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Chapter 4
Jointly distributed Random variables

Continuous Multivariate distributions

(for private use, not to be posted/shared online)

Continuous Random Variables
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Definition: Joint Probability density function

Two random variable are said to have joint probability density function
𝑓 𝑥,𝑦 if

1. 𝑓 𝑥,𝑦 ≥ 0.

2. 𝑓 𝑥,𝑦  𝑑𝑥 𝑑𝑦 1.

3. 𝑃  𝑋,𝑌 ∈ 𝐴 𝑓 𝑥,𝑦  𝑑𝑥 𝑑𝑦 

Joint Probability Density Function (pdf)

Definition: Marginal Density

Let 𝑋 and 𝑌 denote two RVs with joint pdf  𝑓 𝑥,𝑦 , then the marginal 
density of  𝑋 is

𝑓 𝑥  𝑓 𝑥,𝑦  𝑑𝑦 

and the marginal density of  𝑌 is 𝑓 𝑦  𝑓 𝑥,𝑦  𝑑𝑥 

Definition: Conditional Density

Let 𝑋 and 𝑌 denote two RVs with joint pdf  𝑓 𝑥,𝑦 and marginal 
densities 𝑓 𝑥 , 𝑓 𝑦 , then the conditional density of  𝑌 given 𝑋 = 𝑥 and 
the conditional density of  𝑋 given 𝑌 = 𝑦 are given by
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Marginal and Condition Density
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Definition: MGF of  (X,Y)

Let X and Y be two RVs with joint pdf  𝑓 𝑥,𝑦 , then the MGF of  X 
 Y:

Theorem:

The MGF of  a pair of  independent RVs is the product of  the MGF 
of  the corresponding marginal distributions. That is, 

 𝑚 𝑡 , 𝑡  = 𝑚 𝑡 𝑚 𝑡
Proof:
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Joint MGF

Definition: MGF of  the marginal distribution of  X (andY)

Let  𝑚 𝑡 , 𝑡 be the MGF of  (X,Y), then the MGF of  the marginal 
distributions of  X and Y are, respectively,  𝑚 𝑡 , 0 and  𝑚 0, 𝑡

Proof:

Similar derivation for Y.
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Marginal MGF
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The bivariate Normal distribution

Sir Francis Galton (1822 –1911, England) 

Let the joint distribution be given by:
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where 

This distribution is called the bivariate Normal distribution.

The parameters are 1, 2 , 1, 2 and 
The properties of  this distribution were studied by Francis Galton and 
discovered its relation to the regression, term Galton coined. 

The bivariate normal distribution
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Surface Plots of  the bivariate Normal 
distribution

The bivariate normal distribution

Note: We can have a more compact joint using linear algebra: 

(1) Determine the inverse and determinant of  Σ (the covariance matrix)

The bivariate normal distribution
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The bivariate normal distribution
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(2) Write a quadratic form for Q(x1,x2):
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The Bivariate Normal Distribution
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Contour Plots of the Bivariate Normal Distribution
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Scatter Plots of data from the Bivariate Normal Distribution
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Let MGF of  a bivariate normal is given by:

Note: When ρXY = 0  –i.e., X and Y are independent. The MGF is: 

The bivariate normal distribution: MGF
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Marginal  distributions for the Bivariate Normal

Recall the definition of  marginal distributions for continuous RV:

and

In the case of  the bivariate normal distribution the marginal 
distribution of  xi is Normal with mean i and standard deviation i.

   2 2 1 2 1,f x f x x dx




 

Proof:

The marginal distributions of  x2 is

   2 2 1 2 1,f x f x x dx
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Now:
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Marginal  distributions for the Bivariate Normal
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Marginal  distributions for the Bivariate Normal
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Finally
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Marginal  distributions for the Bivariate Normal
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Marginal  distributions for the Bivariate Normal
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Summarizing
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Marginal  distributions for the Bivariate Normal

Thus    2 2 1 2 1,f x f x x dx
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Marginal  distributions for the Bivariate Normal
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• Thus the marginal distribution of  x2 is Normal with mean 2 and 
standard deviation 2. 

• Similarly,  the marginal distribution of  x1 is Normal with mean 1 and 
standard deviation 1. 

Note: This derivation is much easier using MGFs.

Use the MGF of  a bivariate normal. To get the MGF of  the marginal of  
X, set t2=0.
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Marginal  distributions for the Bivariate Normal

Bivariate Normal Distribution with marginal distributions

Marginal  distributions: Bivariate Normal 
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Conditional  distributions for the Bivariate 
Normal 

Recall the definition of  conditional distributions for continuous RVs: 

and

In the case of  the bivariate normal distribution the conditional 
distribution of  xi given xj is Normal with mean and standard 
deviation:
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Conditional  distributions: Bivariate Normal 
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Then, the conditional distribution of  x2 given x1 is Normal with 
mean and standard deviation:
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Conditional  distributions: Bivariate Normal 

• Bivariate Normal Distribution with conditional distribution

Conditional  distributions: Bivariate Normal 

21
1

2212112|1

22
1

221212|1 )(






  x

• Using matrix notation, the conditional moments are given by:
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( 1, 2)
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Regression to the mean (μ1= μ2= μ) : 
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Conditional  distributions: Bivariate Normal 
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• The Kalman filter (KF) uses the observed data to learn about the 
unobservable state variables, which describe the state of  the model. 

• KF models dynamically what we measure, zt, and the state, yt. In the 
simple, linear model we have:

yt = Ayt-1 + wt (state or transition equation)

zt = Hyt + vt (measurement equation)

wt, vt: error terms, with zero mean and variance Q and R, respectively. 

• Based on time t-1 information, the KF generates predictions for yt: 
yt|t-1 = A yt-1|t-1 + B ut

Pt|t-1 = A Pt-1 AT + Q (conditional variance of yt )
• It also generates an update, once the information t is known:

yt|t = yt|t-1 + Pt|t-1 HT (Ft|t-1)-1 et|t-1

Pt|t = Pt|t-1 – Pt|t-1 HT (Ft|t-1)-1 H Pt|t-1  

Conditional  distributions: KF Application
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• We define the forecast error for the observed zt and its variance as:
et|t-1 = zt – zt|t-1  = zt – Hyt|t-1

Ft|t-1= H Pt|t-1 HT + R 

Then, we write the joint of  distribution of  (yt , et)|It :  

• Recall a property of  the multivariate normal distribution:

Then, from the joint, we can easily derive the KF update:
yt|t = yt|t-1 + Pt|t-1 HT (Ft|t-1)-1 et|t-1

Pt|t = Pt|t-1 – Pt|t-1 HT (Ft|t-1)-1 H Pt|t-1  
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Conditional  distributions: KF Application


