4.15) 
and (4.16) we have 

rTr 

VJs k (n -k)XTXI [(l 1)iIX(i)T.X'(j i] j 

rTr adj XTX 

(n -k) IXTXI L 

Theorem 4 was proved by Subrahmanyam (1972) for V, k (not the more 
general VJ k) by assuming IX., I 0 for all s. For s with IXJ = 0, it is incorrect to 
interpret IXSI2(IPS - I3)(Is -_ 13)T in VJ, k to be zero as was done before for the 
representation theorem. This is obvious since the more general expression 
(adj Xs)rsrsT(adj Xs)T in (4.12) is nonnegative definite and is generally nonzero for 
singular Xs. Such an incorrect interpretation of V, k will lead to a variance 
estimator smaller than a2( XTX)'. A simple example was given in Wu (1984). 

5. Bias-robustness of weighted delete-one jackknife variance estima- 
tors. If the homoscedasticity assumption in Theorem 3 is violated, will vJ, r be 
approximately unbiased? In this section we will show that the two weighted 
delete-one jackknife estimators vj n-l (4.1) and VH(1) (2.4) have this desirable 
property.We adopt the conventional notation that the subscript (i) denotes 
"with the i th observation deleted," and in a similar spirit, use VJ(1) for v, n-l It 
is easy to show that 

n 

(5.1) VJ(1) = (1 - Wi)(4(i) A)(: 
A 

T) 

(5.2) =(Xc X)nL xi xT(XTXYI, 

where 13(i) is the LSE of ,B with the ith observation deleted, ri =yi - xi[gB is the 
ith residual and wi = xiT(XTX) -xi. 

Under Var(e) = diag( a2), the variance of /B is 
n 

(5.3) Var(3) (XTX)' I 
2XT(XTX) 

1 

Comparison of (5.2) and (5.3) suggests that vJ(1) is robust for estimating Var(1) 
under the broader heteroscedasticity assumption. 
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The assumption (C2) is weak; (Cl) is also reasonable since it is easy to show 
that it is implied by (C3) and (C4). (C3) says that XTX, grows to infinity at the 
rate n. Usually a stronger condition such as n- XnTXn converging to a positive 
definite matrix is assumed (Miller (1974b)). On the other hand, (5.4) is more 
restrictive. Let q be the number of different ai's in (5.4). Then the linear model 
(2.1) can be rewritten as 

(5.8) yij x Tj3 + e1j, Var(e j) = a2, 1j= i(i)ni, i = 1(1)q. 

Let Ti be the subspace spanned by xij, j = 1(1)ni. According to (5.4) Ti, 
i = 1(1)q, are orthogonal to each other with respect to the positive definite 
matrix (XTX)- . A special case of (5.8) is the k-sample problem with unequal 
variances 

(5.9) yij = H. + e-j, Var(e j) = a2, j = 1(I)n-, i = 1(1)k. 

Closely related to vJ(1) is VH(1). From comparing VH(1) (2.4) and VJ(1) (5.2), it 
seems that VH(1) is also robust in the sense of Theorem 5(ii). The comparison is, 
however, more favorable for vJ(1). Under the ideal assumption Var(e) = a2I, 

Eri2 = (1 - w.)C2 n (1 - n1k)a2. Therefore, EVH(1) + 02(XTX)1-, although 
under (Cl) the difference is of lower order, i.e., EvH(1) = 02(XTX)-1(1 + O(n1-)) 
since Eri2 - (1 - n-k)a2 = (n-1k - wi)a2 = O(n-1) under (Cl). Under the 
broader assumption 

Var(e) = diag(a2), EVH(1) # Var(g) 

even under the condition (5.4) in Theorem 5. As in Theorem 5(ii), VH(1) is 
approximately unbiased under (Cl) and (C2), i.e., EVH(l) = Var(,B)(l + O(n-1)). 
This is because 

E = I- ,. +0(n-1) 0(n- ), 1 - n1lk 1 -n1lkII 

where the first equation follows from Lemma 3, (5.6), and the second equation 
follows from (Cl). The results concerning VH(l) are summarized as follows. 

THEOREM 6. (i) Under Var(e) = a2I and (Cl), EVH(l) * Var(,B) but 

EvH(l) = Var(/A)(1 + 0(n-1)). 

(ii) Under Var(e) = diag(ai 2)X (Cl) and (C2), 

EvH(l) = Var( A)(1 + 0(n 

Unlike VJ(1), the exact unbiasedness EVH(1) = Var(/) does not hold true even 
in special cases. Theorem 6 is a more rigorous version of what is essentially in 
Hinkley (1977). The strong consistency of VH(1) was established in Hinkley (1977) 
by following Miller's (1974b) proof for the balanced jackknife. The strong 
consistency of vJ(1) can be established in a similar manner. 
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Standard asymptotic justifications for the jackknife variance estimators are in 
terms of its consistency and the normality of the associated t-statistics. They 
confirm that the jackknife method works asymptotically as well as the classical 
8-method. Then why should the jackknife be chosen over the 8-method except 
possibly for computational or other practical reasons? The bias-robustness of 
vJ(1) and VH(1) (Theorems 5(ii) and 6(ii)) against the heteroscedasticity of errors, 
first recognized in Hinkley (1977), is a fresh and important property of the 
jackknife methodology. 

Before closing this section, we make two other remarks. 

(i) Is the concept of pseudovalues appropriate for non-i.i.d. situations? 
Tukey's (1958) reformulation of Quenouille's (1956) jackknife in terms of the 
pseudovalues works well for the i.i.d. case. Its extension to non-i.i.d. situations 
lack firm theoretical foundation. In fact it may lead to less desirable results as is 
evidenced by the slight inferiority of VH(1) to VJ(1). A more striking example is 
offered in the context of inference from stratified samples. Two jackknife point 
estimators have been proposed in terms of pseudovalues, both of which reduce to 
the usual jackknife point estimator in the unstratified case. It was found (Rao 
and Wu (1985b)) that neither estimator reduces bias as is typically claimed for 
the jackknife. 

(ii) Relation to quadratic unbiased variance estimators. If the purpose of 
jackknife variance estimation is to aid the point estimator / in making inference 
about /3, the variance estimators are required to be nonnegative and almost 
unbiased. In situations such as the determination of sample size, the variance 
itself is the parameter of primary interest and other criteria such as the mean 
squared error (MSE) will be more appropriate. In this context, a nonnegative 
biased estimator (Rao (1973)) and MINQUE (Rao (1970)) were proposed. Horn, 
Horn and Duncan (1975) proposed (1 - wi)-1ri2, which appears in vJ(,) (5.2), as 
an estimator of a. and called it AUE (almost unbiased estimator). The MSE of 
(1 - wi) - 'ri2 was shown to be smaller than that of MINQUE in a wide range of 
situations (Horn and Horn (1975)). However, it is difficult to extend this 
comparison to estimation of the variance-covariance matrix. 

6. Variable jackknife and bootstrap. Can the results in Sections 4 and 5 
be extended to other resampling methods? For a given resampling method 
denoted by *, /3* and D* defined in (3.4), we would like to find a variance 
estimator of the form 

(6.1) v = XE*w*(/* - A)(/3* - )T 

where the weight w* is proportional to IXTD*XI and E * = 1, such that it 
satisfies the minimal requirement (as in Theorem 3) 

(6.2) E(vlVar(e) = a2I) = a2(XTXY)l. 
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is a conditional odds ratio given that the first k - 1 units have been selected. 
For jackknifing with subset size r, this alternative interpretation of the scale 
factor (r - k + 1)/(n - r) may be of interest. 

6.2. Bootstrap. Among the resampling procedures that do not satisfy (6.4), 
i.e., Prob*(Pi* P> 2 for some i) > 0, we single out the bootstrap for further study. 
The resampling vector P* = (P1*,..., P,*) has the multinomial distribution 
Mult n(n, (l /n)l). 

The unweighted and weighted bootstrap variance estimators are, respectively, 

(6.11) v* = E*(13* -)(/3* - g)T) /* defined in (2.11), 

and 

(6.12) v* = E*IXTD*Xl(/* - 4)(p* - )T /EIXTD*XI. 

That v* and v* are generally biased will be illustrated with the following 
regression model: 

(6.13) yi 
= I + el, i 1 nl n=n + n2 

with uncorrelated errors, Eei = 0 and Var(eil) = a 2, Var(ei2) = a2. Rewrite the 
resampling vector P* as (Pl,..., Pn*1, P1*,.*, Pn*2) to correspond to the two 
samples of (6.13) and define n *= LliJ, , n*-= n- Then /3*- 
n'1- FlEjPi*>yi, j = 1,2 and IXTD*XI - n*n*. For this example the computa- 
tion * excludes the resamples with n' = 0 or n* = 0 to ensure that f3}* are 
well-defined. After some tedious algebras (Wu (1984)), it can be shown that 

v* = diag(E* 1 ) SIE*[ 1 
- 

and 

E(nn) diag E *(n2) , E *(n* ) S ) 

where SS -2I-l(YLj - .j)2 Recall that, in this case, 

A A ~ ( 2 2 

Var(1, P2) = diag 2 n- 

- I 

Since for small or moderate n , E* is not close to (ni - 1)-1, v* is biased. 
Similarly v* is biased. For large ni, by using the approximation E*(n*) = n 
and E*(n*n*) = nln2, v* can be approximated by 

I SS1 SS2 
diag~ 2' 

w h r tn h2 X n2 r 

which, for estimating Var( Bl,,BPO, has the relative bias diag(- llnl,- 1/n2). 
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This relative bias is slightly worse than that of VH(l) which can be shown to be 

n SS1 SS2 
n - 2 ni n2J 

with the relative bias 

gtni n - 2 ( ni l n2 n - 2 ( n2 ) 

Of course, as n1 and n2 become large, the biases of the three estimators diminish. 
It is not surprising that the unweighted bootstrap does not give an unbiased 

variance estimator, since, as in the case of the unweighted jackknife, the LSE / * 
based on the bootstrap resamples are not exchangeable. It is mildly disappoint- 
ing that the weighted bootstrap does not correct the bias. One may expect it to 
perform well since the same weight was used in the jackknife with satisfactory 
results. If (6.13) is recognized as a two-sample problem rather than a regression 
problem, unbiased variance estimators can be obtained by bootstrapping and 
rescaling each sample. The main point made here is that a result like Theorem 3 
cannot be extended to the bootstrap method for the general linear model (2.1). 

Careless use of the unweighted bootstrap can lead to inconsistent variance 
estimators as the following example shows. In standard statistical packages the 
regression model (2.1) (with a nonzero intercept) is automatically reexpressed as 

(6.14) Y, = MI + (xi - x) T, + ei, 

where xi and /B are of dimension k - 1. For a2 = a2 the standard variance 
estimator for the LSE j = y is (1/n)62, where 

A2 = Xi _Y -x -x)T3 

(6.15) 1nn 

n k [E Y-Y - (Xi x) ft (xi- x)] 

Let {(yi*, xi*))n be a bootstrap sample from {(yi, xi))n. The LSE t* based on 
{(yi*, xi*))n and the model (6.14) is y* = (1/n)E'yi*. The unweighted bootstrap 
variance estimator 

v*( A) 
A 

(p i)2 = 
_ 

y_y)2 

(6.16) - _[n 82 
n 

which is bigger than (1/n)a2. For n >> k, the relative increase 

v*(y) - n- 1a2 R2 
a2B ianan 1-B2' 

is an increasing function of R2, which is the multiple correlation coefficient of 
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be found in Hedayat and Wallis (1978). Typically, n + 1 < R < n + 4. The kth 
resampled y(k) = (yi(k))in_ is defined as 

(7.6) y(k) = T# 
ri a(,k) i ,,n, 

1-wi 

and the corresponding LSE as 

(7.7) A(k) = (XTX)1XTy(k). 

The variance estimator v.* is of the form 
lR 

(7 .8) -(jE ( A(k )( -(k) _ 
A) T A(k) g( 

A 
(k)). 

1 

Note that this method is similar in spirit to McCarthy's (1969) "balanced 
half-samples" method for stratified random samples. Here the unbiasedness of 
v * is for an estimator with R recomputations, R roughly equal to n, whereas the 
bootstrap requires (at least conceptually) infinite recomputations for the unbi- 
asedness result or other small sample results to hold. 

The method (7.6)-(7.8) seems to assume the symmetry of the underlying 
errors ei because, for each residual r,, half of the R resamples have ri and the 
other half have - ri in (7.6). 

(ii) A jackknife-bootstrap hybrid. The errors {t t}I are a bootstrap (i.e., i.i.d) 
sample from a finite population {aj}Ji with 

M M 

Eaj=O, MEaJ1. 
1 

The choice of (aj} will influence the higher-order performance of the method. 
One possibility is to choose 

aj =(ri - Y.[(r - r)] n=, ..n 

8. Jackknifing in nonlinear situations. We outline extensions of the 
general weighted jackknife method in three nonlinear situations. A rigorous 
treatment of their asymptotic properties is not attempted here since it would 
require very careful handling of the lower-order terms. 

(i) Regression M-estimator. An M-estimator 1 is obtained by minimizing 
n 

(8.1) EP( Yi XT/3) 
1 

over /3, where p is usually assumed to be symmetric. Choices of p can be found in 
Huber (1981). Let f3, be the M-estimator obtained from minimizing (8.1) with 
(yi, xi) in the subset s. The jackknife variance estimators Vj r (4.1) and 4. r 4.3) 
can be extended in a straightforward manner by replacing the LSE's 4 and 4t by 
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the M-estimators /B and /3g. The weight JXTX.J remains the same. This can be 
justified in the case of i.i.d. errors e., since the approximation 

(8.2) l [Ep(e) xix)( ) 

resembles the expansion ,'n - /B = (Y2nxix[)-1L2nx.e. for the LSE. Conditions 
under which (8.2) is justified can be found in Huber (1981). For independent but 
not identically distributed errors, if E(p'(ei ))2/[ Ep"(ei)]2 is a constant, the 
weight IXTXJI is still justifiable; otherwise not much is known. 

(ii) Nonlinear regression. In a nonlinear regression model 

(8.3) yi= fL() + e., 

where fi is a nonlinear smooth function of /3 and ei satisfies (2.1), the jackknife 
variance estimators vt, r (4.1) and ,, r (4.3) have a natural extension, namely to 
replace xi by f,'(/3) and to interpret /3 and P,B as their nonlinear least squares 
counterparts. Here fi'(/3) is the vector of derivatives of fi with respect to /3. We 
may consider alternative weight functions to avoid the computation of fi' or by 
evaluating it at other estimates P3g Another approach that requires less computa- 
tion was proposed by Fox, Hinkley and Larntz (1980) for the delete-one jack- 
knife. 

(iii) Generalized linear models. We consider generalized linear models 
(McCullagh and Nelder (1983)) with uncorrelated errors. Let 

Y=(Yl,- .. Yn)TX Ey = ft = ('4 1, * 

and 

Var(y) = a2V([t) = a2diag(vi(/i)). 

The mean ,u is related to the regressor xi via a link function q, i.e., ii = q(x[iT). 
The full likelihood may not be available. Inference is instead based on the log 
quasilikelihood (Wedderburn (1974); McCullagh (1983)) L(1; y) defined by 

dL(t; y) 
= V(M)'y - i) dtL 

A generalized least squares estimator (GLS) ,B is defined as a solution to 

D TV(y - I(/3)) = 0, 

where 

,u(/38) = (/a\f)l =I( (xT,-I\\)) and D =dB= i( 1(xB))X ForT and D - t diag(riac(xsi))Xr t A ixl)Ji d/3 

For the estimation of Var( O), 0 = g(/P), the jackknife variance estimator v,J, 
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externally and the latter internally. Like BJ, r BJ r also captures the leading 
term of B(6) under reasonable assumptions. 

Let us now consider the bootstrap. Since the unbiased estimation for B(0) 
hinges on the unbiased estimation for Var( /), from the study of Section 6, we 
need only consider the bootstrap residual method. Let /B* = (XTX)-lXTy* be 
the bootstrap LSE defined in (2.7). The proposed bootstrap estimator of bias is 

(9.10) Bb= E*H -O, 0* = g(/3*) 

From the expansion 

0* = + gJ(gAj)T(* A) + I (A* 
_ 

A)jTg (A)(P* 
A) + 

it is easy to show that 

(9.11) Bb= tr(g"()Vb)E*(,q*) 

Since E(vb) = Var( /) for Var(e) = a 2, one would expect that 

(9.12) EBb = B(6)(1 + Q(n 1)) 

holds under Var( e) = a 2I and other conditions which ensure E( E * *) = O( n -2). 
The result (9.12) cannot be extended to the heteroscedastic case because Vb is 
biased. 

10. Simulation results. In this section we examine the Monte Carlo behav- 
ior of (i) the relative bias of several variance estimators, (ii) the bias of several 
estimators of a nonlinear parameter 0 = g(,/), and (iii) the coverage probability 
and length of the associated interval estimators for the same nonlinear parame- 
ter. 

Under consideration is the following quadratic regression model: 

Yi = /30+ + Ixi + 2x i + e, i= 1(1)12, 

xi= 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10. 

Two variance patterens are considered: unequal variances e- = (.x )l'/2N(O, 1) 
and equal variances ei = N(O, 1). The ei's are independent. 

Seven variance estimators are considered: 

(1) the usual variance estimator v (2.9), which is identical to the bootstrap 
variance estimator Vb (2.8); 

(2) the unweighted jackknife variance estimator vr, (2.3); 
(3) the delete-one jackknife variance estimator vJ(1) (5.1); 
(4) Hinkley's delete-one jackknife variance estimator VH(1) (2.6); 
(5) the retain-eight jackknife variance estimator vj 8 (4.1); 
(6) the unweighted bootstrap variance estimator v* (6.11); 
(7) the weighted bootstrap variance estimator v* (6.12). 

The results in Table 1 are based on 3000 simulations on a VAX 11/780 at the 
University of Wisconsin-Madison. The normal random numbers are generated 
according to the IMSL subroutine GGNML. In drawing the bootstrap samples, 
the uniform random integers are generated according to the IMSL subroutine 
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TABLE 1 

Relative biases of seven variance estimators. The relative bias of an estimator v is defined as 
(E(V) - Var(ft))/IVar(1,)I; (i, j) denotes the covariance between , and f3,. 

(0, ) (0, 1) (0,2) (1, 1) (1,2) (2,2) 

Equal variances 
- 0.01 0.01 -0.01 -0.01 0.01 0.00 

V4 0.61 - 0.78 1.03 0.93 -1.18 1.53 
vJ(1) - 0.01 0.01 -0.00 -0.00 -0.00 0.00 
VH(I) -0.13 0.16 -0.21 -0.17 0.22 -0.29 
VJ 8 - 0.01 0.01 -0.00 -0.00 - 0.00 0.00 

v* 0.63 - 0.85 1.22 1.04 - 1.49 2.18 
U~VU! -0.07 0.07 -0.08 -0.06 0.07 -0.06 

Unequal variances 
v3 0.39 -0.09 - 0.04 --0.11 0.20 - 0.29 
vtj 0.97 -1.07 1.29 1.10 -1.29 1.45 
VJ(l) 0.02 0.04 -0.09 -0.08 0.12 -0.16 
vH(l) -0.16 0.24 - 0.35 - 0.29 0.39 - 0.47 
vJ, 8 0.06 0.02 - 0.08 - 0.08 0.13 - 0.18 
v* 1.02 - 0.98 1.17 0.91 -1.13 1.39 
Uv* 0.03 0.07 -0.14 -0.13 0.19 - 0.26 

GGUD. The number of bootstrap samples B is 480, which is comparable to 495, 
the total number of jackknife subsets of size 8. The same set of random numbers 
is used throughout the study. We thank Mike Hamada for computational 
assistance and John Tukey for comments on Table 1. 

The results of Table 1 can be summarized as follows. The worst two are the 
unweighted estimators v, and v* with their relative biases ranging from 60 to 
210%. The biases of v', and of v* are very close. This demonstrates a serious 
weakness of the unweighted procedures in unbalanced situations. The next poor 
performer is VH(l) with its relative biases ranging from 13 to 47%. (The signs of 
Bias(VH(l)) are the opposite of the signs of Bias(v,) and Bias(v*).) This is 
somewhat disappointing since its claimed robustness against error variance 
heteroscedasticity (Theorem 6(ii)) does not hold up here. On the other hand, as 
predicted by Theorem 5 and the result of Shao and Wu (1985), VJ(1) and v, 8 are 
nearly unbiased. This shows that the two weighting schemes can lead to 
significantly different results in unbalanced situations. The weighted bootstrap 
estimator v* does almost as well as vJ(1) and v, 8. A rigorous justification is 
called for. As expected, v (= vb) does well for equal variances, but is severely 
biased for estimating Var( Po) for unequal variances. With one exception, v 
(= Vb) is less biased than VH(1) which cannot be explained by the present theory. 

We next consider bias reduction and interval estimation for the nonlinear 
parameter 

0= -#I/(2/23), 

which maximizes the quadratic function PO + 1Ix + ,82x2 over x. Seven point 
estimators are considered: 0; 0 defined before (2.3); 0J(1) = 0 - BJ(1) (9.6); 
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degrees of freedom; a2 is given in (2.9) (assuming equal variances). (If the data 
analyst is concerned with the possibility of unequal variances, larger degrees of 
freedom for ta may be used.) Fieller's interval estimate is unbounded in the case 
of (I) or (II) of (10.1). The method is not exact for unequal variances. 

Altogether nine methods are compared in our simulation. A description is 
given below. (The tenth method TBOOT in Table 3 is described in the rejoinder.) 

Symbol Interval estimate 

Fieller Fieller's interval, (10.1) 

VCJ(1) Delete-i jackknife 6 + ta i3v, n- 1( ) (4.3) 
A A 

VHJ(1) Delete-i jackknife 0 + ta v,,n-1( ) (4.1) 

VCJ8 Retain-8 jackknife 6 + ta i4 , 8( ) (4.3) 

VHJ8 Retain-8 jackknife 0 + t_,Vv,,8(j) (4.1) 

VBOOT Bootstrap variance 6 + t_ V/, (2.8) 

VLIN Linear approximation 0 + t_ avli (4.5) 
PBOOT Bootstrap percentile [CDFB -1(a), CDFB - 1(1 - a)] (2.10) 

PJ8 Jackknife percentile [CDFJ- 1(a), CDFJ- '(1 - a)] (4.6) 
(retain-8) 

(V: variance, C: curl, H: hat, P: percentile) 

The Monte Carlo coverage probabilities are given in Table 3 for five sets of 
parameters. Since Fieller's interval in the case of (I) and (II) of (10.1) has infinite 
length, we break the 3000 simulation samples into categories (I), (II) and (III) 
according to the corresponding Fieller's intervals. In our simulation samples (I) 
never happens; (II) happens only when /2 = -0.25 and -0.35. In these two 
cases, the median length of each interval estimate is computed separately for 
category (II) and category (III) and is given in Table 4. For the rest, the median 
length over 3000 samples is given in the parentheses in Table 3. 

We do not report the average lengths since they are greatly influenced by a 
few extreme values. Take fP2 = - 0.25 and unequal variances as an example. The 
average lengths for VCJ8, VHJ8 and VBOOT in category (III) are 176.85, 365.76 
and 39.54, respectively, while the medians are 10.65, 6.64 and 3.37. The perfor- 
mance of the three methods is unstable in highly nonlinear situations. 

The results of Tables 2 to 4 can be summarized as follows: 

1. Effect of parameter nonlinearity. When the parameter 0 becomes more 
nonlinear (/P2 closer to 0), all the intervals become wider and the associated 
coverage probabilities smaller. The phenomenon is especially noticeable for 
unequal varinces and /P2 = - 0.25, - 0.35, where we observe the Fieller para- 
dox (i.e., Fieller's intervals take the form (10.1)(II)). In these two cases, only 
the two retain-8 jackknife methods provide intervals with good coverage 
probabilities. But the price is dear. Both the mean and median lengths of 
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TABLE 3 

Average coverage probabilities and median lengths for nine interval estimation methods 
(3000 simulation samples). Nominal level = 0.95; f3) = 0; f3I = 4. The length of interval 
estimate is given in parentheses. 

Unequal variances Equal variances 
02 02 

Method - 0.25 - 0.35 -0.5 - 1.0 - 0.25 - 1.0 

Fieller 0.858 0.866 0.968 0.952 0.947 0.950 
(0.98) (0.92) (2.48) (0.64) 

VCJ(1) 0.887 0.848 0.961 0.950 0.904 0.935 
(0.91) (0.89) (2.03) (0.62) 

VHJ(1) 0.866 0.845 0.950 0.947 0.899 0.935 
(0.87) (0.87) (1.94) (0.62) 

VCJ8 0.946 0.920 0.968 0.953 0.947 0.939 
(0.97) (0.90) (3.19) (0.63) 

VHJ8 0.931 0.908 0.965 0.953 0.941 0.939 
(0.93) (0.90) (2.69) (0.63) 

VBOOT 0.886 0.902 0.973 0.955 0.956 0.946 
(0.97) (0.91) (2.42) (0.64) 

VLIN 0.865 0.891 0.969 0.952 0.949 0.948 
(0.93) (0.90) (2.18) (0.64) 

PBOOT 0.829 0.814 0.940 0.921 0.912 0.916 
(0.84) (0.79) (2.05) (0.56) 

PJ8 0.809 0.755 0.909 0.912 0.831 0.900 
(0.78) (0.78) (1.90) (0.55) 

TBOOT 0.755 0.816 0.960 0.948 0.918 0.949 
(0.92) (0.90) (2.14) (0.64) 

TABLE 4 

Median lengths of nine interval estimates of category (II) and category 
(III). f30 = 0; f3I = 4; unequal variances. The figure in the parentheses is 
the number of simulation samples belonging to the category. 

02 = -0.25 02 = - 0.35 

Method II (199) III (2801) 11 (7) III (2993) 

Fieller OC 3.81 oc 1.10 
VCJ(1) 29.08 3.87 8.92 1.04 
VHJ(1) 15.17 3.13 5.63 0.98 
VCJ8 223.67 10.65 38.08 1.59 
VHJ8 166.81 6.64 49.80 1.37 
VBOOT 313.17 3.73 86.63 1.07 
VLIN 14.75 2.91 5.82 1.02 
PBOOT 55.05 3.07 17.78 0.93 
PJ8 28.54 3.34 8.22 0.92 
TBOOT 17.16 2.89 5.56 0.98 
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their intervals are quite big even in category (III) where Fieller's interval is 
reasonably tight but, of course, with poor coverage probability. In the other 
cases, the first seven methods all do reasonably well. 

2. Effect of error variance heteroscedasticity. As the theory indicates, the 
performance is less desirable in the unequal variance case. Fieller's interval is 
far from being exact for /2 = - 0.25, - 0.35 and unequal variances. For equal 
variances Fieller's method is almost exact and the next six methods (t-inter- 
vals with various variance estimates) perform reasonably well even in the 
most nonlinear case /2 = - 0.25. The two retain-8 jackknife methods are least 
affected by the heteroscedasticity of variances. 

3. Undercoverage of the percentile methods. This is very disappointing in view 
of the second-order asymptotic results on the bootstrap (Singh (1981); Beran 
(1982)) that are used as evidence of the superiority of the bootstrap approxi- 
mation over the classical t-approximation. 

4. Fieller's nwthod is exact in the equal variance case even when the parameter 
is considerably nonlinear, but is vulnerable to error variance heteroscedastic- 
ity. 

5. The linearization method is a winner. This is most surprising since we cannot 
find a theoretical justification. The intervals are consistently among the 
shortest, and the coverage probabilities are quite comparable to the others 
(except for f2 = -0.25, -0.35 and unequal variances where VCJ8 and VHJ8 
are the best). The linearization method is compared favorably with Fieller's 
method. The former has consistently shorter intervals than the latter and the 
coverage probabilities are very close. For /2 = -0.25, -0.35 and unequal 
variances, VLIN has much shorter intervals and much higher coverage prob- 
abilities. Note that Fieller's intervals are unbounded in 199 (/,2 = -0.25) and 
7( t2 = - 0.35) out of 3000 samples (Table 4). 

6. Internal (curl) or external (hat) adjustment in jackknife variance estima- 
tion? In general the curl jackknife gives wider intervals than the hat jack- 
knife, but the coverage probabilities of the two methods are comparable. One 
possible explanation is that, if the /2 component of A - f in the definition of 

s (4.4) is negative, it may push /2 closer to zero, resulting in a large value 
of as. 

11. Concluding remarks and further questions. Al1hough the jackknife 
method has been around for a long time, the recent surge of interest in 
resampling inference is primarily due to Efron's (1979, 1982) contributions and 
his pursuasive arguments in favor of the bootstrap. In fact, there is no clear-cut 
choice between the two methods for bias reduction or variance estimation in the 
i.i.d. case. The main difference is in histogram-based interval estimation, where 
the delete-one jackknife is definitely inferior. 

Our main contribution to the jackknife methodology is twofold: (i) emphasis 
on a more flexible choice of the subset size and (ii) proposal of a general 
weighting scheme for independent but nonexchangeable situations such as re- 
gression. Because of (i), interval estimators based on the jackknife histogram can 
be constructed. Standard results on the large sample behavior of the bootstrap 
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histogram probably hold for the jackknife with a proper choice of subset size (see 
Wu (1985) for such results). Because of (ii), our proposed variance estimators are 
unbiased for homoscedastic errors and robust against heteroscedasticity. The 
weighting scheme is applicable to general independent situations. The scope of 
the jackknife methodology is substantially broadened. 

Our analysis of the bootstrap gives a different picture from that of Efron 
(1982), which deals primarily with the i.i.d. problem. The bootstrap method 
seems to depend on the existence of an exchangeable component of a model. If 
such a component does not exist (e.g., heteroscedastic linear models, generalized 
linear models), it may result in serious problems such as bias and inconsistency 
as our examples show. It encounters similar difficulties in handling complex 
survey samples, where neither the independence nor the exchangeability assump- 
tion is satisfied (Rao and Wu (1985a)). We therefore advise against its indis- 
criminate use in complex situations. Important features of a problem should be 
taken into account in the choice of resampling methods. In fairness to the 
bootstrap, it is intuitively appealing, easy to program and works well when an 
exchangeable component exists and is bootstrapped. The last point is supported 
by the studies of Freedman and Peters (1984) and Carroll, Ruppert and Wu 
(1986). Bootstrap will undoubtedly remain a major tool in the resampling 
arsenal. 

Several questions have been raised in the course of our study. We hope they 
will generate further interests and research in this area. 

1. How can the subset size r in the weighted jackknife be determined? Choice of 
r appears to depend on computational consideration and purpose of analysis, 
e.g., interval estimation and bias-robustness of variance estimators. 

2. The method for resampling residuals in Section 7 gives variance estimators 
that have better theoretical properties than the bootstrap. What resampling 
plans in (7.1) should be chosen? The choice depends on computational consid- 
eration and further theoretical aspects. 

3. Is the weighted bootstrap variance estimator v* (6.12), in general, nearly 
unbiased as the encouraging simulation result may suggest? 

4. The methods based on the bootstrap-histogram and the jackknife-histogram 
perform disappointingly in the simulation. Refinements of these methods are 
called for (e.g., Efron (1985); Loh (1987)). One obvious defect of the resample 
histogram is that they have shorter tails than their population counterparts. 
The handling of skewness may also be improper. Theoretical results that can 
explain small-sample behavior are needed. 

5. A careful study of resampling methods for more complex problems such as 
those in Section 8 is needed. Are there any shortcuts for computing the 
weights (or approximate weights) and/or higher-order asymptotic properties? 
How can models with correlated errors be handled? 

6. The factor (r - k + 1)/(n - r) in the weighted jackknife is used for scale 
adjustment. It can be applied either before or after the nonlinear transforma- 
tion (see (4.1) and (4.3)). What are the relative merits of the two scaling 
methods? 
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My comments center on three topics: the resampling algorithm of Section 7 as 
a bootstrap algorithm; criteria for assessing performance of a confidence set; and 
robustifying jackknife or bootstrap estimates for variance and bias. It will be 
apparent that I do not accept several of Wu's conclusions, particularly those 
concerning the bootstrap. The implied criticism does not diminish the paper's 
merit in advancing jackknife theory for the heteroscedastic linear model. 

1. The bootstrap idea is a statistical realization of the simulation concept: 
one fits a plausible probability model to the data and acts thereafter as though 
the fitted model were true. Suppose that the errors {ei} in the linear model (2. 1) 
are independent and that the c.d.f. of ei is F( /aj), where F has mean zero and 
variance one. Consistent estimates of the tail and of F are not available, in 
general. Nevertheless, let a ,i be an esimate of ai, such as ,n i = Iri(1 - 1/2 

or air, = il(l - n-1k)-1/2, and let Fn be any c.d.f. with mean zero and variance 
one. The fitted model here is the heteroscedastic linear model parametrized by 
the estimates n3 {a,n i} and Fn. The appropriate bootstrap algorithm, which I 
will call the heteroscedastic bootstrap, draws samples from this fitted model. 

Section 7 of the paper describes just this resampling procedure, without 
recognizing it as a bootstrap algorithm suitable for the heteroscedastic linear 
model. The two bootstrap algorithms that are discussed critically in Section 2 
are not even intended for the heteroscedastic linear model. The first is designed 
for the homoscedastic linear model; the second for linear predictors based on 
multivariate i.i.d. samples (Freedman (1981)). 

Let B,(1, {aI, F) and V,(f, {ai), F) be the bias and variance of g(f3n) under 
the heteroscedastic model described in the preceding paragraphs. The ap- 
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