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Abstract. Quantile regression as introduced in Koenker and Bassett (1978) may
be viewed as a natural extension of classical least squares estimation of conditional
mean models to the estimation of an ensemble of models for conditional quantile
functions. The central special case is the median regression estimator that mini-
mizes a sum of absolute errors. The remaining conditional quantile functions are
estimated by minimizing an asymmetrically weighted sum of absolute errors. Taken
together the ensemble of estimated conditional quantile functions o�ers a much more
complete view of the e�ect of covariates on the location, scale and shape of the dis-
tribution of the response variable.

This essay provides a brief tutorial introduction to quantile regression methods,
illustrating their application in several settings. Practical aspects of computation,
inference, and interpretation are discussed and suggestions for further reading are
provided.

1. Introduction

In the classical mythology of least-squares regression the conditional mean function,
the function that describes how the mean of y changes with the vector of covariates
x, is (almost) all we need to know about the relationship between y and x. In
the resilient terminology of Frisch (1934) and Koopmans (1937) it is \the `systematic
component' or `true value'," around which y uctuates due to an \erratic component"
or \accidental error." The crucial, and convenient, thing about this view is that the
error is assumed to have precisely the same distribution whatever values may be taken
by the components of the vector x. We refer to this as a pure location shift model
since it assumes that x a�ects only the location of the conditional distribution of
y, not its scale, or any other aspect of its distributional shape. If this is the case,
we can be fully satis�ed with an estimated model of the conditional mean function,
supplemented perhaps by an estimate of the conditional dispersion of y around its
mean.
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2 Quantile Regression

When we add the further requirement that the errors are Gaussian, least-squares
methods deliver the maximum likelihood estimates of the conditional mean function
and achieve a well-publicized optimality. Indeed, Gauss seems to have \discovered"
the Gaussian density as an ex post rationalization for the optimality of least-squares
methods. But we will argue that there is more to econometric life than is dreamt
of in this philosophy of the location shift model. Covariates may inuence the con-
ditional distribution of the response in myriad other ways: expanding its dispersion
as in traditional models of heteroscedasticity, stretching one tail of the distribution,
compressing the other tail, and even inducing multimodality. Explicit investigation of
these e�ects via quantile regression can provide a more nuanced view of the stochastic
relationship between variables, and therefore a more informative empirical analysis.
The remainder of the paper is organized as follows. Section 2 briey explains how

the ordinary quantiles, and consequently the regression quantiles, may be de�ned
as the solution to a simple minimization of a weighted sum of absolute residuals.
We then illustrate the technique in the classical bivariate setting of Ernst Engel's
(1857) original food expenditure study. In Section 3 we sketch the outline of a more
ambitious application to the analysis of infant birthweights in the U.S. In Section
4 we o�er a brief review of recent empirical applications of quantile regression in
economics. Section 5 contains some practical guidance on matters of computation,
inference, and software. Section 6 o�ers several thumbnail sketches of \what can go
wrong" and some possible remedies, and Section 7 concludes.

2. What is it?

We say that a student scores at the � th quantile of a standardized exam if he
performs better than the proportion � , of the reference group of students, and worse
than the proportion (1 � � ). Thus, half of students perform better than the median
student, and half perform worse. Similarly, the quartiles divide the population into
four segments with equal proportions of the reference population in each segment. The
quintiles divide the population into 5 parts; the deciles into 10 parts. The quantiles,
or percentiles, or occasionally fractiles, refer to the general case. Quantile regression

seeks to extend these ideas to the estimation of conditional quantile functions { models
in which quantiles of the conditional distribution of the response variable are expressed
as functions of observed covariates. To accomplish this task we need a new way to
de�ne the quantiles.
Quantiles, and their dual identities, the ranks, seem inseparably linked to the oper-

ations of ordering and sorting that are generally used to de�ne them. So it may come
as a mild surprise to observe that we can de�ne the quantiles, and the ranks, through
a simple alternative expedient { as an optimization problem. Just as we can de�ne
the sample mean as the solution to the problem of minimizing a sum of squared resid-
uals, we can de�ne the median as the solution to the problem of minimizing a sum of
absolute residuals. What about the other quantiles? If the symmetric absolute value
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function yields the median, maybe we can simply tilt the absolute value to produce
the other quantiles. This \pinball logic" suggests solving

min
�2<

X
�� (yi � �)(2.1)

where the function �� (�) is illustrated in Figure 2.1. To see that this problem yields
the sample quantiles as its solutions, it is only necessary to compute the directional
derivative of the objective function with respect to �, taken from the left and from
the right.1

 ττ−1

ρτ (u)

Figure 2.1. Quantile Regression � Function

Having succeeded in de�ning the unconditional quantiles as an optimization prob-
lem, it is easy to de�ne conditional quantiles in an analogous fashion. Least squares
regression o�ers a model for how to proceed. If, presented with a random sample
fy1; y2; : : : ; yng, we solve

min
�2<

nX

i=1

(yi � �)2;(2.2)

1Consider the median case with � equal to 1

2
: the directional derivatives are simply one-half

the sum of the signs of the residuals, yi � �, with zero residuals counted as +1 from the right and
as �1 from the left. If �̂ is taken to be a value such that half the observations lie above �̂ and
half lie below, then both directional derivatives will be positive, and since the objective function is
increasing in either direction �̂ must be a local minimum. But the objective function is a sum of
convex functions and hence convex, so the local minimum is also a global one. Such a solution is a
median by our original de�nition. The same argument works for the other quantiles, but now we
have asymmetric weighting of the number of observations with positive and negative residuals and
this leads to solutions �̂(� ) corresponding to the � th quantiles.
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Figure 2.2. Engel Curves for Food: This �gure plots data taken from
Ernst Engel's (1857) study of the dependence of households' food ex-
penditure on household income.

we obtain the sample mean, an estimate of the unconditional population mean, EY .
If we now replace the scalar � by a parametric function �(x; �) and solve

min
�2<p

nX

i=1

(yi � �(xi; �))
2(2.3)

we obtain an estimate of the conditional expectation function E(Y jx).
In quantile regression we proceed in exactly the same way. To obtain an estimate

of the conditional median function, we simply replace the scalar � in (2.1) by the
parametric function �(xi; �) and set � to 1

2 . Variants of this idea were proposed in
the mid 18th century by Boscovich, and subsequently investigated by Laplace and
Edgeworth, among others. To obtain estimates of the other conditional quantile
functions we simply replace absolute values by �� (�), and solve

min
�2<p

X
�� (yi � �(xi; �))(2.4)

The resulting minimization problem, when �(x; �̂(� )) is formulated as a linear func-
tion of parameters, can be solved very e�ciently by linear programming methods. We
will defer further discussion of computational aspects of quantile regression to Section
5.
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To illustrate the basic ideas we briey reconsider a classical empirical application,
Ernst Engel's (1857) analysis of the relationship between household food expenditure
and household income. In Figure 2.2 we plot the data taken from 235 European
working class households. Superimposed on the plot are seven estimated quantile
regression lines corresponding to the quantiles � 2 f:05; :1; :25; :5; :75; :9; :95g. The
median � = :5 �t is indicated by the dashed line; the least squares �t is plotted as
the dotted line.
The plot clearly reveals the tendency of the dispersion of food expenditure to

increase along with its level as household income increases. The spacing of the quantile
regression lines also reveals that the conditional distribution of food expenditure is
skewed to the left: the narrower spacing of the upper quantiles indicating high density
and a short upper tail and the wider spacing of the lower quantiles indicating a lower
density and longer lower tail.
The conditional median and mean �ts are quite di�erent in this example, a fact that

is partially explained by the asymmetry of the conditional density and partially by
the strong e�ect exerted on the least squares �t by the two unusual points with high
income and low food expenditure. Note that one consequence of this nonrobustness
is that the least squares �t provides a rather poor estimate of the conditional mean
for the poorest households in the sample.
We have occasionally encountered the faulty notion that something like quantile re-

gression could be achieved by segmenting the response variable into subsets according
to its unconditional distribution and then doing least squares �tting on these subsets.
Clearly, this form of \truncation on the dependent variable" would yield disastrous
results in the present example. In general, such strategies are doomed to failure for
all the reasons so carefully laid out in Heckman (1979). It is thus worth emphasizing
that even for the extreme quantiles all the sample observations are actively in play
in the process of quantile regression �tting. Each �t depicted in Figure 2.2 is ulti-
mately determined by only a pair of sample points, but all n points are needed to
determine which pair of points are selected. With p parameters to be estimated, p
points determine the �t, but which p points depend on the entire sample.
In contrast, segmenting the sample into subsets de�ned according to the condi-

tioning covariates is always a valid option. Indeed such local �tting underlies all
non-parametric quantile regression approaches. In the most extreme cases we have p
distinct cells corresponding to di�erent settings of the covariate vector, x, and quan-
tile regression reduces to simply computing ordinary univariate quantiles for each of
these cells. In intermediate cases we may wish to project these cell estimates onto a
more parsimonious (linear) model. See e.g. Chamberlain (1994) and Knight, Bassett,
and Tam (2000).
Another variant, one that actually has some merit, is the suggestion that instead

of estimating linear conditional quantile models, we could instead estimate a family
of binary response models for the probability that the response variable exceeded
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some prespeci�ed cuto� values. This approach replaces the hypothesis of conditional
quantile functions that are linear in parameters with the hypothesis that some trans-
formation of the various probabilities of exceeding the chosen cuto�s, say the logistic,
could instead be expressed as linear functions in the observed covariates. In our view
the conditional quantile assumption is more natural, if only because it nests within
it the iid error location shift model of classical linear regression.

3. \Let's Do It"

In this section we reconsider a recent investigation by Abreveya (2001) of the impact
of various demographic characteristics and maternal behavior on the birthweight of
infants born in the U.S. Low birthweight is known to be associated with a wide range of
subsequent health problems, and has even been linked to educational attainment and
labor market outcomes. Consequently, there has been considerable interest in factors
inuencing birthweights, and public policy initiatives that might prove e�ective in
reducing the incidence of low birthweight infants.
Although most of the analysis of birthweights has employed conventional least

squares regression methods it has been recognized that the resulting estimates of
various e�ects on the conditional mean of birthweights were not necessarily indicative
of the size and nature of these e�ects on the lower tail of the birthweight distribution.
In an e�ort to focus attention more directly on the lower tail, several studies have
recently explored binary response, e.g. probit, models for the occurrence of low
birthweights { conventionally de�ned to be infants weighing less than 2500 grams, or
about 5 pounds 9 ounces. Quantile regression o�ers a natural complement to these
prior modes of analysis. A more complete picture of covariate e�ects can be provided
by estimating a family of conditional quantile functions, as we will now illustrate.
Our analysis is based on the June, 1997, Detailed Natality Data published by the

National Center for Health Statistics. Like Abreveya (2001), we limit the sample to
live, singleton births, with mothers recorded as either black or white, between the
ages of 18 and 45, residing in the U.S. Observations with missing data for any of
the variables described below were dropped from the analysis. This process yielded
a sample of 198,377 babies. Birthweight, the response variable, is recorded in grams.
Education of the mother is divided into four categories: less than high school, high
school, some college, and college graduate. The omitted category is less than high
school so coe�cients may be interpreted relative to this category. The prenatal med-
ical care of the mother is also divided into 4 categories: those with no prenatal visit,
those whose �rst prenatal visit was in the �rst trimester of the pregnancy, those with
�rst visit in the second trimester, and those with �rst visit in the last trimester. The
omitted category is the group with a �rst visit in the �rst trimester; they constitute
almost 85 percent of the sample. An indicator of whether the mother smoked during
pregnancy is included in the model, as well as mother's reported average number of
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cigarettes smoked per day. The mother's reported weight gain during pregnancy (in
pounds) is included as a quadratic e�ect.
In Figure 3.1 we present a concise visual summary of the quantile regression results

for this example. Each plot depicts one of the 16 coe�cient in the quantile regression
model. The solid line with �lled dots represents the 19 point estimates of the coef-
�cient for � 's ranging from 0.05 to 0.95. The shaded grey area depicts a 90 percent
pointwise con�dence band. Superimposed on the plot is a dashed line representing
the ordinary least squares estimate of the mean e�ect, with two dotted lines repre-
senting again a 90 percent con�dence interval for this coe�cient. Note that with the
exception of the \high-school" and \some college" coe�cients, the quantile regression
estimates lie outside mean regresion con�dence interval indicating that the location
shift interpretation of the covariate \e�ect" is implausible.
In the �rst panel of the �gure the intercept of the model may be interpreted as the

estimated conditional quantile function of the birthweight distribution of a girl born
to an unmarried, white mother with less than a high school education, who is 27 years
old and had a weight gain of 30 pounds, didn't smoke, and had her �rst prenatal visit
in the �rst trimester of the pregnancy. The mother's age and weight gain are chosen
to reect the means of these variables in the sample.2 Note that the �= .05 quantile
of the distribution for this group is just at the margin of the conventional de�nition
of a low birthweight baby.
At any chosen quantile we can ask how di�erent are the corresponding weights of

boys and girls, given a speci�cation of the other conditioning variables. The second
panel answers this question. Boys are obviously larger than girls, by about 100
grams according to the OLS estimates of the mean e�ect, but as is clear from the
quantile regression results the disparity is much smaller in the lower quantiles of the
distribution and somewhat larger than 100 grams in the upper tail of the distribution.
Perhaps surprisingly, the marital status of the mother seems to be associated with

a rather large positive e�ect on birthweight especially in the lower tail of the distri-
bution. The public health implications of this �nding should, of course, be viewed
with caution.
The disparity between birthweights of infants born to black and white mothers is

disturbing particularly at the left tail of the distribution. At the 5th percentile of the
conditional distribution the di�erence is roughly one third of a kilogram.
Mother's age enters the model as a quadratic. At the lower quantiles the mother's

age tends to be more concave, increasing birthweight from age 18 to about age 30,
but tending to decrease birthweight when the mother's age is beyond 30. At higher
quantiles this optimal age becomes gradually older. At the third quantile it is about
36, and at � = :9 it is almost 40.

2It is conducive for interpretation to center covariates so that the intercept can be interpreted as
the conditional quantile function for some representative case { rather than as an extrapolation of
the model beyond the convex hull of the data. This may be viewed as adhering to John Tukey's
admonition: \Never estimate intercepts, always estimate centercepts!"
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Figure 3.1. Quantile Regression for Birthweights
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Education beyond high school is associated with a modest increase in birthweights.
High school graduation has a quite uniform e�ect over the whole range of the distri-
bution of about 15 grams. This is a rare example of an e�ect that really does appear
to exert a pure location shift e�ect on the conditional distribution. Some college
education has a somewhat more positive e�ect in the lower tail than in the upper
tail, varying from about 35 grams in the lower tail to 25 grams in the upper tail. A
college degree has an even more substantial positive e�ect, but again much larger in
the lower tail and declining to a negligible e�ect in the upper tail.
The e�ect of prenatal care is of obvious policy interest. Since individuals self-

select into prenatal care results must be interpreted with considerable caution. Those
receiving no prenatal care are likely to be at risk in other dimensions as well. Never-
theless, the e�ects are su�ciently large to warrant considerable further investigation.
Babies born to mothers who received no prenatal care were on average about 150
grams lighter than those who had a prenatal visit in the �rst trimester. In the lower
tail of the distribution this e�ect is considerably larger { at the 5th percentile it is
nearly half a kilogram! In contrast, mothers who delayed prenatal visits until the
second or third trimester have substantially higher birthweights in the lower tail than
mothers who had a visit in the �rst trimester. This might be interpreted as the self-
selection e�ect of mothers con�dent about favorable outcomes. In the upper 3/4 of
the distribution there seems to be no signi�cant e�ect.
Smoking has a clearly deleterious e�ect. The indicator of whether the mother

smoked during the pregnancy is associated with a decrease of about 175 grams in
birthweight. In addition, there is an e�ect of about 4 to 5 grams per cigarette per
day. Thus a mother smoking a pack per day appears to induce a birthweight reduction
of about 250 to 300 grams, or from about half to two-thirds of a pound.
Lest this smoking e�ect be thought to be attributable to some associated reduction

in the mothers weight gain, we should hasten to point out that the weight gain e�ect is
explicitly accounted for with a quadratic speci�cation. Not suprisingly, the mother's
weight gain has a very strong inuence on birthweight, and this is reected in the
very narrow con�dence band for both linear and quadratic coe�cients. At low weight
gains by the mother the marginal e�ect of another pound gained is about 30 grams at
the lowest quantiles and declines to only about 5 grams at the upper quantiles. This
pattern of declining marginal e�ects is maintained for large weight gains until we begin
to consider extremely large weight gains at which point the e�ect is reversed. The
quadratic speci�cation of the e�ect of mother's weight gain o�ers a striking example
of how misleading the OLS estimates can be. Note that the OLS estimates strongly
suggest that the e�ect is linear with an essentially negligible quadratic e�ect. The
quantile regression estimates give a very di�erent picture, one in which the quadratic
e�ect of the weight gain is very signi�cant except where it crosses the zero axis at
about � = :33.
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4. Who's Doing It?

In Spain, the best upper sets do it...

Some Argentines, without means, do it

People say in Boston even beans do it

Cole Porter (1928)

There is a rapidly expanding empirical quantile regression literature in economics
which, taken as a whole, makes a persuasive case for the value of \going beyond
models for the conditional mean" in empirical economics. Catalysed by Gary Cham-
berlain's invited address to the 1990 World Congress of the Econometric Society,
Chamberlain (1994), there has been considerable work in labor economics: on union
wage e�ects, returns to education, and labor market discrimination. Chamberlain
�nds, for example, that for manufacturing workers, the union wage premium at the
�rst decile is 28 percent and declines monotonically to a negligible 0.3 percent at the
upper decile. The least squares estimate of the mean union premium of 15.8 percent
is thus captured mainly by the lower tail of the conditional distribution. The conven-
tional location shift model thus delivers a rather misleading impression of the union
e�ect. Other contributions exploring these issues in the U.S. labor market include
the inuential work of Buchinsky (1994, 1995, 1997, 1998, 2001) . Arias, Hallock,
and Sosa (2001) using data on identical twins interpret observed heterogeneity in the
estimated return to education over quantiles as indicative of an interaction between
observed educational attainment and unobserved ability.
There is also a large literature dealing with related issues in labor markets outside

the U.S. including Fitzenberger and Kurz (1997), B�uttner and Fitzenberger (1998),
Fitzenberger (1999), and Fitzenberger, Hujer, MaCurdy, and Schnabel (2001), on
Germany; Machado and Mata (2001) on Portugal; Abadie (1997) and Lopez, Her-
nandez, and Garcia (2001) on Spain; Schultz and Mwabu (1998) on South Africa;
Montenegro (1998) on Chile; and Kahn (1998) on international comparisons. The
work of Machado and Mata (2001) is particularly notable since it introduces a use-
ful way to extend the counterfactual decomposition approach of Oaxaca to quantile
regression and suggests a general strategy for simulating marginal distributions from
the quantile regression process. Tannuri (2000) has employed this approach in a study
of assimilation of U.S. immigrants.
In other applied micro areas Eide and Showalter (1998), Knight, Bassett, and Tam

(2000), and Levin (2001) have addressed school quality issues. Levin's study of a panel
survey of the performance of Dutch school children �nds little support for the claim
that reducing class size improves student outcomes, but he does �nd some evidence
of positive peer e�ects particularly in the lower tail of the achievement distribution.
Poterba and Rueben (1995) and Mueller (2000) study public-private wage di�erentials
in the U.S. and Canada. Work by Viscusi and Born (1995) considers liability reform
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e�ects on medical malpractice. Viscusi and Hamilton (1999) consider public decision
making on hazardous waste cleanup.
Deaton (1997) o�ers a nice introduction to quantile regression for demand analysis.

In a study of Engel curves for food expenditure in Pakistan he �nds that although
the median engel elasticity of 0.906 is similar to the OLS estimate of 0.909, the
coe�cient at the 10th quantile is 0.879 and the estimate at the 90th percentile is
0.946. In another demand application, Manning, Blumberg, and Moulton (1995)
study demand for alcohol using survey data from the National Health Interview Study
and �nd considerable heterogeneity in the price and income elasticities over full range
of the conditional distribution. Hendricks and Koenker (1991) investigate demand
for electricity by time of day.
Earnings inequality and mobility is a natural arena of applications for quantile

regression. Conley and Galenson (1998) explore wealth accumulation in several U.S.
cities in the mid-19th century. Gosling, Machin, and Meghir (1996) study the income
and wealth distribution in the UK using 27 years of the UK Family Expenditure
Survey. Trede (1998) and Morillo (2000) compare earnings mobility in the U.S. and
Germany.
There is also a growing literature in empirical �nance employing quantile regression

methods. One strand of this literature is the rapidly mushrooming literature on value
at risk: this connection is developed in Taylor (1999), Chernozhukov and Umantsev
(2001), and Engle and Manganelli (1999). Bassett and Chen (2001) consider quantile
regression index models to characterize mutual fund investment styles.

5. How to do it

The di�usion of technological change throughout statistics is closely tied to its
embodiment in statistical software. This is particularly true of quantile regression
methods since the linear programming algorithms that underlie reliable implemen-
tations of the methods appear somewhat esoteric to some users. This section o�ers
a critical review of existing algorithms and inference strategies for quantile regres-
sion. Readers interested in the practicalities of current software may prefer to skip
immediately to the �nal subsection where this is discussed.

5.1. Algorithms. Since the early 1950's it has been recognized that median regres-
sion methods based on minimizing sums of absolute residuals can be formulated as
linear programming problems and e�ciently solved with some form of the simplex al-
gorithm. For this purpose, the median regression algorithm of Barrodale and Roberts
(1974) has proven particularly inuential. Median regression algorithms can be easily
adapted for general quantile regression problems. Koenker and d'Orey (1987, 1993)
describe one implementation.
The Barrodale and Roberts approach typi�es the class of exterior point algorithms

for solving linear programming problems: we travel from vertex to vertex along the
edges of the polyhedral constraint set, chosing at each vertex the path of steepest
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descent, until we arrive at the optimum. The work of Karmarker (1984) initiated a
dramatic reappraisal of computational methods for linear programming. Instead, of
traversing the outer surface, we take Newton steps from the interior of a deformed
version of the constraint set toward the boundary. This approach has produced ex-
tremely e�ective interior point algorithms that are closely related to the log barrier
methods pioneered by Frisch in the 1950's for solving constrained optimization prob-
lems. These methods are particularly e�ective for large scale quantile regression
problems. For such problems, Portnoy and Koenker (1997) have shown that a com-
bination of interior point methods and e�ective problem preprocessing render large
scale quantile regression computation competitive with least squares computations
for problems of comparable size.

Sample Size Barrodale-Roberts Frisch-Newton Preprocessing
100 0.03 0.04 0.05
1000 0.57 0.14 0.47
10000 17.96 1.49 1.61
100000 1317.24 24.59 11.69

Table 5.1. Timings for three alternative quantile regression algo-
rithms. Timings are reported in cpu seconds using Splus's unix.time
command on a Sun Sparc Ultra II. The data for each row of the table
consists of the �rst n rows of the natality data described above. The
model has been simpli�ed to include only 9 parameters rather than the
original 16 to avoid some obvious singularity problems that arise at
small sample sizes.

To illustrate the performance of the three algorithms we provide some timings
based on a restricted version of our natality example. From the results reported in
Table 5.1, it is clear that the exterior point algorithm of BR is competitive only for
relatively small samples. The pure interior point algorithm that we characterize as
the Frisch- Newton method is considerably faster for large problems, nearly 60 times
faster when n is 100,000. Preprocessing can yield a further signi�cant improvement,
but only for quite large problems. The lesson we would draw from this experience is
that the traditional reliance on simplex methods in most implementations of quantile
regression in commercial software is well founded only for rather small problems.
We hope that reemphasizing this point, which is developed in considerably more
detail in Portnoy and Koenker (1997), will encourage software developers to consider
implementing more e�cient interior point methods as an option for larger problems.
It may also be worth emphasizing that the proposed preprocessing strategy also

provides, in principle, a way to design algorithms for problems so large that data
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cannot be accommodated in machine memory. In e�ect, preprocessing substitutes
solution of several smaller O(n2=3) problems for solving one large O(n) problem.3

5.2. What should we put in parentheses? It is a basic principle of sound econo-
metrics that every serious estimate deserves a standard error. There are two general
approaches to �lling parentheses. Either we o�er a procedure to estimate the asymp-
totic standard error of the estimator, or we suggest some form of the bootstrap. We
will briey consider both approaches.

5.3. Asymptotics. In its most elementary form the asymptotic theory of quantile
regression is provided in Koenker and Bassett (1978). In fact, the �nite sample dis-
tribution is also explicitly given there, although the combinatorial form of the exact
density is unlikely to prove practical for several more cycles of Moore's law. The
elementary asymptotics of quantile regression are based on the assumption of an iid
error, pure location-shift version of the model. In this case the limiting behavior
of �̂n(� ) is normal with covariance matrix !2(� )(X 0X)�1, where !2(� ) denotes the
quantity � (1� � )=f2(F�1(� )) and f(F�1(� )) denotes the density of the error distri-

bution evaluated at the � th quantile. This corresponds closely to the behavior of the
ordinary least squares estimator under the same conditions except that !2 is replaced
by �2, the variance of the underlying error distribution.
Why does f2(F�1(� )) appear in the asymptotic covariance matrix of �̂(� )? A heuris-

tic explanation may be useful. Estimation of the � th conditional quantile function
relies, at least asymptotically, only on the observations near the � th quantile, but
the number of such observations is proportional to f(F�1(� )) in the iid case, and the
variability of the estimate, by � method considerations, decreases like the squared
reciprocal. It is easy to estimate the nuisance parameter !2(� ) based on the quan-
tile regression residuals, but as we have already seen in the examples the iid error
assumptions seems highly questionable in many application settings.
When the observations are independent but not identically distributed, as we would

expect in most microeconometric applications it is quite straightforward to extend
the iid theory to produce a version of the Huber-Eicker-White sandwich formula for
the limiting covariance matrix of �̂(� ). Estimation is somewhat more complicated,
but there are several reasonable candidate estimators that have been proposed in the
literature. In addition inversion of a rank test as described in Koenker (1994,1996)
o�ers a reliable method of constructing con�dence intervals in the non-iid error con-
text. These intervals are constructed by inverting a univariate rank test introduced in
Gutenbrunner, Jure�ckov�a , Koenker, and Portnoy (1993) to �nd a set of hypothetical
values of the parameter that would not lead to rejection at the proscribed level. The
test, in turn, is based on a fundamental link between the formal linear programming
dual of the quantile regression optimization problem and the theory of rank statistics,

3Thus, for example for a problem with a million observations we need only solve problems with n
roughly 10,000 that as Table 5.1 indicates are very e�ciently handled by the Frisch-Newton method.
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introduced ie Gutenbrunner and Jure�ckov�a (1992). We compare several methods of
con�dence interval construction based on asymptotic theory below.

5.4. Bootstrap. Efron's ubiquitous bootstrap o�ers an expanded range of options
for computing con�dence intervals and standard errors. Indeed, Efron himself pro-
posed using the bootstrap to estimate con�dence intervals for median regression as
early as his 1987 Ferber lecture at the University of Illinois. Since that time, there
has been considerable further consideration of the bootstrap for quantile regression
from both theoretical and applied perspectives.
In the simplest independent, but not identically distributed settings the standard

approach is the so-called (x; y)-pair bootstrap. Pairs (xi; yi) i = 1; : : : ; n are drawn
at random from the original observations with replacement. For each resampling the
estimator �̂�n(� ) is recomputed. Repeating this procedure B times yields a sample
of B p-vectors whose sample covariance matrix constitutes a valid estimator of the
covariance matrix of the original estimator. This procedure is automated in Stata's
bsqreg command, for example. Alternatively, and in our view preferably, con�dence
regions for the quantile regression parameters can be computed from the empirical
distribution of the sample of bootstrapped �̂�n(� )'s, the so-called percentile method.
These procedures are easily extended to deal with the joint distribution of several
distinct quantile regression estimators f�̂n(�k) k = 1; : : : ;Kg, as would be needed to
test equality of slope parameters across quantiles, for example. In practice it is often
desirable, particularly when the initial sample size is large to consider subsampling,
or what is sometimes called the m out of n bootstrap. In this case the sample size of
each bootstrap sample is m � n, and the resulting bootstrapped covariance matrix
is rescaled by

p
m=n: This approach has been used extensively by Buchinsky (1994)

and also by Abreveya (2001) in large scale applications.4

Parzen, Wei, and Ying (1994) have suggested that rather than bootstrapping (xi; yi)
pairs, one can instead bootstrap the quantile regression gradient condition. This in-
volves sampling Bernoulli random variables, leads to an asymptotically pivotal ap-
proach, and can be implemented very e�ciently. More recently, Bilias, Chen, and
Ying (2000) have suggested a formulation of this approach as a resampling strategy
for censored quantile regression.

5.5. Comparison of Methods. We have occasionally encountered the view that
because there are several available approaches to inference for quantile regression, or
because it involves a form of density estimation, it is a subject too arcane to o�er

4Recently, Bickel and Sakov (2000) have shown that choice of m such that m=n tends to zero for
bootstrapping the sample median achieves a higher-order asymptotic re�nement. Extension of this
�nding to quantile regression is an intriguing open problem. Choosing m=n! 0 may be viewed as
a smoothing device. Alternative smoothing schemes, e.g. Horowitz (1998), have been proposed, but
they have the disadvantages of being computationally more demanding and introducing additional
tuning constants.
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Figure 5.1. Comparison of Con�dence Interval Lengths: The �gure
plots relative con�dence interval lengths for several di�erent proposed
methods. The rank-inversion method is normalized to have unit length,
so all other intervals are relative to the rank inversion interval. The
bootstrap intervals are represented by 5 independent realizations that
are plotted separately.

reliable conclusions.5 In our experience the discrepancies between reasonable com-
peting methods are slight, and inference for quantile regression is, if anything, more
robust than many other forms of inference commonly encountered in econometrics.
To illustrate this point, we compare in Figure 5.1 several competing methods of esti-

mating con�dence intervals for quantile regression parameters in a standard log wage

5Of course, with the advent of the Eicker-White-Newey-West proliferation of standard error pro-
posals for the ordinary least squares estimator one might be led to similar conclusions for mean
regression.
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equation model based on 39,466 observations from the 1999 March Current Popula-
tion Survey. The speci�cation includes a linear schooling term, potential experience,
and its square, and indicators for gender, marital status, race, and residence in an
urban area. We compare 5 methods: the rank inversion intervals Koenker (1994),
the sandwich formula estimate suggested in Hasan and Koenker (1997), the sandwich
formula proposal of Powell (1989), the naive Siddiqui estimator of the asymptotic
covariance matrix under the assumption of iid errors, and three versions of the boot-
strap using B=20, 200, and 600. For each of the bootstrap methods we plot �ve
realizations of each bootstrapped con�dence interval to provide some indication of
the variability of the method. In each case we have normalized the length of the
rank inversion interval to be one. Note that the rank inversion interval is allowed to
asymmetric, while all the other intervals are symmetric by construction. Of course,
in such a large samples, we would expect that the estimator would be nearly normal
and hence the intervals would be approximately symmetric.
Subject to the obvious proviso that one should be highly suspicious of any one

exercise like this, we boldly draw the following conclusions. None of the methods
display embarrassing performance. Even the iid Siddiqui approach that we expected
to yield overly optimistic, short intervals isn't that bad. Powell's approach looks
somewhat more pessimistic at the median, but seems somewhat more optimistic at
.95. The bootstrap intervals are obviously too variable with only 20 replications, and
perhaps also at 200. The more stable behavior of the bootstrap at 600 replications is
quite consistent with the guidelines provided by Andrews and Buchinsky (2000).
Stata's command qreg also produces estimates of asymptotic standard errors based

on iid error assumptions. Although they are designated as \Koenker-Bassett standard
errors" the method bears little resemblance to the histospline approach of the cited
reference. As described by Rogers (1993) the qreg's standard errors appear to be a
variant of the iid Siddiqui method with a rather unfortunate choice of bandwidth.6

A consequence of the undersmoothing implied by the Stata rule is that the resulting
standard errors are frequently considerably smaller than would be obtained with a
more conventional bandwidth selection rule. This conclusion is supported by the
Monte Carlo comparison reported in Rogers (1992).

5.6. Software Packages. Among commercial programs in common use in econo-
metrics only Stata o�ers some basic functionality for quantile regression within the
central core of the package distributed by the vendor. Since the mid-1980's one of us
has maintained a public domain package of quantile regression software designed for
the S language of Becker, Chambers, and Wilks (1988), and the related commercial
package Splus. Recently, this package has been extended to include a version for

6Stata's bandwidth rule appears to be h = [n�1=2]. In contrast the default Hall and Sheather
(1988) rule employed in our S implementation is h = n�1=3��1(� )1=3[3=2�2(�)=(2�2

1
)]1=3 where

� = ��1(� ). The Stata rule produces bandwidths that are generally considerably smaller than the
S rule.
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R, the very impressive GNU dialect of S. The current repository for this software is
www.econ.uiuc.edu/ roger/research/rq/rq.html. The R version is also available
at lib.stat.cmu.edu/R/CRAN/. The former website also provides software for the
Ox language of Doornik (1996), and for Matlab. In addition to including code for
the algorithms described above in fortran, this website o�ers a considerable variety
of related code designed to facilitate inference and presentation of quantile regression
results.
Although there is quite a large theoretical literature dealing with quantile regression

inference, these developments have been slow to percolate into standard econometric
software. With the notable exceptions of Stata and Xplore, see Cizek (2000), and
the packages available for Splus and R, none of the implementations of quantile
regression include any functionality for inference. We would welcome a concerted
e�ort by readers to encourage software developers to rectify this situation.

6. Perils of Doing It

In mean regression there is a familiar litany of ailments that plague the econometric
mind with doubt and dread. In a few happy cases the practitioner of quantile regres-
sion can rest a little easier than his mean-spirited colleague. In other cases, doubts are
magni�ed. We will very briey survey this territory and try to o�er some guidance to
available remedies and related literature. For severe or persistent symptoms consult
your local econometrician.

6.1. Robustness. From the outset an important motivation for quantile regression
has been its inherent robustness to outlying observations in the response variable.
While mean regression tends to follow a single outlier like a rat behind the Pied
Piper, the inuence of an outlying observation on �̂(� ) is bounded. Indeed, moving
observations away from the quantile regression �t in the y-direction has no e�ect
whatsoever on the �t. This insensitivity has been occasionally misinterpreted, but
it is fundamental to the nature of the quantiles. As in mean regression, outlying x
observations can be highly inuential in quantile regression, but the problem is not
quite so severe. Several proposals have been made to \robustify" quantile regression
against such points. See e.g. Rousseeuw and Hubert (1999) and the associated
discussion.

6.2. Heteroscedasticity. The recognition that covariates can exert a signi�cant
e�ect on the dispersion of the response variable as well as its location is the �rst step
toward a general acceptance of the expanded exibility of covariate e�ects in quantile
regression. Some simple tests for heteroscedasticity were suggested in Koenker and
Bassett (1982), and there has been considerable subsequent work on models for linear
location and scale shifts. As in mean regression, variation in conditional dispersion
creates opportunities for improved e�ciency of estimation through weighted quantile
regression. See Koenker and Zhao (1994) and Zhao (2000) for further details.
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6.3. Censoring. In cases of �xed censoring like the well-known tobit model paramet-
ric maximum likelihood methods have attracted considerable criticism due to their
sensitivity to both distributional assumptions and potential heteroscedasticity. See
e.g. Goldberger (1983). The crucial observation of Powell (1986) that linear condi-
tional quantile models could easily accommodate �xed censoring by a simple nonlinear
modi�cation of the response function has been enormously inuential. More gener-
ally, as elaborated by Powell (1989) the quantiles are equivariant with respect to any
monotone increasing transformation, so the transformed random variable h(Y ) has
conditional quantile functions Qh(Y )(� ) = h(QY (� )), a fact that considerably simpli-
�es the interpretation of a wide variety of transformation models. See e.g. Buchinsky
(1995) and Machado and Mata (2000). Random censoring constitutes a somewhat
more challenging context for quantile regression, but there have been several im-
portant recent developments including: Honor�e, Powell, and Khan (2000), Lipsitz,
Fitzmaurice, Molenberghs, and Zhao (1997), Yang (1999), and Portnoy (2001).

6.4. Sample Selection. Semiparametric models of sample selection have received
considerable attention in recent years as researchers explored various schemes to relax
the parametric speci�cations employed in the seminal work of Heckman (1979). A
valuable survey is provided by Manski (1993). A uni�ed approach to sample selection
for quantile regression remains a challenging open problem. See Buchinsky (1997,
2001) for some recent developments in this direction.

6.5. Binary Response Models. The maximum score estimator proposed by Man-
ski (1975,1985) for the binary response model chooses �̂ to maximize the agreement
between the signs of the observed response variable, coded �1, and the signs of the
linear predictor xi�. Manski (1985) observed that this problem could be reformu-
lated as a general quantile regression problem, but for reasons that are not altogether
clear subsequent attention seems to have been focused almost entirely on the median
case. Kordas (2000) has recently explored the consequences of estimating an ensem-
ble of these binary quantile regression models, an approach that leads to a much
more exible view of how covariates inuence the response. The asymptotic behav-
ior of the joint distribution of these binary regression quantiles is studied following
the smoothing approach introduced by Horowitz (1992). This approach seems to of-
fer a very appealing empirical strategy for many discrete choice applications where
heterogeneity of covariate e�ects is an important consideration.

6.6. Duration Models. Chaudhuri, Doksum, and Samarov (1997) have argued that
quantile regression serves as a unifying concept for a variety of duration models:
proportional hazards, proportional odds, accelerated failure time, etc. There are many
potential econometric applications. Koenker and Geling (2001) describe a large scale
application in experimental demography, and discuss an important link to the general
notion of treatment e�ects introduced by Lehmann (1974). Fitzenberger (1996) and
Koenker and Bilias (2001) discuss applications to unemployment duration models.
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6.7. Panel Data. Additive random e�ects models for panel data would seem to
o�er a fertile �eld for the growth of quantile regression methods. Caution is called for,
however. Quantiles of convolutions of random variables are rather intractable objects,
and preliminary di�erencing strategies familiar from Gaussian models have sometimes
unanticipated e�ects. Some progress has been made with minimum distance methods
based on unrestricted quantile regression �tting to several cross sections, as in Chay
(1995).

6.8. Endogeneity. Amemiya (1982) and Powell (1983) consider analogues of the
two stage least squares estimator for median regression. And as noted in the previ-
ous section, there have been several recent applications of these methods. Recently,
Abadie, Angrist, and Imbens (2000) have proposed a weighted quantile regression
approach to estimating endogenous treatment e�ects in observational studies. That
causal inference will continue to generate important (and controversial) work seems
safe to predict.

6.9. Time-Series. There is a growing literature devoted to applications of quantile
regression to time-series: Weiss (1991), Koul and Saleh (1995), Koul and Mukherjee
(1994), Hallin and Jure�ckov�a (1999), Davis and Dunsmuir (1997), Hasan and Koenker
(1997), Koenker and Zhao (1994). Interest has focused almost entirely, however, on
the classical iid innovation model. The toy example of Koenker (1999) of a �rst
order quantile autoregression model for daily temperature suggests that there may
be interesting scope for non-iid innovation models as well.

6.10. Extremes. There is often a compelling substantive case for focusing attention
on the behavior of conditional extreme values. This is certainly the case, for example,
in auction applications in economics where such observations represent the winning
bids. Or, in production-cost models where they represent �rms near the technological
frontier. Until recently the literature on this subject, like the data, has been rather
sparse. Chernozhukov (2000) has dramatically altered this state of a�airs by providing
a very complete theory of the large sample behavior of extreme quantile regression,
incorporating cases in which n�n converges to a constant as well as intermediate cases
with n�n diverging, but �n ! 0. This new theory signi�cantly expands the domain
of applicability of these methods, and introduces some important new ideas about
inference.

6.11. Nonlinear Models. As for models of conditional mean functions, it is fre-
quently useful to consider models for conditional quantile functions that are nonlinear
in parameters. Powell's censored regression estimator is a prominent example. Non-
linear models pose some new computational problems since the strict linear program-
ming formulation, and its underlying convexity is no longer available. Nevertheless,
e�ective algorithms can be designed and the large sample theory of linear quantile
regression is quite easily adapted to these cases. Fitzenberger (1997) considers the
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Powell example in considerable detail. Koenker and Park (1996) describe a general
approach to computation for nonlinear quantile regression problems based on interior
point ideas.

6.12. Nonparametric Models. There is also a rapidly growing literature on non-
parametric quantile regression. Locally polynomial methods have been extensively
explored by Chaudhuri (1991), Welsh (1996) and others. Regression splines have been
considered by Hendricks and Koenker (1991) and several variants of quantile regres-
sion smoothing splines have also been suggested. Koenker, Ng, and Portnoy (1994)
suggest that total variation of the �rst derivative of the �tted function provides a
natural alternative to the classical L2 smoothing penalty for univariate nonparamet-
ric quantile regression applications. Tibshirani (1996) has explored related penalties
for other model selection problems.

6.13. Multivariate Quantile Regression. Quantile regression o�ers a coherent
strategy for exploring the conditional distribution of the response variable in a wide
variety of univariate regression-type settings. It is thus natural to ask whether there
are associated methods for multivariate response models such as seemingly unrelated
regression. A prior question is: how should we de�ne a multivariate quantile? Un-
fortunately, this question has resisted a satisfactory resolution. Even in the case of
the multivariate median, there has been considerable controversy as the excellent sur-
vey of Small (1990) portrays. Despite the very interesting recent work of Chaudhuri
(1996) and Koltchinskii (1997), it seems fair to say that a fully successful approach
remains elusive.

7. Conclusion

Much of applied statistics may be viewed as an elaboration of the linear regression
model and associated estimation methods of least-squares. In beginning to describe
these techniques Mosteller and Tukey (1977) in their inuential text remark:

What the regression curve does is give a grand summary for the averages
of the distributions corresponding to the set of x's. We could go further
and compute several di�erent regression curves corresponding to the various
percentage points of the distributions and thus get a more complete picture
of the set. Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture of a single
distribution, so the regression curve gives a correspondingly incomplete
picture for a set of distributions.

We would like to think that quantile regression is gradually developing into a com-
prehensive strategy for completing the regression picture.
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