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0.1 Origins and Structure

To date we have been generally assuming in regression and other models that
the variable yi is a continuous random variable. In fact there is nothing in
regression that requires this. The variable could be discrete or it could follow
counts. But generally with the latter types of random variables linearity of the
conditional expectations is unusual. Thus we need to carefully study the type
of data that represents some decision. This data generally comes in binary form
with a ”1” representing a decision to do something and a ”0” being a decision
not to do something. Thus we have a variable yi that takes these values and
a set of variables connnected with the decision xi and we want to model the
relation between them.
Suppose however we had what appears an entirely different type of problem

in which we have collected data on whether individuals buy a sports car or not
and we have various characteristics of the cars and the individuals who buy
them. We could approach this problem theoretically by specifying the utility to
be gained from purchasing a “family car” as a function of the characteristics of
that type of car z0 (price, durability, size, low insurance rates, good fuel con-
sumption, etc.) and the characteristics of the individual wi (age, sex, married,
children etc.)

ui0 = α0 + z0i0δo + w0iγ0 + �i0 – utility from a family car

ui1 = α1 + z0i1δ1 + w0iγ1 + �i1 – utility from a sports car

Note the presence of price in the z’s means that these are indirect utilities
while the i indicates that the value of a sports car characteristics may differ
according to individuals, e.g., the insurance rates depend on the individual as
well as the type of car. The �’s are random variables which could be due to
omitted variables. Essentially the idea is that even for individuals with the
same measurable characteristics (z’s and w’s) different levels of utility will be
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gained owing to say “outlook”. We assume that the errors are i.i.d.(0, σ2). This
last assumption may not be correct but it is fairly conventional.
Now when would the individual i purchase a sports car. The answer is he

will choose that action which gives highest utility, i.e.,

sports car chosen if ui1 − ui0 > 0.

Since both the u’s are random we know that the choice is random so we assume
that

Pr[sports car chosen] = Pr[ui1 − ui0 > 0]

= Pr[α1 + z0i1δ1 + w0iγ1 − α0 − z0i0δ0 − w0iγ0 + �i1 − �i0 > 0]

= Pr[x0iβ − �i > 0] or Pr[�i < x0iβ]

where xi =

⎡⎢⎢⎣
1
zi1
zi0
wi

⎤⎥⎥⎦ , β =
⎡⎢⎢⎣

α1 − α0
δ1
−δ0
γ1 − γ0

⎤⎥⎥⎦ and �i = �i0 − �i1.

Now let us suppose we have observed the z’s, w’s and also the fact whether a
sports car has been purchased or not. Let yi be the value zero if a family car is
chosen and unity if a sports car. Then

Pr[sports car chosen] = Pr[yi = 1] = Pr[�i < x0iβ]

and our problem is to estimate β given zi, wi and yi. To do this we need to
make some assumption about the �i and we make these normally distributed.
Then since �i0, �i1 are normal so is �i. It is further assumed that the variance of
�i is set to unity, as it is impossible to identify it. This can be seen in a number
of ways. One can do it formally by observing that the score for σ2 would be zero
for any value. Another is to observe that Pr[εi < x0iβ] = Pr[σ

−1εi < x0i(σ
−1β)],

making the β identifiable only up to a factor of proportionality. Intuitively, the
problem arises because the numbers in the data are arbitrary i.e. one could
have assigned the values of 1 and 2 instead of 0 and 1 to yi, so that it would be
possible to produce any range of values in yi. Hence

Prob[�i < x0iβ] = Φ(x
0
iβ) = Fi =

Z x0iβ

−∞

1√
2π
exp

½
−1
2
λ2
¾
dλ

and this model is called the Probit Model.
Let’s look at this closely. Although we derived the Probit specification from

a utility maximization perspective, we could alternatively have just begun with
the proposition that the probability of buying a sports car, Pr(yi = 1) = Φ(x0iβ),
is some function of a set of characteristics xi. Indeed this is how the earliest
specification of these type of models arose. The simplest model was what was
referred to as the linear probability model, i.e., it just asserted that Pr{yi = 1}
was linearly related to x0iβ, i.e.,
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Figure 1:

Pr{yi = 1} = x0iβ.

Obviously one does not get this model from utility maximization very easily,
but it is the case that Φ(x0iβ) and x

0
iβ are closely related over much of the likely

range of x0iβ. The situation can be seen in figure 2. Amemiya notes that the
linear probability model 0.5+ .4(x0iβ) and Φ(x

0
iβ) are reasonably close for values

of Φ between .3 and .7 so it can be a good representation of Φ.

1 Estimating Univariate Models

1.1 Non-lInear Least Squares

Now let us look a bit closer at models that can be represented in the form

Pr{yi = 1|x0iβ} = F (x0iβ) = Fi

forgetting for a moment what Fi might be i.e. whether it is the form for a logit
or probit model or some other discrete choice model (note we have now made
explicit the fact that the probability is a function of the scalar or single index
x0iβ). As we have already observed Fi could be x0iβ (linear probability) or Φ
– the standard cumulative normal distribution function – but we will come
across another important choice later. We think of yi as a discrete r.v. that
takes only two values – the value 1 with probability Fi and the value zero with
probability 1− Fi. Therefore

E(yi|x0iβ) = prob(yi = 0|x0iβ)(0) + prob(yi = 1|x0iβ)(1)
= prob(yi = 1|x0iβ) = Fi
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Hence we see that the relation

E(yi|x0iβ) = Fi

⇒ yi = Fi + {yi −E(yi)} = Fi + ui

and this gives us a non-linear regression relation connecting the 0,1 (binary)
variable yi and the F (x0iβ) term which is the conditional mean, i.e., E(ui|x0iβ) =
0 as needed for a regression. It is clear therefore why the linear probability model
is so popular. If Fi = x0iβ we would have assumed that

yi = x0iβ + ui

and we can regress the binary data against the xi to get an estimator of β so
that the assumption of a linear probability model has great advantages in terms
of simple estimation.
What are its drawbacks? First, we are very interested in predicting what

an individual with given characteristics (zi, wi) will do when faced with the
family/sports car choice. Since this probability is Fi = F (x0iβ) it is natural to
estimate it by F (x0iβ̂). But here is the rub. In the linear probability model there
is nothing to guarantee that 0 < x0iβ̂ < 1 and we could therefore get some rather
embarassing probabilities. Note that if β̂ were available for the Probit model
this could not happen as Φ(x0iβ̂) must lie between 0 and 1 by the definition of
the cumulative normal distribution function.
A second problem is connected with the regression itself. Let us look at the

conditional variance of yi i.e., E[(yi − xiβ)
2|x0iβ] = E(u2i |x0iβ).

V ar = Pr(yi = 0|x0iβ)[(yi = 0)−E(yi|x0iβ)]2

+Pr(yi = 1|x0iβ)[(yi = 1)−E(yi|x0iβ)]2

= (1− Fi)(−Fi)2 + Fi(1− Fi)
2

= F 2i − F 3i + Fi(1− 2Fi + F 2i ) = Fi − F 2i = Fi(1− Fi)

Thus the error term in this non-linear regression does not have a constant vari-
ance and therefore the non-linear lesat squares estimator needs to be applied
with some care. It will clearly be the case that this estimator will not be ef-
ficient. For the linear probability model Fi = x0iβ, and the variance will be
x0iβ− (x0iβ)2, and so the variance changes with the levels of the regressors. Note
however that we know the form of the heteroskedasticity, so that conceptu-
ally we can devise an efficient estimator by employing weighted least squares,
e.g if we divide all data by F

1/2
i (1 − Fi)

1/2 we get F
−1/2
i (1 − Fi)

−1/2yi =

F
−1/2
i (1− Fi)

−1/2x0iβ +F
−1/2
i (1− Fi)

−1/2ui and it is clear that the error term
in this weighted regression is homoskedastic. Its clear that if we had assumed
that Fi = xiβ then we might get into trouble with such a strategy as nothing
ensures that x0iβ − (x0iβ)2 > 0 and if it is not we would be taking the square
root of a negative number.
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An alternative is to just ignore the heteroskedasticity for the purpose of esti-
mation and to just allow for it in inferences, i.e., one could compute the covari-
ance matrix of the linear probability model estimator allowing for heteroskedas-
ticity of completely unknown form. Certainly if a weighted least squares solution
is not possible, and one is not worried by Fi’s lying outside the permissible re-
gion, one should always do this adjustment. Note that the advantage of the
linear probability model is that it can be estimated by a regression program
and so it will very likely be the first estimator performed on any binary data,
just to get a “feel” for the likely relationships. Hence understanding the need
to make an allowance for heteroskedasticity is very important.
Now let’s say that we are unsatisfied with the linear probability model. Then

we might alternatively estimate the Probit model. Note that from our general
treatment above

yi = Φ(x
0
iβ) + ui

when Φ is the Probit function. Thus the probit model is really a special type of
non-linear regression model − the non-linearity arising because F (x0iβ) is non-
linear in β - with the added complication of heteroskedasticity in the errors.
But if we think of it like this we might ask why one should choose F ( ) to be
the cumulative standard normal; all that is required for our purposes is that
0 < F < 1 and many functions satisfy this, some of which are more tractable
numerically than others. Going back to our sports car case, it is a question of
selecting a distribution function for the error term �i and there is no reason to
just select a cumulative normal. For this reason various other distributions have
been canvassed, one of the most common being the specification of F that is
associated with the Logit model

F (x0iβ) = ex
0
iβ/(1 + ex

0
iβ).

Thus the Logit model estimates

yi =
ex

0
iβ

1 + ex
0
iβ
+ ui

which is also a non-linear regression model. Unlike the Fi = Φi of the Probit
model which requires look-up tables (or routines) to evaluate Φi for any value
of β and xi, the logit model does this very easily by just data transformations.
So it is very easy to code and estimate β above via a non-linear regression.
Naturally one might well ask whether one would get greatly different an-

swers if one uses Logit instead of Probit as we have already commented on the
close correspondence of the linear probability model with the Probit model over
most of the likely range of variation. There seems to be no obvious correspon-
dence, but in fact it is fairly close. Amemiya has found by trial and error that
eλx

0
iβ/ (1 + eλx

0
iβ) with λ = 1.6 gives an excellent correspondence (F (·) below

is for the logit model)
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x0iβ 0 .1 .2 .3 .4 .5 .6 1.0 3.0

Φ(x0iβ) .5 .5398 .5793 .6179 .6554 .6915 .7257 .8413 .9987
F (λx0iβ) .5 .5399 .5793 .6177 .6548 .6900 .7231 .8320 .9918

Since λ = 1.6 is just a scaling parameter it is clear that, unless there is a lot of
the data giving very high probabilities that yi = 1 (i.e., Φ ' 1 and hence a lot of
yi = 1 in the data), there is very little difference between the fit of a Logit and a
Probit model, and we can establish (numerically) the following approximations:
β̂L ≈ 1.6β̂P , β̂LP ≈ .25β̂L + .5 ≈ .4β̂P + .5, β̂LP ≈ .25β̂L ≈ .4β̂P . Thus
it is generally believed that when one only has binary data it is very hard to
distinguish between the Logit and Probit fits. Given this fact there is a lot to
be said for taking the representation which is the easiest to work with, and in
many respects this means the logit model.
As mentioned above, estimating the Logit and Probit models on the same

set of data will produce different estimates of β, but this does not mean that
estimates of E(yi|x0iβ) would be different, and it is the latter which is of primary
interest. Indeed one needs to think carefully about what we normally want to
measure when we estimate these models. Generally we want to measure how
E(yi|x0iβ) varies as xi changes. Normally this means we want to evaluate

∂E(yi|x0iβ)
∂xij

=
∂E(yi|x0iβ)
∂(x0ijβ)

× ∂(x0iβ)

∂xij

=
∂E(yi|x0iβ)
∂(x0ijβ)

× βj

=
∂F (x0iβ)

∂(x0iβ)
× βj

= f(x0iβ)βj

where the latter follows from and so, unlike linear regression, we cannot infer the
effect of a change in xi upon Pr(yi = 1|x0iβ) = E(yi|x0iβ) from the coefficients
β. Clearly the answer to the question depends upon the level of x0iβ and so we
generally need to ask such questions in the context of a "control group" which
specifies a given value for xi e.g. we might use the average values of xi. The
situation is made even more complex when the changes in xi are not small in
which case we really need to evaluate the change as F (x∗∗0i β)−F (x∗0i β), where
x∗∗i is the changed value
Let’s go back to estimation. Now let us look at using the Gauss-Newton

algorithm to solve the non-linear regression problem. Starting with initial values
β(0) we linearize Fi around this value to give
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Fi ' F (x0iβ(0)) +
∂F

∂β
(β − β(0))

= F (x0iβ(0)) + ψi(β − β(0))

∴ yi ' F (x0iβ(0)) + ψi(β − β(0)) + error

and yi − F (x0iβ(0)) as dependent, ψi as independent enables ∆β = β − β(0) to
be determined by a regression program. This gives a new value of β, β(1) =

β(0) + ∆̂β, and this is the value linearized around again to give a new β(2) etc.
Now when we look at the error term it is clear that it will be heteroskedastic

of the form Fi(1− Fi) and therefore weighted non-linear regression would seem
to be the better estimator, i.e., F−1/2i (1−Fi)

−1/2(yi−F (x0iβ(0))) would be the

dependent variable and F−1/2i (1−Fi)−1/2ψi would be the independent variable.
Clearly this latter estimator will be more efficient (note that Fi in the first stage
will be estimated by F (x0iβ(0))).
of xi and x∗i is the original value.

1.2 Maximum Likelihood Estimation

We might however wonder if weighted non-linear regression is the most efficient
estimator possible, particularly when we look at the error term ui and observe
that it is certainly not normal. Obviously, the non-linear regression estimator
is the quasi-MLE. For this reason one might prefer to go for MLE, and in fact
this is what one normally gets from canned programs that estimate the Probit
and Logit models. Let’s look at this then. We have two types of observations
on yi. First, yi = 0 with probability 1−Fi. Second, yi = 1 with probability Fi.
Hence, if we let I0 represent all those values of i such that yi = 0, I1 such that
y2 = 1, the likelihood must beY

i∈I0

(1− Fi)
Y
i∈I1

Fi

and the log likelihood is

L =
X
i∈I0

log(1− Fi) +
X
i∈I1

log Fi

=
TX
i=1

(1− yi) log(1− Fi) +
TX
i=1

yi log Fi

from the values of yi in the different sets [Note when i is such that yi = 1 the
first term disappears, while, if yi = 0, the second term drops out.]
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∴ Lβ = −
X
i∈I0

(1− Fi)
−1 ∂Fi

∂β
+
X
i∈I1

F−1i

∂Fi
∂β

= −
nX
i=1

(1− yi)(1− Fi)
−1 ∂Fi

∂β
+

nX
i=1

yiF
−1
i

∂Fi
∂β

= −
X
(1− Fi)

−1 ∂Fi
∂β

+
X

yi

∙
(1− Fi)

−1 ∂Fi
∂β

+ F−1i

∂Fi
∂β

¸
= −

X
(1− Fi)

−1 ∂Fi
∂β

+
X

yi
£
(1− Fi)

−1 + F−1i

¤ ∂Fi
∂β

The first term can be written as −
P
(1−Fi)−1F−1i Fi

∂Fi
∂β while the second term

=
X

yi

½
Fi + 1− Fi
Fi(1− Fi)

¾
∂Fi
∂β

=
X

yiF
−1
i (1− Fi)

−1 ∂Fi
∂β

∴ Lβ = −
X
(1− Fi)

−1F−1i Fi
∂Fi
∂β

+
X

yi(1− Fi)
−1F−1i

∂Fi
∂β

=
X
(yi − Fi)(1− Fi)

−1F−1i

∂Fi
∂β

=
X"

yi − Fi

(1− Fi)1/2F
1/2
i

#"
∂Fi/∂β

(1− Fi)1/2F
1/2
i

#
=

X
wivi = w0v.

where

wi =
yi − Fi

(1− Fi)1/2F
1/2
i

, vi =
∂Fi/∂β

(1− Fi)1/2F
1/2
i

The MLE works with the moment conditions E(wivi) = 0 which is identical
to those employed by the weighted least squares estimator. Hence we conclude
that the final estimate obtained from the non-linear regression is identical to

the MLE. Finally to evaluate ∂F
∂β =

∂
R x0tβ
−∞ f(u)du

∂β we need to use Leibniz’ rule

∂

∂x

Z g(x)

−∞
ψ(x, y)dy =

Z g(x)

−∞

∂ψ

∂x
+

∂g

∂x
ψ(x, g(x)).

Applying this we get
∂Fi
∂β

= x0if(x
0
iβ)
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and so the score is

Lβ =
NX
i=1

x0if(x
0
iβ)F

−1
i (1− Fi)

−1(yi − Fi)

=
NX
i=1

Lβi.

We can then use this to get the MLE’s of β and also to perform specification
tests.

1.3 Issues of Testing

There is one further difference between the standard regression set up and the
analysis of binary data – the size of samples. It is rare in time series analysis
to have more than 100 observations, but it is common to see 5000 or so with
binary data. We therefore have to ask if some of our familiar attitudes have to
be changed by this fact, and the answer is at least yes to one of them. Consider
the t-statistic on x2t in the regression of yi against x1i and x2i. If x2i should
be in this regression, as the sample size (n) grows so will the t-value. i.e. as
n→∞, t→∞ . Thus, if we compare it to (say) a critical value of 2, eventually
we must always reject the smaller model in favor of the (correct) larger one.
This is the property of a consistent test statistic i.e. it results in a rejection of
a false null with probability one as n→∞ . But let’s look at what happens if
x2i should not be in the model i.e. its coefficient is zero. Then in large samples
the estimated coefficient of x2i would be normally distributed around zero. But
now notice what happens. There is always some probability that we can get a
t-value > 2 purely by chance. Precisely, as n → ∞ there is a 5% chance that
|t| > 1.96. Thus there is a 5% chance that we would select the larger model
when it is actually incorrect. The combination of these two tendencies produces
a bias towards selecting a larger model. Clearly this is a bit odd. We seem
more concerned with avoiding a type II error (accepting a false model) than
with Type I (rejecting a true model) as n→∞. Just why one should have such
an assymetry is not at all clear, and it seems more reasonable that one would
want to keep a constant balance between the two types of errors as the sample
size grows. How do we do that? It is clear that the problem arises from keeping
the critical value constant as n → ∞; instead we should be making it larger.
Exactly how it should vary with n is of course impossible to resolve unless one
could specify a loss function that shows the trade-off between Type I and Type
II errors, and various suggestions have been made. One of these – known as the
Schwarz criterion – produces the following critical values as n → ∞. Clearly
for n ' 100 the value of 2 is quite reasonable, but as the sample size grows one
should be increasing the critical value. Hence with large sample sizes it does
not make a lot of sense to conclude that a variable has a “significant” impact
unless the t-value is around 4. So one needs to take great care in assessing the
results of Probit/Tobit/Logit (and regressions for that matter) fitted to large
numbers of data points.
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sig level\ n 5 10 50 100 1000 10000 100000

.05 2.57 2.23 2.01 1.98 1.96 1.96 1.96

.01 4.03 3.17 2.67 2.60 2.58 2.58 2.58
Schwartz 1.32 1.56 2.00 2.16 2.63 3.04 3.39

1.4 Multivariate Discrete Choice Models

Now we have to allow for the fact that many of the situations with discrete
responses are more complex than the binary case looked at above. Sometimes
one sees such extensions categorized in the following way. First, we could have
instances where there are multiple choices to be made e.g. one might have
the two possibilities of “travel to work in rush hour,” and “travel to work out
of rush hour” as well as the choice of bus or car. Second, we might have to
make a single choice out of more than two alternatives. For example, one might
have data upon electoral choices and be interested in explaining the vote for a
particular party. Whilst convenient for discussion, the distinction should not
be exaggerated, since we could always enumerate the travel-time, travel-mode
choice combinations and then treat the problem as making a single decision
amongst the four alternatives, although, to some extent, one has lost some of
the structure to the choices.
Let’s consider the single choice/ multiple alternatives case. One could have

collected data upon votes for three candidates A, B, C and analyzed them by
giving a 1 for an “A” Vote, zero for the rest, fitting a binary model to explain
the “A” vote, and then do the same for “B” and “C”. But this is troublesome
as the probabilities of each action should sum to one, but there is no restriction
being imposed that would ensure this. The situation is the same as that for
portfolio models in time series, where the sum of asset demands must sum to
total wealth. These restrictions should not be ignored if sensible results are to
be had.
Before we look at this situation we should first provide another derivation

of the Probit model which will turn out to be very useful. This emphasises
that the discrete choice model can be thought of as having an underlying latent
variable form where yi is observed, y∗i is not and xi is assumed to be weakly
exogenous

y∗i = x0iβ + e∗i ,

where we observe yi = 1 if y∗i > 0 and zero otherwise i.e. yi = 1(y
∗
i > 0) where

1(A) is the indicator function taking the value unity if the event A is true and
zero otherwise.
If we assume that e∗i is i.i.d.N(0, 1) then the model we are looking at is the

Probit model. The data is yi, xi so that we need Pr(yi = 1|xi) and we get this
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from

Pr(yi = 1|xi) = Pr(y∗i > 0|xi)
= Pr(x0iβ + e∗i > 0|xi)
= Pr(e∗i > −x0iβ|xi)
= Pr(e∗i < x

0

iβ|xi)

=

Z x0iβ

−∞
φ(u)du = Φ(x0iβ)

using the properties of the normal density and using the standard symbols that
φ is the standard normal density and Φ is the cumulative normal.
Now there is nothing conceptually difficult about moving from a binary to

a multi-response framework, but the numerical difficulties can be horrendous.
Thus most of this literature seeks ways to structure the problem so as to cut
down the computational load as well as just choosing the simplest possible
statistical framework. Some of the problems become evident when we try to
extend the Probit model. When faced with the travel time/mode example above
it is natural to formulate this as a system of equations with two latent variables
y∗1i and y∗2i and their associated observed variables y1i and y2i which take the
values zero and unity depending on which choice is made in each category. Then
we have the two equation system

y∗1i = x01iβ1 + u∗1i (1)

y∗2i = x02iβ2 + u∗2i (2)

and y1i = 1(y∗1i > 0), y2i = 1(y
∗
2i > 0). Following the same logic as for the single

equation case

∴ Pr{y21 = 1, y1i = 1} = Pr{u∗1i < x01iβ1, u
∗
2i < x02iβ2}

=

Z x01iβ1

−∞

Z x02iβ2

−∞
f(u∗1, u

∗
2)du

∗
2du
∗
1

Thus a bivariate numerical integration is required and this will need to be done
every time the likelihood is evaluated, making the extension of the binary Probit
model to a multivariate one computationally very expensive. A good deal of
time has been spent in recent years working out computer intensive methods of
overcoming this problem.
Thinking of the problem as making a single choice from a set of alternatives

can sometimes be more useful. In particular, the alternative estimator for binary
data, the Logit model, has a nice generalization to the multi response set-up.
With K choices it defines the probabilities of choosing the j’th alternative as
being given by
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Prob(zji = 1) = Pji =
ex

0
jiβj

KP
c=1

ex
0
liβc

.

Thus in the case of two choices we have

P1i =
ex

0
1iβ

ex
0
1iβ + ex

0
2iβ

P2i =
ex

0
2iβ

ex
0
1iβ + ex

0
2iβ

.

Now immediately we can see a potential problem. Suppose we changed the
value of β to β∗ = β + δ. Then

P1i =
ex

0
1i(β+δ)

ex
0
1i(β+δ) + ex

0
2i(β+δ)

= [
ex

0
1iδex

0
1iβ

ex
0
1iδex

0
1iβ + ex

0
2iδex

0
2iβ
]

and, if xi1 = x2i = xi, we see that Pji does not depend upon δ i.e. we could not
distinguish between the values β and β∗ since the two are observationally equiv-
alent as they generate the same probabilities for the choices. Some restriction
needs to be placed upon the problem in order to estimate the β i.e. to ensure
that it is is identified. One solution is to maintain that the xjt are not identical
but many problems exist in which one wants to make them identical. Another
is to allow the parameter values to vary with j i.e.

Prob(zji = 1) = Pji =
ex

0
jiβ1

KP
c=1

ex
0
liβl

An extreme form of this assumption that guarantees identification is that β1 = 0
so that

Prob(z1i = 1) = P1i =
1

1 +
KP
c=2

ex
0
liβl

Prob(zji = 1) = Pji =
ex

0
i1βj

1 +
KP
c=2

ex
0
liβl

, j = 2, ...,K,

and this produces the multinomial Logit model. It represents a very simple
extension of the binary one, and for this reason it has probably become the
preferred option in dealing with multi-response data. Notice that the normal-
ization is like that of a dummy variable i.e. things are being measured relative
to the first choice.
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Estimation is almost invariably with MLE. Let Ij be the observations on
individuals who choose response j. Then the likelihood isY

i∈I1

P1i
Y
i∈I2

P2i . . .
Y
i∈IK

PKi

giving the log likelihoodX
i∈I1

log P1i +
X
i∈I2

log P2i + . . .+i

X
i∈IK

log PKi

or

X
i∈I1

log

µ
1

1 + ex
0
2iβ2 + ..+ ex

0
KiβK

¶
+
X
i∈I2

log

Ã
ex

0
2iβ2

1 + ex
0
2iβ2 + ..+ ex

0
KiβK

!

+....+
X
i∈IK

log

Ã
ex

0
Kiβ

1 + ex
0
2iβ + ..+ ex

0
Kiβ

!

=
X
i∈I2

x02iβ2 + .....+
X
i∈IK

x0KiβK − ...−
NX
i=1

log(1 + ex
0
2iβ2 + ..+ ex

0
KiβK )

This is a fairly easy function to maximize and one gets standard MLE proper-
ties out of it. Unfortunately the multi-response logit model has one weakness,
known as the independence of irrelevant alternatives assumption (IIA). What
this assumption implies is that the choice between any two alternatives does
not depend upon a third one, i.e., the relative probabilities of choosing 1 vs. 2
would be

Pi1
Pi2

=
ex

0
i1β1

ex
0
i2β2

and does not depend upon xi3 at all. This is both a strength and weakness
as it enables one to ignore third alternatives in estimation. But the fact that
it may clash with the data requires careful thought and a good deal of energy
has gone into constructing tests of the IIA in recent years. By far the most
successful of these has been that in Hausman/McFadden(1983, Econometrica)
which compares the estimates of β when the third alternative is dropped from
the data and when it is in. This is a form of encompassing test. If IIA does
not hold then the two should be quite different since there would be inconsis-
tent estimators of β in both cases if IIA is not true, but they will converge to
different values. Computing the point estimates provides an informal check but
Hausman/McFadden formalize this into a formal specification test.
Notes: (i) We have ignored many other types of models used in discrete

choice analysis e.g. if the responses can be ordered or nested in some way.
Greene has more on these issues.
(ii) Perhaps the most interesting work in the estimation of discrete choice

model in the past decade has been the use of computer intensive methods to
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do MLE on the multivariate Probit model. One advantage of that model is
that it can avoid the IIA assumption by making the errors u∗ji correlated. The
computer is basically used to evaluate the multivariate integrals needed to form
the likelihood.
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