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Chapter 1

Probability Theory: 
Introduction

© 2023. R Susmel (for private use, not to be posted/shared online)

Basic Probability – General

• In a probability space (Ω, Σ, P), the set Ω is the set of all possible 
outcomes of a “probability experiment”. Mathematically, Ω is just a 
set, with elements ω. It is called the sample space.

• An event is the answer to a Yes/No question. Equivalently, an event 
is a subset of the probability space: A ∈ Ω. Think of A as the set of 
outcomes where the answer is “Yes”, and Ac is the complementary 
set where the answer is “No”.

• A σ-algebra is a mathematical model of a state of partial knowledge 
about the outcome. Informally, if Σ is a σ-algebra and A ∈ Ω , we 
say that A ∈ Σ if we know whether ω ∈ A or not.
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Definitions – Algebra

• We want to put some structure in the sets (data) we work. We would 
like to be able to measures the sets and be able to easily manipulate 
them (algebraically).

Definitions: Algebra

A collection of sets F is called an algebra if it satisfies: 

• Ø ∈ F.

• If ω1 ∈ F, then ω1
C ∈ F. (F is closed under complementation)

• If ω1 ∈F & ω2 ∈ F, then ω1 ∪ ω2 ∈ F.  (F is closed under finite 
unions).

Note: The set E = {{Φ},{a},{b},{a,b}} is an algebra.

Definitions: Sigma-algebra

Definition: Sigma-algebra

A sigma-algebra (σ-algebra or σ-field) F is a set of subsets ω of Ω s.t.:

• Ø ∈ F.

• If ω∈ F, then ωC ∈ F. (ωC = complement of ω)

• If ω1, ω2,…, ωn,… ∈ F, then, 𝑈 ω ∈F (ω1i’s are countable)

Note: The set E = {{Φ},{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}} is an 
algebra and a σ-algebra.

σ-algebras are a subset of algebras in the sense that all σ-algebras are 
algebras, but not vice versa. Algebras only require that they be closed 
under pairwise unions while σ-algebras must be closed under countably
infinite unions.
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Theorem: 

All σ-algebras are algebras.

• Sigma algebras can be generated from arbitrary sets. This will be 
useful in developing the probability space.

Theorem:

For some set X, the intersection of all σ-algebras, Ai, containing

X −that is, x ∈X  x ∈ Ai for all i− is itself a σ-algebra, denoted σ(X).

 This is called the σ-algebra generated by X.

Sigma-algebra

Sample Space, Ω

Definition: Sample Space

The sample space Ω is the set of all possible unique outcomes of the 
experiment at hand.

Example: If we roll a die, Ω = {1; 2; 3; 4; 5; 6}.

In the probability space, the σ-algebra we use is σ(Ω), the σ-algebra 
generated by Ω. Thus, take the elements of  Ω and generate the 
"extended set" consisting of all unions, compliments, compliments of 
unions, unions of compliments, etc. Include Φ; with this "extended set" 
and the result is σ (Ω), which we denote as Σ.

Definition The σ-algebra generated by Ω, denoted Σ, is the collection 
of possible events from the experiment at hand.
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Definition The σ-algebra generated by Ω, denoted Σ, is the collection 
of possible events from the experiment at hand.

Example: We have an experiment with Ω = {1, 2}. Then, 

Σ = {{Φ},{1},{2},{1,2}}. Each of the elements of Σ is an event. Think 
of events as descriptions of experiment outcomes (Φ: the “nothing 
occurs” event).

Note that σ-algebras can be defined over the real line as well as over 
abstract sets. To develop this notion, we need the concept of a topology.

Note: There are many definitions of topology based on the concepts of 
neighborhoods, open sets, closed set, etc. We present the definition 
based on open sets.

(Ω, Σ)

Definition (via open sets):  

A topological space is an ordered pair (X, τ), where X is a set and τ is a 
collection of subsets of X, satisfying:

1. Ø; X ∈ τ

2. τ is closed under finite intersections.

3. τ is closed under arbitrary unions.

Any element of a topology is known as an open set. The collection τ is 
called a topology on X.

Example: We have an experiment with Ω = {1, 2, 3}. Then, 

τ = {{Ø}, {1,2,3}} is a (trivial) topology on Ω. 

τ = {{Ø}, {1}, {1,2,3}} is also a topology on Ω.  

τ = {{Ø}, {1,2}, {2,3}, {1,2,3}} is NOT a topology on Ω.  

Topological Space



RS – Chapter 1 – Random Variables 4/8/2024

5

Definition: Borel σ-algebra (Emile Borel (1871-1956), France.)

The Borel σ-algebra (or, Borel field) denoted B, of the topological space (X; 
τ) is the σ-algebra generated by the family τ of open sets. Its elements 
are called Borel sets.

Lemma: Let C = {(a; b): a < b}. Then σ(C) = BR is the Borel field 
generated by the family of all open intervals C.

What do elements of BR look like? Take all possible open intervals. 
Take their compliments. Take arbitrary unions. Include Ø and R. BR

contains a wide range of intervals including open, closed, and half-open 
intervals. It also contains disjoint intervals such as {(2; 7] U (19; 32)}. It 
contains (nearly) every possible collection of intervals that are imagined.

Borel σ-algebra

Definition: Measurable Space 

A pair (X, Σ) is a measurable space if X is a set and Σ is a nonempty σ-
algebra of subsets of X.

A measurable space allows us to define a function that assigns real-
numbered values to the abstract elements of Σ.

Definition: Measure μ

Let (X, Σ) be a measurable space. A set function μ defined on Σ is 
called a measure iff it has the following properties.

1. 0 ≤ μ(A) ≤ ∞ for any A ∈ Σ.

2. μ(Φ) = 0.

3. (σ-additivity). For any sequence of pairwise disjoint sets {𝐴 }∈Σ
such that Un=1 𝐴 ∈Σ, we have μ 𝑈 𝐴 ∑ μ 𝐴  

Measures
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Intuition: A measure on a set, S, is a systematic way to assign a positive 
number to each suitable subset of that set, intuitively interpreted as its 
size. In this sense, it generalizes the concepts of length, area, volume.

0

∞

Examples (of  measures):
- Counting measure: μ(S) = number of  elements in S.
- Lebesgue measure on R: μ(S) = conventional length of  S.

That is, if  S = [a,b]  μ(S) = λ[a,b] = b − a.

Measures

S

• Note: A measure μ may take ∞ as its value. Rules:

(1) For any x ∈R, ∞ + x = ∞, x * ∞ = ∞ if x > 0, x * ∞ = −∞ if x < 0, 

and 0 * ∞ = 0;

(2) ∞ + ∞ = ∞;

(3) ∞ * a = ∞ for any a > 0;

(4) ∞ − ∞  or  ∞/∞  are not defined.

Definition: Measure Space 

A triplet (X, Σ, μ) is a measure space if (X, Σ) is a measurable space and 
μ: Σ → [0; ∞) is a measure.

• If μ(X) = 1, then μ is a probability measure, which we usually use 
notation P, and the measure space is a probability space.

Measures & Measure Space
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• There is a unique measure λ on (R, BR) that satisfies 

λ([a, b]) = b − a

for every finite interval [a, b], −∞ < a ≤ b < ∞. This is called the 
Lebesgue measure. 

If we restrict λ to the measurable space ([0, 1], B[0,1]), then λ is a 
probability measure.

Examples:

- Any Cartesian product of the intervals [a, b] x [c, d] is Lebesgue 
measurable, and its Lebesgue measure is λ = (b − a)*(d − c).

- λ([set of rational numbers in an interval of R]) = 0. 

Note: Not all sets are Lebesgue measurable. See Vitali sets.

Lebesgue Measure

Definition: Measure Zero

A (μ-)measurable set E is said to have (μ-)measure zero if μ(E) = 0.

Examples: The singleton points in Rn, and lines and curves in Rn, n
≥2. By countable additivity, any countable set in Rn has measure zero.

• A particular property is said to hold almost everywhere (“a.e.”) if the set 
of points for which the property fails to hold is a set of measure zero.

Example: “a function vanishes almost everywhere”; “ f = g a.e.”.

• Note: Integrating anything over a set of measure zero produces 0. 
Changing a function on a set of measure zero does not affect the value 
of its integral.

Zero Measure
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• Let (Ω, Σ, μ) be a measure space. Then, μ has the following 
properties:

(i) (Monotonicity). If A ⊂ B, then μ(A) ≤ μ(B).

(ii) (Subadditivity). For any sequence 𝐴 ; 𝐴 ; … 

μ[⋃ 𝐴 ] ≤  ∑ μ 𝐴

(iii) (Continuity). If 𝐴 ⊂𝐴 ⊂𝐴 ⊂ .... (or 𝐴 ⊃𝐴 ⊃𝐴 ⊃ ... and μ(𝐴 ) < 
∞), then

μ( lim
→

𝐴 ) = lim
→

μ(𝐴 ),

where

lim
→

𝐴 = ⋃ 𝐴 (or ⋃ 𝐴 )

Measure: Properties

A measure space (Ω, Σ, μ) is called finite if μ(Ω) is a finite real number 
(not ∞). A measure μ is called σ-finite if Ω can be decomposed into a 
countable union of measurable sets of finite measure. 

For example, the real numbers with the Lebesgue measure are σ-finite 
but not finite. 

Definition: Probability Space 

A measure space is a probability space if μ(Ω)=1. In this case, μ is a 
probability measure, which we denote P.  

• Let P be a probability measure. The cumulative distribution function (c.d.f.) 
of P is defined as:

F(x) = P ((−∞, x]) , x ∈ R

Probability Space
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Definition: Inverse function

Let f be a function from Ω to Λ (often Λ = Rk)

Let the inverse image of B ⊂ Λ under f:

f −1(B) = {f ∈ B} = {ω ∈ Ω :  f(ω) ∈ B}.

• Useful properties:

– f −1(Bc ) = (f −1(B))c for any B ⊂ Λ ;

– f −1(∪𝐵 ) = ∪f −1(𝐵 ) for any 𝐵 ⊂ Λ , i = 1, 2, ...

Note: The inverse function f−1 need not exist for f−1(B) to be defined.

Definition: Let (Ω, Σ) and (Λ, G) be measurable spaces and f a 
function from Ω to Λ. The function f is called a measurable function from 
(Ω, Σ) to (Λ, G) if and only if f −1(G) ⊂Σ.

Measurable Function

• If f is measurable from (Ω, Σ) to (Λ, G) then f −1(G) is a sub-σ-field of 
Σ. It is called the σ-field generated by f and is denoted by σ(f).

• If f is measurable from (Ω, Σ) to (R, B), it is called a Borel function or a 
random variable (RV).

• A random variable is a convenient way to express the elements of Ω 
as numbers rather than abstract elements of sets.

Measurable Function
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Example: Indicator function for A ⊂ Ω.

IA(ω) = 1 if ω ∈ A

= 0 if ω ∈ AC

For any B ⊂ R

IA
−1(B) = ∅ if 0 not in B, 1 not in B

= A if 0 not in B, 1 ∈ B

= Ac if 0 ∈ B, 1 not in B

= Ω if 0 ∈ B, 1 ∈ B

Then, σ(IA) = {∅, A, Ac, Ω} and IA is Borel if and only if A ∈ Σ.

σ(f) is much simpler than Σ.

• Note: We express the elements of Ω as numbers rather than abstract 
elements of sets.

Measurable Function

Theorems: Let (Ω, Σ) be a measurable space.

(i) f is a RV if and only if f -1(a, ∞) ∈ Σ for all a ∈ R.

(ii) If f and g are RVs, then so are fg and af + bg, where a and b ∈ R; also, 
f/g is a RV provided g(ω) ≠ 0 for any ω ∈ Ω.

(iii) If f1, f2, ... are RVs, then so are supn fn, infn fn, lim supn fn, and lim infn
fn. Furthermore, the set

A = {ω ∈Ω:  limn→∞ fn(ω) exists}

is an event and the function

h(ω) = limn→∞ fn(ω) ω∈A

= f1(ω) ω∈Ac

is a RV.

Measurable Function – Properties
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Theorems: Let (Ω, Σ) be a measurable space.

(iv) (Closed under composition) Suppose that f is measurable from (Ω, 
Σ) to (Λ, G) and g is measurable from (Λ, G) to (∆,H). Then, the 
composite function g ◦ f is measurable from (Ω, Σ) to (∆,H). 

(v) Let Ω be a Borel set in Rp. If f is a continuous function from Ω to 
Rp, then f is measurable.

Measurable Function – Properties

Definition

Let (Ω, Σ, μ) be a measure space and f be a measurable function from 
(Ω, Σ) to (Λ, G). The induced measure by f, denoted by μ ◦ f −1, is a 
measure on G defined as

μ ◦ f −1(B) = μ(f ∈ B) = μ( f −1(B)), B ∈ G

If μ = P is a probability measure and X is a random variable or a 
random vector, then P ◦ X−1 is called the distribution (or the law) of X
and is denoted by PX.

• The cdf of PX is also called the cdf (or joint cdf) of X and is denoted 
by FX.

Distribution
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Kolmogorov's axioms

Kolmogorov defined a list of axioms for a probability measure.

Let P: E →[0; 1] be our probability measure and E be some σ-algebra 
(events) generated by X.

Axiom 1: P[𝐴] ≤ 1  for all 𝐴∈ E

Axiom 2. P[X] = 1

Axiom 3. P[𝐴 U𝐴 U ... U𝐴 ] = P[𝐴 ] + P[𝐴 ] +... + P[𝐴 ], 
where{𝐴 ; 𝐴 ; .... ; 𝐴 } are disjoint sets in E.

Probability Space – Definition and Axioms

The three Kolmogorov’s basic axioms imply the following results:

Theorem: P[𝐴 C ] = 1 - P[𝐴 ].

Theorem: P[Φ] = 0

Theorem: P[𝐴 ] ∈ [0, 1].

Theorem: P[B∩AC] = P[B] - P[A∩B]

Theorem: P[𝐴UB] = P[𝐴] + P[B] - P[A∩B]

Theorem: 𝐴 is in B  P[𝐴] ≤ P[B]

Theorem: 𝐴 = B  P[𝐴] = P[B]

Theorem: P[𝐴] = ∑ P[𝐴 ∩ 𝐶 ], where {𝐶 ; 𝐶 ; …} forms a partition 
of E.

Theorem (Boole's Inequality, aka "Countable Subadditivity"):

P[⋃ 𝐴 ] ≤  ∑ 𝑃 𝐴 for any set of sets {𝐴 ; 𝐴 ; … }

Probability Space – Properties of  P
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Now, we have all the tools required to establish that (Ω, Σ, P) is a 
probability space.

Theorem: 

Let Ω be the sample space of outcomes of an experiment, Σ be the σ-
algebra of events generated from Ω, and P: Σ → [0, ∞) be a probability 
measure that assigns a nonnegative real number to each event in Σ. The 
space (Ω, Σ, P) satisfies the definition of a probability space.

Remark: The sample space is the list of all possible outcomes. Events are 
groupings of these outcomes. The σ-algebra Σ is the collection of all 
possible events. To each of these possible events, we assign some "size" 
using the probability measure P.

Probability Space – (Ω, Σ, P)

Example: Consider the weekly sign of stock returns of two unrelated 
firms: Positive (U: up) or negative (D: down). 

The sample space is Ω = [{U,D}; {D,U}; {D,D} & {U,U}]. 

Possible events (A): 

- Both firms have the same signed return: {U,U} & {D,D}.  

- At least one firm has positive returns: {U,U}; {D,U} & {U,D}.

- The first firm is has positive returns: {U,U} & {U,D} 

Collection of all possible events: Σ = [Φ, {U,U}, {U,D}, {D,U}, 
{D,D}, {UU, UD}, {UU, DU}, {UU, DD}, {DD, DU}, {DD, UD}, 
{DU, DD}, {UU, DU, UD}, {UD, DU, DD}, {UU, UD, DU, DD}]

The probability measure P assigns a number from 0 to 1 to each of those

events in the sigma algebra. 

Probability Space
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Example (continuation): X takes Ω into χ & induces PX from P. 

Assuming equal probabilities for U & D, P[U] = P[D] = ½ :

Prob. of 0 Ups = PX[0] = P[{DD}] = ¼

Prob. of 1 Ups = PX[1] = P[{UD; DU}] = ½ 

Prob. of 2 Ups = PX[2] = P[{UU}] = ¼

Prob. of 0 or 1 Ups = PX[{0; 1}] = P[{DD; DU; UD}] = ¾ 

Prob. of 0 or 2 Ups = PX[{0; 2}] = P[{DD; UU}] = ½ 

Prob. of 1 or 2 Ups = PX[{1; 2}] = P[{UU; DU; DD}] = ¾ 

Prob. of 0, 1, or 2 Ups = PX[{0; 1; 2}] = P[{UU; DU; UD; DD}] = 1

Prob. of "nothing" = PX[Φ] = P[Φ] = 0

The empty set is simply needed to complete the σ-algebra (a technical 
point). Its interpretation is not important since P[Φ] = 0.

Review – Random Variables – Example

Example (continuation): 

Suppose we assign see D (a “bad” firm) 3/4 of the time. Then the 
following values for P would be appropriate:

{0; 9/16; 3/16; 3/16; 1/16; 3/4; 3/4; 5/8; 3/8; 1/4; 1/4; 15/16; 13/16; 
13/16; 7/16; 1}

Probability Space
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As long as the values of the probability measure are consistent with 
Kolmogorov's axioms and the consequences of those axioms, then we 
consider the probabilities to be mathematically acceptable, even if they 
are not reasonable for the given experiment. 

Philosophical comment: Can the probability values assigned be 
considered reasonable as long as they're mathematically acceptable?

Probability Space

Random Variables Revisited

A random variable is a convenient way to express the elements of Ω as 
numbers rather than abstract elements of sets.

Definition: Measurable function
Let 𝐴 ; 𝐴 be nonempty families of subsets of 𝑋 and 𝑌, respectively. A 
function f: 𝑋→ 𝑌 is (𝐴 ; 𝐴 )-measurable if f -1 (𝐴) є 𝐴 for all A є 𝐴 .

Definition: Random Variable
A random variable X is a measurable function from the probability space 
(Ω, Σ, P) into the probability space (χ, 𝐴 , PX), where χ in R is the 
range of X (which is a subset of the real line) 𝐴 is a Borel field of 𝑋, 
and PX is the probability measure on χ induced by X.
Specifically, X: Ω→ χ.
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Random Variables Revisited

Example (continuation): Back to the weekly sign of stock returns of 
two unrelated firms: Positive (U: up) or negative (D: down). 

Collection of all possible events: 

Σ = [Φ, {U,U}, {U,D}, {D,U}, {D,D}, {UU, UD}, {UU, DU}, {UU, 
DD}, {DD, DU}, {DD, UD}, {DU, DD}, {UU, DU, UD}, {UD, 
DU, DD}, {UU, UD, DU, DD}]

Define RV: X = “Number of Up cycles.” Recall, X takes Ω into χ, 

χ = {0; 1; 2} and Σχ = {Φ; {0}; {1}; {2}; {0;1}; {0;2}; {1;2}; {0;1;2}}.

Then, X: Ω→ χ

Then, we associate the elements in χ with a probability, PX. 

32

Example (continuation): 

Then, X: Ω→ χ

Then, we associate the elements in χ with a probability, PX. 

{U,U}
{D,D}
{D,U}
{U,D}

0
1
2

X: Number of  Ups

Ω χ
1

0

PX

In this example, χ = {0; 1; 2} 
Σχ = {Φ; {0}; {1}; {2}; {0;1}; {0;2}; {1;2}; {0;1;2}}. 

P

Random Variables Revisited


