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Chapter 3 
Moments of a Distribution

(for private use, not to be posted/shared online)

We develop the expectation operator in terms of the Lebesgue integral. 

• Recall that the Lebesgue measure λ(A) for some set A gives the 
length/area/volume of the set A. If A = (3; 7), then λ(A) =|3 -7|= 4.

• The Lebesgue integral of f  on [a,b] is defined in terms of Σi yi λ(Ai),

where 0 = y1 ≤ y2 ≤ ... ≤ yn, Ai = {x : yi ≤ f (x) < yi+1}, and λ(Ai) is the 
Lebesgue measure of the set Ai. 

• The value of the Lebesgue integral is the limit as the yi's are pushed 
closer together. That is, we break the y-axis into a grid using {yn} and 
break the x-axis into the corresponding grid {An} where

Ai = {x : f (x) є [yi; yi+1)}. 

Expectation
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Taking expectations: Riemann vs Lebesgue

• Riemann’s approach
Partition the base. Measure the height of  the function at the center of  
each interval. Calculate the area of  each interval. Add all intervals.
• Lebesgue approach
Divide the range of  the function. Measure the length of  each 
horizontal interval. Calculate the area of  each interval. Add all  
intervals.

• A Borel function (RV) f is integrable if  and only if  |f| is integrable.

• For convenience, we define the integral of  a measurable function f
from (Ω, Σ , μ) to ( ¯R, ¯ B), where ¯R = R U {−∞, ∞}, ¯ B = σ(B 
U{{∞}, {−∞}}).

Example: If  Ω = R and μ is the Lebesgue measure, then the 
Lebesgue integral of  f  over an interval [a, b] is written as 

∫[a,b] f(x) dx = ∫ab f(x) dx, 
which agrees with the Riemann integral when the latter is well defined.

However, there are functions for which the Lebesgue integrals are 
defined but not the Riemann integrals.

• If  μ=P, in statistics, ∫ X dP = EX = E[X] is called the expectation or 
expected value of  X.

Taking expectations: Riemann vs Lebesgue
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Consider our probability space (Ω, Σ, P) . Take an event (a set A of ω є
Ω) and X, a RV, that assigns real numbers to each ω є A. 

• If we take an observation from A without knowing which ω є A will 
be drawn, we may want to know what value of X(ω) we should expect to 
see. 

• Each of the ω є A has been assigned a probability measure P[ω], 
which induces P[x]. Then,  we use this to weight the values X(ω). 

• P is a probability measure: The weights sum to 1. The weighted sum 
provides us with a weighted average of X (ω). If P  gives the "correct" 
likelihood of ω being chosen, the weighted average of X(ω) –E[X]–
tells us what values of X(ω) are expected.

Expected Value

• Now with the concept of the Lebesgue integral, we take the possible 
values {xi} and construct a grid on the y-axis, which gives a 
corresponding grid on the x-axis in A, where 

Ai = {ω є A: X(ω) ∈ [xi; xi+1)}.

Let the elements in the x-axis grid be Ai. The weighted average is
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• As we shrink the grid towards 0, A, becomes infinitesimal. Let dω be 
the infinitesimal set A. The Lebesgue integral becomes:
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Expected Value
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Definition
Let X denote a discrete RV with probability function p(x) (probability 
density function f(x) if X is continuous), then the expected value of X, 
E(X) is defined to be:

     i i
x i

E X xp x x p x  

   E X xf x d x




 

and if  X is continuous with probability density function f(x)

The Expectation of X: E(X)

The expectation operator defines the mean (or population average) of  
a random variable or expression.

Sometimes we use E[.] as EX[.] to indicate that the expectation is being 
taken over f X(x) dx.
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Interpretation of E(X)

1. The expected value of X, E(X), is the center of gravity of the 
probability distribution of X.

2. The expected value of X, E(X), is the long-run average value of X. 
(To be discussed later: Law of Large Numbers)

E(X)
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Example: The Binomial distribution 
Let X be a discrete random variable having the Binomial distribution --
i.e., X = the number of successes in n independent repetitions of a 
Bernoulli trial. Find the expected value of X, E(X).
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Example: Solution
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Example: Solution

⋯

⋯

Example: Exponential Distribution

Let X have an exponential distribution with parameter . The 
probability density function of  X is:

  0

0 0

xe x
f x
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The expected value of  X is:

   
0

xE X xf x dx x e dx
 





  

We will determine

udv uv vdu  

xx e dx 
using integration by parts
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We will determine xx e dx  using integration by parts.

In this case     and  xu x dv e dx  

Hence     and  xdu dx v e   

Thus   x x xx e dx xe e dx        
1

 x xxe e 
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Summary: If  X has an exponential distribution with parameter  then:

  1
E X




Example: Exponential Distribution

Example: The Uniform Distribution

Suppose X has a uniform distribution from a to b.

Then:
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The expected value of  X is:
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Example: The Normal Distribution

Suppose X has a Normal distribution with parameters  and .

Then:
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The expected value of   X is:
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Make the substitution:
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Example: The Normal Distribution

The second integral is an example of  an odd function. Recall that an 
odd function gives: 

𝑓 𝑥 𝑓 𝑥 . Then, 𝑓 𝑥 𝑑𝑥 0.
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Example: The Gamma Distribution

Suppose X has a Gamma distribution with parameters  and .

Then:
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Note:

This is a very useful formula when working with the Gamma 
distribution.
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The expected value of   X is:
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Example: The Gamma Distribution
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Thus, if  X has a Gamma ( ,) distribution, the expected value of   X 
is: 

E(X) =  /

Special Cases: ( ,) distribution then the expected value of   X is:

1. Exponential () distribution:  = 1,  arbitrary

  1
E X




2. Chi-square () distribution:  = /2,  = ½.
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E X


 

Example: The Gamma Distribution
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Example: The Gamma Distribution
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Example: The Gamma Distribution - Exponential
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Example: The Gamma Distribution - Chi-square
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• Let X denote a discrete RV with probability function p(x), then the 
expected value of g(X), E[g(X)], is defined to be:

         i i
x i

E g X g x p x g x p x      

     E g X g x f x dx




    

and if  X is continuous with probability density function f(x)

Expectation of  a function of  a RV

Examples: g(x) = (x – μ)2  E[g(x)] = E[(x – μ)2] 
g(x) = (x – μ)k  E[g(x)] = E[(x – μ)k] 

Example: Suppose X has a uniform distribution from 0 to b. Then:
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Find the expected value of   A = X2 . 

If  X is the length of  a side of  a square (chosen at random form 0 to b) 
then A is the area of  the square
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= 1/3  the maximum area of  the square

Expectation of  a function of  a RV
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• A median is described as the numeric value separating the higher half  
of  a sample, a population, or a probability distribution, from the lower 
half. 

Definition: Median

The median of  a random variable X is the unique number m that satisfies

the following inequalities:

P(X ≤ m) ≥ ½ and P(X ≥  m) ≥ ½.

For a continuous distribution, we have that m solves:

2/1)()(  


 m

X

m

X dxxfdxxf

Median:  An alternative central measure

• Calculation of  medians is a popular technique in summary statistics 
and summarizing statistical data, since it is simple to understand and 
easy to calculate, while also giving a measure that is more robust in the 
presence of  outlier values than is the mean. 

An optimality property

A median is also a central point which minimizes the average of  the 
absolute deviations. That is, a value of  c that minimizes

E(|X – c|)

is the median of  the probability distribution of  the random variable X.

Median:  An alternative central measure
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Example I: Median of the Exponential Distribution

Let X have an exponential distribution with parameter . The 
probability density function of  X is:
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The median m solves the following integral of  X:
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That is, 𝑚 = ln(2)/λ.

Example II: Median of the Pareto Distribution

Let X follow a Pareto distribution with parameters α (scale) and xs

(shape, usually notated xm). The pdf of  X is:

The median m solves the following integral of  X: 2/1)( 
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Note: The Pareto distribution is used to describe the distribution of  
wealth.
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The moments of a random variable X are used to describe the behavior 
of the RV (discrete or continuous). 

Definition: 𝑘th Moment

Let X be a RV (discrete or continuous), then the 𝑘th moment of X is:

 kk E X 

 

 
-

if  is discrete

if  is continuous

k

x

k

x p x X

x f x dx X





 







• The first moment of  X,  = 1 = E(X) is the center of  gravity of  the 
distribution of  X.  

• The higher moments give different information regarding the shape of  
the distribution of  X.

Moments of  a Random Variable

Definition: Central Moments

Let X be a RV (discrete or continuous). Then, the kth central moment of  
X is defined to be:

 0 k

k E X    
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if  is continuous
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x
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x p x X
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where  = 1 = E(X) = the first moment of  X .

• The central moments describe how the probability distribution is 
distributed about the center of  gravity, .

Moments of  a Random Variable
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The second central moment depends on the spread of the 
probability distribution of X about It is called the variance of X 
and is denoted by the symbol var(X).

= 2nd central moment. 20
2 E X    

 20
2 E X    

is called the standard deviation of  X and 
is denoted by the symbol .

   20 2
2var X E X       

The first central moments is given by: 

 0
1 E X  

Moments of  a Random Variable – 1st and 2nd

• The third central moment: 𝜇 𝐸 𝑋 𝜇

𝜇 contains information about the skewness of  a distribution.

• A popular measure of  skewness: 𝛾

Moments of  a Random Variable – Skewness

• Distribution according to skewness:
1) Symmetric distribution

𝜇 0, 𝛾 0
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2) Positively skewed distribution

Moments of  a Random Variable – Skewness

3) Negatively skewed distribution
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Moments of  a Random Variable – Skewness

• Skewness and Economics
- Zero skew means symmetrical gains and losses. 
- Positive skew suggests many small losses and few rich returns. 
- Negative skew indicates lots of  minor wins offset by rare major losses. 

• In financial markets, stock returns at the firm level show positive 
skewness, but at stock returns at the aggregate (index) level show 
negative skewness. 

• From horse race betting and from U.S. state lotteries there is evidence 
supporting the contention that gamblers are not necessarily risk-lovers 
but skewness-lovers: Long shots are overbet (positve skewness loved!).
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• The fourth central moment: 𝜇 𝐸 𝑋 𝜇

𝜇 is a measure of  the shape of  a distribution. The property of  shape 

measured by this moment is called kurtosis, usually estimated by  = .

• The measure of  (excess) kurtosis: 𝛾 = 3 = 3

• Distributions:

1) Mesokurtic distribution (𝛾 0 or =3, like the normal distribution)

Moments of  a Random Variable – Kurtosis

2) Platykurtic distribution (𝛾 0, 𝜇 small in size)

Moments of  a Random Variable – Kurtosis

3) Leptokurtic distribution (𝛾 0, 𝜇 large in size, usual shape)
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• Typical financial returns series has 𝛾 0. Below, I simulate a series 
with 𝜇=0, 𝜎=1, 𝛾 =0 & kurtosis = 6 (𝛾 =3), overlaid with a standard 
normal distribution. Fat tails are seen on both sides of the distribution.

37

fat tail fat tail 

Moments of  a Random Variable – Kurtosis

Example:  The uniform distribution from 0 to 1
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Finding the moments

Finding the central moments:

     
1

0 1
2

0

1
kk

k x f x dx x dx 




    

Moments of  a Random Variable
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Example (continuation): Finding the central moments (continuation)
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Moments of  a Random Variable

Thus,
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The measure of  skewness: 𝛾 = 0

The measure of  kurtosis: 𝛾 = 3 = 
/ 3 1.2

Moments of  a Random Variable
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Alternative measures of  dispersion
When the median is used as a central measure for a distribution, there are 
several choices for a measure of  variability:

- The range –-the length of  the smallest interval containing the data

- The interquartile range -the difference between the 3rd and 1st quartiles.

- The mean absolute deviation – (1/n)Σi |xi – central measure(X)|

- The median absolute deviation (MAD) – MAD= mi(|xi - m(X)|)

These measures are more robust (to outliers) estimators of  scale than the 
sample variance or standard deviation. 

They especially behave better with distributions without a mean or 
variance, such as the Cauchy distribution. 

• We will derive the rules for the continuous case, with X has a pdf 
𝑓 𝑥 . Proof are similar for the discrete case. That is, we define E[X] as

E[𝑔 𝑥 ] = 𝑔 𝑥 𝑓 𝑥 𝑑𝑥

- Rule 1. E[𝑐] = 𝑐, where c is a constant.

Proof: 𝑔 𝑥  = 𝑐

Then, E[g(X)] = E[𝑐] = 𝑐 𝑓 𝑥 𝑑𝑥 𝑐 𝑓 𝑥 𝑑𝑥  𝑐

- Rule 2. E[𝑐 + 𝑑X] = 𝑐 + 𝑑 E[X], where c & d are constants.

Proof: 𝑔 𝑥 = 𝑐 + 𝑑X

Then, E[g(X)] = E[𝑐 + 𝑑X] = 𝑐 𝑑𝑥  𝑓 𝑥 𝑑𝑥

𝑐 𝑓 𝑥 𝑑𝑥 𝑑 𝑥 𝑓 𝑥 𝑑𝑥 

=  𝑐 + 𝑑 E[X

Review – Rules for Expectations
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Review – Rules for Expectations

- Rule 3. Var[X] = 𝜇 𝐸 𝑋 𝜇 = 𝐸 𝑋 - 𝐸 𝑋 = 𝜇 𝜇

Proof: 𝑔 𝑥 𝑥 𝜇

Var[X] = 𝐸 𝑋 𝜇 = 𝑥 𝜇 𝑓 𝑥 𝑑𝑥

= 𝑥 2𝑥𝜇 𝜇 𝑓 𝑥 𝑑𝑥

= 𝑥 𝑓 𝑥 𝑑𝑥 2𝑥𝜇𝑓 𝑥 𝑑𝑥 + 𝜇 𝑓 𝑥 𝑑𝑥

= 𝑥 𝑓 𝑥 𝑑𝑥  2𝜇 𝑥𝑓 𝑥 𝑑𝑥 +𝜇 𝑓 𝑥 𝑑𝑥
= 𝐸 𝑋 2 𝜇 𝐸 𝑋 + 𝜇 = 𝜇 𝜇

Proof:

   2
var aX baX b E aX b  

     

  2
E aX b a b      

 22E a X    

   22 2 vara E X a X    

   aX b E aX b aE X b a b       

Rules for Expectations

- Rule 4. 𝑉𝑎𝑟 𝑎𝑋 𝑏 = 𝑎  𝑉𝑎𝑟 𝑋
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Rules for Expectations for Vectors & Matrices

• Let 𝒁 be a random vector of  𝑘 random variables: 𝑍 , 𝑍 , …, 𝑍 . We 
have a similar definition for 𝑾

- Expected value of  𝒁:

 𝒁
𝐸 𝑍
⋮

𝐸 𝑍

- Expected value of  a linear function of  random vectors. Let 𝑎 & 𝑏 be 
non-random scalars. Then:

 𝑎𝒁 𝑏𝑾 = 𝑎  𝒁 𝑏  𝑾

- Variance of 𝒁: Var[𝒁]  = E[𝒁 𝒁′] - E[𝒁] E[𝒁]′ (𝑘 x 𝑘)

Rules for Expectations for Vectors & Matrices

- Variance of  linear function of  𝒁:
Var[𝑎 + 𝑏𝒁]  = 𝑏2 Var[𝒁]

- Variance of  linear function of  𝒁, with a comformable non-random 
matrix A:

Var[A 𝒁]  = A Var[𝒁] A′

- Expected value of a quadratic form 𝒁′ A 𝒁:
E[𝒁′ A 𝒁] = E[𝒁]′ A E[𝒁] – trace(A Var[𝒁]) (1 x 1)

Derivation: Use properties of  trace and expectations: 
E[𝒁′ A 𝒁] = E[tr(A𝒁𝒁′)] = tr(E[(A𝒁𝒁′)])

= tr(A E[𝒁𝒁′]) = tr(A (Var[𝒁]  + E[𝒁] E[𝒁]′)
= tr(A (Var[𝒁]) + tr(E[𝒁]′ A E[𝒁])
= tr(A (Var[𝒁]) + E[𝒁]′ A E[𝒁]
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Definition: Moment Generating Function (MGF)

Let X denote a random variable. Then, the moment generating function of X,  
mX(t), is defined by:

-

 
   

   

if  is discrete

if  is continuous
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g x p x X

E g X
g x f x dx X






    







The expectation of  a function g(X) is given by:
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Moment generating functions
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MGF: Examples
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The MGF of  X , mX(t) is:

1. The Binomial distribution (parameters p, n)
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The MGF of  X , mX(t) is:

2. The Poisson distribution (parameter )
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MGF: Examples

⋯
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The MGF of  X , mX(t) is:

3. The Exponential distribution (parameter )
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The MGF of  X , mX(t) is:

4. The Standard Normal distribution ( = 0,  = 1)
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We will now use the fact that
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the square
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This is 1

MGF: Examples
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The MGF of  X , mX(t) is:

4. The Gamma distribution (parameters , )
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We use the fact
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MGF: Examples

    21 2Xm t t
 

The Chi-square distribution with degrees of  freedom =/2, =½):

1. mX(0) = 1

         0,   hence  0 1 1tX X
X Xm t E e m E e E   

 v)   G am m a D ist'n    Xm t
t




    

 
2

2iv)   S td  N orm al  D ist'n    
t

Xm t e

 iii)   E xponential D ist'n    Xm t
t




    

   1
ii)  P oisson D ist'n   

te

Xm t e
 



   i)     B inom ial D ist'n     1
nt

Xm t e p p  

Note: The MGFs of  the following distributions satisfy the property 
mX(0) = 1

MGF: Properties
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2.

We use the expansion of  the exponential function:

   tX
Xm t E e

MGF: Properties
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X X kk
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Now

  1and  0Xm  

  2and  0Xm  
   continuing we find  0k
X km 

MGF: Properties
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   i)     B inom ial D ist'n     1
nt

Xm t e p p  

Property 3 is very useful in determining the moments of  a RV X.

Examples:
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nt t
Xm t n e p p pe
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MGF: Applying Property 3 – Binomial
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ii)  Poisson Dist'n  
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MGF: Applying Property 3 – Poisson
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   0 1 0

1 0
e

Xm e
     

     0 01 0 1 02 2
2 0

e e
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  3 0 2 0 0 3 2
3 0 3 3t
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To find the moments we set t = 0.

MGF: Applying Property 3 – Poisson

 iii)   Exponential D ist'n   Xm t
t
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MGF: Applying Property 3 – Exponential
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MGF: Applying Property 3 – Exponential

Thus,

We can calculate the following popular descriptive statistics:

- σ2 = μ0
2 = μ2 – μ2 = (2/λ2) – (1/λ)2 = (1/λ)2 

- γ1= μ0
3 /σ3 = (2/λ3) / [(1/λ)2]3/2 = 2

- γ2= μ0
4/σ4 – 3 = (9/λ4) / [(1/λ)4] – 3 = 6

Note: The moments for the exponential distribution can be calculated 
in an alternative way.  This is done by expanding mX(t) in powers of  t 
and equating the coefficients of  tk to the coefficients in:

  2 31 1
1

11
Xm t u u u

tt u


 

       
 



2 3

2 3
1

t t t

  
    

Equating the coefficients of  tk  we get:
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iv) Standard normal distribution mX(t) = exp(t2/2)

We use the expansion of eu.

We now equate the coefficients tk in:

MGF: Applying Property 3 – Normal

If k is odd: k = 0.

 
2 1

2 ! 2 !
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kk k


For even 2k:
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2 !
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2 !k k
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 1 2 3 4 2

2! 4!
Thus     0, 1, 0, 3

2 2 2!
        

MGF: Applying Property 3 – Normal
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Let  lX (t) = ln mX(t) = the log of the MGF.

   T hen      0 ln 0 ln 1 0X Xl m  

The log of  Moment Generating Functions
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X X
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2 12

0 0 0
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Thus lX (t) = ln mX(t) is very useful for calculating the mean and 
variance of a random variable

  1.       0Xl  

  2 2.      0Xl  

The Log of  Moment Generating Functions
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Log of MGF: Examples – Binomial

1. The Binomial distribution (parameters p, n)
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n nt t

Xm t e p p e p q    
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2. The Poisson distribution (parameter )
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Log of MGF: Examples – Poisson
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3. The Exponential distribution (parameter )
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Log of MGF: Examples – Exponential

4. The Standard Normal distribution ( = 0,  = 1)
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Log of MGF: Examples – Normal
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5. The Gamma distribution (parameters , )
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Log of  MGF: Examples – Gamma

6. The Chi-square distribution (degrees of  freedom )

    21 2Xm t t
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Log of  MGF: Examples – Chi-squared
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Since eitx = cos(xt) + i sin(xt)  and ║eitx║≤ 1, then φX(t) is defined for all 
t. Thus, the characteristic function always exists, but the MGF need not 
exist.

Relation to the MGF: φX(t) = miX(t) = mX(it) 

Calculation of moments:

Characteristic functions

Definition: Characteristic Function

Let X denote a random variable. Then, the characteristic function of  X, 
φX(t) is defined by:

)()( itx
X eEt 
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t
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