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Chapter 6

Asymptotic Distribution Theory

© R. Susmel, 2022 (for private use, not to be posted/shared online).

Asymptotic Distribution Theory

• Asymptotic distribution theory studies the hypothetical distribution -the 
limiting distribution- of a sequence of distributions.  

• Do not confuse with asymptotic theory (or large sample theory), which 
studies the properties of asymptotic expansions.

• Definition Asymptotic expansion

An asymptotic expansion (asymptotic series or Poincaré expansion) is a formal 
series of functions, which has the property that truncating the series 
after a finite number of terms provides an approximation to a given 
function as the argument of the function tends towards a particular, 
often infinite, point.

(In asymptotic distribution theory, we do use asymptotic expansions.)
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Asymptotic Distribution Theory

• In Chapter 5, we derive exact distributions of several sample 
statistics based on a random sample of observations. 

• In many situations an exact statistical result is difficult to get. In 
these situations, we rely on approximate results that are based on 
what we know about the behavior of certain statistics in large 
samples.  

• Example from basic statistics:  What can we say about 1/    ?  We 
know a lot about    .  What do we know about its reciprocal? Maybe 
we can get an approximate distribution of 1/    when n is large.

x
x

x

Convergence

• Convergence of a non-random sequence.

Suppose we have a sequence of constants, indexed by 𝑛
f(𝑛) = ((𝑛(𝑛+1)+3)/(2𝑛 + 3𝑛2 + 5) 𝑛 = 1, 2, 3, .....

Ordinary limit:

limn→∞ ((𝑛(𝑛+1)+3)/(2𝑛 + 3𝑛2 + 5) = 1/3

There is nothing stochastic about the limit above. The limit will always 
be 1/3.

• In econometrics, we are interested in the behavior of sequences of 
real-valued random scalars or vectors. In general, these sequences are 
averages or functions of averages. For example, 

Sn(X; θ) = Σi S(xi; θ)/𝑛
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Convergence

• For example, 

Sn(X; θ) = Σi S(𝑥 ; θ)/ 𝑛 
Since the 𝑋 ’s are RV, then different realizations of {𝑋 } can produce a 
different limit for Sn(X; θ).

Now, convergence to a particular value is a random event.

• We are interested in cases where non convergence is rare (in some 
defined sense).

Convergence

• Classes of convergence for random sequences as n grows large:

1.  To a constant. 

Example: the sample mean converges to the population mean. (LLN 
is applied)

2.  To a random variable.

Example: a 𝑡 statistic with 𝑛 -1 degrees of freedom converges to a 
standard normal distribution.  (CLT is applied)



RS – Chapter 6

4

Probability Limit (plim)

Definition: Convergence in probability 

Let θ be a constant, 𝜀 > 0, and 𝑛 be the index of  the sequence of  RV 
𝑥 . If  limn→∞ Prob[|𝑥 – θ|> 𝜀 ] = 0 for any 𝜀 > 0, we say that 𝑥
converges in probability to θ.

That is, the probability that the difference between 𝑥 and θ is larger 
than any 𝜀 > 0 goes to zero as 𝑛 becomes bigger. 

Notation: 𝑥  
       

θ
plim 𝑥 = θ

If  𝑥 is an estimator (for example, the sample mean) and if  plim 𝑥 =
θ, we say that 𝑥 is a consistent estimator of  θ. 

Estimators can be inconsistent. For example, when they are consistent for 
something other than our parameter of  interest.

Theorem: Convergence for sample moments.  

Under certain assumptions (for example, i.i.d. with finite mean), sample 
moments converge in probability to their population counterparts.

We saw this theorem before. It’s the (Weak) Law of Large Numbers 
(LLN).  Different assumptions create different versions of the LLN.

Note: The LLN is very general:

(1/𝑛) ∑ 𝑓 𝑧  
       

E[𝑓 𝑧 ]

• The usual version in Greene assumes i.i.d. with finite mean. This is the 
Khinchin’s (1929) (weak) LLN. (Khinchin is also spelled Khintchine)

Probability Limit (plim)
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Slutsky’s Theorem

• We would like to extend the limit theorems for sample averages to 
statistics, which are functions of sample averages. 

• Asymptotic theory uses smoothness properties of those functions -i.e., 
continuity and differentiability- to approximate those functions by 
polynomials, usually constant or linear functions.

• The simplest of these approximation results is the continuity theorem, 
which states that plims share an important property of ordinary limits: 
the plim of a continuous function is the value of that function evaluated 
at the plim. That is,

If 𝑥  
       

θ and 𝑔 𝑥 is continuous at 𝑥 = θ, then

𝑔 𝑥
       

𝑔 θ (provided 𝑔 θ exists.)

Let 𝑥 be a RV such that plim 𝑥 = θ.  (We assume θ is a constant.)

Let 𝑔 . be a continuous function with continuous derivatives. 𝑔 . is 
not a function of 𝑛. Then 

plim[𝑔 𝑥 )] = 𝑔[plim(𝑥 )] = 𝑔 θ (provided 𝑔[plim(𝑥 )] exists)

When 𝑔 . is continuous, this result is sometimes referred as the 
continuity theorem.

This theorem is also attributed to Harald Cramer (1893–1985).

This is a very important and useful result. Many results 
for estimators will be derived from this theorem.

Somehow, there are many “Slutsky’s Theorems.”
Eugen E. Slutsky, Russia (1880 – 1948)

Slutsky’s Theorem
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Plims and Expectations

Q: What is the difference between E[𝑥 ] and plim 𝑥 ?

– E[𝑥 ] reflects an average

– plim 𝑥 reflects a (probabilistic) limit of a sequence.

Slutsky’s Theorem works for plims, but not for expectations. That is,

?]/1[][

/1]/1[plim][plim
__

__
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Properties of plims

Let 𝑥 have plim 𝑥 = 𝜃 and 𝑦 have plim 𝑦 = ψ. Let 𝑐 be a constant. 
Then,

1) plim 𝑐 = 𝑐.

2) plim (𝑥 + 𝑦 ) = 𝜃 + ψ.

3) plim (𝑥 * 𝑦 ) = 𝜃 * ψ. (plim (𝑐 𝑥 ) = c 𝜃.)

4) plim (𝑥 /𝑦 ) = 𝜃/ψ. (provided ψ ≠ 0)

5) plim[𝑔(𝑥 , 𝑦 )] = 𝑔(𝜃,ψ). (assuming it exists and 𝑔(.) is cont. diff.) 
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Properties of plims for Matrices

Functions of matrices are continuous functions of the elements of 
the matrices.  Thus, we can generalize Slutsky’s Theorem to 
matrices.

Let plim An = A and plim Bn = B (element by element). Then
1) plim(An

-1) = [plim An]-1 = A-1

2) plim(AnBn) = plim(An) plim(Bn) = AB

Definition: Convergence in mean r
Let 𝜃 be a constant, and 𝑛 be the index of the sequence of RV 𝑥 . If 

limn→∞ E[(𝑥 – 𝜃)r ] = 0 for any r ≥ 1, 

we say that 𝑥 converges in mean r to 𝜃.

The most used version is mean-squared convergence, which sets r =2.

Notation: 𝑥
       

𝜃

𝑥
  . . 

𝜃 (when r = 2)

For the case r =2, the sample mean converges to a constant, since its 
variance converges to zero.  

Theorem: 𝑥
  . . 

𝜃  𝑥
       

𝜃

Convergence in Mean (r)
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• Consistency
A consistent estimator of  a population characteristic satisfies two 
conditions:

(1) It possesses a probability limit –its distribution collapses to a spike 
as the sample size becomes large, and

(2) The spike is located at the true value of  the population 
characteristic.

• The sample mean in our example satisfies both conditions and so it 
is a consistent estimator of X.  Most estimators, in practice, satisfy the 
first condition, because their variances tend to zero as the sample size 
becomes large.

• Then, the only issue is whether the distribution collapses to a spike at 
the true value of  the population characteristic. 

20

Consistency: Brief  Remarks

- A sufficient condition for consistency is that the estimator should be 
unbiased and that its variance should tend to zero as n becomes large.

- However the condition is only sufficient, not necessary.  It is possible 
that an estimator may be biased in a finite sample, but the bias 
disappears as the sample size tends to infinity.  

 Such an estimator is biased (in finite samples), but consistent 
because its distribution collapses to a spike at the true value.

20

Consistency: Brief  Remarks



RS – Chapter 6

9

Almost Sure Convergence

• Definition: Almost sure convergence

Let 𝜃 be a constant, and 𝑛 be the index of the sequence of RV 𝑥 . If 

P[ limn→∞ 𝑥 = 𝜃 ] = 1,  

we say that 𝑥 converges almost surely to 𝜃.

The probability of observing a realization of {𝑥 } that does not 
converge to θ is zero. {𝑥 } may not converge everywhere to 𝜃, but the 
points where it does not converge form a zero measure set (probability 
sense).

Notation: 𝑥
    . .  

𝜃

This is a stronger convergence than convergence in probability.

Theorem: 𝑥
    . .  

𝜃  𝑥
       

𝜃

• In almost sure convergence, the probability measure takes into account 
the joint distribution of {𝑋 }. With convergence in probability we only 
look at the joint distribution of the elements of {𝑋 } that actually appear 
in 𝑥 .

• Strong Law of Large Numbers

We can state the LLN in terms of almost sure convergence:

Under certain assumptions, sample moments converge almost surely to 
their population counterparts.

This is the Strong Law of Large Numbers. 

• From the previous theorem, the Strong LLN implies the (Weak) LLN.

Almost Sure Convergence



RS – Chapter 6

10

Convergence to a Random Variable

• Definition: Limiting Distribution

Let 𝑥 be a random sequence with cdf 𝐹 (𝑥 ). Let 𝑥 be a random 
variable with cdf F(𝑥).  

When 𝐹 converges to F as 𝑛→ ∞, for all points 𝑥 at which F(𝑥) is 
continuous, we say that 𝑥 converges in distribution to 𝑥. The 
distribution of that random variable is the limiting distribution of 𝑥 .

Notation: 𝑥
       

𝑥

Remark: If plim 𝑥 = θ (a constant), then 𝐹 (𝑥 ) becomes a point.

Example: The 𝑡 statistic converges to a standard normal: tn
    

N(0,1)

Theorem: If 𝑥
       

𝑥 & plim 𝑦 = 𝑐. Then, 𝑥 𝑦
       

𝑐 𝑥. 

That is the limiting distribution of 𝑥 𝑦 is the distribution of 𝑐 𝑥. 

Also, 𝑥 + 𝑦
       

𝑥  𝑐 

𝑥 /𝑦
       

𝑥/𝑐 (provided 𝑐 ≠ 0.)

Note: This theorem may be also referred as Slutsky’s theorem.

Convergence to a Random Variable
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Slutsky’s Theorem for RVs

Let 𝑥 converge in distribution to 𝑥 and let 𝑔 . be a continuous
function with continuous derivatives. 𝑔 . is not a function of  𝑛. 

Then, 𝑔 𝑥
       

𝑔 𝑥).

Example: 𝑡
       

N(0,1)  𝑔 𝑡 = (𝑡 )2 
       

[N(0,1)]2.

• Extension

Let 𝑥
       

𝑥 &   g(𝑥 , 𝜃) 
       

𝑔 𝑥 (𝜃: parameter). 
Let plim 𝑦 = 𝜃 (𝑦 is a consistent estimator of  𝜃)

Then, 𝑔 𝑥 , 𝑦
       

𝑔 𝑥 .

That is, replacing 𝜃 by a consistent estimator leads to the same limiting 
distribution.

Extension of Slutsky’s Theorem: Examples

Example 1: 𝑡 statistic

z = 𝑛 �̅� 𝜇 /𝜎
       

N(0, 1)

𝑡 = 𝑛 �̅� 𝜇 /𝑠
       

N(0, 1) (where plim 𝑠 = 𝜎)

Example 2: F-statistic for testing restricted regressions.
F = [(e*’e* – e’e)/J]/[e’e/(T – k)] 

= [(e*’e* – e’e)/(𝜎2J)]/[e’e/(𝜎2(T – k))] 

The denominator: e’e/[𝜎2(T – k)] 
       

1.  

Then, the limiting distribution of  the F statistic will be given by the 
limiting distribution of  the numerator.
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Revisiting the CLT

• The CLT states conditions for the sequence of RV {xn} under which 
the mean or a sum of a sufficiently large number of xi’s will be 
approximately normally distributed. 

CLT: Under some conditions, 𝑧 = 𝑛 �̅� 𝜇 /𝜎
       

N(0,1)

• It is a general result. When sums of random variables are involved, 
eventually (sometimes after transformations) the CLT can be applied.

• The Berry–Esseen theorem (Berry–Esseen inequality) attempts to quantify 
the rate at which the convergence to normality takes place. 

where ρ = E(|X|)<∞ and C is a constant (best current C=0.7056).
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Revisiting the CLT

• Two popular versions used in economics and finance:

Lindeberg-Levy: {𝑥 } are i.i.d., with finite 𝜇 and finite 𝜎2. 

Lindeberg-Feller: {𝑥 } are independent, with finite  𝜇 , 𝜎 < ∞, 

𝑆 = ∑ 𝑥 ,  𝑠 = ∑ 𝜎 and for ε > 0, 

Note: 

Lindeberg-Levy assumes random sampling –observations are i.i.d., with 
the same mean and same variance.

Lindeberg-Feller allows for heterogeneity in the drawing of the 
observations –through different variances. The cost of this more 
general case: More assumptions about how the {𝑥 } vary.
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Order of a Sequence: Big O and Little o

• “Little o” o(.). 
A sequence {𝑥 }is o(𝑛 ) (order less than 𝑛 ) if |𝑛 𝑥 | 0, as 𝑛 ∞.  
Example: 𝑥 = 𝑛 is o(𝑛4) since |𝑛 𝑥 |=  1/𝑛 0,  as 𝑛 ∞.

• “Big O” O(.).  
A sequence {𝑥 } is O(𝑛 ) (at most of order 𝑛 ) if |𝑛 𝑥 | ψ, as 𝑛
∞   (0 < ψ < ∞,  constant).
Example: f(z) =  (6z4 – 2z3 + 5) is O(z4) and o(𝑛4+δ) for every δ>0.
Special case: O(1): constant

• Order of a sequence of RV  
The order of the variance gives the order of the sequence.
Example:  What is the order of the sequence {�̅�}?

Var[ �̅� ] = 𝜎 /𝑛, which is O(1/𝑛) -or O(𝑛-1). 
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Asymptotic Distribution

• An asymptotic distribution is a hypothetical distribution that is the 
limiting distribution of a sequence of distributions. 

We will use the asymptotic distribution as a finite sample approximation
to the true distribution of a RV when 𝑛 -i.e., the sample size- is large. 

Practical question: When is 𝑛 large?

Asymptotic Distribution

• Trick to obtain a limiting distribution: Stabilizing transformation

Transform 𝑥 to make sure the moments do not depend on n.

Steps:

Multiply the sample statistic 𝑥 by 𝑛 such that the limiting distribution 
of 𝑛 𝑥 has a finite, non-zero variance. 

Then, transform 𝑥 to make sure the mean does not depend on n either.

Example: �̅� has a limiting variance equal to zero, since Var[�̅� ] = 𝜎 /𝑛
1) Multiply �̅� by 𝑛. Then,  Var[ 𝑛 𝑥 ] = 𝜎 . 

2) Check mean of transformed variable: E[ 𝑛 �̅� ] = 𝑛 𝜇.

The stabilizing transformation is: 𝑛 �̅� 𝜇
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Asymptotic Distribution

• Obtaining an asymptotic distribution from a limiting distribution

Steps:

1) Obtain the limiting distribution via a stabilizing transformation

2) Assume the limiting distribution can be used in finite samples

3) “Invert” the stabilizing transformation to get asymptotic distribution

Example: 𝑛 �̅� 𝜇 /𝜎
       

N(0,1)

Assume this limiting distribution works well for finite samples. Then,

𝑛 �̅� 𝜇 /𝜎
       

N(0,1)

𝑛 �̅� 𝜇  
       

N(0, 𝜎 ) (Note we have replaced 𝑑 for 𝑎)

 �̅� 𝜇  
       

N(0, 𝜎 /𝑛)

�̅� 
       

N(𝜇, 𝜎 /𝑛) (Asymptotic distribution of �̅�)

The Delta Method

• The delta method is used to obtain the asymptotic distribution of a 
non-linear function of random variables (usually, estimators). It uses a 
first-order Taylor series expansion and Slutsky’s theorem.

• Univariate case

Let 𝑥 be a RV, with plim 𝑥 = θ and Var 𝑥 ) = 𝜎 < ∞. 

We can apply the CLT to obtain 𝑛 𝑥 – )/𝜎
       

 N(0, 1).

Goal: g 𝑥
       

? (g 𝑥  is a continuous differentiable 
function, independent of 𝑛.)

Steps:

(1) Taylor series approximation around θ :  

g 𝑥  g 𝜃 + g′ 𝜃 𝑥 𝜃 higher order terms

We will assume the higher order terms are o(𝑛). 
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The Delta Method

Remark: o(𝑛): as 𝑛 grows the higher order terms vanish.

(2) Use Slutsky theorem: plim g 𝑥 = g 𝜃
plim g′ 𝑥 = g′ 𝜃

Then, as 𝑛 grows, g 𝑥  g 𝜃 + g′ 𝜃 𝑥 𝜃
 𝑛 [g 𝑥 – g 𝜃 ])  g′ 𝜃 [ 𝑛 𝑥 𝜃 ]

 𝑛 g 𝑥 – g 𝜃 ] /𝜎  g′ 𝜃 [ 𝑛 𝑥 𝜃 /𝜎]

If g . does not behave badly, the asymptotic distribution of g 𝑥 –
g 𝜃 is given by that of [ 𝑛 𝑥 𝜃 /𝜎], which is a standard normal. 

For the approximation to work well, we want σ to be “small.” 

Then,

𝑛 g 𝑥 – g 𝜃
       

N(0, [g′ 𝜃 ]2 𝜎2).

Delta Method: Example

Then,

𝑛 g 𝑥 – g 𝜃
       

N(0, [g′ 𝜃 ]2 𝜎 ).

After some work (“inversion”), we obtain:

g 𝑥
       

N(g 𝜃 , [g′ 𝜃 ]2 𝜎 ).

• If we want to test H0: g 𝜃 = 𝑔 , we can do a Wald test:

W = g 𝑥 – 𝑔 ]2/[[g 𝑥 ]2 𝑠 /𝑛] 
       

𝜒


