Chapter 4 Jointly Distributed Random Variables #### **Discrete Multivariate Distributions** (for private use, not to be posted/shared online) ## Joint Probability Function Quite often there will be 2 or more random variables (X, Y, Z, etc) defined for the same random experiment. Example 1: Portfolio Manager X =Fund 1 has a return greater than target over a quarter. Y = Fund 2 has a return greater than target over a quarter. The manager of the funds is interested in the behavior of X and Y: **Example 2:** A bridge hand is selected from a deck of 52 cards. X = the number of spades in the hand (13 cards). Y = the number of hearts in the hand (13 cards). In these examples, we will define: p(x,y) = P[X = x, Y = y]. The function p(x,y) is called the *joint probability function* of X and Y. # Joint Probability Function: Bridge Hand Table: $$p(x,y) = \frac{\binom{13}{x}\binom{13}{y}\binom{26}{13-x-y}}{\binom{52}{13}}$$ | 0.0000 | | | | | | | | 8 | | 10 | 11 | 12 | 13 | |--------|--|--|---|---|---|--|---|---|--|--|--|---|--| | | 0.0002 | 0.0009 | 0.0024 | 0.0035 | 0.0032 | 0.0018 | 0.0006 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0002 | 0.0021 | 0.0085 | 0.0183 | 0.0229 | 0.0173 | 0.0081 | 0.0023 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | | 0.0009 | 0.0085 | 0.0299 | 0.0549 | 0.0578 | 0.0364 | 0.0139 | 0.0032 | 0.0004 | 0.0000 | 0.0000 | 0.0000 | - | - | | 0.0024 | 0.0183 | 0.0549 | 0.0847 | 0.0741 | 0.0381 | 0.0116 | 0.0020 | 0.0002 | 0.0000 | 0.0000 | - | - | - | | 0.0035 | 0.0229 | 0.0578 | 0.0741 | 0.0530 | 0.0217 | 0.0050 | 0.0006 | 0.0000 | 0.0000 | - | - | - | - | | 0.0032 | 0.0173 | 0.0364 | 0.0381 | 0.0217 | 0.0068 | 0.0011 | 0.0001 | 0.0000 | - | - | - | - | - | | 0.0018 | 0.0081 | 0.0139 | 0.0116 | 0.0050 | 0.0011 | 0.0001 | 0.0000 | 1 | - | - | - | - | - | | 0.0006 | 0.0023 | 0.0032 | 0.0020 | 0.0006 | 0.0001 | 0.0000 | - | 1 | - | - | - | - | - | | 0.0001 | 0.0004 | 0.0004 | 0.0002 | 0.0000 | 0.0000 | 1 | - | 1 | - | - | - | - | - | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | ı | - | ı | - | - | - | - | - | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | - | 1 | - | ı | - | - | - | - | - | | 0.0000 | 0.0000 | 0.0000 | - | - | - | - | - | - | - | - | - | - | - | | 0.0000 | 0.0000 | - | - | - | - | - | - | - | - | - | - | - | - | | 0.0000 | - | - | - | - | - | 1 | - | ı | - | - | - | - | - | | | 0.0009
0.0024
0.0035
0.0032
0.0018
0.0006
0.0001
0.0000
0.0000 | .0009 0.0085
.0024 0.0183
.0035 0.0229
.0032 0.0173
.0018 0.0081
.0006 0.0023
.0001 0.0004
.0000 0.0000
.0000 0.0000 | 0.0009 0.0085 0.0299 0.0024 0.0183 0.0549 0.0035 0.0229 0.0578 0.0032 0.0173 0.0364 0.0018 0.0081 0.0139 0.0006 0.0023 0.0032 0.0001 0.0004 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - | 0.0009 0.085 0.0299 0.0549 0.0024 0.0183 0.0549 0.0847 0.0035 0.0229 0.0578 0.0741 0.0032 0.0173 0.0364 0.0381 0.0018 0.0081 0.0139 0.0116 0.0006 0.0023 0.0032 0.0020 0.0001 0.0004 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.0000 - - 0.0000 0.0000 - - | 0.0009 0.0085 0.0299 0.0549 0.0578 0.024 0.0183 0.0549 0.0847 0.0741 0.035 0.0229 0.0578 0.0741 0.0530 0.032 0.0173 0.0364 0.0381 0.0217 0.018 0.0081 0.0139 0.0116 0.0050 0.0006 0.0023 0.0032 0.0020 0.0006 0.0001 0.0004 0.0004 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.0000 0.0000 - - 0.0000 0.0000 - - - | 0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0024 0.0183 0.0549 0.0847 0.0741 0.0381 0.0035 0.0229 0.0578 0.0741 0.0530 0.0217 0.0032 0.0173 0.0364 0.0381 0.0217 0.0068 0.0018 0.0081 0.0139 0.0116 0.0050 0.0011 0.0006 0.0023 0.0032 0.0020 0.0006 0.0001 0.0001 0.0004 0.0004 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - 0.0000 0.0000 0.0000 - - - 0.0000 0.0000 - - - - | 0.0009 0.085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0024 0.0183 0.0549 0.0847 0.0741 0.0381 0.0116 0.0035 0.0229 0.0578 0.0741 0.0530 0.0217 0.0050 0.0032 0.0173 0.0364 0.0381 0.0217 0.0068 0.0011 0.0018 0.0081 0.0139 0.0116 0.0050 0.0011 0.0001 0.0006 0.0023 0.0032 0.0020 0.0006 0.0001 0.0000 0.0001 0.0004 0.0002 0.0000 0.0000 - - 0.0000 0.0000 0.0000 0.0000 - - - 0.0000 0.0000 0.0000 - - - - 0.0000 0.0000 0.0000 - - - - 0.0000 0.0000 0.0000 - - - - 0.0000 0.0000 0.00 | 0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0024 0.0183 0.0549 0.0847 0.0741 0.0381 0.0116 0.0020 0.035 0.0229 0.0578 0.0741 0.0530 0.0217 0.0050 0.0006 0.032 0.0173 0.0364 0.0381 0.0217 0.0068 0.0011 0.0001 0.0018 0.0081 0.0139 0.0116 0.0050 0.0011 0.0001 0.0000 0.0006 0.0023 0.0032 0.0020 0.0006 0.0001 0.0000 - 0.0001 0.0004 0.0002 0.0000 0.0000 - - - 0.0000 0.0000 0.0000 0.0000 - - - - 0.0000 0.0000 0.0000 - - - - - 0.0000 0.0000 0.0000 - - - - - 0.000 | 0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.024 0.0183 0.0549 0.0847 0.0741 0.0381 0.0116 0.0020 0.0002 0.035 0.0229 0.0578 0.0741 0.0530 0.0217 0.0050 0.0006 0.0000 0.032 0.0173 0.0364 0.0381 0.0217 0.0068 0.0011 0.0001 0.0000 0.0018 0.0081 0.0139 0.0116 0.0050 0.0011 0.0000 0.0000 - 0.0006 0.0023 0.0032 0.0020 0.0006 0.0001 0.0000 - - - 0.0001 0.0004 0.0004 0.0002 0.0000 0.0000 - - - - - - 0.0000 0.0000 0.0000 0.0000 0.0000 - - - - - - - - - - - - | 0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.0000 0.024 0.0183 0.0549 0.0847 0.0741 0.0381 0.0116 0.0020 0.0002 0.0000 0.035 0.0229 0.0578 0.0741 0.0530 0.0217 0.0050 0.0006 0.0000 0.0000 0.032 0.0173 0.0364 0.0381 0.0217 0.0068 0.0011 0.0001 0.0000 - - 0.0018 0.0081 0.0139 0.0116 0.0050 0.0011 0.0000 - - - 0.0006 0.0023 0.0032 0.0022 0.0006 0.0001 0.0000 - - - - - 0.0001 0.0004 0.0004 0.0002 0.0000 0.0000 - - - - - - - - - - - - - - - - -< | 0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.0000 0.0000 0.024 0.0183 0.0549 0.0847 0.0741 0.0381 0.0116 0.0020 0.0002 0.0000 0.0000 0.035 0.0229 0.0578 0.0741 0.0530 0.0217 0.0050 0.0006 0.0000 0.0000 - 0.032 0.0173 0.0364 0.0381 0.0217 0.0068 0.0011 0.0001 0.0000 - - - 0.0018 0.0081 0.0139 0.0116 0.0050 0.0011 0.0001 0.0000 - - - - 0.0018 0.0023 0.0032 0.0020 0.0006 0.0001 0.0000 - <t< th=""><th>0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.0000<</th><th> 0.009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.0000 0.</th></t<> | 0.0009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.0000< | 0.009 0.0085 0.0299 0.0549 0.0578 0.0364 0.0139 0.0032 0.0004 0.0000 0. | #### Joint Probability Function: Properties General properties of the joint probability function $$p(x,y) = P[X = x, Y = y]$$ $$1. \quad 0 \le p(x,y) \le 1$$ $$2. \qquad \sum_{x} \sum_{y} p(x, y) = 1$$ 2. $$\sum_{x} \sum_{y} p(x, y) = 1$$ 3. $$P[(X, Y) \in A] = \sum_{(x,y)\in A} p(x, y)$$ **Example:** A die is rolled n = 5 times X =the number of times a "**six**" appears. Y = the number of times a "five" appears. What is the probability that we roll more sixes than fives, that is, what is P[X > Y]? #### Joint Probability Function: Properties Table: $$p(x,y) = \frac{5!}{x! y! (5-x-y)!} \left(\frac{1}{6}\right)^x \left(\frac{1}{6}\right)^y \left(\frac{4}{6}\right)^{5-x-y}$$ | | 0 | 1 | 2 | 3 | 4 | 5 | |---|--------|--------|--------|--------|--------|--------| | 0 | 0.1317 | 0.1646 | 0.0823 | 0.0206 | 0.0026 | 0.0001 | | 1 | 0.1646 | 0.1646 | 0.0617 | 0.0103 | 0.0006 | 0 | | 2 | 0.0823 | 0.0617 | 0.0154 | 0.0013 | 0 | 0 | | 3 | 0.0206 | 0.0103 | 0.0013 | 0 | 0 | 0 | | 4 | 0.0026 | 0.0006 | 0 | 0 | 0 | 0 | | 5 | 0.0001 | 0 | 0 | 0 | 0 | 0 | $$P[X > Y] = \sum_{x>y} p(x, y) = 0.3441$$ #### Marginal Probability **Definition:** Marginal Probability Let X and Y denote two discrete RV with joint probability function $$p(x,y) = P[X = x, Y = y]$$ Then $p_X(x) = P[X = x]$ is called the *marginal probability* function of X. $p_Y(y) = P[Y = y]$ is called the *marginal probability* function of Y. Note: Let y_1, y_2, y_3, \dots denote the possible values of Y $$p_{X}(x) = P[X = x] = P[\{X = x, Y = y_{1}\} \cup \{X = x, Y = y_{2}\} \cup ...]$$ $$= P[X = x, Y = y_{1}] + P[X = x, Y = y_{2}] + ...$$ $$= p(x, y_{1}) + p(x, y_{2}) + ... = \sum_{j} p(x, y_{j}) = \sum_{y} p(x, y)$$ #### **Marginal Probability** Thus, the marginal probability function of X, $p_X(x)$ is obtained from the joint probability function of X and Y by summing p(x,y) over the possible values of Y. Similarly, $$p_{Y}(y) = P[Y = y] = P[\{X = x_{1}, Y = y\} \cup \{X = x_{2}, Y = y\} \cup ...]$$ $$= P[X = x_{1}, Y = y] + P[X = x_{2}, Y = y] + ...$$ $$= p(x_{1}, y) + p(x_{2}, y) + ... = \sum_{i} p(x_{i}, y) = \sum_{x} p(x, y)$$ #### Marginal Probability **Example:** A die is rolled n = 5 times What is the probability that we roll more **sixes** than **fives**, that is, what is P[X > Y]? X = the number of times a "six" appears. Y = the number of times a "five" appears. | | 0 | 1 | 2 | 3 | 4 | 5 | |------------|--------|--------|--------|--------|--------|--------| | 0 | 0.1317 | 0.1646 | 0.0823 | 0.0206 | 0.0026 | 0.0001 | | 1 | 0.1646 | 0.1646 | 0.0617 | 0.0103 | 0.0006 | 0 | | 2 | 0.0823 | 0.0617 | 0.0154 | 0.0013 | 0 | 0 | | 3 | 0.0206 | 0.0103 | 0.0013 | 0 | 0 | 0 | | 4 | 0.0026 | 0.0006 | 0 | 0 | 0 | 0 | | 5 | 0.0001 | 0 | 0 | 0 | 0 | 0 | | $p_{Y}(y)$ | 0.4019 | 0.4019 | 0.1608 | 0.0322 | 0.0032 | 0.0001 | $p_X(x)$ 0.4019 0.4019 0.1608 0.0322 0.0032 $P(X > Y) = P[X > 0, Y = 0] + P[X > 1, Y \le 1] + P[X > 2, Y \le 2]$ = 0.2702 + 0.0727 + 0.0013 = 0.3442 #### **Conditional Probability** **Definition:** Conditional Probability Let X and Y denote two discrete RV with joint probability function $$p(x, y) = P[X = x, Y = y]$$ Then, $p_{X|Y}(x|y) = P[X = x | Y = y]$ is called the *conditional probability function of X* given Y = y $$p_{X|Y}(x|y) = P[X = x|Y = y]$$ $$= \frac{P[X = x, Y = y]}{P[Y = y]} = \frac{p(x, y)}{p_Y(y)}$$ Similarly, $p_{Y|X}(y|x)$ is the conditional probability function of Y given X = x $$p_{Y|X}(y|x) = P[Y = y|X = x]$$ $$= \frac{P[X = x, Y = y]}{P[X = x]} = \frac{p(x, y)}{p_X(x)}$$ ## **Conditional Probability** #### Notes: - Marginal distributions describe how one variable behaves ignoring the other variable. - Conditional distributions describe how one variable behaves when the other variable is held fixed. #### **Conditional Probability** **Example**: Probability of rolling more **sixes** than **fives**, when a die is rolled n = 5 times X = the number of times a "six" appears. Y = the number of times a "**five**" appears. y | | | 0 | 1 | 2 | 3 | 4 | 5 | |---------------|------------|--------|--------|--------|--------|--------|--------| | | 0 | 0.1317 | 0.1646 | 0.0823 | 0.0206 | 0.0026 | 0.0001 | | \mathcal{X} | 1 | 0.1646 | 0.1646 | 0.0617 | 0.0103 | 0.0006 | 0 | | | 2 | 0.0823 | 0.0617 | 0.0154 | 0.0013 | 0 | 0 | | | 3 | 0.0206 | 0.0103 | 0.0013 | 0 | 0 | 0 | | | 4 | 0.0026 | 0.0006 | 0 | 0 | 0 | 0 | | | 5 | 0.0001 | 0 | 0 | 0 | 0 | 0 | | , | $p_{Y}(y)$ | 0.4019 | 0.4019 | 0.1608 | 0.0322 | 0.0032 | 0.0001 | $p_X(x)$ 0.4019 0.4019 0.1608 0.0322 0.0032 $p_{Y|X}(y=2|x=0) = P[Y=2|X=0] = p(y=2, x=0)/p_Y(x=0) =$ = .0823/.4019 = .20478 ## Conditional Probability The conditional distribution of Y given X = x: $$p_{Y|X}(y|x) = P[Y = y | X = x]$$ y | | | 0 | 1 | 2 | 3 | 4 | 5 | |---------------|---|--------|--------|--------|--------|--------|--------| | | 0 | 0.3277 | 0.4096 | 0.2048 | 0.0512 | 0.0064 | 0.0003 | | | 1 | 0.4096 | 0.4096 | 0.1536 | 0.0256 | 0.0016 | 0.0000 | | χ | 2 | 0.5120 | 0.3840 | 0.0960 | 0.0080 | 0.0000 | 0.0000 | | \mathcal{A} | 3 | 0.6400 | 0.3200 | 0.0400 | 0.0000 | 0.0000 | 0.0000 | | | 4 | 0.8000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 5 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | **Example**: A Bernoulli trial (**S**: p, **F**: q = 1 - p) is repeated until two successes have occurred. X = trial on which the first success occurs and $Y = \text{trial on which the } 2^{nd} \text{ success occurs.}$ Find the joint probability function of *X*, *Y*. Find the marginal probability function of X and Y. Find the conditional probability functions of Y given X = x and X given Y = y, #### Marginal & Conditional Probability - Example #### Solution A typical outcome would be: $$\underbrace{\mathbf{FFF...FSFFF...FS}}_{x-1} \underbrace{y-x-1}_{y-x-1}$$ $$p(x,y) = P[X = x, Y = y]$$ $$= q^{x-1}pq^{y-x-1}p = q^{y-2}p^{2} \text{ if } y > x$$ $$p(x,y) = \begin{cases} q^{y-2}p^{2} & \text{if } y > x \\ 0 & \text{otherwise} \end{cases}$$ $$p(x,y)$$ - Table | | | | | | Ĵ | γ | | | | |---------------|---|---|-------|--------|----------|----------|----------|----------|----------| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | 1 | 0 | p^2 | p^2q | p^2q^2 | p^2q^3 | p^2q^4 | p^2q^5 | p^2q^6 | | | 2 | 0 | 0 | p^2q | p^2q^2 | p^2q^3 | p^2q^4 | p^2q^5 | p^2q^6 | | | 3 | 0 | 0 | 0 | p^2q^2 | p^2q^3 | p^2q^4 | p^2q^5 | p^2q^6 | | | 4 | 0 | 0 | 0 | 0 | p^2q^3 | p^2q^4 | p^2q^5 | p^2q^6 | | \mathcal{X} | 5 | 0 | 0 | 0 | 0 | 0 | p^2q^4 | p^2q^5 | p^2q^6 | | | 6 | 0 | 0 | 0 | 0 | 0 | 0 | p^2q^5 | p^2q^6 | | | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | p^2q^6 | | | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | #### Marginal & Conditional Probability - Example The marginal distribution of X $$p_{X}(x) = P[X = x] = \sum_{y} p(x, y)$$ $$= \sum_{y=x+1}^{\infty} p^{2}q^{y-2}$$ $$= p^{2}q^{x-1} + p^{2}q^{x} + p^{2}q^{x+1} + p^{2}q^{x+2} + \dots$$ $$= p^{2}q^{x-1}(1+q+q^{2}+q^{3}+\dots)$$ $$= p^{2}q^{x-1}\left(\frac{1}{1-q}\right) = pq^{x-1}$$ This is the geometric distribution. The marginal distribution of Y $$p_{Y}(y) = P[Y = y] = \sum_{x} p(x, y)$$ $$= \begin{cases} (y-1) p^{2} q^{y-2} & y = 2, 3, 4, ... \\ 0 & \text{otherwise} \end{cases}$$ This is the *negative binomial* distribution with k = 2. In count data models, the negative binomial ("negbin") is used when the data shows *overdispersion*—i.e., the volatility is greater than the mean, the usual assumption when using the Poisson distribution. #### Marginal & Conditional Probability - Example The conditional distribution of X given Y = y $$p_{X|Y}(x|y) = P[X = x|Y = y]$$ $$= \frac{P[X = x, Y = y]}{P[Y = y]} = \frac{p(x, y)}{p_Y(y)}$$ $$= \frac{p^2 q^{y-2}}{p q^{x-1}}$$ $$= p q^{y-x-1} \text{ for } y = x+1, x+2, x+3...$$ This is the *geometric distribution* with time starting at *x*. We think of the geometric distribution as the discrete analogue of exponential distribution. It also has no memory. The conditional distribution of Y given X = x: $$p_{Y|X}(y|x) = P[Y = y|X = x]$$ $$= \frac{P[X = x, Y = y]}{P[X = x]} = \frac{p(x, y)}{p_X(x)}$$ $$= \frac{p^2 q^{y-2}}{(y-1) p^2 q^{y-2}} = \frac{1}{(y-1)} \quad \text{for } x = 1, 2, 3, ..., (y-1)$$ This is the *uniform distribution* on the values 1, 2, ..., (y-1)