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1 The Problem

Some data used in economic analysis has the characteristic that we do not
observe values above or below a certain magnitude, owing to the operation of a
censoring or truncation mechanism. Thus it may be that the central bank inter-
venes to stop an exchange rate falling below or going above certain values (floors
and ceilings); dividends paid by a company may remain zero until earnings pass
some threshold value; commodity stabilization funds may set reserve prices for
commodities. In all these situations the observed data consists of a combina-
tion of measurements of some underlying latent variable and observations that
pertain when the censoring mechanism is applied. Suppose we think of et as
the deviation of the exchange rate from its equilibrium value and that the floor
and ceiling imposed on this are e− and e+ respectively. If there were no bounds
ei would be e∗i , and we would therefore observe ei = e∗i if e

− < e∗i < e+ and
ei = e− if e∗i ≤ e−, ei = e+ if e∗i ≥ e+. Whilst the e∗i might be thought of as a
continuous random variable, the observed data ei cannot be because it is equal
to a number of values such as e+ and e− and so is censored at these points. Ces-
noring can be right censoring (at an upper limit) or left censoring (at a lower
limit). The complete sample of observations is available to us but the latent
variables corresponding to the e+ and e− are not. Nevertheless we typically do
have data at those points on what is happening in the economy and so on what
affects the exchange rate. If for some reason though no data was published when
these bounds were attained then we would be working with a truncated sample.
Truncated samples occur a lot in micro work e.g. if one chooses to work with
observations on families below the poverty line when estimating a relationship
thought to hold for all household units. Since the analysis for both problems is
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very similar we will work through the censored case, pointing out the differences
to the truncated case. Greene has fuller details.
The fact that ei is not continuous creates problems when we come to analyze

the determinants of exchange rates. It is likely that we can set up a model
connecting e∗i with some variables xi, i.e., e

∗
i = x0iβ+u

∗
i , where u

∗
i is a continuous

random variable with E(u∗i ) = 0, but we do not observe e∗i , only ei. We are
tempted therefore to regress ei against xi, but the error term in such a regression
will generally have a non-zero mean, since it is ui = ei−x0iβ = ei−e∗i+e∗i−x0iβ =
(ei − e∗i ) + u∗i and E(ui) = E[(ei − e∗i ) + u∗i ] = E(ei − e∗i ). Let’s take a simple
case where xi = 1. Then β = E(e∗i ). Suppose that E(e

∗
i ) = 0, i.e., on average,

without intervention, the exchange rate change is zero (a pretty good description
of actual exchange rate movements). Then the graph below shows the situation
where we have generated 100 observations on e∗i (assuming the density of e

∗
i is

N (0, 1)) and have set e+ = 1 and e− = −.25.
The observed data points, the ei, are those within the bounds. Obviously

ei’s density will have a mean that is not zero since there are more positive
observations on e∗i than negative ones, since the censoring point e

+ is larger in
absolute value than e−.i.e. if we use the points that lie between the bounds (all
that we have) to compute the sample mean it will always lie well away from the
true value of zero that would be found (in large samples) if observations on the
latent variable were available. When e∗i is symmetrically distributed the sample
mean of the ei will not be zero unless the censoring is symmetric, i.e., e+ and
e− are the same distance from the origin. More generally, a regression of e∗i
against xi will generally mean that OLS is an inconsistent estimator of β.
We wish to do a more formal analysis of the impact of censoring of data

upon the OLS estimator and how one can still estimate the parameters consis-
tently. Historically, the problem was first investigated by Tobin, who noticed
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that expenditure on certain consumption items in household budgets could be
zero and therefore proposed what has been referred to as the TOBIT model.

y∗i = x0iβ + u∗i (1)

where y∗i is a latent variable and u∗i ∼ n.i.d.(0, σ2). The observations are yi =
1(y∗i > 0)y

∗
i where 1(·) is the indicator function taking the value unity if y∗i > 0

and zero otherwise. Thus yi = y∗i if y
∗
i > 0 and yi = 0 if y∗i ≤ 0.

2 Analysis of the OLS Estimator

Let us assume that there is a set of observations available on yi, i = 1, ...,N ,
and these are either zero or positive. Let the N0 zero values have indices i ∈ I0
and the Np positive ones i ∈ Ip, where I0 and Ip are sets of indices. For
example yi = {0, 33.4, 0, 2.5, 5.6} would give I0 = {1, 3}, Ip = {2, 4, 5}.
Consider what would happen if we regressed yi against xi(i ∈ Ip). This

would correspond to a truncated sample since it is assumed that we only have
data if yi turns out to be positive. The model that is estimated would then be

yi = x0iβ + vi i ∈ Ip (2)

and we want to know what the density of the errors vi associated with positive
observations yi is. To answer this question we see that vi = u∗i only for i ∈ Ip
and i ∈ Ip means y∗i > 0 or x0iβ + u∗i > 0 or u∗i > −x0iβ. Hence the range of
values of vi we observe is from −x0iβ to ∞ only and the density of vi will be
that of u∗i over the range of values u

∗
i > −x0iβ. Now if vi is to have a proper

density it must integrate to unity

∴
Z ∞
−x0iβ

fv(λ)dλ = 1

whereas

Z ∞
−x0iβ

fu∗(λ)dλ = Fi

=

Z x0iβ

−∞
fu∗(λ)dλ

provided the density of u∗i is symmetric.
1 In the Tobit model fu∗ is the N(0, σ2)

density and so the above would be
1With the Tobit model the density is normal and so is symmetric. One normally sees Fi

written as Φi, the conventional symbol for the cumulative normal distribution, but we keep the
more general notation to emphasise that one could use other densities. If other non-symmetric
densities are used Fi must be defined as the integral from −x0iβ to ∞.
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=

Z x0iβ

−∞
(2πσ2)−1/2 exp

µ
−1
2
(λ/σ)2

¶
dλ.

Therefore we find the density of vi, i ∈ Ip as

pdf(vi) = F−1i (2πσ2)−1/2 exp

µ
−1
2
(vi/σ)

2

¶
= h(v)

and the pdf(vi) is different to that of u∗i . In particular

E(vi) =

Z ∞
−x0iβ

λ h(λ)dλ

= F−1i

Z ∞
−x0iβ

λf(λ)dλ

where fu∗(u∗) is re-named as f() for convenience. But
R
λf(λ)dλ = −σ2f(λ)

(reverse differentiation to check)

∴ E(vi) = F−1i [−σ2f(λ)]∞−x0iβ (3)

= F−1i [σ2f(x0iβ)] as f(∞) = 0
= σ2F−1i fi

where fi = f(x0iβ). Now

= σ2F−1i fi 6= 0 as Fi > 0, fi > 0.
and therefore, from (3), the expected value of vi is non-zero and it also depends
upon x0iβ. Consequently,

β̂ − β =
³X

x0ixi
´−1X

x0ivi =
³X

x0ixi
´−1X

x0i
¡
σ2F−1i fi + ηi

¢
(4)

where ηi = vi −E(vi) has E(ηi) = 0. Therefore

E(β̂ − β|x0iβ) =
³X

x0ixi
´−1X

x0i
¡
σ2F−1i fi +E(ηi|x0iβ)

¢
=

³X
x0ixi

´−1X
x0iσ

2F−1i fi

and so the OLS estimator would be biassed. This is simply because the condi-
tional expectation is not linear in xi and the non-linearity shows up as a biassed
estimator. More formally, from (4) β̂ − β

p→ 0 only if T−1σ2
P

x0iF
−1
i fi

p→ 0,
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and it is obvious that this will never happen. Hence the OLS estimator using
only the positive observations is inconsistent.

The same conclusion holds if all observations are used i.e. the data is
censored so that both the positive and zero values of yi are available. To see
this follow Greene and define

E[yi|x0iβ] = 0× prob[y∗i ≤ 0|x0iβ] +E[y∗i |y∗i > 0, x0iβ]× prob[y∗i > 0|x0iβ].

The analysis above computed E[y∗i |y∗i > 0, x0iβ] as x0iβ+σ2F−1i fi and prob[y∗i >
0|x0iβ] = Fi giving

E(yi|x0iβ) = (x0iβ + σ2F−1i fi)Fi.

For later reference we observe that

E(v2i |x0iβ) = σ2 − σ2x0iβ(fi|Fi) (Amemiya, Econometrica, 1973)

so the error term not only has a non-zero mean but is also heteroskedastic.

3 Weighted Least Squares and MLE

How can we get a consistent estimator of β? For a truncated sample one possi-
bility is to write

yi = x0iβ + σ2F−1i fi + ηi i ∈ Ip

and regress yi against xi and F−1i fi. The problem here is that we need a
consistent estimator of β to form F−1i fi, as that depends on β, and it is not
clear where we get that from. Non-linear regression would be one possibility i.e.
minimize

P
i∈Ip η

2
i w.r.t. β. Notice however that ηi must be heteroskedastic.

Therefore, even if one got a consistent estimator of β by some means, one would
need to allow for the heteroskedasticity if valid inferences were to be obtained or
if a fully efficient estimator was to be found. Weighted non-linear least squares
would be one possibility to handle that complication. Instead one might perform
full maximum likelihood using the density function for f(vi) defined earlier. A
similar choice obtains for the censored data case where

yi = (x
0
iβ + σ2F−1i fi)Fi + ηi

Again one has a problem about how to estimate Fi as β is unknown. In a later
section where we discuss selectivity problems it emerges that in some instances
where there is extra information we can estimate fi and Fi without knowing β
from auxiliary information, but that is not available in the pure Tobit model.
Although there is recent work using some semi-parametric methods to esti-

mate β which treat fu∗ as unknown, the main way people estimate the Tobit
model is by maximum likelihood. In this we think of yi as a random variable
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that is a mixture of a discrete random variable (the zero values) and a contin-
uous random variable (the positive ones). The likelihood for the Tobit model
(a limited dependent variable model) requires us to determine the probability
that the r.v. describes the observed data. Now the probability of getting a
zero value is prob (y∗i ≤ 0) = prob(x0iβ + u∗i ) ≤ 0 = prob(u∗i ≤ −x0iβ) =R −x0iβ
−∞

1√
2πσ2

exp
©
−12(λ/σ)2

ª
dλ = 1 − Fi as Fi is the integral of the normal

density from −x0iβ on to ∞ and the integral from
R∞
−∞ must be unity. The

probability of observing the non-zero data is just that from the normal density,
so that the likelihood is

L∗ =
Y
i∈I0

(1− Fi)
Y
i∈Ip

1√
2πσ2

e−
1
2 (yi−x

0
iβ)

2

making the log likelihood

L =
X
i∈I0

log(1− Fi)−
1

2σ2

X
i∈Ip

(yi − x0iβ)
2 − Np

2
log σ2 − Np

2
log 2π

Since the MLE has desirable properties of consistency and asymptotic normality
in most cases, it is natural that one should estimate the unknown parameters
β and σ2 in the Tobit model above by maximizing L wrt β and σ2. But this
is not straightforward as β appears in Fi as well as in (yi − x0iβ)

2 i.e. L is a
non-linear function of β and an iterative procedure to maximize L wrt β, σ2

is needed. Fortunately, one can show that there is a single maximum to L so
that algorithms such as scoring or Newton-Raphson work well. The scores and
Hessian (second derivative of the log likelihood) for the MLE are2

Lβ = −
X
i∈I0

(1− Fi)
−1fixi + σ−2

X
i∈Ip

xi(yi − x0iβ) (5)

Lσ2 =
1

2σ2

X
i∈I0

(1− Fi)
−1(x0iβ)fi −

1

2σ2
Np +

σ−4

2

X
i∈Ip

(yi − x0iβ)
2

Lββ = −
X
i∈I0

(1− Fi)
−2fi[fi − σ−2(1− Fi)(x

0
iβ)]xix

0
i − σ−2

X
i∈Ip

xix
0
i.

The Hessian is used to get estimated standard errors for the MLE of β.

4 Issues Arising in Testing and Interpreting Cen-
sored Regression

(i) It is a well known property of the MLE that an estimate of the covariance
matrix of β̂ and σ2 can be obtained from the negative of the inverse of the
second derivatives of L wrt β and σ2.

2We have not given Lβσ2 and Lσ2σ2.
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(ii) Because the model is not a linear one, or one that just involves minimizing
a quadratic form, there is no such thing as an R2. We can however construct
a pseudo−R2 by looking at the way in which the R2 arises in a general linear
model. Let U designate an unrestricted regression model yi = β0+x0iβ1, and R
the same model excluding all regressors bar the constant. The log-likelihoods
for both models are

LU = −
T

2
log σ̂2U −

1

2σ̂2U

X
(yi − β0,U − x0iβ̂U )

2

LR = −
T

2
log σ̂2R −

1

2σ̂2R

X
(yi − β̂0R)

2

where β̂0,R is the estimate of the constant term. Now σ̂2U = T−1
P
(yi− β̂0,U −

x0iβ̂U )
2 and σ̂2R =

1
T

P
(yi − β̂0,R)

2 so that

LU = −T
2
log σ̂2U −

T

2

LR = −T
2
log σ̂2R −

T

2

∴ LU − LR =
T

2
log(σ̂2R/σ̂

2
U ) =

T

2
log(ESSR/ESSU )

= −T
2
log(ESSU/ESSR)

where ESSR and ESSU are the residual sums of squares in the restricted and
unrestricted models. Now for a linear regression model the definition of R2 is

1− ESSUP
(yi − ȳ)2

= 1− ESSU
ESSR

since β̂0,R = ȳ = mean of the yi.

∴ R2 = 1− ESSU
ESSR

⇒ ESSU
ESSR

= 1−R2

∴ LU − LR = −T
2
log(1−R2)

and hence we can solve for an R2 from LR, LU and T . Thus an “R2” for
the Tobit model is available by computing the value of the likelihood with all
xi variables included (LU ) and the value with only a constant term (LR) and
then solving the above. There are other possibilities involving different ways of
measuring ESSU . Since in the regular regression model the residuals are just
yi − Ê(yi) we might do the same here using the E(yi|x0iβ) for a Tobit model
and then inserting the MLE of β and σ2 in place of the unknown values.
(iii) Specification errors might be detected in the same way as in linear

regression, i.e., by adding extra variables into the relation and seeing if they
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are significant. Thus a RESET type test would be available by adding (x0iβ̂)
2,

(x0iβ̂)
3, etc to the model and the re-estimating with a Tobit estimator. The

LM approach also yields specification tests which resemble those of the linear
regression model in that they work with what are referred to as generalized
residuals. These are defined by

−(1− I(yi > 0))[1− F̂i]
−1f̂i + I(yi > 0)σ

−2(yi − x0iβ̂)

and one sees from (5) that the product of these with respect to xi give the
scores for β, just as would be true of the ordinary residuals in a regression
model. Greene discusses this literature.
(iv) What is more of a problem with Tobit models is that the presence of

heteroskedasticity causes the Tobit model estimators of β to be inconsistent.
Hence one should test for the presence of heteroskedasticity, but so far packages
have not allowed users to do this automatically. The Lagrange Multiplier test
provides a way of testing for this. Greene has some discussion. It is generally
relatively simple to write down the log likelihood for the case that the errors
u∗i are heteroskedastic. In the standard case σ

−1u∗i is taken to be N (0, 1); now
σ−1i u∗i has that density. The log likelihood then just follows. All that one then
needs to do is to specify some form for σ2i .
(v) As was true of the discrete choice model the marginal effects of xi upon

the dependent variable need to be computed with some care. First, one has
to define what the response variable is. In linear regression one focuses upon
∂E(y)/∂x but in Tobit models one could look at other measures e.g. ∂E(y|y∗ >
0)/∂x. In all instances the fact that E(y) etc are non-linear functions of xi means
that the marginal response is not β. This is obvious once one sees E[yi|x0iβ] =
[x0iβ + σ2 fiFi ]Fi. A second problem arises if the xi are dummy variables, (say)
taking the value zero and one. Then the derivative is not relevant. One has
to compute E[y|x0iβ] with the dummy set to unity and then set to zero and
subtract one from the other i.e. a finite difference is needed. In a linear model
one doesn’t need to do this since the response will be β regardless of whether we
use a partial derivative or a finite difference. The difference in answers can be
very large. One should note that the marginal effects given in programs such as
STATA are partial derivatives so they need to be used cautiously with dummy
variable among the x0s.

5 Selected Samples
Selection problems arise when the sample presented to us has been selected by
some non-random mechanism. It is similar to truncation where the sample avail-
able fails to be representative of the complete population due to observations
being “deleted” if they fall below the truncation point. With selection, the trun-
cation is more subtle; whether or not one sees a complete sample depends upon
decisions made by individuals about some other choice. For example, suppose
you wished to determine the income elasticity of demand for hotel accommo-
dation and sampled tourists in Bermuda. This would be subject to potential
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selection problems since it is costly to travel to Bermuda and you therefore may
be using a sample of people who have high incomes and these may be unrep-
resentative of the general population. You did not deliberately select a high
income group but one has been presented to you by the choices made by the
population at large.
How does one correct for a selection problem? When data is truncated

the solution was to find the expected value of yi recognizing the existence of a
truncation mechanism, and that was then used to correct for the bias. To do this
we needed to make some distributional assumptions. A similar situation occurs
with selection. However, there is generally more information available now as it
is typically assumed that there are two samples of information- one being the
selected sample while the other describes what causes agents from the broader
population to participate in the selected sample. Thus the first sample would be
tourists from Bermuda whereas the second would be drawn from the population
that these tourists come from and would consequently contain information about
whether they choose to go to Bermuda or not. This second sample can therefore
be used to predict which individuals will go to Bermuda and so correct for any
biases that stem from the fact that work is only being done on a sample of
Bermuda tourists.
From the description above we have two equations

y1i = x01iβ1 + u1i i = 1, ...., N (6)

y∗2i = x02iβ2 + u∗2i i = 1, ...., n, (7)

where N is the number of observations in the selected sample and n is the
number from the broader population. (6) is the equation to be estimated using
the selected sample and (7) is to be used to predict whether an individual
becomes part of the selected sample. The data available to estimate the second
equation is x2i and y2i = 1(y∗2i > 0) i.e. a score of one is registered if the
individual in that sample participates in the selected one i.e travels to Bermuda.
The second equation will be used to measure the probability that ( or propensity
for) the individual to participate in the first sample. Since the first sample
consists only of individuals for whom y2i was unity, what we have are realizations
from the conditional density f(y1i|y2i = 1) = f(yi1|y∗2i > 0) and it is the
characteristics of this conditional density that will be exploited in order to make
a “selectivity bias correction”.3

Although one might find f(yi1|y∗2i > 0) and perform MLE, in practice re-
searchers have often opted to work with regression solutions, largely because
selection problems occur in combination with other difficulties such as endoge-
nous xi, and it becomes very difficult to find the likelihood in realistic cases.
Consequently, the most important task is to find an expression for E(y1i|y∗2i > 0)
and this is

3The density is also conditional upon x1i and x2i but we will supress that dependence.
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E(y1i|y∗2i > 0) = x01iβ1 +E(u1i|y∗2i > 0).

Now assume that
µ

u1i
u∗2i

¶
∼ N

∙µ
0
0

¶
,

µ
σ11 σ12
σ21 σ22

¶¸
. From properties of

the bivariate normal

u1i = ρu∗2i + ηi,

where ηi is independent of u
∗
2i and ρ = σ12/σ22.

Hence

E(u1i|y∗2i > 0) = ρE(u∗2i|y∗2i > 0) +E(ηi|y∗2i > 0).
Because ηi is independent of u

∗
2i it must be independent of y

∗
2i and so the last

expectation is E(ηi) = 0, leaving us to evaluate the first. But this comes from
results on moments of truncated normal random variables (see Greene), viz that
for an N(0, σ2) random variable, u, that is truncated at a,

E(u|u > a) = σ
φ(a)

{1− Φ(a)}
In this case y∗2i > 0 implies u

∗
2i > −x02iδ2 so a = −x02iδ2 and

E(u∗2i|u∗2i > −x02iδ2) = σ22
φ(−x02iδ2)

{1− Φ(−x02iδ2)}

= σ22
φ(−x02iδ2)
Φ(x02iδ2)

= σ22φi/Φi

where

φi = (2π)
−1/2 exp

n
−(1/2) (x02iδ2)

2
o

and

Fi =

x02iδ2Z
−∞

f(λ)dλ.

Consider defining x02iβ2/σ
1/2
22 as x02iα so that

fi = σ
−1/2
22

h
(2π)−1/2 exp(−1/2)(x02iα)2

i
= σ

−1/2
22 φi

Fi =

x02iαZ
−∞

(2π)−1/2 exp(−(1/2)ψ2)dψ using ψ

=
λ

σ
1/2
22

(note dψ = (dλ)σ−1/222 ) =

x02iαZ
−∞

φ(ψ)dψ.
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Hence ρfi/Fi = ρσ
−1/2
22 φi/Φ(x

0
2iα) and we can regress y11 against x1i and

φi/Φ(x
0
2iα) to get a consistent estimator of β1.

The second equation can be written as

σ
−1/2
22 y∗2i = x02i

Ã
β2

σ
−1/2
22

!
+

Ã
u∗2i

σ
1/2
22

!
= x02iα+ νi

where νi is N (0, 1). But we have observations on y2i = 1(y
∗
2i > 0) and so this

is a Probit model. Applying Probit we can estimate α, getting α̂, and then
proceed to get β̂1i by regression of y1i against x1i and φ̂i/Φ̂i, where α̂ replaces
α in these terms. We have to be careful to get the correct covariance matrix
for two reasons: Replacing α with α̂ has an effect on the distribution of β̂ and
the errors are heteroskedastic. Programs such as STATA do this correctly. This
estimator is sometimes referred to as Heckman’s two-step estimator.
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