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Chapter 5
Random Sampling

(for private use, not to be posted/shared online)

Population and Sample 
Definition: Population

A population is the totality of  the elements under study. We are 
interested in learning something about this population.

Examples: Number of  alligators in Texas, percentage of  
unemployed workers in cities in the U.S., stock returns of  IBM.

A RV X defined over a population is called the population RV.

Usually, the population is large, making a complete enumeration of  all 
the values in the population impractical or impossible. Thus, the 
descriptive statistics describing the population –i.e., the population 
parameters- will  be considered unknown.
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• Typical situation in statistics: we want to make inferences about an 
unknown population parameter θ using a sample –i.e., a small 
collection of  observations from the general population- {X1, …, XN}.

• We summarize the information in the sample with a statistic, which is 
a function of  the sample.

That is, any statistic summarizes the data, or reduces the information in 
the sample to a single number. To make inferences, we use the 
information in the statistic instead of  the entire sample.

Get a statistic and Make inferences (“learn”)

Get a sample (size N or T)

Population Sample

Population and Sample 

Population and Sample 
Definition: Sample

The sample is a (manageable) subset of  elements of  the population. 

Samples are collected to learn about the population. The process of  

collecting information from a sample is referred to as sampling.

Definition: Random Sample 

A random sample is a sample where the probability that any individual 
member from the population being selected as part of  the sample is 
exactly the same as any other individual member of  the population 

In mathematical terms, given a random variable X with distribution F, 
a random sample of  length n is a set of  n independent, identically 
distributed (iid) random variables with distribution F. 
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• A statistic (singular) is a single measure of  some attribute of  a sample 
(for example, its arithmetic mean value). It is calculated by applying a 
function (statistical algorithm) to the values of  the items comprising 
the sample, which are known together as a set of  data.

Definition: Statistic

A statistic is a function of  the observable random variable(s), which 
does not contain any unknown parameters.

Examples: sample mean, sample variance, minimum, (x1+xn)/2, etc.

Note:  A statistic is distinct from a population parameter. A statistic 
will be used to estimate a population parameter. In this case, the 
statistic is called an estimator. 

Sample Statistics

Sample Statistics

• Sample Statistics are used to estimate population parameters

Example: 𝑋 is an estimate of  the population mean, μ.

Notation: Population parameters: Greek letters (μσ, θ, etc.)

Estimators: A hat over the Greek letter (  )

• Problems: 

– Different samples provide different estimates of  the population 
parameter of  interest.

– Sample results have potential variability, thus sampling error exits

Sampling error: The difference between a value (a statistic) 
computed from a sample and the corresponding value (a 
parameter) computed from a population.
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• The definition of  a sample statistic is very general. There are 
potentially infinite sample statistics.

For example, (x1+xN)/2 is by definition a statistic and we could claim 
that it estimates the population mean of  the variable X. However, this 
is probably not a good estimate. 

We would like our estimators to have certain desirable properties.

• Some simple properties for estimators, θ:

- θ is unbiased estimator of  θ if  E[θ] =θ

- θ is most efficient if  the variance of  the estimator is minimized.

- θ is BUE, or Best Unbiased Estimate, if  it is the estimator with the 
smallest variance among all unbiased estimates.

Sample Statistics

• A sample statistic is a function of  RVs. Then, it has a statistical 
distribution. 

• In general, in economics and finance, we observe only one sample 
mean (from our only sample). But, many sample means are possible.

• A sampling distribution is a distribution of  a statistic over all possible 
samples.

• The sampling distribution shows the relation between the probability 
of  a statistic and the statistic’s value for all possible samples of  size n
drawn from a population.

Sampling Distribution
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Sampling Distribution: Sample Mean (𝑋)

• Summary for 𝑋, when data is normal: 

Sampling distribution: 𝑋 ~ N(μ, σ2/N).

Mean: E 𝑋 μ

Variance: Var 𝑋 σ /N.

Note: If  the data is not normal (& N is large), the CLT can be used to 
approximate the sampling distribution by the asymptotic one:

𝑋→ N(μ, σ2/N).

Sampling Distribution: Sample Mean (𝑋)
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• Sampling Distribution for the Sample Mean

𝑋 ~ N(, σ2/N)

Xμ
X

, 𝑋

Note: As N→∞, 𝑋→ μ –i.e., the distribution becomes a spike at μ!

Sampling Distribution: Sample Mean (𝑋)

• 10,000 samples, for a N(2 4) population. Different sample sizes, N:

Note: As N→∞, 𝑋 becomes more concentrated around μ=2. In the limit, 
a spike at μ!

N = 10 N = 60 N = 200

12

Sampling Distribution: Sample Mean (𝑋)
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Distribution of the sample 
variance: Preliminaries
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Use of moment generating functions (Again)

1. Using the moment generating functions of  X, Y, Z, …determine 
the moment generating function of  W = h(X, Y, Z, …).

2. Identify the distribution of  W from its moment generating 
function.

This procedure works well for sums, linear combinations etc.
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Gamma Distribution: Theorem (Summation)

Let X and Y denote a independent random variables each having a 
gamma distribution with parameters (λ,1) and (λ,2). Then W = X + Y 
has a gamma distribution with parameters (λ, 1 + 2). 

Proof:
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Recognizing that this is the moment generating function of  the gamma 
distribution with parameters (λ, 1 + 2) we conclude that W = X + Y 
has a gamma distribution with parameters (λ, 1 + 2).

Let x1, x2, … , xn denote n independent random variables each having a 
gamma distribution with parameters (i, λ ), i = 1, 2, …, n. 

Then W = x1 + x2 + … + xn has a gamma distribution with parameters 
(1 + 2 +…+ n, λ).

Proof:
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This is the moment generating function of  the gamma distribution with 
parameters (1 + 2 +…+ n, λ). we conclude that  W = x1 + x2 + … 

+ xn has a gamma distribution with parameters (1 + 2 +…+ n, λ).

Gamma Distribution: Theorem (Summation: n RV)
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Suppose that X is a random variable having a gamma distribution with 
parameters (, λ).

Then, W = ax has a gamma distribution with parameters (, λ/a)

Proof:
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Gamma Distribution: Theorem (Scaling)

1. Let X and Y be independent random variables having a χ2 

distribution with n1 and n2 degrees of freedom, respectively. Then,  
X + Y has a χ2 distribution with degrees of freedom n1 + n2.

Notation: X + Y (n1+n2)
(a 2 distribution with df= n1 + n2.)

2. Let x1, x2,…, xn, be independent RVs having a χ2 distribution with 
n1 , n2 ,…, nN degrees of freedom, respectively. 

Then, x1+ x2 +…+ xn (n1+n2+...+nN)


Note: Both of  these properties follow from the fact that a χ2  RV with 
n degrees of  freedom is a  Gamma RV with λ = ½ and  = n/2.

Gamma Distribution: Theorem (Special Cases)
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• Two useful n
 results

1. Let  z ~ N(0,1). Then,

z2 1
. 

2. Let z1, z2,…, zν be independent random variables each following a 
N(0,1) distribution. Then, 

2 2 2
1 2 ...U z z z    ν



Gamma Distribution: Theorem (Special Cases)

Suppose that U1 and U2 are independent random variables and that U = 
U1 + U2. Suppose that U1 and U have a 2 distribution with degrees of 
freedom ν1 and ν, respectively. (ν1 < ν). Then, 

U2 ~ ν2,

where ν2 = ν - ν1.

Proof:
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Gamma Distribution: Theorem
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Q.E.D.

Gamma Distribution: Theorem

Proof (continuation):

Distribution of the sample variance
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Properties of the sample variance (s2)

Proof:
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We show that we can decompose the numerator of  s2 as:
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Proof (continuation):

Properties of the sample variance (s2)
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1. Setting a = 0. (It delivers the computing formula.)
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Properties of the sample variance (s2)

Let 𝑥 , 𝑥 , …, 𝑥 denote a random sample from the normal distribution

with mean  and variance 2. Then,

𝑁 1 𝑠 /2 χ  where 𝑠 =  
∑   ̅

Proof:
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Distribution of the s2 of a normal variate
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Now, recall Special Case 2: 

∑ 𝑥   𝜇  
2

∑ 𝑥   �̅�
2

 𝑁 �̅�   𝜇
2

or 𝑈 = 𝑈 + 𝑈 , where

𝑈  
∑    

2 χ

We know that �̅� ~ N( 2/𝑁). Thus, 

z = 
̅   ~ N(0,1)  𝑈 𝑧  ̅  

2 χ

If  we can show that 𝑈 and 𝑈 are independent. Then,

𝑈  ~ χ

Distribution of the s2 of a normal variate

𝑈
∑   ̅

2  𝑁 1 𝑠 /2 χ

To show that that U1 and 𝑈 are independent (and to complete the proof) 
we need to show that:

∑ 𝑥 �̅� and �̅� are independent RVs. 

Let 𝑢 = 𝑁 �̅�2 = 𝑁 (Σi xi)2/ = (1/ 𝑁)(Σi xi
2+ Σi Σj xi xj) = x’M1x, where 
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Similarly 𝑣 = ∑ 𝑥 �̅� = ∑ 𝑥 – 𝑛 �̅� 2 = x’x - x’M1x

= x’ I  M1) x = x’ M2 x

Thus, 𝑢 and 𝑣 are independent if  M1 M2 = 0. 

 M1 M2 = M1 I  M1)= M1  M1
2 = 0 (since M1 is idempotent).
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• Summary 

Let 𝑥 , 𝑥 , …, 𝑥 denote a sample from the normal distribution with 
mean  and variance 2. Then,

1. �̅� ~ N(, 2/ 𝑁)

2. 𝑈 𝑁 1 𝑠 /2 χ

Note: If  X ~ χ , then E[X] = 𝑣 
Var[X] = 2 𝑣

Then, E[U] = 𝑁 - 1  E[(𝑁-1)𝑠 /2] = ((𝑁-1)/2) E[𝑠 ]= 𝑁-1

 E[𝑠 ] = 2

Var[U] = 2(𝑁-1)  Var[(𝑁-1)𝑠 /2] =(𝑁-1)2/4 Var[𝑠 ] = 2(𝑁-1)

 Var[𝑠 ] = 24/(𝑁-1)

Distribution of  the s2 of  a normal variate

The Law of Large Numbers
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Law of  Large Numbers: Chebyshev’s Inequality

Theorem

Let b be a positive constant and h(x) a non-negative 

function of  the random variable X. Then,

P[|x - μ| ≥  b ] ≤ (1/b) E[h(x)]

Corollary (Chebishev’s Inequality)

For any constant c > 0, 

P[|x - μ|≤ c ] ≤ σ2/c2, 

where σ2 is the Var(x). 

This inequality can be expressed in two alternative forms:

1. P[|x - μ|≤ c ] ≥ 1 - σ2/c2  

2. P[|x - μ| ≥ η σ ] ≤ 1/η2. (c =η σ)

Pafnuty Chebyshev, Rusia (1821, 1894) 

Proof: We want to prove P[| X  |≤ 𝑏 ] ≤ (1/𝑏) E[ℎ 𝑥 ]
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Thus,  P[ℎ 𝑥 ≥ 𝑏 ] ≤ (1/𝑏) E[ℎ 𝑥 ].  ■

Corollary: Let ℎ 𝑥 = (𝑥  )2 and 𝑏 = 𝑐 .

P [ 𝑥  ) ≥ 𝑐 ] = P[|𝑥 − | ≥ 𝑐] ≤ (1/𝑐 ) E[(x - μ)2] = σ /𝑐

Law of  Large Numbers: Chebyshev’s Inequality
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• This inequality sets a weak lower bound on the probability that a 
random variable falls within a certain confidence interval. 

Example: The probability that X falls within two standard deviations of  
its mean is at least (setting 𝑐 = 2 σ):

P[|X  |≤ 𝑐 ] ≥ 1   σ /𝑐 = 1  1/4 = ¾ = 0.75.

Note: Chebyshev’s inequality usually understates the actual probability. In 
the normal distribution, the probability of  a random variable falling 
within two standard deviations of  its mean is 0.95.

Law of  Large Numbers: Chebyshev’s Inequality

The Law of  Large Numbers: Theorem

Theorem (Weak Law)

Let 𝑋 , … , 𝑋 be 𝑁 mutually independent random variables each having 
mean and a finite σ -i.e., the sequence {𝑋 } is i.i.d.

Let 𝑋  
∑

Then for any  > 0 (no matter how small)

P[|𝑋  |< 𝛿 ] = P[   𝛿 <  𝑋 < + 𝛿] → 1, as 𝑁 →  ∞

Long history

Gerolamo Cardano (1501-1576) stated it without proof.

Jacob Bernoulli published a rigorous proof  in 1713.

Poisson described it under its current name “La loi des grands nombres.” 
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Proof:

We will use Chebychev’s inequality: 

P[| 𝑋  |≤ 𝑐 ] ≥ 1  σ /𝑐

Set 𝑐 = 𝑘 σ or  σ /𝑐 = 1/𝑘 . Then,

P[  𝑘 σ  𝑋 <  𝑘 σ ] ≥ 1  1/𝑘

Now set:   ̅ =  & σ ̅ = σ/ 𝑁. Then,

P[   𝛿 <  𝑋 < + 𝛿]  ≥ 1  1/𝑘

where 𝛿 = 𝑘 σ ̅ (or 𝑘 𝛿 𝑁/σ).

Thus, P[   𝛿 <  𝑋 < + 𝛿 ] ≥ 1  1/𝑘 → 1, as 𝑁 →  ∞

The Law of  Large Numbers: Theorem

Then,

P[|𝑋 - |< 𝛿 ] = P[  - 𝛿 <  𝑋 < + 𝛿] → 1, as 𝑁 →  ∞

Note: The proof  assumed a finite variance –i.e., it relies on Chebychev’s 
inequality. A finite variance is not needed to get the LLN.  

The Law of  Large Numbers: Theorem
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• Below, we randomly generate 10,000 observations from a N(0, 1) and 
compute the sample mean as a function of  𝑁. As expected, as 𝑁
increases, the sample mean gets closer to the population mean (=0).

37

The Law of  Large Numbers: Illustration

A Special case: Proportions

Let 𝑋 , … , 𝑋 be 𝑛 mutually independent random variables each 
having Bernoulli distribution with parameter p.

1 if repetition is  (prob )

0 if repetition is  (prob 1 )i

p
X

q p


    

S

F

The Law of  Large Numbers: Proportions

𝜇   E 𝑋 𝑝

𝑋  
∑

= �̂�  proportion of  successes

Thus, by LLN:

P[�̂�  𝛿 < �̂� < �̂� + 𝛿 ] → 1 as 𝑁 →  ∞
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•Thus,  the LLN states that �̂� proportion of  successes) converges to 
the probability of  success 𝑝 as 𝑁 →  ∞.

Misinterpretation: If  the proportion of  successes is currently lower that 
𝑝, then the proportion of  successes in the future will have to be larger 
than 𝑝 to counter this and ensure that the LLN holds true.

The Law of  Large Numbers: Proportions

Theorem (Khinchine’s Weak Law of  Large Numbers) 

Let 𝑋 , … , 𝑋 be a sequence of  𝑛 i.i.d. random variables each having 
mean Then, for any 𝛿 > 0,

lim
→

P[|𝑋 |< 𝛿 ] = 0

This is called convergence in probability.

Note: Khinchine's Weak Law of  Large Numbers is more general. It 
allows for the case where only  exists.

Theorem (Strong Law)

Let 𝑋 , … , 𝑋 be a sequence of  𝑁 i.i.d. random variables each having 
mean Then,

P[ lim
→

 𝑋  =   ] = 1.

This is called almost sure convergence.

The Law of  Large Numbers: Weak & Strong
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LLN and SLN 

• The weak law states that for a specified large 𝑁, the average 𝑋 is likely 
to be near 𝜇. Thus, it leaves open the possibility that |𝑋 𝜇| 𝛿
happens an infinite number of  times, although at infrequent intervals.

• The strong law shows that this almost surely will not occur. In 
particular, it implies that with probability 1, we have that for any δ > 0, 
the inequality |𝑋 𝜇| 𝛿 holds for all large enough 𝑁.

The Law of  Large Numbers: Weak & Strong

Famous Inequalities

8.1 Bonferroni's Inequality

Basic inequality of  probability theory: 

P[A ∩ B] ≥ P[A] + P[B] - 1

8.2 A Useful Lemma

Lemma 8.1: If  1/p + 1/q = 1, then 1/p p + 1/q q ≥ 

Almost all of  the following inequalities are derived from 
this lemma.

8.3 Holder's Inequality

For p, q satisfying Lemma 8.1, we have 

|E[XY ]| ≤ E|XY| ≤ (E|X|p)1/p (E|Y|q)1/q

Carlo  Bonferroni (1892-1960)

Otto Hölder  (1859-1937) 



RS- 6 – Random Sampling

RS, copyright  2022. Not to be posted/shared online 22

8.4 Cauchy-Schwarz Inequality     

(Holder's inequality with p=q=2)

|E[XY ]| ≤ E|XY| ≤ {E|X|2 E|Y|2}1/2

8.5 Covariance Inequality

(Application of  Cauchy-Schwarz)

E|(X - μx)(Y - μy)| ≤ {E(X - μx)2 E(Y - μy)2}1/2

Cov(X,Y)2 ≤ {σx
2 σy

2}

8.6 Markov's Inequality

If  E[X] < 1 and t > 0, then P [|X| ≥t] ≤ E[|X|]/t

8.7 Jensen's Inequality

If  g(x) is convex, then E[g(x)] ≥ g(E[x]) 

If  g(x) is concave, then E[g(x)] ≤ g(E[x])

Andrey Markov (1856–1922) 

Johan Jensen (1859 – 1925) 

Carlo Bonferroni, Italy (1892-1960)

Johan Jensen, Denmark (1859 – 1925) 

Otto Hölder, Germany (1859–1937) 

Karl Schwarz, Germany (1843–1921) 

Andrey Markov, Rusia (1856–1922) 

Pafnuty Chebyshev , Rusia (1821–1894) 


