Chapter 3 Moments of a Distribution

(for private use, not to be posted/shared online)

Expectation

We develop the expectation operator in terms of the Lebesgue integral.

- Recall that the Lebesgue measure $\lambda(A)$ for some set A gives the length/area/volume of the set A. If $A=(3 ; 7)$, then $\lambda(A)=|3-7|=4$.
- The Lebesgue integral of f on $[a, b]$ is defined in terms of $\Sigma_{\mathrm{i}} y_{\mathrm{i}} \lambda\left(A_{\mathrm{i}}\right)$, where $0=y_{1} \leq y_{2} \leq \ldots \leq y_{n}, A_{i}=\left\{x: y_{i} \leq f(x)<y_{i+1}\right\}$, and $\lambda\left(A_{i}\right)$ is the Lebesgue measure of the set A_{i}.
- The value of the Lebesgue integral is the limit as the y_{i}^{\prime} s are pushed closer together. That is, we break the y-axis into a grid using $\left\{y_{n}\right\}$ and break the x-axis into the corresponding grid $\left\{A_{n}\right\}$ where

$$
A_{i}=\left\{x: f(x) \in\left[y_{i} ; y_{i+1}\right)\right\} .
$$

Taking expectations: Riemann vs Lebesgue

- Riemann's approach

Partition the base. Measure the height of the function at the center of each interval. Calculate the area of each interval. Add all intervals.

- Lebesgue approach

Divide the range of the function. Measure the length of each horizontal interval. Calculate the area of each interval. Add all intervals.

Taking expectations: Riemann vs Lebesgue

- A Borel function (RV) f is integrable if and only if $|f|$ is integrable.
- For convenience, we define the integral of a measurable function f from (Ω, Σ, μ) to $\left({ }^{-} \mathrm{R}^{-}{ }^{-} \mathrm{B}\right)$, where ${ }^{-} \mathrm{R}=\mathrm{RU}\{-\infty, \infty\},{ }^{-} \mathrm{B}=\sigma(\mathrm{B}$ $\mathrm{U}\{\{\infty\},\{-\infty\}\}$).

Example: If $\Omega=\mathrm{R}$ and μ is the Lebesgue measure, then the Lebesgue integral of f over an interval $[\mathrm{a}, \mathrm{b}]$ is written as

$$
\int_{[\mathrm{a}, \mathrm{~b}]} f(x) \mathrm{d} x=\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x,
$$

which agrees with the Riemann integral when the latter is well defined.
However, there are functions for which the Lebesgue integrals are defined but not the Riemann integrals.

- If $\mu=\mathrm{P}$, in statistics, $\int X \mathrm{dP}=\mathrm{E} X=\mathrm{E}[X]$ is called the expectation or expected value of X.

Expected Value

Consider our probability space ($\Omega, \Sigma, \mathrm{P}$). Take an event (a set A of $\omega \epsilon$ Ω) and X, a RV, that assigns real numbers to each $\omega \in A$.

- If we take an observation from A without knowing which $\omega \in A$ will be drawn, we may want to know what value of $X(\omega)$ we should expect to see.
- Each of the $\omega \mathrm{e} A$ has been assigned a probability measure $\mathrm{P}[\omega]$, which induces $\mathrm{P}[x]$. Then, we use this to weight the values $X(\omega)$.
- P is a probability measure: The weights sum to 1 . The weighted sum provides us with a weighted average of $X(\omega)$. If P gives the "correct" likelihood of ω being chosen, the weighted average of $X(\omega)-\mathrm{E}[X]-$ tells us what values of $X(\omega)$ are expected.

Expected Value

- Now with the concept of the Lebesgue integral, we take the possible values $\left\{x_{i}\right\}$ and construct a grid on the y-axis, which gives a corresponding grid on the x-axis in A, where

$$
A_{i}=\left\{\omega \in A: X(\omega) \in\left[x_{i} ; x_{i+1}\right)\right\} .
$$

Let the elements in the x-axis grid be A_{i}. The weighted average is

$$
\sum_{i=1}^{n} x_{i} P\left[A_{i}\right]=\sum_{i=1}^{n} x_{i} P_{X}\left[X=x_{i}\right]=\sum_{i=1}^{n} x_{i} f_{X}\left(x_{i}\right)
$$

- As we shrink the grid towards $0, A$, becomes infinitesimal. Let $\mathrm{d} \omega$ be the infinitesimal set A. The Lebesgue integral becomes:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} P\left[A_{i}\right]=\int_{-\infty}^{\infty} x P[d \omega]=\int_{-\infty}^{\infty} x P_{X}\left[X=x_{i}\right]=\int_{-\infty}^{\infty} x f_{X}\left(x_{i}\right) d x
$$

The Expectation of X: E(X)

The expectation operator defines the mean (or population average) of a random variable or expression.

Definition

Let X denote a discrete RV with probability function $p(x)$ (probability density function $f(x)$ if X is continuous), then the expected value of X, $E(X)$ is defined to be:

$$
E(X)=\sum_{x} x p(x)=\sum_{i} x_{i} p\left(x_{i}\right)
$$

and if X is continuous with probability density function $f(x)$

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Sometimes we use $\mathrm{E}[$.$] as \mathrm{E}_{\mathrm{X}}[$.$] to indicate that the expectation is being$ taken over $f_{\mathrm{X}}(x) \mathrm{d} x$.

Interpretation of $\mathbf{E}(\mathbf{X})$

1. The expected value of $X, E(X)$, is the center of gravity of the probability distribution of X.
2. The expected value of $X, E(X)$, is the long-run average value of X. (To be discussed later: Law of Large Numbers)

Example: The Binomial distribution

Let X be a discrete random variable having the Binomial distribution -i.e., $X=$ the number of successes in n independent repetitions of a Bernoulli trial. Find the expected value of $X, E(X)$.

$$
\begin{aligned}
& p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1,2,3, \ldots, n \\
& E(X)=\sum_{x=0}^{n} x p(x)=\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
&=\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
&=\sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
\end{aligned}
$$

Example: Solution

$$
\begin{aligned}
E(X) & =\sum_{x=0}^{n} x p(x)=\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\frac{n!}{0!(n-1)!} p^{1}(1-p)^{n-1}+\frac{n!}{1!(n-2)!} p^{2}(1-p)^{n-2}+ \\
& \ldots+\frac{n!}{(n-2)!1!} p^{n-1}(1-p)+\frac{n!}{(n-1)!0!} p^{n}
\end{aligned}
$$

Example: Solution

$$
\begin{aligned}
& =n p\left[\frac{(n-1)!}{0!(n-1)!} p^{0}(1-p)^{n-1}+\frac{(n-1)!}{1!(n-2)!} p^{1}(1-p)^{n-2}+\right. \\
& \left.\cdots+\frac{(n-1)!}{(n-2)!1!} p^{n-2}(1-p)+\frac{(n-1)!}{(n-1)!0!} p^{n-1}\right] \\
& =n p\left[\binom{n-1}{0} p^{0}(1-p)^{n-1}+\binom{n-1}{1} p^{1}(1-p)^{n-2}+\right. \\
& \left.\cdots+\binom{n-1}{n-2} p^{n-2}(1-p)+\binom{n-1}{n-1} p^{n-1}\right] \\
& =n p[p+(1-p)]^{n-1}=n p[1]^{n-1}=n p
\end{aligned}
$$

Example: Exponential Distribution

Let X have an exponential distribution with parameter λ. The probability density function of X is:

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

The expected value of X is:

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x
$$

We will determine $\quad \int x \lambda e^{-\lambda x} d x$
using integration by parts $\quad \int u d v=u v-\int v d u$

Example: Exponential Distribution

We will determine $\int x \lambda e^{-\lambda x} d x$ using integration by parts.
In this case $u=x$ and $d v=\lambda e^{-\lambda x} d x$
Hence $d u=d x$ and $v=-e^{-\lambda x}$
Thus $\int x \lambda e^{-\lambda x} d x=-x e^{-\lambda x}+\int e^{-\lambda x} d x=-x e^{-\lambda x}-\frac{1}{\lambda} e^{-\lambda x}$

$$
\begin{aligned}
E(X) & =\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=-\left.x e^{-\lambda x}\right|_{0} ^{\infty}-\left.\frac{1}{\lambda} e^{-\lambda x}\right|_{0} ^{\infty} \\
& =(-0+0)-\left(0-\frac{1}{\lambda}\right)=\frac{1}{\lambda}
\end{aligned}
$$

Summary: If X has an exponential distribution with parameter λ, then:

$$
E(X)=\frac{1}{\lambda}
$$

Example: The Uniform Distribution

Suppose X has a uniform distribution from a to b.
Then:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & a \leq x \leq b \\
0 & x<a, x>b
\end{array}\right.
$$

The expected value of X is:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{a}^{b} x \frac{1}{b-a} d x \\
& =\left[\frac{1}{b-a} \frac{x^{2}}{2}\right]_{a}^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Example: The Normal Distribution

Suppose X has a Normal distribution with parameters μ and σ. Then:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

The expected value of X is:

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

Make the substitution:

$$
z=\frac{x-\mu}{\sigma} \quad d z=\frac{1}{\sigma} d x \text { and } x=\mu+z \sigma
$$

Example: The Normal Distribution

Hence $\quad E(X)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}}(\mu+z \sigma) e^{-\frac{z^{2}}{2}} d z$

$$
=\mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z+\frac{\sigma}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} z e^{-\frac{z^{2}}{2}} d z
$$

Now

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z=1 \text { and } \int_{-\infty}^{\infty} z e^{-\frac{z^{2}}{2}} d z=0
$$

The second integral is an example of an odd function. Recall that an odd function gives:

$$
f(-x)=-f(x) . \quad \text { Then, } \int_{-a}^{a} f(x) d x=0
$$

Thus $E(X)=\mu$

Example: The Gamma Distribution

Suppose X has a Gamma distribution with parameters α and λ.
Then:

$$
f(x)=\left\{\begin{array}{cc}
\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

Note:

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} d x=1 \text { if } \lambda>0, \alpha \geq 0
$$

This is a very useful formula when working with the Gamma distribution.

Example: The Gamma Distribution

The expected value of X is:

$$
\begin{aligned}
& E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} x \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} d x \\
&=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha} e^{-\lambda x} d x \\
&=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+1)}{\lambda^{\alpha+1}} \int_{0}^{\infty} \frac{\lambda^{\alpha+1}}{\Gamma(\alpha+1)} x^{\alpha} e^{-\lambda x} d x \\
& \text { equal is now } 1 .
\end{aligned}
$$

Example: The Gamma Distribution

Thus, if X has a Gamma (α, λ) distribution, the expected value of X is:

$$
\mathrm{E}(\mathrm{X})=\alpha / \lambda
$$

Special Cases: (α, λ) distribution then the expected value of X is:

1. Exponential (λ) distribution: $\alpha=1, \lambda$ arbitrary

$$
E(X)=\frac{1}{\lambda}
$$

2. Chi-square (ν) distribution: $\alpha=v / 2, \lambda=1 / 2$.

$$
E(X)=\frac{v / 2}{1 / 2}=v
$$

Example: The Gamma Distribution

Example: The Gamma Distribution - Exponential

Example: The Gamma Distribution - Chi-square

Expectation of a function of a RV

- Let X denote a discrete $\mathrm{R} V$ with probability function $p(x)$, then the expected value of $g(X), E[g(X)]$, is defined to be:

$$
E[g(X)]=\sum_{x} g(x) p(x)=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right)
$$

and if X is continuous with probability density function $f(x)$

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Examples: $\quad g(x)=(x-\mu)^{2} \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{2}\right]$

$$
g(x)=(x-\mu)^{k} \Rightarrow \mathrm{E}[g(x)]=\mathrm{E}\left[(x-\mu)^{k}\right]
$$

Expectation of a function of a RV

Example: Suppose X has a uniform distribution from 0 to b. Then:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b} & 0 \leq x \leq b \\
0 & x<0, x>b
\end{array}\right.
$$

Find the expected value of $A=X^{2}$.
If X is the length of a side of a square (chosen at random form 0 to b) then A is the area of the square

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{a}^{b} x^{2} \frac{1}{b-a} d x=\left[\frac{1}{b} \frac{x^{3}}{3}\right]_{0}^{b}=\frac{b^{3}-0^{3}}{3(b)}=\frac{b^{2}}{3} \\
& =1 / 3 \text { the maximum area of the square }
\end{aligned}
$$

Median: An alternative central measure

- A median is described as the numeric value separating the higher half of a sample, a population, or a probability distribution, from the lower half.

Definition: Median
The median of a random variable \boldsymbol{X} is the unique number m that satisfies the following inequalities:

$$
\mathrm{P}(\boldsymbol{X} \leq m) \geq 1 / 2 \quad \text { and } \quad \mathrm{P}(\boldsymbol{X} \geq m) \geq 1 / 2
$$

For a continuous distribution, we have that m solves:

$$
\int_{-\infty}^{m} f_{X}(x) d x=\int_{m}^{\infty} f_{X}(x) d x=1 / 2
$$

Median: An alternative central measure

- Calculation of medians is a popular technique in summary statistics and summarizing statistical data, since it is simple to understand and easy to calculate, while also giving a measure that is more robust in the presence of outlier values than is the mean.

An optimality property

A median is also a central point which minimizes the average of the absolute deviations. That is, a value of c that minimizes

$$
\mathrm{E}(|\mathbf{X}-c|)
$$

is the median of the probability distribution of the random variable \boldsymbol{X}.

Example I: Median of the Exponential Distribution

Let X have an exponential distribution with parameter λ. The probability density function of X is:

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

The median m solves the following integral of X :

$$
\begin{gathered}
\int_{m}^{\infty} f_{X}(x) d x=1 / 2 \\
\int_{m}^{\infty} \lambda e^{-\lambda x} d x=\lambda \int_{m}^{\infty} e^{-\lambda x} d x=-\left.e^{-\lambda x}\right|_{m} ^{\infty}=e^{-\lambda m}=1 / 2
\end{gathered}
$$

That is, $m=\ln (2) / \lambda$.

Example II: Median of the Pareto Distribution

Let X follow a Pareto distribution with parameters α (scale) and x_{s} (shape, usually notated x_{m}). The pdf of X is:

$$
f(x)=\left\{\begin{array}{cc}
\frac{\alpha x_{s}^{\alpha}}{x^{\alpha+1}} & \text { if } x \geq x_{s}>0 \\
0 & \text { if } x<0
\end{array}\right.
$$

The median m solves the following integral of $X: \int_{m}^{\infty} f_{X}(x) d x=1 / 2$

$$
\begin{aligned}
\int_{m}^{\infty} \frac{\alpha x_{s}^{\alpha}}{x^{\alpha+1}} d x & =\alpha x_{s}^{\alpha} \int_{m}^{\infty} x^{-(\alpha+1)} d x=\alpha x_{s}^{\alpha} \frac{x^{-(\alpha+1)+1}}{-(\alpha+1)+1}+C \\
& =-x_{s}^{\alpha} x^{-\alpha}+\left.C\right|_{m} ^{\infty}=x_{s}^{\alpha} m^{-\alpha}=1 / 2 \Rightarrow m=x_{s} 2^{1 / \alpha}
\end{aligned}
$$

Note: The Pareto distribution is used to describe the distribution of wealth.

Moments of a Random Variable

The moments of a random variable X are used to describe the behavior of the RV (discrete or continuous).

Definition: $k^{\text {th }}$ Moment
Let X be a RV (discrete or continuous), then the $k^{\text {th }}$ moment of X is:

$$
\mu_{k}=E\left(X^{k}\right)=\left\{\begin{array}{cc}
\sum_{x} x^{k} p(x) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x^{k} f(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

- The first moment of $X, \mu=\mu_{1}=E(X)$ is the center of gravity of the distribution of X.
- The higher moments give different information regarding the shape of the distribution of X.

Moments of a Random Variable

Definition: Central Moments
Let X be a RV (discrete or continuous). Then, the $k^{\text {th }}$ central moment of X is defined to be:
$\mu_{k}^{0}=E\left[(X-\mu)^{k}\right]=\left\{\begin{array}{lc}\sum_{x}(x-\mu)^{k} p(x) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty}(x-\mu)^{k} f(x) d x & \text { if } X \text { is continuous }\end{array}\right.$
where $\mu=\mu_{1}=E(X)=$ the first moment of X.

- The central moments describe how the probability distribution is distributed about the center of gravity, μ.

Moments of a Random Variable $-1^{\text {st }}$ and $2^{\text {nd }}$

The first central moments is given by:

$$
\mu_{1}^{0}=E[X-\mu]
$$

The second central moment depends on the spread of the probability distribution of X about μ. It is called the variance of X and is denoted by the symbol $\operatorname{var}(X)$.

$$
\begin{aligned}
& \mu_{2}^{0}=E\left[(X-\mu)^{2}\right]=2^{n d} \text { central moment. } \\
& \sqrt{\mu_{2}^{0}}=\sqrt{E\left[(X-\mu)^{2}\right]} \quad \begin{array}{l}
\text { is called the standard deviation of } X \text { and } \\
\text { is denoted by the symbol } \sigma .
\end{array} \\
& \operatorname{var}(X)=\mu_{2}^{0}=E\left[(X-\mu)^{2}\right]=\sigma^{2}
\end{aligned}
$$

Moments of a Random Variable - Skewness

- The third central moment: $\mu_{3}^{0}=E\left[(X-\mu)^{3}\right]$
μ_{3}^{0} contains information about the skewness of a distribution.
- A popular measure of skewness: $\quad \gamma_{1}=\frac{\mu_{3}^{0}}{\sigma^{3}}=\frac{\mu_{3}^{0}}{\left(\mu_{2}^{0}\right)^{\frac{3}{2}}}$
- Distribution according to skewness:

1) Symmetric distribution

Moments of a Random Variable - Skewness

2) Positively skewed distribution

3) Negatively skewed distribution

Moments of a Random Variable - Skewness

- Skewness and Economics
- Zero skew means symmetrical gains and losses.
- Positive skew suggests many small losses and few rich returns.
- Negative skew indicates lots of minor wins offset by rare major losses.
- In financial markets, stock returns at the firm level show positive skewness, but at stock returns at the aggregate (index) level show negative skewness.
- From horse race betting and from U.S. state lotteries there is evidence supporting the contention that gamblers are not necessarily risk-lovers but skewness-lovers: Long shots are overbet (positve skewness loved!).

Moments of a Random Variable - Kurtosis

- The fourth central moment: $\mu_{4}^{0}=E\left[(X-\mu)^{4}\right]$
μ_{4}^{0} is a measure of the shape of a distribution. The property of shape measured by this moment is called kurtosis, usually estimated by $\kappa=\frac{\mu_{4}^{0}}{\sigma^{4}}$.
- The measure of (excess) kurtosis:

$$
\gamma_{2}=\frac{\mu_{4}^{0}}{\sigma^{4}}-3=\frac{\mu_{4}^{0}}{\left(\mu_{2}^{0}\right)^{2}}-3
$$

- Distributions:

1) Mesokurtic distribution ($\gamma_{2}=0$ or $\kappa=3$, like the normal distribution)

Moments of a Random Variable - Kurtosis

2) Platykurtic distribution $\left(\gamma_{2}<0, \mu_{4}^{0}\right.$ small in size $)$

3) Leptokurtic distribution $\left(\gamma_{2}>0, \mu_{4}^{0}\right.$ large in size, usual shape)

Moments of a Random Variable - Kurtosis

- Typical financial returns series has $\gamma_{2}>0$. Below, I simulate a series with $\mu=0, \sigma=1, \gamma_{1}=0$ \& kurtosis $=6\left(\gamma_{2}=3\right)$, overlaid with a standard normal distribution. Fat tails are seen on both sides of the distribution.

Moments of a Random Variable

Example: The uniform distribution from 0 to 1

$$
f(x)=\left\{\begin{array}{cc}
1 & 0 \leq x \leq 1 \\
0 & x<0, x>1
\end{array}\right.
$$

Finding the moments

$$
\mu_{k}=\int_{-\infty}^{\infty} x^{k} f(x) d x=\int_{0}^{1} x^{k} 1 d x=\left[\frac{x^{k+1}}{k+1}\right]_{0}^{1}=\frac{1}{k+1}
$$

Finding the central moments:

$$
\mu_{k}^{0}=\int_{-\infty}^{\infty}(x-\mu)^{k} f(x) d x=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{k} 1 d x
$$

Moments of a Random Variable

Example (continuation): Finding the central moments (continuation)

$$
\mu_{k}^{0}=\int_{-\infty}^{\infty}(x-\mu)^{k} f(x) d x=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{k} 1 d x
$$

making the substitution $w=x-\frac{1}{2}$

$$
\begin{aligned}
\mu_{k}^{0}= & \int_{-\frac{1}{2}}^{\frac{1}{2}} w^{k} d w=\left[\frac{w^{k+1}}{k+1}\right]_{-\frac{1}{2}}^{\frac{1}{2}}=\frac{\left(\frac{1}{2}\right)^{k+1}-\left(-\frac{1}{2}\right)^{k+1}}{k+1} \\
& =\frac{1-(-1)^{k+1}}{2^{k+1}(k+1)}=\left\{\begin{array}{cc}
\frac{1}{2^{k}(k+1)} & \text { if } k \text { even } \\
0 & \text { if } k \text { odd }
\end{array}\right.
\end{aligned}
$$

Moments of a Random Variable

Hence $\mu_{2}^{0}=\frac{1}{2^{2}(3)}=\frac{1}{12}, \mu_{3}^{0}=0, \mu_{4}^{0}=\frac{1}{2^{4}(5)}=\frac{1}{80}$
Thus, $\quad \operatorname{var}(X)=\mu_{2}^{0}=\frac{1}{12}$
The standard deviation $\quad \sigma=\sqrt{\operatorname{var}(X)}=\sqrt{\mu_{2}^{0}}=\frac{1}{\sqrt{12}}$

The measure of skewness: $\quad \gamma_{1}=\frac{\mu_{3}^{0}}{\sigma^{3}}=0$

The measure of kurtosis: $\quad \gamma_{2}=\frac{\mu_{4}^{0}}{\sigma^{4}}-3=\frac{1 / 80}{\left(\frac{1}{12}\right)^{2}}-3=-1.2$

Alternative measures of dispersion

When the median is used as a central measure for a distribution, there are several choices for a measure of variability:

- The range --the length of the smallest interval containing the data
- The interquartile range -the difference between the $3^{\text {rd }}$ and $1^{\text {st }}$ quartiles.
- The mean absolute deviation - $(1 / n) \sum_{\mathrm{i}} \mid x_{\mathrm{i}}-$ central measure $(X) \mid$
- The median absolute deviation $(\mathrm{MAD})-\mathrm{MAD}=m_{\mathrm{i}}\left(\left|x_{\mathrm{i}}-m(X)\right|\right)$

These measures are more robust (to outliers) estimators of scale than the sample variance or standard deviation.

They especially behave better with distributions without a mean or variance, such as the Cauchy distribution.

Review - Rules for Expectations

- We will derive the rules for the continuous case, with X has a pdf
$f(x)$. Proof are similar for the discrete case. That is, we define $\mathrm{E}[\mathrm{X}]$ as

$$
\mathrm{E}[g(x)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

- Rule 1. $\mathrm{E}[c]=c, \quad$ where c is a constant.

Proof: $g(x)=c$
Then, $\mathrm{E}[\mathrm{g}(X)]=\mathrm{E}[c]=\int_{-\infty}^{\infty} c f(x) d x=c \int_{-\infty}^{\infty} f(x) d x=c$

- Rule 2. $\mathrm{E}[c+d X]=c+d \mathrm{E}[X], \quad$ where $c \& d$ are constants.

Proof: $g(x)=c+d X$
Then, $\mathrm{E}[g(X)]=\mathrm{E}[c+d X]=\int_{-\infty}^{\infty}(c+d x) f(x) d x$

$$
\begin{aligned}
& =c \int_{-\infty}^{\infty} f(x) d x+d \int_{-\infty}^{\infty} x f(x) d x \\
& =c+d \mathrm{E}[X]
\end{aligned}
$$

Review - Rules for Expectations

- Rule 3. $\operatorname{Var}[X]=\mu_{2}^{0}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-[E(X)]^{2}=\mu_{2}-\mu_{1}^{2}$

Proof: $g(x)=(x-\mu)^{2}$
$\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$
$=\int_{-\infty}^{\infty}\left(x^{2}-2 x \mu+\mu^{2}\right) f(x) d x$
$=\int_{-\infty}^{\infty} x^{2} f(x) d x-\int_{-\infty}^{\infty} 2 x \mu f(x) d x+\int_{-\infty}^{\infty} \mu^{2} f(x) d x$
$=\int_{-\infty}^{\infty} x^{2} f(x) d x-2 \mu \int_{-\infty}^{\infty} x f(x) d x+\mu^{2} \int_{-\infty}^{\infty} f(x) d x$ $=E\left[X^{2}\right]-2 \mu E(X)+\mu^{2}=\mu_{2}-\mu_{1}^{2}$

Rules for Expectations

- Rule 4. $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Proof:

$$
\begin{aligned}
& \mu_{a X+b}=E[a X+b]=a E[X]+b=a \mu+b \\
& \begin{aligned}
\operatorname{var}(a X+b) & =E\left[\left(a X+b-\mu_{a X+b}\right)^{2}\right] \\
& =E\left[(a X+b-[a \mu+b])^{2}\right] \\
& =E\left[a^{2}(X-\mu)^{2}\right] \\
& =a^{2} E\left[(X-\mu)^{2}\right]=a^{2} \operatorname{var}(X)
\end{aligned}
\end{aligned}
$$

Rules for Expectations for Vectors \& Matrices

- Let \boldsymbol{Z} be a random vector of k random variables: $Z_{1}, Z_{2}, \ldots, Z_{k}$. We have a similar definition for \boldsymbol{W}
- Expected value of \boldsymbol{Z} :

$$
\mathrm{E}[\boldsymbol{Z}]=\left[\begin{array}{c}
E\left[Z_{1}\right] \\
\vdots \\
E\left[Z_{k}\right]
\end{array}\right]
$$

- Expected value of a linear function of random vectors. Let $a \& b$ be non-random scalars. Then:

$$
\mathrm{E}[a \boldsymbol{Z}+b \boldsymbol{W}]=a \mathrm{E}[\boldsymbol{Z}]+b \mathrm{E}[\boldsymbol{W}]
$$

- Variance of $\boldsymbol{Z}: \quad \operatorname{Var}[\mathbf{Z}]=\mathrm{E}\left[\boldsymbol{Z} \mathbf{Z}^{\prime}\right]-\mathrm{E}[\mathbf{Z}] \mathrm{E}[\mathbf{Z}]^{\prime} \quad(k \times k)$

Rules for Expectations for Vectors \& Matrices

- Variance of linear function of \mathbf{Z} :

$$
\operatorname{Var}[a+b \mathbf{Z}]=b^{2} \operatorname{Var}[\boldsymbol{Z}]
$$

- Variance of linear function of \boldsymbol{Z}, with a comformable non-random matrix \mathbf{A} :

$$
\operatorname{Var}[\mathbf{A} \boldsymbol{Z}]=\mathbf{A} \operatorname{Var}[\mathbf{Z}] \mathbf{A}^{\prime}
$$

- Expected value of a quadratic form $\boldsymbol{Z}^{\prime} \mathbf{A} \mathbf{Z}$:

$$
\mathrm{E}\left[\mathbf{Z}^{\prime} \mathbf{A} \boldsymbol{Z}\right]=\mathrm{E}[\boldsymbol{Z}]^{\prime} \mathbf{A} \mathrm{E}[\mathbf{Z}]-\operatorname{trace}(\mathbf{A} \operatorname{Var}[\mathbf{Z}])
$$

Derivation: Use properties of trace and expectations:

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{Z}^{\prime} \mathbf{A} \boldsymbol{Z}\right] & =\mathrm{E}\left[\operatorname{tr}\left(\mathbf{A} \boldsymbol{Z} \mathbf{Z}^{\prime}\right)\right]=\operatorname{tr}\left(\mathrm{E}\left[\left(\mathbf{A} \boldsymbol{Z} \mathbf{Z}^{\prime}\right)\right]\right) \\
& =\operatorname{tr}\left(\mathbf{A} \mathrm{E}\left[\boldsymbol{Z} \mathbf{Z}^{\prime}\right]\right)=\operatorname{tr}\left(\mathbf{A}\left(\operatorname{Var}[\mathbf{Z}]+\mathrm{E}[\mathbf{Z}] \mathrm{E}[\boldsymbol{Z}]^{\prime}\right)\right. \\
& =\operatorname{tr}\left(\mathbf{A}(\operatorname{Var}[\mathbf{Z}])+\operatorname{tr}\left(\mathrm{E}[\mathbf{Z}]^{\prime} \mathbf{A} \mathrm{E}[\mathbf{Z}]\right)\right. \\
& =\operatorname{tr}\left(\mathbf{A}(\operatorname{Var}[\mathbf{Z}])+\mathrm{E}[\mathbf{Z}]^{\prime} \mathbf{A} \mathrm{E}[\mathbf{Z}]\right.
\end{aligned}
$$

Moment generating functions

The expectation of a function $g(\mathrm{X})$ is given by:

$$
E[g(X)]= \begin{cases}\sum_{x} g(x) p(x) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} g(x) f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

Definition: Moment Generating Function (MGF)
Let X denote a random variable. Then, the moment generating function of X, $m_{X}(t)$, is defined by:

$$
m_{X}(t)=E\left[e^{t X}\right]=\left\{\begin{array}{cc}
\sum_{x} e^{t x} p(x) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} e^{t x} f(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

MGF: Examples

1. The Binomial distribution (parameters p, n)

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1,2, \cdots, n
$$

The MGF of $X, m_{X}(t)$ is:

$$
\begin{aligned}
m_{X}(t) & =E\left[e^{t X}\right]=\sum_{x} e^{t x} p(x) \\
& =\sum_{x=0}^{n} e^{t x}\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n}\binom{n}{x}\left(e^{t} p\right)^{x}(1-p)^{n-x}=\sum_{x=0}^{n}\binom{n}{x} a^{x} b^{n-x} \\
& =(a+b)^{n}=\left(e^{t} p+1-p\right)^{n}
\end{aligned}
$$

MGF: Examples

2. The Poisson distribution (parameter λ)

$$
p(x)=\frac{\lambda^{x}}{x!} e^{-\lambda} \quad x=0,1,2, \cdots
$$

The MGF of $X, m_{X}(t)$ is:

$$
\begin{aligned}
m_{X}(t)=E\left[e^{t X}\right] & =\sum_{x} e^{t x} p(x)=\sum_{x=0}^{n} e^{t x} \frac{\lambda^{x}}{x!} e^{-\lambda} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{x}}{x!}=e^{-\lambda} e^{\lambda e^{t}} \text { using } e^{u}=\sum_{x=0}^{\infty} \frac{u^{x}}{x!} \\
& =e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

MGF: Examples

3. The Exponential distribution (parameter λ)

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

The MGF of $X, m_{X}(t)$ is:

$$
\begin{aligned}
m_{X}(t) & =E\left[e^{t X}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{0}^{\infty} e^{t x} \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} \lambda e^{(t-\lambda) x} d x=\left[\lambda \frac{e^{(t-\lambda) x}}{t-\lambda}\right]_{0}^{\infty} \\
& =\left\{\begin{array}{cl}
\frac{\lambda}{\lambda-t} & t<\lambda \\
\text { undefined } & t \geq \lambda
\end{array}\right.
\end{aligned}
$$

MGF: Examples

4. The Standard Normal distribution $(\mu=0, \sigma=1)$

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

The MGF of $X, m_{X}(t)$ is:

$$
\begin{aligned}
m_{X}(t)=E\left[e^{t X}\right] & =\int_{-\infty}^{\infty} e^{t x} f(x) d x \\
& =\int_{-\infty}^{\infty} e^{t x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-2 x x}{2}} d x
\end{aligned}
$$

MGF: Examples

We will now use the fact that

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} a} e^{-\frac{(x-b)^{2}}{2 a^{2}}} d x=1 \text { for all } a>0, b \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-2 t x}{2}} d x=e^{\frac{t^{\frac{t^{2}}{2}}}{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-2 x+t^{2}}{2}} d x} \begin{array}{l}
\text { completed } \\
\text { the square }
\end{array} \\
& =e^{\frac{t^{\frac{t^{2}}{2}}}{\int_{-\infty}^{\infty}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-t)^{2}}{2}} d x=e^{\frac{t^{2}}{2}}}
\end{aligned}
$$

MGF: Examples

4. The Gamma distribution (parameters α, λ)

$$
f(x)=\left\{\begin{array}{cc}
\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

The MGF of $X, m_{X}(t)$ is:

$$
\begin{aligned}
m_{X}(t)=E\left[e^{t X}\right] & =\int_{-\infty}^{\infty} e^{t x} f(x) d x \\
& =\int_{0}^{\infty} e^{t x} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} d x \\
& =\int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x} d x
\end{aligned}
$$

MGF: Examples

We use the fact

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x} d x=1 \text { for all } a>0, b>0 \\
& m_{X}(t)=\int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x} d x \\
& \quad=\frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}} \int_{0}^{\infty} \underbrace{\frac{(\lambda-t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x} d x=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}}_{\text {Equal to 1 }}
\end{aligned}
$$

The Chi-square distribution with degrees of freedom $v(\alpha=v / 2, \lambda=1 / 2)$:

$$
m_{X}(t)=(1-2 t)^{-\frac{v}{2}}
$$

MGF: Properties

1. $m_{X}(0)=1$
$m_{X}(t)=E\left(e^{t X}\right)$, hence $m_{X}(0)=E\left(e^{0 \cdot X}\right)=E(1)=1$
Note: The MGFs of the following distributions satisfy the property $m_{X}(0)=1$
i) Binomial Dist'n $\quad m_{X}(t)=\left(e^{t} p+1-p\right)^{n}$
ii) Poisson Dist'n $m_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$
iii) Exponential Dist'n $m_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)$
iv) Std Normal Dist'n $\quad m_{X}(t)=e^{\frac{t^{2}}{2}}$
v) Gamma Dist'n $m_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha}$

MGF: Properties

2.

$$
\mu_{X}(t)=1+\mu_{1} t+\frac{\mu_{2} t^{2}}{2!}+\frac{\mu_{3} t^{3}}{3!}+\cdots+\frac{\mu_{k} t^{k}}{k!}+\cdots
$$

We use the expansion of the exponential function:

$$
\begin{aligned}
& e^{u}=1+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\cdots+\frac{u^{k}}{k!}+\cdots \\
m_{X}(t)= & E\left(e^{t X}\right) \\
= & E\left\{1+t X+\frac{t^{2} X^{2}}{2!}+\frac{t^{3} X^{3}}{3!}+\cdots+\frac{t^{k} X^{k}}{k!}+\cdots\right\} \\
= & 1+t E[X]+\frac{t^{2} E\left[X^{2}\right]}{2!}+\frac{t^{3} E\left[X^{3}\right]}{3!}+\cdots+\frac{t^{k} E\left[X^{k}\right]}{k!}+\cdots \\
= & 1+\mu_{1} t+\frac{\mu_{2} t^{2}}{2!}+\frac{\mu_{3} t^{3}}{3!}+\cdots+\frac{\mu_{k} t^{k}}{k!}+\cdots
\end{aligned}
$$

MGF: Properties

3. $\quad m_{X}^{(k)}(0)=\left.\frac{d^{k}}{d t^{k}} m_{X}(t)\right|_{t=0}=\mu_{k}$

Now

$$
\begin{aligned}
m_{X}(t) & =1+\mu_{1} t+\frac{\mu_{2} t^{2}}{2!}+\frac{\mu_{3} t^{3}}{3!}+\cdots+\frac{\mu_{k} t^{k}}{k!}+\cdots \\
m_{X}^{\prime}(t) & =\mu_{1}+\frac{\mu_{2}}{2!} 2 t+\frac{\mu_{3}}{3!} 3 t^{2}+\cdots+\frac{\mu_{k} t^{k}}{k!}(k-1) t^{k-1}+\cdots \\
& =\mu_{1}+\frac{\mu_{2}}{1!} t+\frac{\mu_{3}}{2!} t^{2}+\cdots+\frac{\mu_{k} t^{k}}{(k-1)!} t^{k-1}+\cdots
\end{aligned}
$$

and $m_{X}^{\prime}(0)=\mu_{1}$

$$
m_{X}^{\prime \prime}(t)=\mu_{2}+\frac{\mu_{3}}{1!} t+\frac{\mu_{4}}{2!} t^{2}+\cdots+\frac{\mu_{k} t^{k}}{(k-2)!} t^{k-2}+\cdots
$$

and $m_{X}^{\prime \prime}(0)=\mu_{2}$
continuing we find $m_{X}^{(k)}(0)=\mu_{k}$

MGF: Applying Property 3 - Binomial

Property 3 is very useful in determining the moments of a RV X.

Examples:

i) Binomial Dist'n $\quad m_{X}(t)=\left(e^{t} p+1-p\right)^{n}$

$$
\begin{aligned}
& m_{X}^{\prime}(t)=n\left(e^{t} p+1-p\right)^{n-1}\left(p e^{t}\right) \\
& m_{X}^{\prime}(0)=n\left(e^{0} p+1-p\right)^{n-1}\left(p e^{0}\right)=n p=\mu_{1}=\mu
\end{aligned}
$$

$$
m_{X}^{\prime \prime}(t)=n p\left[(n-1)\left(e^{t} p+1-p\right)^{n-2}\left(e^{t} p\right) e^{t}+\left(e^{t} p+1-p\right)^{n-1} e^{t}\right]
$$

$$
=n p e^{t}\left(e^{t} p+1-p\right)^{n-2}\left[(n-1)\left(e^{t} p\right)+\left(e^{t} p+1-p\right)\right]
$$

$$
=n p e^{t}\left(e^{t} p+1-p\right)^{n-2}\left[n e^{t} p+1-p\right]
$$

$m_{X}^{\prime \prime}(0)=n p[n p+1-p]=n p[n p+q]=n^{2} p^{2}+n p q=\mu_{2}$

MGF: Applying Property 3 - Poisson

ii) Poisson Dist'n $m_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$

$$
\begin{aligned}
m_{X}^{\prime}(t) & =e^{\lambda\left(e^{t}-1\right)}\left[\lambda e^{t}\right]=\lambda e^{\lambda\left(e^{t}-1\right)+t} \\
m_{X}^{\prime \prime}(t) & =\lambda e^{\lambda\left(e^{t}-1\right)+t}\left[\lambda e^{t}+1\right]=\lambda^{2} e^{\lambda\left(e^{t}-1\right)+2 t}+\lambda e^{\lambda\left(e^{t}-1\right)+t} \\
m_{X}^{\prime \prime \prime}(t) & =\lambda^{2} e^{\lambda\left(e^{t}-1\right)+2 t}\left[\lambda e^{t}+2\right]+\lambda e^{\lambda\left(e^{t}-1\right)+t}\left[\lambda e^{t}+1\right] \\
& =\lambda^{2} e^{\lambda\left(e^{t}-1\right)+2 t}\left[\lambda e^{t}+3\right]+\lambda e^{\lambda\left(e^{t}-1\right)+t} \\
& =\lambda^{3} e^{\lambda\left(e^{t}-1\right)+3 t}+3 \lambda^{2} e^{\lambda\left(e^{t}-1\right)+2 t}+\lambda e^{\lambda\left(e^{t}-1\right)+t}
\end{aligned}
$$

MGF: Applying Property 3 - Poisson

To find the moments we set $t=0$.

$$
\begin{aligned}
& \mu_{1}=m_{X}^{\prime}(0)=\lambda e^{\lambda\left(e^{0}-1\right)+0}=\lambda \\
& \mu_{2}=m_{X}^{\prime \prime}(0)=\lambda^{2} e^{\lambda\left(e^{0}-1\right)+0}+\lambda e^{\lambda\left(e^{0}-1\right)+0}=\lambda^{2}+\lambda \\
& \mu_{3}=m_{X}^{\prime \prime \prime}(0)=\lambda^{3} e^{0}+3 \lambda^{2} e^{0 t}+\lambda e^{0}=\lambda^{3}+3 \lambda^{2}+\lambda
\end{aligned}
$$

MGF: Applying Property 3 - Exponential

iii) Exponential Dist'n $m_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)$

$$
\begin{aligned}
m_{X}^{\prime}(t) & =\frac{d}{d t}\left(\frac{\lambda}{\lambda-t}\right)=\lambda \frac{d(\lambda-t)^{-1}}{d t} \\
& =\lambda(-1)(\lambda-t)^{-2}(-1)=\lambda(\lambda-t)^{-2}
\end{aligned}
$$

$$
m_{X}^{\prime \prime}(t)=\lambda(-2)(\lambda-t)^{-3}(-1)=2 \lambda(\lambda-t)^{-3}
$$

$$
m_{X}^{\prime \prime \prime}(t)=2 \lambda(-3)(\lambda-t)^{-4}(-1)=2(3) \lambda(\lambda-t)^{-4}
$$

$$
m_{X}^{(4)}(t)=2(3) \lambda(-4)(\lambda-t)^{-5}(-1)=(4!) \lambda(\lambda-t)^{-5}
$$

$$
m_{X}^{(k)}(t)=(k!) \lambda(\lambda-t)^{-k-1}
$$

MGF: Applying Property 3 - Exponential

Thus,

$$
\begin{aligned}
& \mu_{1}=\mu=m_{X}^{\prime}(0)=\lambda(\lambda)^{-2}=\frac{1}{\lambda} \\
& \mu_{2}=m_{X}^{\prime \prime}(0)=2 \lambda(\lambda)^{-3}=\frac{2}{\lambda^{2}} \\
& \mu_{k}=m_{X}^{(k)}(0)=(k!) \lambda(\lambda)^{-k-1}=\frac{k!}{\lambda^{k}}
\end{aligned}
$$

We can calculate the following popular descriptive statistics:

$$
\begin{aligned}
& -\sigma^{2}=\mu_{2}^{0}=\mu_{2}-\mu^{2}=\left(2 / \lambda^{2}\right)-(1 / \lambda)^{2}=(1 / \lambda)^{2} \\
& -\gamma_{1}=\mu_{3}^{0} / \sigma^{3}=\left(2 / \lambda^{3}\right) /\left[(1 / \lambda)^{2}\right]^{3 / 2}=2 \\
& -\gamma_{2}=\mu_{4}^{0} / \sigma^{4}-3=\left(9 / \lambda^{4}\right) /\left[(1 / \lambda)^{4}\right]-3=6
\end{aligned}
$$

MGF: Applying Property 3 - Exponential

Note: The moments for the exponential distribution can be calculated in an alternative way. This is done by expanding $m_{X}(t)$ in powers of t and equating the coefficients of t^{k} to the coefficients in:

$$
\begin{aligned}
\mu_{X}(t)=1+\mu_{1} t+\frac{\mu_{2} t^{2}}{2!}+\frac{\mu_{3} t^{3}}{3!} & +\cdots+\frac{\mu_{k} t^{k}}{k!}+\cdots \\
m_{X}(t)=\frac{\lambda}{\lambda-t}=\frac{1}{1-t / \lambda}=\frac{1}{1-u} & =1+u+u^{2}+u^{3}+\cdots \\
& =1+\frac{t}{\lambda}+\frac{t^{2}}{\lambda^{2}}+\frac{t^{3}}{\lambda^{3}}+\cdots
\end{aligned}
$$

Equating the coefficients of t^{k} we get:

$$
\frac{\mu_{k}}{k!}=\frac{1}{\lambda^{k}} \text { or } \mu_{k}=\frac{k!}{\lambda^{k}}
$$

MGF: Applying Property 3 - Normal

iv) Standard normal distribution $\quad m_{\mathrm{X}}(t)=\exp \left(t^{2} / 2\right)$

We use the expansion of e^{μ}.

$$
\begin{aligned}
& e^{u}=1+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\cdots+\frac{u^{k}}{k!}+\cdots \\
& e^{u}=1+\left(\frac{t^{2}}{2}\right)+\frac{\left(\frac{t^{2}}{2}\right)^{2}}{2!}+\frac{\left(\frac{t^{2}}{2}\right)^{3}}{3!}+\cdots+\frac{\left(\frac{t^{2}}{2}\right)^{k}}{k!}+\cdots \\
& e^{u}=1+\frac{1}{2} t^{2}+\frac{1}{2^{2} 2!} t^{4}+\frac{1}{2^{3} 3!} t^{6}+\cdots+\frac{1}{2^{k} k!} 2^{2 k}+\cdots
\end{aligned}
$$

We now equate the coefficients t^{k} in:

$$
m_{X}(t)=1+\mu_{1} t+\frac{\mu_{2} t^{2}}{2!}+\frac{\mu_{3} t^{3}}{3!}+\cdots+\frac{\mu_{k} t^{k}}{k!}+\cdots+\frac{\mu_{2 k} t^{2 k}}{(2 k)!}+\ldots
$$

MGF: Applying Property 3 - Normal

If k is odd: $\quad \mu_{k}=0$.

For even $2 k: \quad \frac{\mu_{2 k}}{(2 k)!}=\frac{1}{2^{k} k!}$

$$
\text { or } \quad \mu_{2 k}=\frac{(2 k)!}{2^{k} k!}
$$

Thus $\mu_{1}=0, \mu_{2}=\frac{2!}{2}=1, \mu_{3}=0, \mu_{4}=\frac{4!}{2^{2}(2!)}=3$

The log of Moment Generating Functions

Let $l_{X}(t)=\ln m_{X}(t)=$ the \log of the MGF.
Then $\quad l_{X}(0)=\ln m_{X}(0)=\ln 1=0$
$l_{X}^{\prime}(t)=\frac{1}{m_{X}(t)} m_{X}^{\prime}(t)=\frac{m_{X}^{\prime}(t)}{m_{X}(t)} \quad l_{X}^{\prime}(0)=\frac{m_{X}^{\prime}(0)}{m_{X}(0)}=\mu_{1}=\mu$
$l_{X}^{\prime \prime}(t)=\frac{m_{X}^{\prime \prime}(t) m_{X}(t)-\left[m_{X}^{\prime}(t)\right]^{2}}{\left[m_{X}(t)\right]^{2}}$
$l_{X}^{\prime \prime}(0)=\frac{m_{X}^{\prime \prime}(0) m_{X}(0)-\left[m_{X}^{\prime}(0)\right]^{2}}{\left[m_{X}(0)\right]^{2}}=\mu_{2}-\left[\mu_{1}\right]^{2}=\sigma^{2}$

The Log of Moment Generating Functions

Thus $l_{X}(t)=\ln m_{X}(t)$ is very useful for calculating the mean and variance of a random variable

1. $l_{X}^{\prime}(0)=\mu$
2. $l_{X}^{\prime \prime}(0)=\sigma^{2}$

Log of MGF: Examples - Binomial

1. The Binomial distribution (parameters p, n)

$$
\begin{gathered}
m_{X}(t)=\left(e^{t} p+1-p\right)^{n}=\left(e^{t} p+q\right)^{n} \\
l_{X}(t)=\ln m_{X}(t)=n \ln \left(e^{t} p+q\right) \\
l_{X}^{\prime}(t)=n \frac{1}{e^{t} p+q} e^{t} p \quad \mu=l_{X}^{\prime}(0)=n \frac{1}{p+q} p=n p \\
l_{X}^{\prime \prime}(t)=n \frac{e^{t} p\left(e^{t} p+q\right)-e^{t} p\left(e^{t} p\right)}{\left(e^{t} p+q\right)^{2}} \\
\sigma^{2}=l_{X}^{\prime \prime}(0)=n \frac{p(p+q)-p(p)}{(p+q)^{2}}=n p q
\end{gathered}
$$

Log of MGF: Examples - Poisson

2. The Poisson distribution (parameter λ)

$$
\begin{aligned}
& m_{X}(t)=e^{\lambda\left(e^{t}-1\right)} \\
& l_{X}(t)=\ln m_{X}(t)=\lambda\left(e^{t}-1\right) \\
& l_{X}^{\prime}(t)=\lambda e^{t} \quad \mu=l_{X}^{\prime}(0)=\lambda \\
& l_{X}^{\prime \prime}(t)=\lambda e^{t} \quad \sigma^{2}=l_{X}^{\prime \prime}(0)=\lambda
\end{aligned}
$$

Log of MGF: Examples - Exponential

3. The Exponential distribution (parameter λ)

$$
\left.\begin{array}{l}
m_{X}(t)=\left\{\begin{array}{cc}
\frac{\lambda}{\lambda-t} & t<\lambda \\
\text { undefined } & t \geq \lambda
\end{array}\right. \\
l_{X}(t)=\ln m_{X}(t)=\ln \lambda-\ln (\lambda-t) \text { if } t<\lambda
\end{array}\right\} \begin{aligned}
& l_{X}^{\prime}(t)=\frac{1}{\lambda-t}=(\lambda-t)^{-1} \\
& l_{X}^{\prime \prime}(t)=-1(\lambda-t)^{-2}(-1)=\frac{1}{(\lambda-t)^{2}}
\end{aligned}
$$

Thus $\mu=l_{X}^{\prime}(0)=\frac{1}{\lambda}$ and $\sigma^{2}=l_{X}^{\prime \prime}(0)=\frac{1}{\lambda^{2}}$

Log of MGF: Examples - Normal

4. The Standard Normal distribution $(\mu=0, \sigma=1)$

$$
\begin{aligned}
& m_{X}(t)=e^{\frac{t^{2}}{2}} \\
& l_{X}(t)=\ln m_{X}(t)=\frac{t^{2}}{2} \\
& l_{X}^{\prime}(t)=t, \quad l_{X}^{\prime \prime}(t)=1
\end{aligned}
$$

Thus $\mu=l_{X}^{\prime}(0)=0$ and $\sigma^{2}=l_{X}^{\prime \prime}(0)=1$

Log of MGF: Examples - Gamma

5. The Gamma distribution (parameters α, λ)

$$
\begin{aligned}
& m_{X}(t)=\left(\frac{\lambda}{\lambda-t}\right)^{\alpha} \\
& l_{X}(t)=\ln m_{X}(t)=\alpha[\ln \lambda-\ln (\lambda-t)] \\
& l_{X}^{\prime}(t)=\alpha\left[\frac{1}{\lambda-t}\right]=\frac{\alpha}{\lambda-t} \\
& l_{X}^{\prime \prime}(t)=\alpha(-1)(\lambda-t)^{-2}(-1)=\frac{\alpha}{(\lambda-t)^{2}}
\end{aligned}
$$

Hence $\mu=l_{X}^{\prime}(0)=\frac{\alpha}{\lambda}$ and $\sigma^{2}=l_{X}^{\prime \prime}(0)=\frac{\alpha}{\lambda^{2}}$

Log of MGF: Examples - Chi-squared

6. The Chi-square distribution (degrees of freedom v)

$$
\begin{gathered}
m_{X}(t)=(1-2 t)^{-\frac{v}{2}} \\
l_{X}(t)=\ln m_{X}(t)=-\frac{v}{2} \ln (1-2 t) \\
l_{X}^{\prime}(t)=-\frac{v}{2} \frac{1}{1-2 t}(-2)=\frac{v}{1-2 t} \\
l_{X}^{\prime \prime}(t)=v(-1)(1-2 t)^{-2}(-2)=\frac{2 v}{(1-2 t)^{2}}
\end{gathered}
$$

Hence $\mu=l_{X}^{\prime}(0)=v$ and $\sigma^{2}=l_{X}^{\prime \prime}(0)=2 v$

Characteristic functions

Definition: Characteristic Function

Let X denote a random variable. Then, the characteristic function of X, $\varphi_{X}(t)$ is defined by:

$$
\varphi_{X}(t)=E\left(e^{i t x}\right)
$$

Since $\mathrm{e}^{i t x}=\cos (x t)+i \sin (x t)$ and $\left\|e^{i t x}\right\| \leq 1$, then $\varphi_{X}(t)$ is defined for all t. Thus, the characteristic function always exists, but the MGF need not exist.

Relation to the MGF: $\varphi_{X}(t)=\mathrm{m}_{\mathrm{iX}}(t)=\mathrm{m}_{X}(i t)$
Calculation of moments: $\left.\quad \frac{\partial^{k} \varphi_{X}(t)}{\partial t}\right|_{t=0}=i^{k} \mu_{k}$

