Chapter 4 Multivariate distributions

$$
k \geq 2
$$

Multivariate Distributions

All the results derived for the bivariate case can be generalized to n RV.

The joint CDF of $X_{1}, X_{2}, \ldots, X_{k}$ will have the form:

$$
\begin{array}{ll}
P\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \text { when the RVs are discrete } \\
F\left(x_{1}, x_{2}, \ldots, x_{k}\right) & \text { when the RVs are continuous }
\end{array}
$$

Joint Probability Function

Definition: Joint Probability Function
Let $X_{1}, X_{2}, \ldots, X_{k}$ denote k discrete random variables, then $p\left(x_{1}, x_{2}, \ldots, x_{k}\right)$
is joint probability function of $X_{1}, X_{2}, \ldots, X_{k}$ if
$1.0 \leq p\left(X_{1}, \ldots, X_{n}\right) \leq 1$
2. $\sum_{x \in A}^{n} \ldots \sum_{x \in A}^{n} p\left(X_{1}, \ldots, X_{n}\right)=1$
3. $P\left[\left(X_{1}, \ldots, X_{n}\right) \in A\right]=\sum_{x \in A}^{n} \ldots \sum_{x \in A}^{n} p\left(X_{1}, \ldots, X_{n}\right)$

Joint Density Function

Definition: Joint density function
Let $X_{1}, X_{2}, \ldots, X_{k}$ denote k continuous random variables, then

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\delta^{\mathrm{n}} / \delta x_{1}, \delta x_{2}, \ldots, \delta x_{k} \mathrm{~F}\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

is the joint density function of $X_{1}, X_{2}, \ldots, X_{k}$ if

1. $0 \leq f\left(X_{1}, \ldots, X_{n}\right)$
2. $\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}=1$
3. $P\left[\left(x_{1}, \ldots, x_{n}\right) \in A=\int_{A}^{\infty} \cdots \int_{A}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}=1\right.$

Example: The Multinomial distribution

Suppose that we observe an experiment that has k possible outcomes $\left\{O_{1}, O_{2}, \ldots, O_{k}\right\}$ independently n times.
Let $p_{1}, p_{2}, \ldots, p_{k}$ denote probabilities of $O_{1}, O_{2}, \ldots, O_{k}$ respectively.
Let X_{i} denote the number of times that outcome O_{i} occurs in the n repetitions of the experiment.
Then the joint probability function of the random variables X_{1}, X_{2}, \ldots, X_{k} is

$$
p\left(X_{1}, \ldots, X_{n}\right)=\frac{n!}{x_{1}!\ldots x_{n}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}}
$$

Example: The Multinomial distribution

Note: $\quad p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}}$
is the probability of a sequence of length n containing

$$
\begin{aligned}
& x_{1} \text { outcomes } O_{1} \\
& x_{2} \text { outcomes } O_{2} \\
& \ldots \\
& x_{k} \text { outcomes } O_{k} \\
& \quad\binom{n}{x_{1} \ldots x_{k}}=\frac{n!}{x_{1}!\ldots x_{k}!}
\end{aligned}
$$

is the number of ways of choosing the positions for the x_{1} outcomes O_{1}, x_{2} outcomes O_{2}, \ldots, x_{k} outcomes O_{k}

Example: The Multinomial distribution

$$
\begin{aligned}
& \binom{n}{x_{1}}\binom{n-x_{1}}{x_{2}}\binom{n-x_{1}-x_{2}}{x_{3}} \ldots\binom{x_{k}}{x_{k}} \\
& =\left(\frac{n!}{x_{1}!\left(n-x_{1}\right)!}\right)\left(\frac{\left(n-x_{1}\right)!}{x_{2}!\left(n-x_{1}-x_{2}\right)!}\right)\left(\frac{\left(n-x_{1}-x_{2}\right)!}{x_{3}!\left(n-x_{1}-x_{2}-x_{3}\right)!}\right) \cdots \\
& =\frac{n!}{x_{1}!\ldots x_{k}!} \\
& p\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}=\frac{n!}{x_{1}!\ldots x_{n}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}} .
$$

This is called the Multinomial distribution

Example: The Multinomial distribution

Suppose that an earnings announcements has three possible outcomes:
O_{1} - Positive stock price reaction - (30% chance)
$\mathrm{O}_{2}-$ No stock price reaction - (50% chance)
O_{3} - Negative stock price reaction - (20% chance)
Hence $p_{1}=0.30, p_{2}=0.50, p_{3}=0.20$.
Suppose today 4 firms released earnings announcements ($n=4$). Let $X=$ the number that result in a positive stock price reaction, $Y=$ the number that result in no reaction, and $Z=$ the number that result in a negative reaction.
Find the distribution of X, Y and Z. Compute $P[X+Y \geq Z]$

$$
p(x, y, z)=\frac{4!}{x!y!z!}(0.30)^{x}(0.50)^{y}(0.20)^{z} \quad x+y+z=4
$$

Table: $p(x, y, z)$

		z						
x	y	0	1	2	3	4		
0	0	0	0	0	0	0.0016		
0	1	0	0	0	0.0160	0		
0	2	0	0	0.0600	0	0		
0	3	0	0.1000	0	0	0		
0	4	0.0625	0	0	0	0		
1	0	0	0	0	0.0096	0		
1	1	0	0	0.0720	0	0		
1	2	0	0.1800	0	0	0		
1	3	0.1500	0	0	0	0		
1	4	0	0	0	0	0		
2	0	0	0	0.0216	0	0		
2	1	0	0.1080	0	0	0		
2	2	0.1350	0	0	0	0		
2	3	0	0	0	0	0		
2	4	0	0	0	0	0		
3	0	0	0.0216	0	0	0		
3	1	0.0540	0	0	0	0		
3	2	0	0	0	0	0		
3	3	0	0	0	0	0		
3	4	0	0	0	0	0		
4	0	0.0081	0	0	0	0		
4	1	0	0	0	0	0		
4	2	0	0	0	0	0		
4	3	0	0	0	0	0		
4	4	0	0	0	0	0		

$P[X+Y \geq Z]$
$=0.9728$

x	y	z				
		0	1	2	3	4
0	0	0	0	0	0	0.0016
0	1	0	0	0	0.0160	0
0	2	0	0	0.0600	0	0
0	3	0	0.1000	0	0	0
0	4	0.0625	0	0	0	0
1	0	0	0	0	0.0096	0
1	1	0	0	0.0720	0	0
1	2	0	0.1800	0	0	0
1	3	0.1500	0	0	0	0
1	4	0	0	0	0	0
2	0	0	0	0.0216	0	0
2	1	0	0.1080	0	0	0
2	2	0.1350	0	0	0	0
2	3	0	0	0	0	0
2	4	0	0	0	0	0
3	0	0	0.0216	0	0	0
3	1	0.0540	0	0	0	0
3	2	0	0	0	0	0
3	3	0	0	0	0	0
3	4	0	0	0	0	0
4	0	0.0081	0	0	0	0
4	1	0	0	0	0	0
4	2	0	0	0	0	0
4	3	0	0	0	0	0
4	4	0	0	0	0	0

(c) 2022 R. Susmel. Not to be posted/shared online without written authorization

Example: The Multivariate Normal distribution

Recall the univariate normal distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

the bivariate normal distribution

$$
f(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} e^{\left.-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}-2 \rho\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)\left(\frac{x-\mu_{y}}{\sigma_{y}}\right)+\left(\frac{x-\mu_{y}}{\sigma_{y}}\right)^{2}\right]}
$$

Example: The Multivariate Normal distribution

Note: We can have a more compact joint using linear algebra:

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{\left(1-\rho^{2}\right)}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right)^{2}\right] \\
& =\frac{1}{2 \pi(|\Sigma|)^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
\end{aligned}
$$

(1) Determine the inverse and determinant of Σ (the covariance matrix)

$$
\begin{aligned}
\Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{21} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right] & \Rightarrow|\Sigma|=\sigma_{1}^{2} \sigma_{2}^{2}-\sigma_{12}^{2}=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}\right)=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right) \\
& \Rightarrow \Sigma^{-1}=\frac{1}{|\Sigma|}\left[\begin{array}{cc}
\sigma_{2}^{2} & -\sigma_{21} \\
-\sigma_{12} & \sigma_{1}^{2}
\end{array}\right]
\end{aligned}
$$

The bivariate normal distribution

(2) Write a quadratic form for $\mathrm{Q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$:

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}\right)\left.=\frac{\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}{1-\rho^{2}}\right\} \\
& Q\left(x_{1}, x_{2}\right)=(\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}) \\
&=\left[\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right] \frac{1}{|\Sigma|}\left[\begin{array}{cc}
\sigma_{2}^{2} & -\sigma_{21} \\
-\sigma_{12} & \sigma_{1}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2}
\end{array}\right]= \\
&=\frac{1}{|\Sigma|}\left[\left(x_{1}-\mu_{1}\right) \sigma_{2}^{2}-\left(x_{2}-\mu_{2}\right) \sigma_{12}\right. \\
&\left(x_{1}-\mu_{1}\right) \sigma_{21}-\left(x_{2}-\mu_{2}\right) \sigma_{1}^{2}\left[\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2}
\end{array}\right] \\
&=\frac{1}{|\Sigma|\left(\left(x_{1}-\mu_{1}\right)^{2} \sigma_{2}^{2}-2 \sigma_{21}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{1}^{2}\right)} \\
&=\frac{\left(\left(x_{1}-\mu_{1}\right)^{2} \sigma_{2}^{2}-2 \sigma_{21}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{1}^{2}\right)}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}
\end{aligned}
$$

Example: The Multivariate Normal distribution

The k-variate Normal distribution is given by:

$$
f\left(x_{1}, \ldots, x_{k}\right)=f(\mathbf{x})=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

where

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right] \quad \boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2} \\
\vdots \\
\mu_{k}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 k} \\
\sigma_{12} & \sigma_{22} & \cdots & \sigma_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 k} & \sigma_{2 k} & \cdots & \sigma_{k k}
\end{array}\right]
$$

Marginal joint probability function

Definition: Marginal joint probability function
Let $X_{1}, X_{2}, \ldots, X_{q}, X_{q+1} \ldots, X_{k}$ denote k discrete random variables with joint probability function

$$
p\left(x_{1}, x_{2}, \ldots, x_{q}, x_{q+1} \ldots, x_{k}\right)
$$

then the marginal joint probability function of $X_{1}, X_{2}, \ldots, X_{q}$ is

$$
p_{12 \ldots q}\left(x_{1}, \ldots, x_{q}\right)=\sum_{x_{q+1}} \ldots \sum_{x_{n}} p\left(x_{1}, \ldots, x_{n}\right)
$$

When $X_{1}, X_{2}, \ldots, X_{q}, X_{q+1} \ldots, X_{k}$ is continuous, then the marginal joint density function of $X_{1}, X_{2}, \ldots, X_{q}$ is

$$
f_{12 \ldots q}\left(x_{1}, \ldots, x_{q}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) d x_{q+1} \ldots d x_{n}
$$

Conditional joint probability function

Definition: Conditional joint probability function
Let $X_{1}, X_{2}, \ldots, X_{q}, X_{q+1} \ldots, X_{k}$ denote k discrete random variables with joint probability function

$$
p\left(x_{1}, x_{2}, \ldots, x_{q}, x_{q+1} \ldots, x_{k}\right)
$$

then the conditional joint probability function of $X_{1}, X_{2}, \ldots, X_{q}$ given $X_{q+1}=x_{q+1}, \ldots, X_{k}=x_{k}$ is

$$
p_{1 \ldots q \mid q+1 \ldots k}\left(x_{1}, \ldots, x_{q} \mid x_{q+1}, \ldots, x_{k}\right)=\frac{p\left(x_{1}, \ldots, x_{k}\right)}{p_{q+1 \ldots k}\left(x_{q+1}, \ldots, x_{k}\right)}
$$

For the continuous case, we have:

$$
f_{1 \ldots q \mid q+1 \ldots k}\left(x_{1}, \ldots, x_{q} \mid x_{q+1}, \ldots, x_{k}\right)=\frac{f\left(x_{1}, \ldots, x_{k}\right)}{f_{q+1 \ldots k}\left(x_{q+1}, \ldots, x_{k}\right)}
$$

Conditional joint probability function

Definition: Independence of sets of vectors
Let $X_{1}, X_{2}, \ldots, X_{q}, X_{q+1} \ldots, X_{k}$ denote k continuous random variables with joint probability density function

$$
f\left(x_{1}, x_{2}, \ldots, x_{q}, x_{q+1} \ldots, x_{k}\right)
$$

then the variables $X_{1}, X_{2}, \ldots, X_{q}$ are independent of X_{q+1}, \ldots, X_{k} if

$$
f\left(x_{1}, \ldots, x_{k}\right)=f_{1 \ldots q}\left(x_{1}, \ldots, x_{q}\right) f_{q+1 \ldots k}\left(x_{q+1}, \ldots, x_{k}\right)
$$

A similar definition for discrete random variables.

Conditional joint probability function

Definition: Mutual Independence
Let $X_{1}, X_{2}, \ldots, X_{k}$ denote k continuous random variables with joint probability density function

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

then the variables $X_{1}, X_{2}, \ldots, X_{k}$ are called mutually independent if

$$
f\left(x_{1}, \ldots, x_{k}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots f_{k}\left(x_{k}\right)
$$

A similar definition for discrete random variables.

Multivariate marginal pdfs - Example

Let X, Y, Z denote 3 jointly distributed random variable with joint density function then

$$
f(x, y, z)=\left\{\begin{array}{cc}
K\left(x^{2}+y z\right) & 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the value of K.
Determine the marginal distributions of X, Y and Z.
Determine the joint marginal distributions of

$$
\begin{aligned}
& X, Y \\
& X, Z \\
& Y, Z
\end{aligned}
$$

Multivariate marginal pdfs - Example

Solution: Determining the value of K.

$$
\begin{aligned}
1= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d x d y d z=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} K\left(x^{2}+y z\right) d x d y d z \\
& =K \int_{0}^{1} \int_{0}^{1}\left[\frac{x^{3}}{3}+x y z\right]_{x=0}^{x=1} d y d z=K \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{3}+y z\right) d y d z \\
& =K \int_{0}^{1}\left[\frac{1}{3} y+z \frac{y^{2}}{2}\right]_{y=0}^{y=1} d z=K \int_{0}^{1}\left(\frac{1}{3}+z \frac{1}{2}\right) d z \\
& =K\left[\frac{z}{3}+\frac{z^{2}}{4}\right]_{0}^{1}=K\left(\frac{1}{3}+\frac{1}{4}\right)=K \frac{7}{12}=1
\end{aligned}
$$

Multivariate marginal pdfs - Example

The marginal distribution of X.

$$
\begin{aligned}
f_{1}(x) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d y d z=\frac{12}{7} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y z\right) d y d z \\
& =\frac{12}{7} \int_{0}^{1}\left[x^{2} y+\frac{y^{2}}{2} z\right]_{y=0}^{y=1} d z=\frac{12}{7} \int_{0}^{1}\left(x^{2}+\frac{1}{2} z\right) d z \\
& =\frac{12}{7}\left[x^{2} z+\frac{z^{2}}{4}\right]_{0}^{1}=\frac{12}{7}\left(x^{2}+\frac{1}{4}\right) \text { for } 0 \leq x \leq 1
\end{aligned}
$$

Multivariate marginal pdfs - Example

The marginal distribution of X, Y.

$$
\begin{aligned}
f_{12}(x, y) & =\int_{-\infty}^{\infty} f(x, y, z) d z=\frac{12}{7} \int_{0}^{1}\left(x^{2}+y z\right) d z \\
& =\frac{12}{7}\left[x^{2} z+y \frac{z^{2}}{2}\right]_{z=0}^{z=1} \\
& =\frac{12}{7}\left(x^{2}+\frac{1}{2} y\right) \text { for } 0 \leq x \leq 1,0 \leq y \leq 1
\end{aligned}
$$

Multivariate marginal pdfs - Example

Find the conditional distribution of:

1. Z given $X=x, Y=y$,
2. Y given $X=x, Z=$,
3. X given $Y=y, Z=$;
4. Y, Z given $X=x$,
5. X, Z given $Y=y$
6. X, Y given $Z=$ z
7. Y given $X=x$,
8. X given $Y=y$
9. X given $Z=$ z
10. Z given $X=x$,
11. Z given $Y=y$
12. Y given $Z=z$

Multivariate marginal pdfs - Example

The marginal distribution of X, Y.

$$
f_{12}(x, y)=\frac{12}{7}\left(x^{2}+\frac{1}{2} y\right) \text { for } 0 \leq x \leq 1,0 \leq y \leq 1
$$

Thus the conditional distribution of Z given $X=x, Y=y$ is

$$
\begin{aligned}
\frac{f(x, y, z)}{f_{12}(x, y)}= & \frac{\frac{12}{7}\left(x^{2}+y z\right)}{\frac{12}{7}\left(x^{2}+\frac{1}{2} y\right)} \\
& =\frac{x^{2}+y z}{x^{2}+\frac{1}{2} y} \text { for } 0 \leq z \leq 1
\end{aligned}
$$

Multivariate marginal pdfs - Example

The marginal distribution of X.

$$
f_{1}(x)=\frac{12}{7}\left(x^{2}+\frac{1}{4}\right) \text { for } 0 \leq x \leq 1
$$

Then, the conditional distribution of Y, Z given $X=x$ is

$$
\begin{aligned}
\frac{f(x, y, z)}{f_{1}(x)}= & \frac{\frac{12}{7}\left(x^{2}+y z\right)}{\frac{12}{7}\left(x^{2}+\frac{1}{4}\right)} \\
& =\frac{x^{2}+y z}{x^{2}+\frac{1}{4}} \text { for } 0 \leq y \leq 1,0 \leq z \leq 1
\end{aligned}
$$

Expectations for Multivariate Distributions

Definition: Expectation

Let $X_{1}, X_{2}, \ldots, X_{n}$ denote n jointly distributed random variable with joint density function

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

then

$$
\begin{aligned}
& E\left[g\left(X_{1}, \ldots, X_{n}\right)\right] \\
& \quad=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1}, \ldots, d x_{n}
\end{aligned}
$$

Expectations for Multivariate Distributions Example

Let X, Y, Z denote 3 jointly distributed random variable with joint density function then

$$
f(x, y, z)=\left\{\begin{array}{cc}
\frac{12}{7}\left(x^{2}+y z\right) & 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine E[XYZ].
Solution:

$$
\begin{gathered}
E[X Y Z]=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x y z \frac{12}{7}\left(x^{2}+y z\right) d x d y d z \\
=\frac{12}{7} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{3} y z+x y^{2} z^{2}\right) d x d y d z
\end{gathered}
$$

Expectations for Multivariate Distributions Example

$$
\begin{aligned}
E[X Y Z] & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x y z \frac{12}{7}\left(x^{2}+y z\right) d x d y d z=\frac{12}{7} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{3} y z+x y^{2} z^{2}\right) d x d y d z \\
& =\frac{12}{7} \int_{0}^{1} \int_{0}^{1}\left[\frac{x^{4}}{4} y z+\frac{x^{2}}{2} y^{2} z^{2}\right]_{x=0}^{x=1} d y d z=\frac{3}{7} \int_{0}^{1} \int_{0}^{1}\left(y z+2 y^{2} z^{2}\right) d y d z \\
& =\frac{3}{7} \int_{0}^{1}\left[\frac{y^{2}}{2} z+2 \frac{y^{3}}{3} z^{2}\right]_{y=0}^{y=1} d z=\frac{3}{7} \int_{0}^{1}\left(\frac{1}{2} z+\frac{2}{3} z^{2}\right) d z \\
& =\frac{3}{7}\left[\frac{z^{2}}{4}+\frac{2 z^{3}}{9}\right]_{0}^{1}=\frac{3}{7}\left(\frac{1}{4}+\frac{2}{9}\right)=\frac{3}{7}\left(\frac{17}{36}\right)=\frac{17}{84}
\end{aligned}
$$

Some Rules for Expectations - Rule 1

1. $E\left[X_{i}\right]=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} x_{i} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}=\int_{-\infty}^{\infty} x_{i} f_{i}\left(x_{i}\right) d x_{i}$

Thus you can calculate $E\left[X_{j}\right]$ either from the joint distribution of X_{1}, \ldots, X_{n} or the marginal distribution of X_{i}

$$
\begin{aligned}
& \text { Proof: } \quad \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} x_{i} f\left(x_{1}, \ldots, x_{n}\right) d x_{1}, \ldots, d x_{n} \\
& =\int_{-\infty} x_{i}\left[\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{n}\right] d x_{i} \\
& =\int_{-\infty}^{\infty} x_{i} f_{i}\left(x_{i}\right) d x_{i}
\end{aligned}
$$

Some Rules for Expectations - Rule 2

2. $E\left[a_{1} X_{1}+\cdots+a_{n} X_{n}\right]=a_{1} E\left[X_{1}\right]+\cdots+a_{n} E\left[X_{n}\right]$

This property is called the Linearity property.

Proof:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =a_{1} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} x_{1} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& \quad+a_{n} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} x_{n} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

Some Rules for Expectations - Rule 3

3. (The Multiplicative property) Suppose X_{1}, \ldots, X_{q} are independent of X_{q+1}, \ldots, X_{k} then

$$
\begin{aligned}
& E\left[g\left(X_{1}, \ldots, X_{q}\right) h\left(X_{q+1}, \ldots, X_{k}\right)\right] \\
& \quad=E\left[g\left(X_{1}, \ldots, X_{q}\right)\right] E\left[h\left(X_{q+1}, \ldots, X_{k}\right)\right]
\end{aligned}
$$

In the simple case when $k=2$, and $g(X)=X \& h(Y)=Y$:

$$
E[X Y]=E[X] E[Y]
$$

if X and Y are independent

Some Rules for Expectations - Rule 3

Proof: $\quad E\left[g\left(X_{1}, \ldots, X_{q}\right) h\left(X_{q+1}, \ldots, X_{k}\right)\right]$
$=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{q}\right) h\left(x_{q+1}, \ldots, x_{k}\right) f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{n}$
$=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{q}\right) h\left(x_{q+1}, \ldots, x_{k}\right) f_{1}\left(x_{1}, \ldots, x_{q}\right)$
$f_{2}\left(x_{q+1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{q} d x_{q+1} \ldots d x_{k}$
$=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h\left(x_{q+1}, \ldots, x_{k}\right) f_{2}\left(x_{q+1}, \ldots, x_{k}\right)\left[\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{q}\right)\right.$
$\left.f_{1}\left(x_{1}, \ldots, x_{q}\right) d x_{1} \ldots d x_{q}\right] d x_{q+1} \ldots d x_{k}$
$=E\left[g\left(X_{1}, \ldots, X_{q}\right)\right] \times$
$\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h\left(x_{q+1}, \ldots, x_{k}\right) f_{2}\left(x_{q+1}, \ldots, x_{k}\right) d x_{q+1} \ldots d x_{k}$

Some Rules for Expectations - Rule 3

$=E\left[g\left(X_{1}, \ldots, X_{q}\right)\right] \times$

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h\left(x_{q+1}, \ldots, x_{k}\right) f_{2}\left(x_{q+1}, \ldots, x_{k}\right) d x_{q+1} \ldots d x_{k}
$$

$=E\left[g\left(X_{1}, \ldots, X_{q}\right)\right] E\left[h\left(X_{q+1}, \ldots, X_{k}\right)\right]$

Some Rules for Variance - Rule 1

1. V ar $(X+Y)=\mathrm{V}$ ar $(X)+\mathrm{V} \operatorname{ar}(Y)+2 \operatorname{Cov}(X, Y)$
where $\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$
Proof:
$\mathrm{Var}(X+Y)=E\left[\left((X+Y)-\mu_{X+Y}\right)^{2}\right]$
where $\mu_{X+Y}=E[X+Y]=\mu_{X}+\mu_{Y}$
Thus,

$$
\begin{aligned}
\operatorname{Var} & (X+Y)=E\left[\left((X+Y)-\left(\mu_{X}+\mu_{Y}\right)\right)^{2}\right] \\
& =E\left[\left(X-\mu_{X}\right)^{2}+2\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)+\left(Y-\mu_{Y}\right)^{2}\right] \\
& =\operatorname{Var}(X)+2 \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
\end{aligned}
$$

Some Rules for Variance - Rule 1

Note: If X and Y are independent, then

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =E\left[X-\mu_{X}\right] E\left[Y-\mu_{Y}\right] \\
& =\left(E[X]-\mu_{X}\right)\left(E[Y]-\mu_{Y}\right)=0
\end{aligned}
$$

and $\quad \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Some Rules for Variance - Rule 1- $\rho_{X Y}$

Definition: Correlation coefficient
For any two random variables X and Y then define the correlation coefficient $\rho_{X Y}$ to be:

$$
\rho_{x y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Thus Cov $(X, Y)=\rho_{X Y} \sigma_{X} \sigma_{Y}$ and $\quad \operatorname{Var}(X+Y)=\sigma_{X}^{2}+\sigma_{Y}^{2}+2 \rho_{X Y} \sigma_{X} \sigma_{Y}$

$$
=\sigma_{X}^{2}+\sigma_{Y}^{2} \text { if } X \text { and } Y \text { are independent. }
$$

Some Rules for Variance - Rule 1 - $\rho_{X Y}$

Recall $\rho_{x y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\mathrm{Var}(X)} \sqrt{\operatorname{Var(Y)}}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$
Property 1. If X and Y are independent, then $\rho_{X Y}=0 . \quad(\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$.

The converse is not necessarily true. That is, $\rho_{X Y}=0$ does not imply that X and Y are independent.
Example:

$y \backslash x$	6	8	10	$\mathrm{f}_{\mathrm{y}}(\mathrm{y})$
1	.2	0	.2	.4
2	0	.2	0	.2
3	.2	0	.2	.4
$\mathrm{f}_{\mathrm{x}}(\mathrm{x})$.4	.2	.4	1

$$
\begin{aligned}
& \mathrm{E}(X)=8, \mathrm{E}(Y)=2, \mathrm{E}(X Y)=16 \\
& \operatorname{Cov}(X, Y)=16-8 * 2=0 \\
& \mathrm{P}(\mathrm{X}=6, \mathrm{Y}=2)=0 \neq \mathrm{P}(\mathrm{X}=6)^{*} \mathrm{P}(\mathrm{Y}=2)=.4^{*} \\
& * .2=.08 \Rightarrow X \& Y \text { are not independent. }
\end{aligned}
$$

Some Rules for Variance - Rule 1 - $\rho_{X Y}$

Property 2. $\quad-1 \leq \rho_{X Y} \leq 1$
and $\left|\rho_{X Y}\right|=1$ if there exists a and b such that

$$
P[Y=b X+a]=1
$$

where $\rho_{X Y}=+1$ if $b>0$ and $\rho_{X Y}=-1$ if $b<0$
Proof: Let $U=X-\mu_{X}$ and $V=Y-\mu_{Y}$.
Let $\quad g(b)=E\left[(V-b U)^{2}\right] \geq 0 \quad$ for all b.
We will pick b to minimize $\mathrm{g}(\mathrm{b})$.

$$
\begin{aligned}
g(b) & =E\left[(V-b U)^{2}\right]=E\left[V^{2}-2 b V U+b^{2} U^{2}\right] \\
& =E\left[V^{2}\right]-2 b E[V U]+b^{2} E\left[U^{2}\right]
\end{aligned}
$$

Some Rules for Variance - Rule 1 - $\rho_{X Y}$

Taking first derivatives of $g(b)$ w.r.t b

$$
\begin{aligned}
& g(b)=E\left[(V-b U)^{2}\right]=E\left[V^{2}\right]-2 b E[V U]+b^{2} E\left[U^{2}\right] \\
& g^{\prime}(b)=-2 E[V U]+2 b E\left[U^{2}\right]=0 \Rightarrow b=b_{\min }=\frac{E[V U]}{E\left[U^{2}\right]}
\end{aligned}
$$

Since $g(b) \geq 0$, then $g\left(b_{\text {min }}\right) \geq 0$

$$
\begin{aligned}
g\left(b_{\mathrm{min}}\right) & =E\left[V^{2}\right]-2 b_{\mathrm{min}} E[V U]+b_{\mathrm{min}}^{2} E\left[U^{2}\right] \\
& =E\left[V^{2}\right]-2 \frac{E[V U]}{E\left[U^{2}\right]} E[V U]+\left(\frac{E[V U]}{E\left[U^{2}\right]}\right)^{2} \mathrm{E}\left[U^{2}\right] \\
& =E\left[V^{2}\right]-\frac{(E[V U])^{2}}{E\left[U^{2}\right]} \geq 0
\end{aligned}
$$

Some Rules for Variance - Rule 1 - $\rho_{X Y}$

$$
=E\left[V^{2}\right]-\frac{(E[V U])^{2}}{E\left[U^{2}\right]} \geq 0
$$

Thus, $\frac{(E[V U])^{2}}{E\left[U^{2}\right] E\left[V^{2}\right]} \leq 1$
or $\frac{\left(E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]\right)^{2}}{E\left[\left(X-\mu_{X}\right)^{2}\right] E\left[\left(Y-\mu_{Y}\right)^{2}\right]}=\rho_{X Y}^{2} \leq 1$

$$
\Rightarrow \quad-1 \leq \rho_{X Y} \leq 1
$$

$$
\Rightarrow \quad \rho_{X Y}=1 \quad \text { if } \sigma_{X Y}^{2}=\sigma_{X}^{2} \sigma_{Y}^{2}
$$

Some Rules for Variance - Rule 1 - $\rho_{X Y}$

Note: $g\left(b_{\text {min }}\right)=E\left[V^{2}\right]-2 b_{\text {min }} E[V U]+b_{\text {min }}^{2} E\left[U^{2}\right]$

$$
=E\left[\left(V-b_{\min } U\right)^{2}\right]=0
$$

If and only if $\rho_{X Y}^{2}=1$
This will be true if

$$
\begin{gathered}
P\left[\left(Y-\mu_{Y}\right)-b_{\min }\left(X-\mu_{X}\right)=0\right]=1 \\
P\left[Y=b_{\min } X+a\right]=1 \text { where } a=\mu_{Y}-b_{\min } \mu_{X} \\
\text { i.e., } \quad P\left[V-b_{\min } U=0\right]=1
\end{gathered}
$$

Some Rules for Variance - Rule 1- $\rho_{X Y}$

- Summary:

$$
-1 \leq \rho_{X Y} \leq 1
$$

and $\left|\rho_{X Y}\right|=1$ if there exists a and b such that

$$
P[Y=b X+a]=1
$$

where $\quad b=b_{\text {min }}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{X}\right)\right]}{E\left[\left(X-\mu_{X}\right)^{2}\right]}$

$$
=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}=\frac{\rho_{X Y} \sigma_{X} \sigma_{Y}}{\sigma_{X}^{2}}=\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}
$$

and $\quad a=\mu_{Y}-b_{\min } \mu_{X}=\mu_{Y}-\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}$

Some Rules for Variance - Rule 2

2. $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$

Proof

$$
\operatorname{Var}(a X+b Y)=E\left[\left((a X+b Y)-\mu_{a X+b Y}\right)^{2}\right]
$$

with $\mu_{a X+b Y}=E[a X+b Y]=a \mu_{X}+b \mu_{Y}$
Thus,

$$
\begin{aligned}
& \operatorname{Var}(a X+b Y)=E\left[\left((a X+b Y)-\left(a \mu_{X}+b \mu_{Y}\right)\right)^{2}\right] \\
& \quad=E\left[a^{2}\left(X-\mu_{X}\right)^{2}+2 a b\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)+b^{2}\left(Y-\mu_{Y}\right)^{2}\right] \\
& \quad=a^{2} \operatorname{Var}(X)+2 a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y)
\end{aligned}
$$

Some Rules for Variance - Rule 3

3. $\operatorname{Var}\left(a_{1} X_{1}+\ldots+a_{n} X_{n}\right)=$

$$
\left.\begin{array}{l}
\quad a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)+ \\
\quad+2 a_{1} a_{2} \operatorname{Cov}\left(X_{1}, X_{2}\right)+\ldots+2 a_{1} a_{n} \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\quad+2 a_{2} a_{3} \operatorname{Cov}\left(X_{2}, X_{3}\right)+\ldots+2 a_{2} a_{n} \operatorname{Cov}\left(X_{2}, X_{n}\right) \\
+ \\
=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(a_{n-1} a_{n} \operatorname{Cov}\left(X_{n-1}, X_{n}\right)\right.
\end{array}\right)
$$

The mean and variance of a Binomial RV

We have already computed this by other methods:

1. Using the probability function $p(x)$.
2. Using the moment generating function $m_{X}(t)$.

Now, we will apply the previous rules for mean and variances.

Suppose that we have observed n independent repetitions of a Bernoulli trial.

Let X_{1}, \ldots, X_{n} be n mutually independent random variables each having Bernoulli distribution with parameter p and defined by

$$
X_{i}= \begin{cases}1 & \text { if repetition } i \text { is } \mathbf{S}(\text { prob }=p) \\ 0 & \text { if repetition } i \text { is } \mathbf{F}(\text { prob }=q)\end{cases}
$$

The mean and variance of a Binomial RV

$$
\begin{aligned}
\mu & =E\left[X_{i}\right]=1 \cdot p+0 \cdot q=p \\
\sigma^{2} & =\operatorname{Var}\left[X_{i}\right]=(1-p)^{2} p+(0-p)^{2} q=(1-p)^{2} p+(0-p)^{2}(1-p)= \\
& =(1-p)\left(p-p^{2}+p^{2}\right)=q p
\end{aligned}
$$

- Now $X=X_{1}+\ldots+X_{n}$ has a Binomial distribution with parameters n and p. Then, X is the total number of successes in the n repetitions.

$$
\begin{aligned}
& \mu_{X}=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=p+\ldots+p=n p \\
& \sigma_{X}^{2}=\operatorname{var}\left[X_{1}\right]+\ldots+\operatorname{var}\left[X_{n}\right]=p q+\ldots+p q=n p q
\end{aligned}
$$

Conditional Expectation

Definition: Conditional Joint Probability Function

Let $X_{1}, X_{2}, \ldots, X_{q}, X_{q+1} \ldots, X_{k}$ denote k continuous random variables with joint probability density function

$$
f\left(x_{1}, x_{2}, \ldots, x_{q}, x_{q+1} \ldots, x_{k}\right)
$$

then the conditional joint probability function of $X_{1}, X_{2}, \ldots, X_{q}$ given $X_{q+1}=x_{q+1}, \ldots, X_{k}=x_{k}$ is

$$
f_{1 \ldots q \mid q+1 \ldots k}\left(x_{1}, \ldots, x_{q} \mid x_{q+1}, \ldots, x_{k}\right)=\frac{f\left(x_{1}, \ldots, x_{k}\right)}{f_{q+1 \ldots k}\left(x_{q+1}, \ldots, x_{k}\right)}
$$

Definition: Conditional Joint Probability Function

Let $U=b\left(X_{1}, X_{2}, \ldots, X_{q}, X_{q+1} \ldots, X_{k}\right)$ then the Conditional Expectation of U given $X_{q+1}=x_{q+1}, \ldots, X_{k}=x_{k}$ is

$$
\begin{aligned}
& E\left[U \mid x_{q+1}, \ldots, x_{k}\right]= \\
& \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h\left(x_{1}, \ldots, x_{k}\right) f_{1 \ldots q \mid q+1 \ldots k}\left(x_{1}, \ldots, x_{q} \mid x_{q+1}, \ldots, x_{k}\right) d x_{1} \ldots d x_{q}
\end{aligned}
$$

Note: This will be a function of x_{q+1}, \ldots, x_{k}.

- Let Y and X have a joint pdf $f_{Y X}$. Then,

$$
\mathrm{E}[y \mid x]=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y \text { is called regression of } y \text { on } x
$$

- $\mathrm{E}[y \mid x]$ is a function of x. Very useful result.

Definition: Conditional Joint Probability Function

- Any random variable Y can be expressed as the conditional mean plus an error term, ε, defined as $\varepsilon=(y-\mathrm{E}[y \mid x])$:

$$
\begin{aligned}
y & =\mathrm{E}[y \mid x]+(y-\mathrm{E}[y \mid x]) \\
& =\mathrm{E}[y \mid x]+\varepsilon .
\end{aligned}
$$

Depending on $\mathrm{E}[y \mid x]$, we may have a linear model. The conditional mean is what researchers model. It is a function of x.

Example: In the CAPM, equilibrium expected excess returns (y) are only determined by expected excess market returns (x) :

$$
\mathrm{E}\left[r_{i, t}-r_{f}\right]=\beta_{i} \mathrm{E}\left[\left(r_{m, t}-r_{f}\right)\right] .
$$

Then,

$$
r_{i, t}-r_{f}=\alpha_{i}+\beta_{i}\left(r_{m, t}-r_{f}\right)+\varepsilon_{i, t}, \quad i=1, \ldots, N \& t=1, \ldots, T
$$

Conditional Expectation of a Function - Example

Let X, Y, Z denote 3 jointly distributed RVs with joint density function then

$$
f(x, y, z)=\left\{\begin{array}{cc}
\frac{12}{7}\left(x^{2}+y z\right) & 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine the conditional expectation of $U=X^{2}+Y+Z$ given $X=x, Y=y$.

Integration over z , gives us the marginal distribution of X, Y :

$$
f_{12}(x, y)=\frac{12}{7}\left(x^{2}+\frac{1}{2} y\right) \text { for } 0 \leq x \leq 1,0 \leq y \leq 1
$$

Conditional Expectation of a Function - Example

Then, the conditional distribution of Z given $X=x, Y=y$ is:

$$
\begin{aligned}
\frac{f(x, y, z)}{f_{12}(x, y)} & =\frac{\frac{12}{7}\left(x^{2}+y z\right)}{\frac{12}{7}\left(x^{2}+\frac{1}{2} y\right)} \\
& =\frac{x^{2}+y z}{x^{2}+\frac{1}{2} y} \text { for } 0 \leq z \leq 1
\end{aligned}
$$

Conditional Expectation of a Function - Example

The conditional expectation of $U=X^{2}+Y+Z$ given $X=x, Y=y$.
$E[U \mid x, y]=\int_{0}^{1}\left(x^{2}+y+z\right) \frac{x^{2}+y z}{x^{2}+\frac{1}{2} y} d z$
$=\frac{1}{x^{2}+\frac{1}{2} y} \int_{0}^{1}\left(x^{2}+y+z\right)\left(x^{2}+y z\right) d z$
$=\frac{1}{x^{2}+\frac{1}{2} y} \int_{0}^{1}\left(y z^{2}+\left[y\left(x^{2}+y\right)+x^{2}\right] z+x^{2}\left(x^{2}+y\right)\right) d z$
$=\frac{1}{x^{2}+\frac{1}{2} y}\left[y \frac{z^{3}}{3}+\left[y\left(x^{2}+y\right)+x^{2}\right] \frac{z^{2}}{2}+x^{2}\left(x^{2}+y\right) z\right]_{z=0}^{z=1}$
$=\frac{1}{x^{2}+\frac{1}{2} y}\left(y \frac{1}{3}+\left[y\left(x^{2}+y\right)+x^{2}\right] \frac{1}{2}+x^{2}\left(x^{2}+y\right)\right)$

Conditional Expectation of a Function - Example

Thus the conditional expectation of $U=X^{2}+Y+Z$ given $X=x$, $Y=y$.

$$
\begin{aligned}
E[U \mid x, y] & =\frac{1}{x^{2}+\frac{1}{2} y}\left(y \frac{1}{3}+\left[y\left(x^{2}+y\right)+x^{2}\right] \frac{1}{2}+x^{2}\left(x^{2}+y\right)\right) \\
& =\frac{1}{x^{2}+\frac{1}{2} y}\left(\frac{y}{3}+\frac{x^{2}}{2}+\left(x^{2}+\frac{1}{2} y\right)\left(x^{2}+y\right)\right) \\
& =\frac{\frac{1}{2} x^{2}+\frac{1}{3} y}{x^{2}+\frac{1}{2} y}+x^{2}+y
\end{aligned}
$$

A Useful Tool: Iterated Expectations

Theorem

Let $\left(x_{1}, x_{2}, \ldots, x_{q}, y_{1}, y_{2}, \ldots, y_{m}\right)=(\mathbf{x}, \mathbf{y})$ denote $q+m$ RVs.
Let $\mathrm{U}\left(x_{1}, x_{2}, \ldots, x_{q}, y_{1}, y_{2}, \ldots, y_{m}\right)=\mathrm{g}(\mathbf{x}, \mathbf{y})$. Then,

$$
\begin{aligned}
& E[U]=E_{\mathbf{y}}[E[U \mid \mathbf{y}]] \\
& \operatorname{Var}[U]=E_{\mathbf{y}}[\operatorname{Var}[U \mid \mathbf{y}]]+\operatorname{Var}_{\mathbf{y}}[E[U \mid \mathbf{y}]]
\end{aligned}
$$

The first result is commonly referred as the Law of iterated expectations. It relates the conditional mean to the unconditional mean.

The second result is referred as the Law of total variance or variance decomposition formula. It decomposes the variance into a conditional expectation of the conditional variance and a conditional variance of the conditional expectation (variance of regression).

A Useful Tool: Iterated Expectations

Proof: (in the simple case of 2 variables X and Y)
First, we prove the Law of iterated expectations.

$$
\begin{aligned}
& \text { Thus } U=g(X, Y) \\
& \begin{aligned}
& E[U]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y \\
& E[U \mid Y]= E[g(X, Y) \mid Y]=\int_{-\infty}^{\infty} g(x, y) f_{X \mid Y}(x \mid y) d x \\
&=\int_{-\infty}^{\infty} g(x, y) \frac{f(x, y)}{f_{Y}(y)} d x
\end{aligned} \\
& \text { hence } \quad E_{Y}[E[U \mid Y]]=\int_{-\infty}^{\infty} E[U \mid y] f_{Y}(y) d y
\end{aligned}
$$

A Useful Tool: Iterated Expectations

$$
\begin{aligned}
E_{Y}[E[U \mid Y]] & =\int_{-\infty}^{\infty} E[U \mid y] f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} g(x, y) \frac{f(x, y)}{f_{Y}(y)} d x\right] f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} g(x, y) f(x, y) d x\right] d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y=E[U]
\end{aligned}
$$

A Useful Tool: Iterated Expectations

Now, for the Law of total variance:

$$
\begin{aligned}
& \operatorname{Var}[U]=E\left[U^{2}\right]-(E[U])^{2} \\
& =E_{Y}\left[E\left[U^{2} \mid Y\right]\right]-\left(E_{Y}[E[U \mid Y]]\right)^{2} \\
& =E_{Y}\left[\operatorname{Var}[U \mid Y]+(E[U \mid Y])^{2}\right]-\left(E_{Y}[E[U \mid Y]]\right)^{2} \\
& =E_{Y}[\operatorname{Var}[U \mid Y]]+E_{Y}\left[(E[U \mid Y])^{2}\right]-\left(E_{Y}[E[U \mid Y]]\right)^{2} \\
& =E_{Y}[\operatorname{Var}[U \mid Y]]+\operatorname{Var}_{Y}(E[U \mid Y])
\end{aligned}
$$

A Useful Tool: Iterated Expectations - Example

Example:

Suppose that a rectangle is constructed by first choosing its length, X and then choosing its width Y.
Its length X is selected form an exponential distribution with mean μ $=1 / \lambda=5$. Once the length has been chosen its width, Y, is selected from a uniform distribution form 0 to half its length.
Find the mean and variance of the area of the rectangle $A=X Y$.

A Useful Tool: Iterated Expectations - Example

Solution:

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{5} e^{-\frac{1}{5} x} \text { for } x \geq 0 \\
& \begin{aligned}
f_{Y \mid X}(y \mid x) & =\frac{1}{x / 2} \text { if } 0 \leq y \leq x / 2 \\
f(x, y) & =f_{X}(x) f_{Y \mid X}(y \mid x) \\
& =\frac{1}{5} e^{-\frac{1}{5} x} \frac{1}{x / 2}=\frac{2}{5 x} e^{-\frac{1}{5} x} \quad \text { if } 0 \leq y \leq x / 2, x \geq 0
\end{aligned}
\end{aligned}
$$

We could compute the mean and variance of $A=X Y$ from the joint density $f(x, y)$

A Useful Tool: Iterated Expectations - Example

$$
\begin{aligned}
E[A] & =E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{0}^{\infty} \int_{0}^{x / 2} x y \frac{2}{5 x} e^{-\frac{1}{5} x} d y d x=\frac{2}{5} \int_{0}^{\infty} \int_{0}^{x / 2} y e^{-\frac{1}{5} x} d y d x \\
E\left[A^{2}\right] & =E\left[X^{2} Y^{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{2} y^{2} f(x, y) d x d y \\
& =\int_{0}^{\infty} \int_{0}^{x / 2} x^{2} y^{2} \frac{2}{5 x} e^{-\frac{1}{5} x} d y d x=\frac{2}{5} \int_{0}^{\infty} \int_{0}^{x / 2} x y^{2} e^{-\frac{1}{5} x} d y d x
\end{aligned}
$$

and $\operatorname{Var}(A)=E\left[A^{2}\right]-(E[A])^{2}$

A Useful Tool: Iterated Expectations - Example

$$
\begin{aligned}
E[A] & =\frac{2}{5} \int_{0}^{\infty} \int_{0}^{x / 2} y e^{-\frac{1}{5} x} d y d x=\frac{2}{5} \int_{0}^{\infty} e^{-\frac{1}{5} x}\left[\frac{y^{2}}{2}\right]_{y=0}^{y=x / 2} d x \\
& =\frac{2}{5} \frac{1}{8} \int_{0}^{\infty} x^{2} e^{-\frac{1}{5} x} d x=\frac{1}{20} \frac{\Gamma(3)}{\left(\frac{1}{5}\right)^{3}} \int_{0}^{\infty} \frac{\left(\frac{1}{5}\right)^{3}}{\Gamma(3)} x^{2} e^{-\frac{1}{5} x} d x \\
& =\frac{1}{20} \frac{\Gamma(3)}{\left(\frac{1}{5}\right)^{3}}=\frac{5^{3}}{20} 2=\frac{125}{10}=\frac{25}{2}=12.5
\end{aligned}
$$

A Useful Tool: Iterated Expectations - Example

$$
\begin{aligned}
E\left[A^{2}\right] & =\frac{2}{5} \int_{0}^{\infty} \int_{0}^{x / 2} x y^{2} e^{-\frac{1}{5} x} d y d x=\frac{2}{5} \int_{0}^{\infty} x e^{-\frac{1}{5} x}\left[\frac{y^{3}}{3}\right]_{y=0}^{y=x / 2} d x \\
& =\frac{2}{5} \frac{1}{3} \frac{1}{8} \int_{0}^{\infty} x^{4} e^{-\frac{1}{5} x} d x=\frac{1}{60} \frac{\Gamma(5)}{\left(\frac{1}{5}\right)^{5}} \int_{0}^{\infty} \frac{\left(\frac{1}{5}\right)^{5}}{\Gamma(5)} x^{4} e^{-\frac{1}{5} x} d x \\
& =\frac{1}{60} \frac{\Gamma(5)}{\left(\frac{1}{5}\right)^{5}}=\frac{5^{5}}{60} 4!=\frac{5^{4}}{12} 24=5^{4} \times 2=1250
\end{aligned}
$$

Thus $\operatorname{Var}(A)=E\left[A^{2}\right]-(E[A])^{2}$

$$
=1250-(12.5)^{2}=1093.75
$$

A Useful Tool: Iterated Expectations - Example

Now, let's use the previous theorem. That is,

$$
E[A]=E[X Y]=E_{X}[E[X Y \mid X]]
$$

and $\operatorname{Var}[A]=\operatorname{Var}[X Y]$

$$
=E_{X}[\operatorname{Var}[X Y \mid X]]+\operatorname{Var}_{X}[E[X Y \mid X]]
$$

Now $\quad E[X Y \mid X]=X E[Y \mid X]=X \frac{X}{4}=\frac{1}{4} X^{2}$
and $\quad \operatorname{Var}(X Y \mid X)=X^{2} \operatorname{Var}[Y \mid X]=X^{2} \frac{(X / 2-0)^{2}}{12}=\frac{1}{48} X^{4}$
This is because given X, Y has a uniform distribution from 0 to $X / 2$

A Useful Tool: Iterated Expectations - Example

Thus

$$
\begin{aligned}
E[A] & =E[X Y]=E_{X}[E[X Y \mid X]] \\
& =E_{X}\left[\frac{1}{4} X^{2}\right]=\frac{1}{4} E_{X}\left[X^{2}\right]=\frac{1}{4} \mu_{2}
\end{aligned}
$$

where $\mu_{2}=2^{\text {nd }}$ moment for the exponential dist'n with $\lambda=\frac{1}{5}$
Note $\mu_{k}=\frac{k!}{\lambda^{k}}$ for the exponential distn
Thus $\quad E[A]=\frac{1}{4} \mu_{2}=\frac{1}{4} \frac{2}{\left(\frac{1}{5}\right)^{2}}=\frac{25}{2}=12.5$
Note: Same answer as previously calculated. No integration needed.

A Useful Tool: Iterated Expectations - Example

Now $\quad E[X Y \mid X]=\frac{1}{4} X^{2}$ and $\operatorname{Var}(X Y \mid X)=\frac{1}{48} X^{4}$
Also $\operatorname{Var}[A]=\operatorname{Var}[X Y]$

$$
=E_{X}[\operatorname{Var}[X Y \mid X]]+\operatorname{Var}_{X}[E[X Y \mid X]]
$$

$E_{X}[\operatorname{Var}[X Y \mid X]]=E_{X}\left[\frac{1}{48} X^{4}\right]=\frac{1}{48} \mu_{4}=\frac{1}{48} \frac{4!}{\left(\frac{1}{5}\right)^{4}}=\frac{5^{4}}{2}$
$\operatorname{Var}_{X}[E[X Y \mid X]]=\operatorname{Var}_{X}\left[\frac{1}{4} X^{2}\right]=\left(\frac{1}{4}\right)^{2} \operatorname{Var}_{X}\left[X^{2}\right]$

$$
=\left(\frac{1}{4}\right)^{2}\left[E_{X}\left[X^{4}\right]-\left(E_{X}\left[X^{2}\right]\right)^{2}\right]=\left(\frac{1}{4}\right)^{2}\left[\mu_{4}-\left(\mu_{2}\right)^{2}\right]
$$

A Useful Tool: Iterated Expectations - Example

$$
\begin{aligned}
& \operatorname{Var}_{X}[E[X Y \mid X]]=\operatorname{Var}_{X}\left[\frac{1}{4} X^{2}\right]=\left(\frac{1}{4}\right)^{2} \operatorname{Var}_{X}\left[X^{2}\right] \\
& \quad=\left(\frac{1}{4}\right)^{2}\left[\frac{4!}{\left(\frac{1}{5}\right)^{4}}-\left(\frac{2!}{\left(\frac{1}{5}\right)^{2}}\right)^{2}\right]=\frac{5^{4}}{4^{2}}\left[4!-(2!)^{2}\right]=\frac{5^{4}}{4^{2}} 20=\frac{5^{5}}{4}
\end{aligned}
$$

Thus $\operatorname{Var}[A]=\operatorname{Var}[X Y]$

$$
\begin{aligned}
& =E_{X}[\operatorname{Var}[X Y \mid X]]+\operatorname{Var}_{X}[E[X Y \mid X]] \\
& =\frac{5^{4}}{2}+\frac{5^{5}}{4}=5^{4}\left(\frac{1}{2}+\frac{5}{4}\right)=5^{4}\left(\frac{14}{8}\right)=1093.75
\end{aligned}
$$

- The same answer as previously calculated!! And no integration needed!

The Multivariate MGF

Definition: Multivariate MGF
Let $X_{1}, X_{2}, \ldots, X_{q}$ be q random variables with a joint density function given by $f\left(x_{1}, x_{2}, \ldots, x_{q}\right)$. The multivariate MGF is

$$
m_{\mathbf{X}}(\mathbf{t})=E_{\mathbf{X}}\left[\exp \left(\mathbf{t}^{\prime} \mathbf{X}\right)\right]
$$

where $\mathbf{t}^{\prime}=\left(t_{1}, t_{2}, \ldots, t_{q}\right)$ and $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{q}\right)^{\prime}$.
If $X_{1}, X_{2}, \ldots, X_{n}$ are n independent random variables, then

$$
m_{\mathbf{X}}(\mathbf{t})=\prod_{i=1}^{n} m_{X_{i}}\left(t_{i}\right)
$$

The MGF of a Multivariate Normal

Definition: MGF for the Multivariate Normal

Let $X_{1}, X_{2}, \ldots, X_{q}$ be n normal random variables. The multivariate normal MGF is

$$
m_{\mathbf{X}}(\mathbf{t})=E_{\mathbf{X}}\left[\exp \left(\mathbf{t}^{\prime} \mathbf{X}\right)\right]=\exp \left(\mathbf{t}^{\prime} \boldsymbol{\mu}+\frac{1}{2} \mathbf{t}^{\prime} \sum \mathbf{t}\right)
$$

where $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{q}\right)^{\prime}, \mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{q}\right)^{\prime}$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{q}\right)^{\prime}$.

Review: The Transformation Method

Theorem

Let X denote a random variable with probability density function $f(x)$ and $U=b(X)$.

Assume that $h(x)$ is either strictly increasing (or decreasing) then the probability density of U is:

$$
g(u)=f\left(h^{-1}(u)\right)\left|\frac{d h^{-1}(u)}{d u}\right|=f(x)\left|\frac{d x}{d u}\right|
$$

The Transformation Method (many variables)

Theorem

Let $x_{1}, x_{2}, \ldots, x_{n}$ denote random variables with joint probability density function

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Let $\quad u_{1}=h_{1}\left(\mathrm{x}_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
u_{2}=h_{2}\left(\mathrm{x}_{1}, x_{2}, \ldots, x_{n}\right) .
$$

$$
u_{\mathrm{n}}=b_{n}\left(\mathrm{x}_{1}, x_{2}, \ldots, x_{n}\right) .
$$

define an invertible transformation from the x 's to the u 's

The Transformation Method (many variables)

Then the joint probability density function of $u_{1}, u_{2}, \ldots, u_{n}$ is given by:
$g\left(u_{1}, \cdots, u_{n}\right)=f\left(x_{1}, \cdots, x_{n}\right)\left|\frac{d\left(x_{1}, \cdots, x_{n}\right)}{d\left(u_{1}, \cdots, u_{n}\right)}\right|$
$=f\left(x_{1}, \cdots, x_{n}\right)|J|$
$J=\frac{d\left(x_{1}, \cdots, x_{n}\right)}{d\left(u_{1}, \cdots, u_{n}\right)}=\operatorname{det}\left[\begin{array}{ccc}\frac{d x_{1}}{d u_{1}} & \cdots & \frac{d x_{1}}{d u_{n}} \\ \vdots & & \vdots \\ \frac{d x_{n}}{d u_{1}} & \cdots & \frac{d x_{n}}{d u_{n}}\end{array}\right]$
Jacobian of the transformation

Example: Distribution of $x+y$ and $x-y$

Suppose that x_{1}, x_{2} are independent with density functions $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$

Find the distribution of $\quad u_{1}=x_{1}+x_{2}$ and $u_{2}=x_{1}-x_{2}$
Solution: Solving for x_{1} and x_{2}, we get the inverse transformation:

$$
x_{1}=\frac{u_{1}+u_{2}}{2} \quad x_{2}=\frac{u_{1}-u_{2}}{2}
$$

The Jacobian of the transformation

$$
J=\frac{d\left(x_{1}, x_{2}\right)}{d\left(u_{1}, u_{2}\right)}=\operatorname{det}\left[\begin{array}{ll}
\frac{d x_{1}}{d u_{1}} & \frac{d x_{1}}{d u_{2}} \\
\frac{d x_{2}}{d u_{1}} & \frac{d x_{2}}{d u_{2}}
\end{array}\right]
$$

Example: Distribution of $x+y$ and $x-y$

$$
J=\frac{d\left(x_{1}, x_{2}\right)}{d\left(u_{1}, u_{2}\right)}=\operatorname{det}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]=\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=-\frac{1}{2}
$$

The joint density of x_{1}, x_{2} is

$$
f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)
$$

Hence the joint density of u_{1} and u_{2} is:

$$
\begin{aligned}
g\left(u_{1}, u_{2}\right) & =f\left(x_{1}, x_{2}\right)|J| \\
& =f_{1}\left(\frac{u_{1}+u_{2}}{2}\right) f_{2}\left(\frac{u_{1}-u_{2}}{2}\right) \frac{1}{2}
\end{aligned}
$$

Example: Distribution of $x+y$ and $x-y$

From

$$
g\left(u_{1}, u_{2}\right)=f_{1}\left(\frac{u_{1}+u_{2}}{2}\right) f_{2}\left(\frac{u_{1}-u_{2}}{2}\right) \frac{1}{2}
$$

We can determine the distribution of $u_{1}=x_{1}+x_{2}$

$$
\begin{aligned}
& \begin{aligned}
g_{1}\left(u_{1}\right) & =\int_{-\infty}^{\infty} g\left(u_{1}, u_{2}\right) d u_{2} \\
& =\int_{-\infty}^{\infty} f_{1}\left(\frac{u_{1}+u_{2}}{2}\right) f_{2}\left(\frac{u_{1}-u_{2}}{2}\right) \frac{1}{2} d u_{2}
\end{aligned} \\
& \text { put } v=\frac{u_{1}+u_{2}}{2} \text { then } \frac{u_{1}-u_{2}}{2}=u_{1}-v, \frac{d v}{d u_{2}}=\frac{1}{2}
\end{aligned}
$$

Example: Distribution of $x+y$ and $x-y$

Hence

$$
\begin{aligned}
g_{1}\left(u_{1}\right) & =\int_{-\infty}^{\infty} f_{1}\left(\frac{u_{1}+u_{2}}{2}\right) f_{2}\left(\frac{u_{1}-u_{2}}{2}\right) \frac{1}{2} d u_{2} \\
& =\int_{-\infty}^{\infty} f_{1}(v) f_{2}\left(u_{1}-v\right) d v
\end{aligned}
$$

This is called the convolution of the two densities f_{1} and f_{2}.

Example (1): Convolution formula -The Gamma distribution

Let X and Y be two independent random variables such that X and Y have an exponential distribution with parameter λ.

We will use the convolution formula to find the distribution of $U=X+Y$. (We already know the distribution of U: Gamma.)

$$
\begin{aligned}
g_{U}(u) & =\int_{-\infty}^{\infty} f_{U}(u-y) f_{Y}(y) d y=\int_{0}^{u} \lambda e^{-\lambda(u-y)} \lambda e^{-\lambda y} d y \\
& =\int_{0}^{u} \lambda^{2} e^{-\lambda u} d y=\lambda^{2} u e^{-\lambda u}
\end{aligned}
$$

This is the gamma distribution when $\alpha=2$.

Example (2): The ex-Gaussian distribution

Let X and Y be two independent random variables such that:

1. X has an exponential distribution with parameter λ.
2. Y has a normal (Gaussian) distribution with mean μ and standard deviation σ.

We will use the convolution formula to find the distribution of $U=X+Y$.
(This distribution is used in psychology as a model for response time to perform a task.)

Example (2): The ex-Gaussian distribution

Now $\quad f_{1}(x)=\left\{\begin{array}{cc}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{array}\right.$
$f_{2}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
The density of $U=X+Y$ is:

$$
\begin{aligned}
g(u) & =\int_{-\infty}^{\infty} f_{1}(v) f_{2}(u-v) d v \\
& =\int_{0}^{\infty} \lambda e^{-\lambda v} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(u-v-\mu)^{2}}{2 \sigma^{2}}} d v
\end{aligned}
$$

Example (2): The ex-Gaussian distribution

or $\quad g(u)=\frac{\lambda}{\sqrt{2 \pi} \sigma} \int_{0}^{\infty} e^{-\frac{(u-v-\mu)^{2}}{2 \sigma^{2}}-\lambda v} d v$

$$
\begin{aligned}
& =\frac{\lambda}{\sqrt{2 \pi} \sigma} \int_{0}^{\infty} e^{-\frac{(u-v-\mu)^{2}+2 \sigma^{2} \lambda v}{2 \sigma^{2}}} d v \\
& =\frac{\lambda}{\sqrt{2 \pi} \sigma} \int_{0}^{\infty} e^{-\frac{v^{2}-2(u-\mu) v+(u-\mu)^{2}+2 \sigma^{2} \lambda v}{2 \sigma^{2}}} d v
\end{aligned}
$$

$$
=\frac{\lambda}{\sqrt{2 \pi} \sigma} e^{-\frac{(u-\mu)^{2}}{2 \sigma^{2}}} \int_{0}^{\infty} e^{-\frac{v^{2}-2\left[(u-\mu)-\sigma^{2} \lambda\right]}{2 \sigma^{2}}} d v
$$

Example (2): The ex-Gaussian distribution

$$
\begin{aligned}
\text { or } & =\frac{\lambda}{\sqrt{2 \pi} \sigma} e^{-\frac{(u-\mu)^{2}}{2 \sigma^{2}}} \int_{0}^{\infty} e^{-\frac{v^{2}-2\left[(u-\mu)-\sigma^{2} \lambda\right]}{2 \sigma^{2}}} d v \\
& =\frac{\lambda}{\sqrt{2 \pi} \sigma} e^{-\frac{(u-\mu)^{2}-\left[(u-\mu)-\sigma^{2} \lambda\right]^{2}}{2 \sigma^{2}}} \int_{0}^{\infty} e^{-\frac{v^{2}-2\left[(u-\mu)-\sigma^{2} \lambda\right] v+\left[(u-\mu)-\sigma^{2} \lambda\right]^{2}}{2 \sigma^{2}}} d v \\
& =\lambda e^{-\frac{(u-\mu)^{2}-\left[(u-\mu)-\sigma^{2} \lambda\right]^{2}}{2 \sigma^{2}}} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{v^{2}-2\left[(u-\mu)-\sigma^{2} \lambda\right] v+\left[(u-\mu)-\sigma^{2} \lambda\right]^{2}}{2 \sigma^{2}}} d v \\
& =\lambda e^{-\frac{(u-\mu)^{2}-\left[(u-\mu)-\sigma^{2} \lambda\right]^{2}}{2 \sigma^{2}}} P[V \geq 0]
\end{aligned}
$$

Example (2): The ex-Gaussian distribution

Where V has a Normal distribution with mean

$$
\mu_{V}=u-\left(\mu+\sigma^{2} \lambda\right)
$$

and variance σ^{2}.
That is,

$$
g(u)=\lambda e^{-\lambda\left[(u-\mu)-\frac{\sigma^{2} \lambda}{2}\right]}\left[1-\Phi\left(\frac{\left[\mu+\sigma^{2} \lambda\right]-u}{\sigma^{2}}\right)\right]
$$

Where $\Phi(z)$ is the cdf of the standard Normal distribution

Distribution of Quadratic Forms

We will present different theorems when the RVs are normal variables:

Theorem 7.1. If $\mathbf{y} \sim \mathrm{N}\left(\mu_{y}, \boldsymbol{\Sigma}_{\mathrm{y}}\right)$, then $\mathbf{z}=\mathbf{A y} \sim \mathrm{N}\left(\mathbf{A} \mu_{\mathrm{y}}, \mathbf{A} \boldsymbol{\Sigma}_{\mathrm{y}} \mathbf{A}^{\prime}\right)$, where \mathbf{A} is a matrix of constants and \mathbf{y} a $n \times 1$ vector.

Theorem 7.2. Let \mathbf{y} be a $n \times 1$ vector $\sim \mathrm{N}\left(0, \mathbf{I}_{n}\right)$. Then $\mathbf{y}^{\prime} \mathbf{y} \sim \chi_{n}{ }^{2}$.

Theorem 7.3. Let the $n \times 1$ vector $\boldsymbol{y} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$ and \mathbf{M} be a symmetric idempotent matrix of rank m. Then,

$$
\mathrm{y}^{\prime} \mathrm{My} / \sigma^{2} \sim \chi_{\operatorname{tr}(M)^{2}}
$$

Proof: Since \mathbf{M} is symmetric it can be diagonalized with an orthogonal matrix \mathbf{Q}. That is, $\mathbf{Q}^{\prime} \mathbf{M Q}=\boldsymbol{\Lambda} . \quad\left(Q^{\prime} \mathrm{Q}=\mathrm{I}\right)$
Since \mathbf{M} is idempotent all these roots are either 0 or 1 . Thus,

$$
Q^{\prime} M Q=\Lambda=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]
$$

Note: $\operatorname{dim}(\mathbf{I})=\operatorname{rank}(\mathbf{M})$ (the number of non-zero roots is the rank of the matrix). Also, since $\sum_{\mathrm{i}} \lambda_{\mathrm{i}}=\operatorname{tr}(\mathbf{I}), \quad \Rightarrow \operatorname{dim}(\mathbf{I})=\operatorname{tr}(\mathbf{M})$.
Let $v=\mathbf{Q}^{\prime} \boldsymbol{y}$.

$$
\begin{aligned}
& \mathrm{E}(v)=\mathbf{Q}^{\prime} \mathrm{E}(\boldsymbol{y})=0 \\
& \begin{aligned}
\operatorname{Var}(v)=\mathrm{E}\left[v v^{\prime}\right] & =\mathrm{E}\left[\mathbf{Q}^{\prime} \boldsymbol{y} \boldsymbol{y}^{\prime} \mathbf{Q}\right]=\mathbf{Q}^{\prime} \mathrm{E}\left(\sigma^{2} \mathbf{I}_{\mathrm{n}}\right) \mathbf{Q}=\sigma^{2} \mathbf{Q}^{\prime} \mathbf{I}_{\mathrm{n}} \mathbf{Q}=\sigma^{2} \mathbf{I}_{\mathrm{n}} \\
& \Rightarrow v \sim \mathrm{~N}\left(0, \sigma^{2} \mathbf{I}_{\mathrm{n}}\right)
\end{aligned}
\end{aligned}
$$

Then,

$$
\frac{y^{\prime} M y}{\sigma^{2}}=\frac{v^{\prime} Q^{\prime} M Q v}{\sigma^{2}}=\frac{1}{\sigma^{2}} v^{\prime}\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] v=\frac{1}{\sigma^{2}} \sum_{i=1}^{\operatorname{tr}(M)} v_{i}^{2}=\sum_{i=1}^{\operatorname{tr}(M)}\left(\frac{v_{i}}{\sigma}\right)^{2}
$$

Thus, $\mathbf{y}^{\prime} \mathbf{M y} / \sigma^{2}$ is the sum of $\operatorname{tr}(\mathbf{M}) \mathbf{N}(0,1)$ squared variables. It follows a $\chi_{t r(M)}$.

Theorem 7.4. Let the $n \times 1$ vector $\boldsymbol{y} \sim \mathrm{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y}\right)$. Then, $\left(\boldsymbol{y}-\boldsymbol{\mu}_{\mathrm{y}}\right)^{\prime} \boldsymbol{\Sigma}_{\mathrm{y}}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{\mathrm{y}}\right) \sim \chi_{n}^{2}$.
Proof:
Recall that there exists a non-singular matrix \mathbf{A} such that $\mathbf{A A}^{\prime}=\boldsymbol{\Sigma}_{\mathbf{y}}$.
Let $v=\mathbf{A}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{\mathrm{y}}\right)^{\prime} \quad$ (a linear combination of normal variables)
$\Rightarrow v \sim \mathrm{~N}\left(0, \mathbf{I}_{\mathrm{n}}\right)$
$\Rightarrow v^{\prime} v \sim \chi_{n}^{2} . \quad$ (using Theorem 7.3, where $n=\operatorname{tr}\left(\Sigma_{\mathrm{y}}^{-1}\right)$.)

Theorem 7.5

Let the $n \times 1$ vector $\boldsymbol{y} \sim \mathbf{N}(0, \mathbf{I})$ and \mathbf{M} be an $n \times n$ matrix. Then, the characteristic function of $\boldsymbol{y} \mathbf{M} \boldsymbol{y}$ is $|\mathbf{I}-2 \mathrm{i} t \mathbf{M}|^{-1 / 2}$
Proof:
$\varphi_{y^{\prime} M y}=E_{y}\left[e^{i t y^{\prime} M y}\right]=\frac{1}{(2 \pi)^{n / 2}} \int_{y} e^{i t y^{\prime} M y} e^{-y^{\prime} y / 2} d x=\frac{1}{(2 \pi)^{n / 2}} \int_{y} e^{-y^{\prime}(I-2 i t M) y / 2} d x$.
This is the normal density with $\Sigma^{-1}=(\mathbf{I}-2 \mathrm{i} t \mathbf{M})$, except for the determinant $|\mathbf{I}-2 \mathrm{i} t \mathbf{M}|^{-1 / 2}$, which should be in the denominator.

Theorem 7.6

Let the $n \times 1$ vector $\boldsymbol{y} \sim \mathrm{N}(0, \mathrm{I}), \mathbf{M}$ be an $n \times n$ idempotent matrix of rank m, let \mathbf{L} be an $n \times n$ idempotent matrix of rank s, and suppose $\mathbf{M L}$ $=0$. Then, $\mathbf{y}^{\prime} \mathbf{M y}$ and $\mathbf{y}^{\prime} \mathbf{L y}$ are independently distributed χ^{2} variables.

Proof:

By Theorem 7.3 both quadratic forms χ^{2} distributed variables. We only need to prove independence. From Theorem 7.5, we have

$$
\begin{aligned}
& \varphi_{y^{\prime} M y}=E_{y}\left[e^{i t y^{\prime} M y}\right]=|I-2 i t M|^{-1 / 2} \\
& \varphi_{y^{\prime} L y}=E_{y}\left[e^{i t y^{\prime} L y}\right]=|I-2 i t L|^{-1 / 2}
\end{aligned}
$$

The forms will be independently distributed if $\quad \varphi_{y^{\prime}(\mathrm{M}+\mathrm{L}) \mathrm{y}}=\varphi_{y^{\prime} \mathrm{My}} \varphi_{y^{\prime} \mathrm{L} \mathrm{L}}$ That is,

$$
\varphi_{y^{\prime}(M+L) y}=E_{y}\left[e^{i t y^{\prime}(M+L) y}\right]=|I-2 i t(M+L)|^{-1 / 2}=|I-2 i t M|^{-1 / 2}|I-2 i t L|^{-1 / 2}
$$

Since $|\mathbf{M L}|=|\mathbf{M}||\mathbf{L}|$, the result will be true only when $\mathbf{M L}=0$.

