RS — 4 — Multivariate Distributions

Chapter 4
Multivariate distributions

k=2

Multivariate Distributions

All the results derived for the bivariate case can be generalized to #
RV.

The joint CDF of X, X, ..., X, will have the form:
Py, 55 oy ) when the RVs are discrete

Floe), 25, .00y ) when the RVs are continuous
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Joint Probability Function

Definition: Joint Probability Function
Let X, X, ..., X, denote £ discrete random variables, then
Py Xy ey X))

is joint probability function of X, X, ..., X if

1.0 < p(Xy, ., Xp) < 1

Z-ZQEA chleAp(Xln :Xn):1

n n
3.P[(Xy, ..., X,) € A] = Z Z p(Xy, ) X))
XEA x€A

Joint Density Function

Definition: Joint density function

Let X, X, ..., X, denote £ continuous random variables, then
Sty 29y ey X)) = 80/ 850,850, .. .,05¢, Foe, 50, -ty )

is the joint density function of X, X, ..., X if

1.0 < f(Xy, o, Xp)
2. ffom fjomf(xl, e, Xp)dxy ... dx,=1

3. P[(xq1, e, Xxp) €A = fAOO ...onof(xl, s X)Xy . dxp=1
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Example: The Multinomial distribution

Suppose that we observe an experiment that has £ possible outcomes
{0y, O,, ..., O, } independently 7 times.

Let py, py, - .., ppdenote probabilities of Oy, O,, ..., O, respectively.

Let X, denote the number of times that outcome O, occurs in the 7
repetitions of the experiment.

Then the joint probability function of the random variables X}, X, ...,
X, is

n! X1 %

—_ Xk
p(Xy, ... Xp) = —xll ...xn!pl Py° Dy

Example: The Multinomial distribution

. X1.,%2 Xk
Note:  p;'p3? .0,
is the probability of a sequence of length 7 containing
x; outcomes O,

x, outcomes O,
x, outcomes O,
(o) =5
Xq e X xq! . xg!

is the number of ways of choosing the positions for the x; outcomes
0,, x, outcomes O,, ..., x, outcomes O,
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Example: The Multinomial distribution
n\(n—x \(n-x —x, X,
X X X3 A

=[x1 !(nnixl)J(xz !((nn__:j!xz);)[% !((n”_—;_—:z!x})!}“

n!

xq! L xg!

|
n X1, .X2

p(X]J "-JX'H) = x 1 pz p;cck

P
‘l! wan x'n!

:(x1 -?Xk) pflpf p::k

This is called the Multinomial distribution

Example: The Multinomial distribution
Suppose that an earnings announcements has three possible
outcomes:
O, — Positive stock price reaction — (30% chance)
O, — No stock price reaction — (50% chance)
O; - Negative stock price reaction — (20% chance)
Hence p; = 0.30, p, = 0.50, p; = 0.20.

Suppose today 4 firms released earnings announcements (7 = 4).
Let X = the number that result in a positive stock price reaction,
Y = the number that result in no reaction, and Z = the number
that result in a negative reaction.

Find the distribution of X, Y and Z. Compute P[.X + Y = Z]

4!
xlylz!

p(x,p,2)= (0.30)"(0.50)" (0.20)" x+y+z=4
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Example: The Multivariate Normal distribution

Recall the univariate normal distribution

1 _L(ﬂ)z

f(x):mae

the bivariate normal distribution

)

o e el o |

f(xy)= 1 e’
27r0x0'y\/1—p2

Example: The Multivariate Normal distribution

Note: We can have a more compact joint using linear algebra:

f(xlaxz): 1 CX{ 1 ((xl_/ul )2_2p(xl_lul )(XZ_IUZ)_,’_(XZ _#2)2] :l

2716, 6,4/ (1- p7) 21-p) o o o, o,

1 1 Ry
—Wexp(—z(x—u)z (x ll)j

(1) Determine the inverse and determinant of X (the covariance matrix)

2
O

2
2=["1 "”} =Tl 0i0} ~o = 0ioi(1-—22) =6t (1- p)

2
oyt 1 { 0-22 _0-21}

2 o
O, O, 0,0,
= P
|1Z|| -0, o
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The bivariate normal distribution

(2) Write a quadratic form for Q(x,,x,):

0 (xl’xz):

(o) - (mr ) () () |

2

IL-p
O(x,,%,) = (x—p)'T ™ (x—p)
:[(xl_.ul) (Xz—ﬂz)]1|: 0, —O'zlj”:xl _,ulj|=

|Z| — 0, 0_12 X =l
1
:m[(xl _/"1)0'22 =% =)0, (X, = 14)0y, —(x, _#2)0_12
_ L
|Z]

((x, _/"1)2 0'22 —20,,(x, — )X, — 1) +(x, _ﬂ2)2 0-12)
oro;(1-p*)

((x, _/ul)2 0-22 =20, — ) (X, — 14,) +(x, _,uz)zalz)

:1:)61 —H
Xy —Hy

|

Example: The Multivariate Normal distribution

The k-variate Normal distribution is given by:

_ _ 1 ~3(x-n) =7 (x-n)
XX, )= f(x)= e
f( 1 k) f( ) (27[)1{/2 ‘2‘1/2

where
X H O, Op =+ Oy
Xy Hy O, Oy Oy
X=| . n=| . X= :
B | A | 1O O 7 Op |
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Marginal joint probability function

Definition: Marginal joint probability function
Let X, X, ..., Xq, Xq+1 ..., X, denote £ discrete random variables
with joint probability function

Doy, Xy oy Xy Xgiq woes Xz )

then the marginal joint probability function of X, X,, ..., X, 1s

P 4 (xlb"'axq): Z.--Zp(xl,...,xn)
Xg+1 Xn

When X, X, ..., Xp X, 11 ---» X, Is continuous, then the mwarginal
Joint density function of X, X5, ..., X is

00 0

flzn_q(xl,...,xq): j...J.f(xl,...,xn)dxqﬂ...dxn

Conditional joint probability function

Definition: Conditional joint probability function
Let X, X, ..., Xq, Xq+1 ..., X, denote £ discrete random variables
with joint probability function

PO, Xy ey Xy Xpyq ey X )

then the conditional joint probability function of X, X, ..., X, given
X1 = Xppg s -oes Xp = X 18
p(x,....x;)

plmq‘qHA.Ak (xl"" ’xq ‘xqﬂ"" ’xk ) =
pq+1...k xq+1""’xk

For the continuous case, we have:
f(xl,... ,xk)
Sosrk (‘xq+1"" > Xy )

fl...q\qu...k (xl,... )X, ‘xqﬂ,... X, ) =
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Conditional joint probability function

Definition: Independence of sets of vectors

Let X, X5, ..., X » X TN X, denote £ continuous random variables
with joint probability density function

Sy, 5, cees Xy Xy ey X )

then the variables X, X, ..., Xq are independent of Xqﬂ, oy X, if

F ()= oy (e, ()

A similar definition for discrete random wvariables.

Conditional joint probability function

Definition: Mutual Independence

Let X}, X, ..., X, denote £ continuous random variables with joint
probability density function

Sy Xy ooy X )

then the variables X, X, ..., X, are called mutually independent if

f(xl,...,xk): fl(xl)fz(xz)...fk(xk)

A similar definition for discrete random wvariables.
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Multivariate marginal pdfs - Example

Let X, Y, Z denote 3 jointly distributed random variable with joint
density function then

f(x,y,Z)—{

K(x2+yz) 0<x<1,0<y<1,0<z<1

0 otherwise

Find the value of K.
Determine the marginal distributions of X, Y and Z.
Determine the joint marginal distributions of

XY

X, Z

Y, Z

Multivariate marginal pdfs - Example

Solution: Determining the value of K

x=1
:Kj.j{x?3+xyz} dydz=Kj‘j‘[%+ yzjdydz
00

1= T T Tf(x,y,z)dxdydz=jjjl((x2+yz)dxdydz
00 —00 —00 000
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Multivariate marginal pdfs - Example
The marginal distribution of X.

f1(x): T T f(x,y,z)dydz =%Jj(x2 +yz)dydz

—00 —00

Multivariate marginal pdfs - Example

The marginal distribution of X,Y.

1

S (%) :_Oj;f(x,y,z)alz=%j(x2 +yz)dz

0

P z=1

12 , z

=—|Xz+y—
7 2,

=%(x2+%yj for 0<x<1,0<y<1
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Multivariate marginal pdfs - Example

Find the conditional distribution of:
1. Zgven X=x Y=y,

Ygiven X =x, Z =3,

XgivenY =y Z =3,

Y, Z given X = x,

X, Zgiven Y =y

X,YgvenZ=z¢g

Y given X = x,

Xgiven Y =y

A R R A T i

Xgiven Z =z

—_
e

Z given X = x,

—_
NN -

Zgiven Y =y

Y given Z = g

Multivariate marginal pdfs - Example

The marginal distribution of X,Y.

12

flz(x,y)=7(x2+%yj for 0<x<1,0<y<1

Thus the conditional distribution of Z given X = x,Y = yis

12, ,
f(x,p.2) 7( +7)

S (%,7) 172[ ? +;yj

x2+yz
=—1 for 0<z<1

2
+ —
X 2y
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Multivariate marginal pdfs - Example

The marginal distribution of X.

ﬁ(x):%(xz"‘%j for 0<x<1

Then, the conditional distribution of Y, Z given X = xis

f(xyz) 172(x2 +yz)
£i(x) U(xu,lj

7 4

x* + yz

for 0<y<1,0<z<1

x4+
4

Expectations for Multivariate Distributions

Definition: Expectation

Let X, X, ..., X, denote # jointly distributed random variable with
joint density function

Sy, Xy oy X))
then
E[lg(X,.....Xx,)]

= I _[g(xl,...,xn)f(xl,...,x,,)dx1,~--,dxn
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Expectations for Multivariate Distributions -
Example

Let X, Y, Z denote 3 jointly distributed random variable with joint
density function then

u(szryz) 0<x<1,0<y<1,0<z<1

f(xay32)={7

0 otherwise

Determine E[XYZ].

Solution:

]
| |
>
~i
N
) ——
o) S———

‘ 12
Ixyz T(x + yz)dxdydz
0

12 111
= ij(x3yz+xyzzz)dxdydz
000

Expectations for Multivariate Distributions -
Example

jjjxyz— x +yz)dxdydz _ 12 jjj(x3yz+xyzzz)dxdydz
000 000

7
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Some Rules for Expectations — Rule 1

1. E[X,]= T T x,f(x,....x,)dx,...dx, = T x, f; (x,)dx,

Thus you can calculate E[X] either from the joint distribution of
X, ... , X, or the marginal distribution of X,

Proof: o o

J Ixl.f(xl,...,xn)dxl,...,dxn
= jxi T T f (x5, )dx, ..o dx,_dx,,, ... dx, |dx,
= Txl.fl.(xl)dxl

Some Rules for Expectations — Rule 2

2. E[ale SR +aan]: alE[Xl]+--- +anE[Xn]

This property is called the Linearity property.

Proof:

J I (ayx, +...+a,x,)f (x,...,x,)dx, ... dx,

o0 o0

= al'J“... I x f(x,....x, )dx, ...dx,

+a, T T x, f(x,....x, )dx, ... dx,
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Some Rules for Expectations — Rule 3

3. (The Multiplicative property) Suppose X, ... , X are

independent of X4, ..., X, then

B g( X X, ) (X e X, )
=B (X X, ) | B B(X e X, ) |
In the simple case when £ =2, and g(X)=X & h(Y)=Y
E[XY]|=E[X]E[Y]

if Xand Y are independent

Some Rules for Expectations — Rule 3

Proof: E[g(X,....X )h(X, .. X,)]

= I '[ g(xl,...,xq)h(xqﬂ,...,xk)f(xl,...,xk)dxl...dxn

= .[ J- g(xl,...,xq)h(xq+1,...,xk)ﬁ (xl,...,xq)

fz(xqﬂ,...,xk)dxl...dx dx dx,

X
:T...Th(xq+l,...,xk>f2(xqﬂ,...,xk){T...Tg(xl,...,xq)

fl(xl,...,xq)dxl...dqudqu...dxk
:E[g(Xl, , q)}x

h(xqﬂ,... , X, )f2 (xq+1,... , X, )abcq+1 .odx,
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Some Rules for Expectations — Rule 3

Some Rules for Variance — Rule 1
1. Var(X +Y)=Var(X )+ Var(Y)+2Cov(X,Y)

where Cov(X,Y)=E [(X — ) (Y _'”Y)J

Proof:

Var(X +7Y)= E[((X +Y)—,uX+Y)2]
where p,,, = E[X +Y]|=p, + u,
Thus,

Var(X+Y)=E[((X+Y)—(,UX +#y))2J
SB[ - Y 2 (K= )= ) (=)'

= Var (X )+2Cov(X,Y )+ Var(Y)
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Some Rules for Variance — Rule 1

Note: If X and Y are independent, then
Cov(X.Y)=E[(X —puy )(¥Y = u,)]
=E[X —puy |E[Y — uy ]

~(E[x ] ) ([ ] a,) = 0

and Var(X +Y)=Var(X)+ Var(Y)

Some Rules for Variance — Rule 1 - p,,-

Definition: Correlation coefficient

For any two random variables X and Y then define the correlation coefficient
Pxy to be:

_ Cov(X,Y) =COV(X,Y)
\/Var(X)\/Var(Y) O xOy

Thus Cov(X,Y)=p, 0,0,

pxy

and Var(X +Y)=o;+0,+2py0,0,

=0l +0; if Xand Y are independent.
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Some Rules for Variance — Rule 1 - p,,-

Cov(X.,r) _COV(X,Y)

\/Var(X)\/Var(Y) O xO0y

Property 1. 1f X and Y are independent, then pyy =0. (Cov(X,Y)=0.)

Recall p,, =

The converse is not necessarily true. That is, pyy = 0 does not imply
that X and Y are independent.

Example:

6 (8 |10 |f
2 O =8, =2, BXY)=16
L2 |0 12 |4 | Cov(xY)=16-8%2=0
2 1o |2 |o |2
3 12 |0 |2 |4 P(X=6,Y=2)=0#P(X=6)*P(Y=2)=.4*
£ |4 5 4 1 *.2=.08 = X&Y are not independent.

Some Rules for Variance — Rule 1 - p,,-
Property 2. -1<p,, £1
and |pXY| =1 if there exists 2 and 4 such that

P[Y =bX +a]=1

where pyyy = +11if 6> 0and py, = -11if 6<0
Proof:let U=X—-u, and V =Y — p,.

Lee g(b)=E|(V-bU) |20 foralls

We will pick & to minimize g(b).

g(b)=E[(r -bU) |=E[V?-2bVU +b°U "]

=E[V?|-2bE[VU]+bp’E[U”]
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Some Rules for Variance — Rule 1 - p,,-

Taking first derivatives of g(b) wir.t b
g(b)=E[(V-bU Y |=E[V?]-20E[yU]+ b E[U”]
g'(b)=-2E[VU]+2bE[U*|=0 = b=b,, =
Since g(b) = 0, then g(b,;,) = 0

g(byn)=E[V?]-2b, E[VU]+b} E[U”]

min

= E[Vz]—2#E[VU]+[—E [VU]JE[UZ]

Some Rules for Variance — Rule 1 - p,,-

=E[V2]—MZO

E[U*]
(E[rul])
Thus, E[UZ}E[W}_I
(B[O )0 =) L
E[(X = u ) |E[(r =, )] 77

= -1 py <l

= Py =1 if o7, =00,
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Some Rules for Variance — Rule 1 - p,,-

=E[V?]-2b, E[VU]+b},E[U”]

min

[
- E[(V—bmmU)z}: 0
If andonlyif p;, =1
This will be true if
P[(Y=pty) =By, (X =1, )=0]=1

P[Y =b X+ a] =1 wherea=pu, -b_. u,

ie., P[V -b,,U=0]=1

Some Rules for Variance — Rule 1 - p,,-

e Summary:
-1<p,, <1

and |pXY | =1 if there exists @ and 4 such that

P[Y =bX +a]=1

where b=b . = E[(X_qu)(Y_:ux)]

min E[(X—,LIX)2:|

_COV(X’Y):pXYO-XO-Y: P Oy
Var (X)) ol o,
Oy
and a=py =b iy =Hy —Pyy —Hy
O x
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2.

Some Rules for Variance — Rule 2

Var(aX +bY)=a’Var(X )+b*Var(Y)+2abCov(X,Y)
Proof

Var(aX+bY)=E[((aX+bY)—an+bY)2]
with u ,.,, = E[aX +bY]= ap, +bu,
Thus,
2
Var(aX +bY): E[((aX +bY)—(ayX +b,uy)) }
= B[ (X =g, ) +2ab (X = ) (Y = py )+ 62 (Y = 11y )|

=a’Var(X )+2abCov(X,Y)+b*Var(Y)

3.

Some Rules for Variance — Rule 3
Var(ale +...+ aan)z

alVar(X,)+...+a.Var(X,)+
+2a,a,Cov(X,,X,)+... + 2a,a,Cov (X, X,)

+2a,a,Cov(X,,X,)+... +2a,a,Cov(X,,X,)

+2a, a,Cov (X

= f aVar(X,)+2>" Y aa,Cov(X, X,)
i=1
i<j

X,)

n-1°

= Z afVar(Xl.) if X,,..., X, are mutually independent

i=1
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The mean and variance of a Binomial RV

We have already computed this by other methods:
1. Using the probability function p(x).
2. Using the moment generating function #y(?).

Now, we will apply the previous rules for mean and variances.

Suppose that we have observed 7 independent repetitions of a
Bernoulli trial.

Let X, ..., X, be # mutually independent random variables each
having Bernoulli distribution with parameter p and defined by

X, =

1

1 ifrepetition i is S (prob = p)
0 ifrepetition i is F (prob = gq)

The mean and variance of a Binomial RV

p=E[X ]=1-p+0-g=p
o’ =VarlX,1=(1-p)’ p+(0-p)’q=(1-p)’ p+(0-p)’(1-p)=
=(1-p) (p—p+p)=qp

* Now X = X, + ... + X, has a Binomial distribution with parameters
nand p. Then, X is the total number of successes in the 7 repetitions.

Hy =E[X1]+...+E[Xn]=p+...+p:np

lop =Var[X1]+...+Var[Xn]=pq+...+pq:npq
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Conditional Expectation

Definition: Conditional Joint Probability Function

Let X, X, ..., X » X FITRI X, denote £ continuous random variables
with joint probability density function
Sxyy Xy ey L AT x.)

then the conditional joint probability function of X}, X, ..., X,

given X 1 = X, 1, ..oy Xp = X, 18

f(xl,...,xk)
fq+1...k (xq+1""’xk)

fi...q‘qﬂ.‘.k (xl" : "xq ‘xqﬂ’“"xk) =
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Definition: Conditional Joint Probability Function

Let U=h(X,X,, ..., Xq, }(qH ..., X, ) then the Conditional Expectation of
Ugiven X, 1= %41, ...y X = X, 18

E[U‘xqﬂ,...,xk]:

o0 o0

II h(xl,...,xk)fl_”q‘qﬂ_”k (xl,...,xq‘xqﬂ,...,xk)dxl...a’xq
—o0 —0
Note: This will be a function of x4, ..., x.

* Let Yand X have a joint pdf fi- . Then,
Ely|x] = f_oooo Y frix1x)dy is called regression of y on x.

* E[y | x] is a function of x. Very useful result.

Definition: Conditional Joint Probability Function

* Any random variable Y can be expressed as the conditional mean plus
an error term, €, defined as € = (y — E[y | x]):

y =Ely|x]+ ¥y -E[y[x])
=E[y|x] + e

Depending on E[y | x], we may have a linear model. The conditional
mean is what researchers model. It is a function of x.

Example: In the CAPM, equilibrium expected excess returns (y) are
only determined by expected excess market returns (X):

Elri¢e —17] = Bi E[("me — 17)]-
Then,
T =T =+ B Mme—77) T8¢, =1L, ., N&t=1,...,T
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Conditional Expectation of a Function - Example

Let X, Y, Z denote 3 jointly distributed RVs with joint density function
then

f(w,Z)—{

Determine the conditional expectation of U =X 2+ Y+ 7 given
X=xY=).

%(x2+yz) 0<x<1,0<y<1,0<z<l

0 otherwise

Integration over z, gives us the marginal distribution of X, Y=

12 1
flz(x,J/)=7(x2+5y) for 0<x<1,0<y<I

Conditional Expectation of a Function - Example

Then, the conditional distribution of Z given X = x, Y =y is:

12, ,
f(x,y,z)_ 7(x +yz)

fio (x%,2) 172( 2 +;y)

B X’ +yz

1

2

Xt +—
Zy

for 0<z<1
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Conditional Expectation of a Function - Example

The conditional expectation of U= X2+ Y+ Zgiven X =x, Y = y.
1

B x>+ yz
]—.([()ﬂ +y+Z)—x2+ ydz

£

j x +y+z X +yz)dz
0
1

2 2 2 d
v([(_)/Z +|: X +y)+x :|Z+x ()C +y)) z
{y% x +y) 2}§+x2(x2+y)z}
:+§y(y3+[y(x +y)+x };+x2(x2+y)j

z=1

z=0

Conditional Expectation of a Function - Example

Thus the conditional expectation of U= X2+ Y + Z given X = x,
Y=y
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A Useful Tool: Iterated Expectations

Theorem
Let (5, %9, - 5 X, 015005 -+ 5,) = (X, y) denote g + 7z RVs.
Let Uy, %9 - s X0 915025 -+ 50,) = g(%, y). Then,

E[U]=£, | E[U]y]]
Var[U]|=E, [Var [U|YH +Var, [E[U|yﬂ

The first result is commonly referred as the Law of iterated expectations.
It relates the conditional mean to the unconditional mean.

The second result is referred as the Law of total variance ot variance
decomposition formula. It decomposes the variance into a conditional
expectation of the conditional variance and a conditional variance of
the conditional expectation (variance of regression).

A Useful Tool: Iterated Expectations

Proof: (in the simple case of 2 variables X and Y)

First, we prove the Law of iterated expectations.

Thus U =g (X.,Y)

0 0

E[U]= | [ g(x»)f (x,y)dxdy

—o —o0

E[UlY]|=E[g(Xx,Y)|r]= _ng(x,y)fxy (x|y)dx

hence  E, [E[U\Yﬂ: [E[U] A (v)ay
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A Useful Tool: Iterated Expectations

£ (e[ )= JE[Ub ] ()

IR DVRRVICS)
| Tetn 2201

Eg (x.2)f (xay)dx}dy

o
—00

o 00

= [ [ &(x.9) f (x.y)dvdy = E[U]

—00 —00

A Useful Tool: Iterated Expectations
Var|U]=E[U* |- (E[U])

-, [ B[V ]]-(£& ] E[U\Yﬂ)2

EY[Var[U‘Y] E[Ulr]) } (& [E[U|r]])

= E [Var[U|Y]]+E, [(E[U\Y]) }—(EY [E[U|r]))

= E, | Var[U|Y ] |+Var, (E[U|r])
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A Useful Tool: Iterated Expectations - Example

Example:

Suppose that a rectangle is constructed by first choosing its length, X
and then choosing its width Y.

Its length Xis selected form an exponential distribution with mean u
=1/,=5. Once the length has been chosen its width, Y] is selected
from a uniform distribution form 0 to half its length.

Find the mean and variance of the area of the rectangle A4 = XY

A Useful Tool: Iterated Expectations - Example

Solution:

_1

fe(x)=1te™" for x>0

1.
fYX(y‘x):W if 0<y<x/2

f(xp)=fy (x)fY‘X (y‘x)

e_%xL=%e_%x if 0<y<x/2,x>0
x/2

W |—

We could compute the mean and variance of .4 = XY from the
joint density f{x;))
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A Useful Tool: Iterated Expectations - Example

E[A]: E[XY]: T T xyf(x,y)dxdy

—00 —00

2 2

=
~
~

X,

:T J. xyZe ¥d ST I ye “dydx
00 00
E[ ]z [X Yz] I I x y)dxdy
w x/2 o o x/2
=] [t e Mdvax =3[ [ xyle Vdyay
00 00

and Var(A4)= 1'5[1‘12]_(15[‘4])2

A Useful Tool: Iterated Expectations - Example

00 x/2 o P x/2
E[4]=2 I j ye “dydx = %je_;x {y_} dx
0 0
(
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A Useful Tool: Iterated Expectations - Example

w x/2 0 y3 y=x/2
E[A} ijyededx= !xes{?} dx

y=0

Il
wo
w|—=
oo|—

Y1) e TG)

z )55)= S 41=524=5"%x2=1250

Thus Var(4)= E[AZJ_(E [A])2

Ix“ g LF(S)T (%)5 xte dx
(

lﬂvﬂ

=1250-(12.5)" =1093.75

A Useful Tool: Iterated Expectations - Example
Now, let’s use the previous theorem. That is,
E[A]=E[xY]=E, | E[ x7|x]]
and Var[A] = Var[XY]
= E, | Var[ XY|X ||+Var, | E[ x¥|X]]

Now E[XY‘X]zXE[Y‘X]zX%z%XZ
2
and  Var(XY|X)=XVar| Y|X |= X (X/?—z_o) =L X

This is because given X, Y has a uniform distribution from 0 to X/2
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A Useful Tool: Iterated Expectations - Example
Thes  E[A]=E[XY]=E,| E[ XY|X]]

=E, [%Xz:' =1Ey [XZ] =Tl
where 11, = 2""moment for the exponential distn with 2 =1

k! 1
Note 4, =— for the exponential distn
A

Thus  E[A]=1u, =

Note: Same answer as previously calculated. No integration needed.

A Useful Tool: Iterated Expectations - Example
Now E[XY|X]=1X’ and Var(XY|X)=4X"*
Also Var[A]=Var[ XY]

= E| Var[ x¥|X ||+ Var, | E[ x¥|X ]

=(4) {EX [ ]-(Ex [Xz])z} =(4)"[ = ()"
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A Useful Tool: Iterated Expectations - Example

Var, [ E[ XY|X || =Var, [+ X ] = (%) Var, [ X7]

" <4>LﬁJ -rlam @y )= i0-s

Thus Var[A]=Var[XY]

= Ey|Var[ XY |X ]|+ Var, | E[ XY|X]]

4 5
_O L s L Cse( 1) D 09375
2 4 27 4 8

* The same answer as previously calculated!! And no integration needed!

The Multivariate MGF

Definition: Multivariate MGF

Let X}, X, ..., X, be g random variables with a joint density
function given by flx, x,, ... , x ). The multivariate MGF is

mx (t) = Ex[exp(t'X)]

where €= (¢, 15, ... , £) and X= (X}, X, ... , X ).

If X,,X,, ..., X, are nindependent random variables, then

my (t) = H my ()
i=1
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The MGF of a Multivariate Normal

Definition: MGF for the Multivariate Normal

normal MGF is

my (t) = Ex[exp(t' X)] = exp(t'p +%t'2t)

where t= (#, £, ... , ), X= (X}, X,, ..., X))  and p= (g, P, -

Let X, X, ..., X P be 7 normal random variables. The multivariate

> P'q)"

Review: The Transformation Method

Theorem

Let X denote a random variable with probability density
function f{x) and U = »(X).

Assume that /(x) is either strictly increasing (or decreasing)
then the probability density of U is:

dh™ (u)| _

g(u)=r(n ())‘
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The Transformation Method (many variables)

Theorem

Let x, x,..., x, denote random variables with joint probability
density function

Sy, Xyeney X))

Let 1y = hy(Xq, Xy vy X,).
ty = hy(Xqy Xoyenvy X)),
ty = D, (X4, Xoyerry X).

define an invertible transformation from the x’s to the #’s

The Transformation Method (many variables)

Then the joint probability density function of #,, #,,..., #,is given by:

d X R an
g (ulﬂ'” ’un): f(xl"” ’xn) d Euia aun;
= f(xl,"' axn)|J|
| dx, .. A% |
dl/ll dun
where J = d (xl’m » X = det : ’
d(u., - ,u, dx dx
_dul dun_

Jacobian of the transformation
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Example: Distribution of x+y and x-y

Suppose that x, x, are independent with density functions £, (x;) and

£)

Find the distribution of u = x;+x, and Uy = Xy - X,

Solution: Solving for x; and x,, we get the inverse transformation:

x1=u1-;u2 xzzul—zuz
The Jacobian of the transformation
[ dx,  dx, |
du, du
J:d(xl,xz) = det dl d2
d(u,u,) ! !
| du, du, |

Example: Distribution of x+y and x-y

7 d(xl,xz) ~

= ——=2 =(det
d(ul,uz)

= N =
[\)
I
Il
VR
N | =
N—
VR
|
N | =
N—
|
VR
N | =
N—
7\

The joint density of x, x;,is

S, 20) = fi (1) o)

Hence the joint density of #, and #, is:

g (uy,uy)= f(xl,xz)‘J‘

u, +u, U, —u, 1_
Zﬁ( 2 jﬂ( 2 jz
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Example: Distribution of x+y and x-y

U +u, 1

We can determine the distribution of #,= x; + x,

& (“1): jg(ul,uQ)duz
T u, +u, —u, |1
- LAl A (g

U, +u u, —u dv
put v:—l2 2 then —‘2 L=y, —v,

Example: Distribution of x+y and x-y

Hence

)= (555 (55
= J‘ £ () fy(uy—v)dy

This is called the convolution of the two densities £, and f,.
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Example (1): Convolution formula -The Gamma
distribution

Let X and Y be two independent random variables such that X and Y
have an exponential distribution with parameter A.

We will use the convolution formula to find the distribution of
U=X+Y. (Wealready know the distribution of U: Gamma.)

gu @) = [ fuw=y)fydy = [ 27 26 dy
—o 0

— J‘;tZ e—ﬂudy — /12 ue—ﬂu
0

This is the gamma distribution when a=2.
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Example (2): The ex-Gaussian distribution
Let X and Y be two independent random variables such that:
1. X has an exponential distribution with parameter A.

2. Y has a normal (Gaussian) distribution with mean g and standard
deviation o.

We will use the convolution formula to find the distribution of
U=X+Y.

(This distribution is used in psychology as a model for response
time to perform a task.)

Example (2): The ex-Gaussian distribution

Ae ™ x>0

0 x <0

Now f, (x):{

(x-u)
207

/> ()’): ﬁe

The density of U= X+ Yis:

g(u):]ifl(v)f2 (u—v)dv

_(u—v—,u)2
2
e 2 dv
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or g(u)zﬁze

ﬂ’ o0
= —e

N2rmo

Example (2): The ex-Gaussian distribution

2
_(“‘2”7‘;‘)_m

o dv

_(u—v—,u)2+20'2ﬂv

207 dv

_v2—2(u—,u)v+(u—,u)2+20'z/lv

2
2o dv

7(14—/1)200 7\12—2[(11—/1)—0'2&}\;

20° e

2
20 dV

S C——y

2

Example (2): The ex-Gaussian distribution

v? —2[(14—,[1)—0'2/?.}\)

o =_2_ o 20’

- 2o

R Cal2) Te_
0

2
20 dV

v? 72[(117;1)—0'21}\&[(117/1)—0'2/1}2

v 72[(u7/1)702/1}v+[(u7;1)70'2/1}2

— j’ e 252
2ro
(s (w-r)-0?2] , |
=Ae 20°
!VZEG
(u-pe) [ (w-s2)-0%4]
= Ae 20°

o0

2
je 20 dv
0

dv
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Example (2): The ex-Gaussian distribution

Where 17 has a Normal distribution with mean

Uy :u—(,u+0'2/1)
and variance >

That is,

2

sl o
(o2

Where ®(3) is the cdf of the standard Normal distribution

|

The ex-Gaussian distribution

0.09

&(#)
0.06 -

0.03
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Distribution of Quadratic Forms

We will present different theorems when the RVs are normal variables:

Theotem 7.1. If y ~ N(u,, Z), then z = Ay NN(A[.Ly, A z A,

where A is a matrix of constants and y a #X1 vector .

Theorem 7.2. Let y be a #X1 vector ~N(0, I). Then y'y ~}(”2.

Theorem 7.3. Let the #X1 vector y ~N(0, 6> I) and M be a symmetric
idempotent matrix of rank 7. Then,

yYMy/0* ~ Xy

Proof: Since M is symmetric it can be diagonalized with an orthogonal
matrix Q. Thatis, QMQ =A. (Q'Q=I)

Since M is idempotent all these roots are either 0 or 1. Thus,

OMO= A~ {1 0}
00
Note: dim(I) = rank(M) (the number of non-zero roots is the rank of
the matrix). Also, since X\, = tr(I), = dim() = t«(M).
Letr=Q'y.
E@) = QE(»=0

Var(2) = E[]=E[Qy’Q] =QEGL)Q = » QT.Q = ? I
= » ~ N(0,6°L)

Then, My V'Q'MQV_LV. 7 0 V_Ltr(M)VZ _tr(ZM:) v 2

o’ o’ o? [0 0 o’ i=1 l i-1 \C
Thus, yMy/c? is the sum of tr(M) N(0,1) squared variables. It follows
a ermd)z-
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Theorem 7.4. Let the #X1 vector y~ N(u,, ). Then,
(.V_P’y)' Zy-l (.y-i"’y) Nlﬂz'
Proof:

Recall that there exists a non-singular matrix A such that AA'= X

Letr= Al ) (a linear combination of normal variables)
= v~ N(,1)
= v~y2  (using Theorem 7.3, where # = tr(Z,").)

Theorem 7.5

Let the #X1 vector y~ N(0, I) and M be an #X#» matrix. Then, the

characteristic function of y¥Myis |I-2i/M | /2
Proof: : |
Oy =E, [eity'My] = —J‘eily'My eV 2 dx = J‘e_y =20ty 12 gy

n/2 n/2
en"?) en?)

This is the normal density with 21=(I-2i/M), except for the
determinant |I-2i/M |2, which should be in the denominator.

Theorem 7.6

Let the #X1 vector y~ N(0, I), M be an #X7n idempotent matrix of
rank 7, let L be an #X#n idempotent matrix of rank s, and suppose ML
= 0. Then, y'My and y'Ly are independently distributed y? variables.

Proof:

By Theorem 7.3 both quadratic forms y?distributed vatiables. We
only need to prove independence. From Theorem 7.5, we have

Py =E, [ =| T-2itM [
Py =E [ 1= 1-2iL |
The forms will be independently distributed if @1y = Ppny Pyry
That is,
Pyarsyy =E L€ 1= T-2it(M+L) [P =| T-2itM [ 1 =211

Since |ML|=|M| |L]|, the result will be true only when ML=0.
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