Chapter 4 Jointly distributed Random variables

Continuous Multivariate distributions
(for private use, not to be posted/shared online)

Continuous Random Variables

Joint Probability Density Function (pdf)

Definition: Joint Probability density function
Two random variable are said to have joint probability density function $f(x, y)$ if

1. $f(x, y) \geq 0$.
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.
3. $P[(X, Y) \in A]=\int_{A} \int_{A} f(x, y) d x d y$

Marginal and Condition Density

Definition: Marginal Density
Let X and Y denote two RVs with joint pdf $f(x, y)$, then the marginal density of X is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

and the marginal density of Y is $f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x$

Definition: Conditional Density

Let X and Y denote two RVs with joint pdf $f(x, y)$ and marginal densities $f_{X}(x), f_{Y}(y)$, then the conditional density of Y given $X=x$ and the conditional density of X given $Y=y$ are given by

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \quad f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

Joint MGF

Definition: MGF of (X, Y)
Let X and Y be two RVs with joint pdf $f(x, y)$, then the MGF of X \& Y :

$$
m_{X Y}\left(t_{1}, t_{2}\right)=E\left[\exp \left(t_{1} X+t_{2} Y\right)\right]=\iint_{R^{2}} \exp \left(t_{1} X+t_{2} Y\right) f(x, y) d x d y
$$

Theorem:

The MGF of a pair of independent RVs is the product of the MGF of the corresponding marginal distributions. That is,

$$
m_{X Y}\left(t_{1}, t_{2}\right)=m_{X}\left(t_{1}\right) m_{Y}\left(t_{2}\right)
$$

Proof:

$$
\begin{aligned}
& m_{X Y}\left(t_{1}, t_{2}\right)=\iint \exp \left(t_{1} X+t_{2} Y\right) f(x, y) d x d y \\
& =\iint \exp \left(t_{1} X\right) \exp \left(t_{2} Y\right) f(x) f(y) d x d y \\
& =\int \exp \left(t_{1} X\right) f(x) d x \int \exp \left(t_{2} Y\right) f(y) d y=m_{X}\left(t_{1}\right) m_{Y}\left(t_{2}\right)
\end{aligned}
$$

Marginal MGF

Definition: MGF of the marginal distribution of X (and Y)
Let $m_{X Y}\left(t_{1}, t_{2}\right)$ be the MGF of (X, Y), then the MGF of the marginal distributions of X and Y are, respectively, $m_{X Y}\left(t_{1}, 0\right)$ and $m_{X Y}\left(0, t_{2}\right)$

Proof:

$$
\begin{aligned}
m_{X}(t) & =\int_{-\infty}^{\infty} \exp (t X) f_{X}(x) d x=\int_{-\infty}^{\infty} \exp (t X)\left[\int_{-\infty}^{\infty} f_{X Y}(x, y) d y\right] d x= \\
& =\iint_{-\infty} \exp (t X) f_{X Y}(x, y) d y d x=m_{X Y}(t, 0)
\end{aligned}
$$

Similar derivation for Y.

The bivariate Normal distribution

Sir Francis Galton (1822-1911, England)

The bivariate normal distribution

Let the joint distribution be given by:

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{(2 \pi) \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \mathrm{e}^{-\frac{1}{2} Q\left(x_{1}, x_{2}\right)}
$$

where
$Q\left(x_{1}, x_{2}\right)=\frac{\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}{1-\rho^{2}}$

This distribution is called the bivariate Normal distribution.
The parameters are $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}$ and ρ.
The properties of this distribution were studied by Francis Galton and discovered its relation to the regression, term Galton coined.

The bivariate normal distribution

Surface Plots of the bivariate Normal distribution

The bivariate normal distribution

Note: We can have a more compact joint using linear algebra:

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{\left(1-\rho^{2}\right)}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right)^{2}\right] \\
& =\frac{1}{2 \pi(|\Sigma|)^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
\end{aligned}
$$

(1) Determine the inverse and determinant of Σ (the covariance matrix)

$$
\begin{aligned}
\Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{21} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right] & \Rightarrow|\Sigma|=\sigma_{1}^{2} \sigma_{2}^{2}-\sigma_{12}^{2}=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}\right)=\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right) \\
& \Rightarrow \Sigma^{-1}=\frac{1}{|\Sigma|}\left[\begin{array}{cc}
\sigma_{2}^{2} & -\sigma_{21} \\
-\sigma_{12} & \sigma_{1}^{2}
\end{array}\right]
\end{aligned}
$$

The bivariate normal distribution

(2) Write a quadratic form for $\mathrm{Q}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}{1-\rho^{2}} \\
Q\left(x_{1}, x_{2}\right) & =(\mathbf{x}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}) \\
& =\left[\left(x_{1}-\mu_{1}\right) \quad\left(x_{2}-\mu_{2}\right)\right] \frac{1}{|\Sigma|}\left[\begin{array}{cc}
\sigma_{2}^{2} & -\sigma_{21} \\
-\sigma_{12} & \sigma_{1}^{2}
\end{array}\right]\left[\begin{array}{c}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2}
\end{array}\right]= \\
& =\frac{1}{|\Sigma|}\left[\left(x_{1}-\mu_{1}\right) \sigma_{2}^{2}-\left(x_{2}-\mu_{2}\right) \sigma_{12} \quad\left(x_{1}-\mu_{1}\right) \sigma_{21}-\left(x_{2}-\mu_{2}\right) \sigma_{1}^{2}\right]\left[\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2}
\end{array}\right] \\
& =\frac{1}{|\Sigma|}\left(\left(x_{1}-\mu_{1}\right)^{2} \sigma_{2}^{2}-2 \sigma_{21}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{1}^{2}\right) \\
& =\frac{\left(\left(x_{1}-\mu_{1}\right)^{2} \sigma_{2}^{2}-2 \sigma_{21}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{1}^{2}\right)}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}
\end{aligned}
$$

Scatter Plots of data from the Bivariate Normal Distribution

The bivariate normal distribution: MGF

Let MGF of a bivariate normal is given by:
$m_{X Y}\left(t_{1}, t_{2}\right)=\exp \left[t_{1} \mu_{X}+t_{2} \mu_{Y}-\frac{1}{2}\left(t_{1}^{2} \sigma_{X}^{2}+t_{2}^{2} \sigma_{Y}^{2}+2 \rho_{X Y} t_{1} t_{2} \sigma_{X} \sigma_{Y}\right)\right]$

Note: When $\rho_{\mathrm{XY}}=0$-i.e., X and Y are independent. The MGF is:

$$
m_{X Y}\left(t_{1}, t_{2}\right)=\exp \left[t_{1} \mu_{X}+t_{2} \mu_{Y}-\frac{1}{2}\left(t_{1}^{2} \sigma_{X}^{2}+t_{2}^{2} \sigma_{Y}^{2}\right)\right]
$$

Marginal distributions for the Bivariate Normal

Recall the definition of marginal distributions for continuous RV:
$f_{1}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}$ and $f_{2}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}$
In the case of the bivariate normal distribution the marginal distribution of x_{i} is Normal with mean μ_{i} and standard deviation σ_{i}.

Proof:

The marginal distributions of x_{2} is

$$
f_{2}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}=\frac{1}{(2 \pi) \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} Q\left(x_{1}, x_{2}\right)} d x_{1}
$$

where

$$
Q\left(x_{1}, x_{2}\right)=\frac{\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}{1-\rho^{2}}
$$

Marginal distributions for the Bivariate Normal

Now:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}{1-\rho^{2}} \\
& =\left(\frac{x_{1}-a}{b}\right)^{2}+c=\frac{x_{1}^{2}}{b^{2}}-2 \frac{a}{b^{2}} x_{1}+\frac{a^{2}}{b^{2}}+c \\
& =\frac{x_{1}^{2}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}-2\left[\frac{\mu_{1}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}+\rho \frac{x_{2}-\mu_{2}}{\sigma_{2} \sigma_{1}\left(1-\rho^{2}\right)}\right] x_{1} \\
& +\frac{\mu_{1}^{2}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}+2 \rho \frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2} \sigma_{1}\left(1-\rho^{2}\right)} \mu_{1}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}\left(1-\rho^{2}\right)}
\end{aligned}
$$

Marginal distributions for the Bivariate Normal

Hence $\quad b^{2}=\sigma_{1}^{2}\left(1-\rho^{2}\right)$ or $b=\sigma_{1} \sqrt{1-\rho^{2}}$
Also $\quad \frac{a}{b^{2}}=\frac{\mu_{1}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}+\rho \frac{x_{2}-\mu_{2}}{\sigma_{2} \sigma_{1}\left(1-\rho^{2}\right)}$

$$
=\frac{1}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}\left[\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu\right)\right]
$$

and

$$
a=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu\right)
$$

Marginal distributions for the Bivariate Normal

Finally

$$
\begin{gathered}
\frac{a^{2}}{b^{2}}+c=\frac{\mu_{1}^{2}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}+2 \rho \frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2} \sigma_{1}\left(1-\rho^{2}\right)} \mu_{1}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}\left(1-\rho^{2}\right)} \\
c=\frac{\mu_{1}^{2}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}+2 \rho \frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2} \sigma_{1}\left(1-\rho^{2}\right)} \mu_{1}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}\left(1-\rho^{2}\right)}-\frac{a^{2}}{b^{2}} \\
=\frac{\mu_{1}^{2}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}+2 \rho \frac{\left(x_{2}-\mu_{2}\right)}{\sigma_{2} \sigma_{1}\left(1-\rho^{2}\right)} \mu_{1}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}\left(1-\rho^{2}\right)} \\
-\frac{\left[\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu\right)\right]^{2}}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}
\end{gathered}
$$

Marginal distributions for the Bivariate Normal

 and$$
\begin{aligned}
c & =\frac{1}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}\left[\mu_{1}^{2}+2 \rho \frac{\sigma_{1}}{\sigma_{2}} \mu_{1}\left(x_{2}-\mu_{2}\right)+\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\left(x_{2}-\mu_{2}\right)^{2}\right. \\
& \left.-\left[\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu_{2}\right)\right]^{2}\right] \\
& =\frac{1}{\sigma_{1}^{2}\left(1-\rho^{2}\right)}\left[\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\left(1-\rho^{2}\right)\left(x_{2}-\mu_{2}\right)^{2}\right] \\
& =\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}
\end{aligned}
$$

Marginal distributions for the Bivariate Normal

Summarizing

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{\left\{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}}{1-\rho^{2}} \\
& =\left(\frac{x_{1}-a}{b}\right)^{2}+c
\end{aligned}
$$

where $\quad b=\sigma_{1} \sqrt{1-\rho^{2}}$

$$
a=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu\right)
$$

and

Marginal distributions for the Bivariate Normal

Thus $\quad f_{2}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}$

$$
\begin{aligned}
& =\frac{1}{(2 \pi) \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} Q\left(x_{1}, x_{2}\right)} d x_{1} \\
& =\frac{1}{(2 \pi) \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2}\left[\left(\frac{x_{1}-a}{b}\right)^{2}+c\right]} d x_{1} \\
& =\frac{\sqrt{2 \pi} b e^{-c / 2}}{(2 \pi) \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} b} \mathrm{e}^{-\frac{1}{2}\left(\frac{x_{1}-a}{b}\right)^{2}} d x_{1} \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{1}{2}\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}
\end{aligned}
$$

Marginal distributions for the Bivariate Normal

- Thus the marginal distribution of x_{2} is Normal with mean μ_{2} and standard deviation σ_{2}.
- Similarly, the marginal distribution of x_{1} is Normal with mean μ_{1} and standard deviation σ_{1}.

Note: This derivation is much easier using MGFs.
Use the MGF of a bivariate normal. To get the MGF of the marginal of X , set $\mathrm{t}_{2}=0$.
$m_{X Y}\left(t_{1}, t_{2}\right)=\exp \left[t_{1} \mu_{X}+t_{2} \mu_{Y}-\frac{1}{2}\left(t_{1}^{2} \sigma_{X}^{2}+t_{2}^{2} \sigma_{Y}^{2}+2 \rho_{X Y} t_{1} t_{2} \sigma_{X} \sigma_{Y}\right)\right]$ $m_{X Y}\left(t_{1}, 0\right)=\exp \left[t_{1} \mu_{X}-\frac{1}{2}\left(t_{1}^{2} \sigma_{X}^{2}\right)\right]=m_{X}\left(t_{1}\right)$

Marginal distributions: Bivariate Normal

Bivariate Normal Distribution with marginal distributions

Conditional distributions for the Bivariate Normal

Recall the definition of conditional distributions for continuous RVs:

$$
f_{1 \mid 2}\left(x_{1} \mid x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{2}\left(x_{2}\right)} \quad \text { and } \quad f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)}
$$

In the case of the bivariate normal distribution the conditional distribution of x_{i} given x_{j} is Normal with mean and standard deviation:

$$
\mu_{i \mid j}=\mu_{i}+\rho \frac{\sigma_{i}}{\sigma_{j}}\left(x_{j}-\mu_{j}\right) \quad \text { and } \quad \sigma_{i \mid j}=\sigma_{i} \sqrt{1-\rho^{2}}
$$

Conditional distributions: Bivariate Normal

Proof: |

$$
\begin{gathered}
f_{1 \mid 2}=\frac{f\left(x_{1}, x_{2}\right)}{f\left(x_{2}\right)}=\overline{(2 \pi) \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \\
=\frac{\mathrm{e}^{--\frac{1}{2} Q\left(x_{1}, x_{2}\right)+\frac{1}{2}\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}}{\sqrt{2 \pi} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}} \\
\sqrt{2 \pi} \sigma_{1} \sqrt{1-\rho^{2}}
\end{gathered}
$$

where

$$
b=\sigma_{1} \sqrt{1-\rho^{2}} \quad a=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu_{2}\right) \quad c=\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}
$$

Conditional distributions: Bivariate Normal

Hence $\quad f_{1 \mid 2}\left(x_{1} \mid x_{2}\right)=\frac{1}{\sqrt{2 \pi} b} e^{-\frac{1}{2}\left(\frac{x_{1}-a}{b}\right)^{2}}$
Then, the conditional distribution of x_{2} given x_{1} is Normal with mean and standard deviation:

$$
a=\mu_{1 \mid 2}=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(x_{2}-\mu_{2}\right) \quad \text { and } \quad b=\sigma_{1 \mid 2}=\sigma_{1} \sqrt{1-\rho^{2}}
$$

Conditional distributions: Bivariate Normal

- Bivariate Normal Distribution with conditional distribution

- Using matrix notation, the conditional moments are given by:

$$
\begin{aligned}
& \mu_{1 \mid 2}=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right) \\
& \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

Conditional distributions: Bivariate Normal

Note: $\mu_{2 \mid 1}=\mu_{2}+\left(\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}\right) \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right)=\mu_{2}+\frac{\sigma_{12}}{\sigma_{1}{ }^{2}}\left(x_{1}-\mu_{1}\right)$

Conditional distributions: KF Application

- The Kalman filter (KF) uses the observed data to learn about the unobservable state variables, which describe the state of the model.
- KF models dynamically what we measure, z_{t}, and the state, y_{t}. In the simple, linear model we have:

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{t}}=\boldsymbol{A} \mathrm{y}_{\mathrm{t}-1}+\mathrm{w}_{\mathrm{t}} & \text { (state or transition equation) } \\
\mathrm{z}_{\mathrm{t}}=\mathbf{H} \mathrm{y}_{\mathrm{t}}+\mathrm{v}_{\mathrm{t}} & \text { (measurement equation) }
\end{array}
$$

$\mathrm{w}_{\mathrm{t}}, \mathrm{v}_{\mathrm{t}}$: error terms, with zero mean and variance \mathbf{Q} and \mathbf{R}, respectively.

- Based on time $t-1$ information, the KF generates predictions for y_{t} :

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t} \mid \mathrm{t}-1}=\mathbf{A} \mathrm{y}_{\mathrm{t}-1 \mid \mathrm{t}-1}+\mathbf{B} \mathrm{u}_{\mathrm{t}} \\
& \mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1}=\mathbf{A} \mathbf{P}_{\mathrm{t}-1} \mathbf{A}^{\mathrm{T}}+\mathbf{Q} \quad \text { (conditional variance of } \mathrm{y}_{\mathrm{t}} \text {) }
\end{aligned}
$$

- It also generates an update, once the information t is known:

$$
\begin{aligned}
& y_{\mathrm{t} \mid \mathrm{t}}=\mathrm{y}_{\mathrm{t} \mid \mathrm{t}-1}+\mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1} \mathbf{H}^{\mathrm{T}}\left(\mathbf{F}_{\mathrm{t} \mid \mathrm{t-1}}\right)^{-1} \mathbf{e}_{\mathrm{t} \mid \mathrm{t-1}} \\
& \mathbf{P}_{\mathrm{t} \mid \mathrm{t}}=\mathbf{P}_{\mathrm{t} \mid \mathrm{tt-1}}-\mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1} \mathbf{H}^{\mathrm{T}}\left(\mathbf{F}_{\mathrm{t} \mid \mathrm{t}-1}\right)^{-1} \mathbf{H} \mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1}
\end{aligned}
$$

Conditional distributions: KF Application

- We define the forecast error for the observed z_{t} and its variance as:

$$
\begin{aligned}
& \mathbf{e}_{\mathrm{t} \mid t-1}=z_{\mathrm{t}}-z_{\mathrm{t} \mid \mathrm{t}-1}=z_{\mathrm{t}}-\mathbf{H y}_{\mathrm{t} \mid \mathrm{t}-1} \\
& \mathbf{F}_{\mathrm{t} \mid \mathrm{t}-1}=\mathbf{H} \mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1} \mathbf{H}^{\mathrm{T}}+\mathbf{R}
\end{aligned}
$$

Then, we write the joint of distribution of $\left(y_{t}, e_{t}\right) \mid I_{t}$:

$$
\binom{y_{t} \mid I_{t-1}}{e_{t} \mid I_{t-1}} \sim N\left(\left[\begin{array}{c}
y_{t t-1} \\
0
\end{array}\right],\left[\begin{array}{cc}
P_{t t-1} & P_{t t-1} H^{\prime} \\
H P_{t t-1} & F_{t t-1}
\end{array}\right]\right)
$$

- Recall a property of the multivariate normal distribution:

$$
\begin{aligned}
& \mu_{1 \mid 2}=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right) \\
& \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{aligned}
$$

Then, from the joint, we can easily derive the KF update:

$$
\begin{aligned}
& y_{\mathrm{t} \mid \mathrm{t}}=\mathrm{y}_{\mathrm{t} \mid \mathrm{t}-1}+\mathbf{P}_{\mathrm{t} \mid \mathrm{t-1}} \mathbf{H}^{\mathrm{T}}\left(\mathbf{F}_{\mathrm{t} \mid \mathrm{t-1}}\right)^{-1} \mathbf{e}_{\mathrm{t} \mid \mathrm{t-1}} \\
& \mathbf{P}_{\mathrm{t} \mid \mathrm{t}}=\mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1}-\mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1} \mathbf{H}^{\mathrm{T}}\left(\mathbf{F}_{\mathrm{t} \mid \mathrm{t-1}}\right)^{-1} \mathbf{H} \mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1}
\end{aligned}
$$

