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Joint Probability Density Function (pdf)

Definition: Joint Probability density function

Two random variable are said to have joint probability density function

f(x,y)if
1. flx,y)=0.

2. 2% fry)dxdy =1.
3. PIX.Y)eAl=], [,f(xy)dxdy

Marginal and Condition Density

Definition: Marginal Density

Let X and Y denote two RVs with joint pdf f(x,y), then the marginal
density of X is

fx(@) = [, fCy)dy
and the marginal density of Y is fy(y) = f_oooof(x, y) dx

Definition: Conditional Density

Let X and Y denote two RVs with joint pdf f(x,y) and marginal
densities fx(x), fy (¥), then the conditional density of Y given X = x and
the conditional density of X given Y = y are given by
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Joint MGF

Definition: MGF of (X)Y)

Let X and Y be two RVs with joint pdf f(x,y), then the MGF of X
KY:

My (11,1,) = Elexp(t, X +1,Y)] = j j exp(t, X +1,Y) f (x, y)dxdy
RZ

Theorem:

The MGF of a pair of independent RVs is the product of the MGF
of the corresponding marginal distributions. That is,

myy (1, t3) = my(t;) my(t;)

Proof: Mmoyy (t,1,) = ” exp(H, X +t,Y) f(x,y)dxdy
= H exp(t; X)exp(#,Y) f(x) f (y)dxdy

= [exp(1,20) £ (0)dx [ exp(£,7) f (1) = m e (1)my (1)

Marginal MGF

Definition: MGF of the marginal distribution of X (andY)

Let myy(tq,t;) be the MGF of (X)Y), then the MGF of the marginal
distributions of X and Y are, respectively, myy (t1, 0) and myy (0, t;)

Proof:
my (0= [exp(t) £ (x)dx = [ exp(O [ Fay (. p)dy I =

= I _[ exp(tX) [ xy (x, y)dydx = m yy (£,0)

Similar derivation for Y.
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The bivariate Normal distribution

Sir Francis Galton (1822 —1911, England)

The bivariate normal distribution

Let the joint distribution be given by:
f (xl > Xy ) =

1 e—%QUpM)

(27 )o,0,\1-p

where

Q(xl’xz):

This distribution is called the bivariate Normal distribution.
The parameters are 4, i, , 0y, 0, and p.

The properties of this distribution were studied by Francis Galton and
discovered its relation to the regression, term Galton coined.
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The bivariate normal distribution

Surface Plots of the bivariate Normal
distribution
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The bivariate normal distribution

Note: We can have a more compact joint using linear algebra:

S (x5 x,) = ! ex 1 (( ’ul) Zp(x] —H )(xz _ﬂ2)+(xz _ﬂz)zj
276,0,,/(1-p°) 2(1 o) o o, o,

1 1 Ry
—Wexp(—z(x—u)i (x l‘-)j

(1) Determine the inverse and determinant of X (the covariance matrix)

P
O, Oy

2
O, O,

L= ={XFoj0; ~0p, =0]0,

0-2(1 P )

2
:Z—lzi O, ~0y
12| -0, o
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The bivariate normal distribution

(2) Write a quadratic form for Q(x,,x,):

(o) - (mr ) () () |

Q(xl’xz): lfpz

O(x,x,) = (x—p)'27 (x— )

1| o o, | 51
:[(xl_:ul) (xz_ﬂz)]i ’ 221 I L=
|Z| —0p, 0, X~ Hy

:L[(xl _/"1)0-22 —(x, =)0, (x5 =)oy —(x, _#2)0_12 n A
[ Z| Xy~ Hy
1
|Z]
_ (6, = £4)* 03 =20, (x, = 1) (%, = ) + (x, = 11,)* 07)
)

((x, _/ul)2 0-22 =20, — ) (X, — 14,) +(x, _,uz)zalz)

The Bivariate Normal Distribution
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Scatter Plots of data from the Bivariate Normal Distribution
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The bivariate normal distribution: MGF

Let MGF of a bivariate normal is given by:

myy (11,1y) = expltyuy + 1y iy - (tl O +1507 +2p 11,0y Oy)]

Note: When pyy =0 —i.e,, X and Y are independent. The MGF is:

Myy (t,8,) = explt ity +i, 4y — (11 O'X '”2 Y ]

Marginal distributions for the Bivariate Normal
Recall the definition of marginal distributions for continuous RV:

_[f xpxz)dxz and fz xz _[f xpxz)dxl

In the case of the bivariate normal distribution the marginal

distribution of x;is Normal with mean z;and standard deviation o

Proof:

The marginal distributions of x, is
0

fz(xz):_!;f(xlaxz)dxl = 272_ O'IUZHJ‘

where , ,
X~ Hy ~2p X~ H X, —Hy " X, — Hy
o, 0, 0, 0,

1-p°

xl xz

Q(xpxz):
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Marginal distributions for the Bivariate Normal

Now:
2 2
YT H 2p M TH | ST | 2T
o, o, 0, 0,
Q(x1>x2)= 1—;02
2 2 2
X, —a X; a a
_( j+C:b—2— b2X1+b—2+C

Marginal distributions for the Bivariate Normal

Hence bZ:o'lz(l—pz) or b=61\/1—,02

a _ H X, —H
Also b Gf(lip2)+p020f(l—;2)
1

:m{ﬂﬁp%(%—y)}

and

a:ﬂ1+pi(x2_/u)

0,
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Marginal distributions for the Bivariate Normal
Finally
a’ p (x, = 45) (6, = 11,)°
—+c= +2 +
b ¢ 012(1—,02) pazal(l—pz)ﬂl Jf(l—pz)
o= ,U12 ) (xz_,uz) (xz_,uz)z _i
crf(l—pz) 0201(1—,02) : af(l—pz) b?
_ p 49 (x,—1,) ﬂ+(x2—,u2)2
0,2(1—,02 0'20'1(1—,02) l Jf(l—pz)
2
Jﬂl +p2(xz —ﬂ)}
ol (l—pz)

Marginal distributions for the Bivariate Normal

and
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Marginal distributions for the Bivariate Normal

Summarizing

where b=0'1«/1—/02

2
and c = M
0,

Marginal distributions for the Bivariate Normal

Thus fr(x,)= T 1 (x,,x,)dx,

£ 1
77Q(x,x)
Ie 27

1
B (27)o0,\1-p° %

—38
(¢]

1
| —
|
/N

=
=7

Q
S—

*
| S
QU

_>-<

1
B (27[)0102\/1—,02 e

_ \/ﬁbe—c/Z Ee) 1 e’%()q;a 2
(27)o,0,J1- p> % N27h

) 2
_1| X2amHy
1 2{ o, )

= e
N2ro,

10
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Marginal distributions for the Bivariate Normal

* Thus the marginal distribution of x, is Normal with mean 4, and
standard deviation ;.

* Similarly, the marginal distribution of x; is Normal with mean g, and
standard deviation o;.

Note: This derivation is much easier using MGFs.

Use the MGF of a bivariate normal. To get the MGF of the marginal of
X, set t,=0.

1 2 2 2
myy (t),1y) = expltypry + 1y pty _E(tl Ox +10y +2pxyti10 xOy)]

1
My (1;,0) = exp[ —E(tfa)% )] =my ()

Marginal distributions: Bivariate Normal

Bivariate Normal Distribution with marginal distributions

11
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Conditional distributions for the Bivariate
Normal

Recall the definition of conditional distributions for continuous RVs:

S (x5, x, S (x5,
fl\z (xl ‘xz) = ﬁ and f2\1 (xz “xl) = ﬁ

In the case of the bivariate normal distribution the conditional
distribution of x; given x; is Normal with mean and standard
deviation:
Gi P
Hij = H +p0—(xj ;) and oy =01-p
J

Conditional distributions: Bivariate Normal

Proof: |

S (x,x,)

e =)

2 2 2
1 L xy3—ptp 1 x—a 1) x5~
e‘zQ(’“’xz)H(%J . 2{( b j”}z o,

B N27o1-p? B \/ﬂan/l—pz
2
o —
b:oqﬁ a=m "‘Ps—l(xz —W) < =(—x20_2'u2J

2

where

12
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Conditional distributions: Bivariate Normal

_l( % —a jz
2\ b

1
Hence fl\z (xl ‘Xz) = m e

Then, the conditional distribution of x;, given x; is Normal with
mean and standard deviation:

O
a=Hy, =,ul+po_—1(x2—,uz) and sz‘l‘z =oy1-p’

2

Conditional distributions: Bivariate Normal

¢ Bivariate Normal Distribution with conditional distribution

* Using matrix notation, the conditional moments are given by:
-1
Hyp = H + 2,2, (x,—uy)
-1
z:1\2 = 211 - 212222 221

13
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Conditional distributions: Bivariate Normal

\

o
—2(x1 —Ky)
G

Major axis of ellipses =———w_,
( M /uZ)

Hop =Ha P

Regression to the mean (i,= p,= W) :

Hop =p+PBlx —p); 0<P<I

X
O, 1

c c
)= (n —1y) =y +—1§(x1 — k)

Note: My =My +(
G106, O o

Conditional distributions: KF Application

* The Kalman filter (KF) uses the observed data to learn about the
unobservable state variables, which describe the state of the model.

* KF models dynamically what we measure, z, and the state, y,. In the
simple, linear model we have:

v, = Ay, + w, (state or transition equation)
z,= Hy, + v, (measurement equation)

w,, V. error terms, with zero mean and variance Q and R, respectively.

* Based on time t-1 information, the KF generates predictions for y,:
Veje1 = AVerjer T By
P, =AP, AT+Q (conditional vatiance of vy, )
e It also generates an update, once the information t is known:
Vet - Yejet + Pt\t-l HT (Ft\t-l)il et|t-1 28
P,=P,,-P, H" F, )"HP

tft t]t-1 t]t-1 t]t-1

14
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Conditional distributions: KF Application

et\t& =z = Zt|t—1 = 2= HYt\t%
F,,=HP  H'+R

t]t-1

Then, we write the joint of distribution of (y,, e) |1, :

A Yi— Ptlt—l })t|t—1H '
(e[ ‘IHJN N[{ 0 } {HBH E\t-l :D
* Recall a property of the multivariate normal distribution:
Hip = i+ 230 (6 = 1)
Tp=2,-2Z,%, 2,

Then, from the joint, we can easily derive the KF update:

Yt\t: Yt\pl + Pt\t& HT (Ft\pl)_l et\t&
P, =P, P, H (F, ) HP, 29

tft t]t-1 t]t-1 t]t-1

* We define the forecast error for the observed z and its variance as:

15



