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ARE213 Econometrics

Fall 2004 UC Berkeley Department of Agricultural and Resource Economics

Limited Dependent Variable Models II:

Selection Models (W 17.4.1)

1. The Model

In this lecture we study selection models. Typically they consist of two equations, one

outcome equation describing the relation between an outcome of interest Yi and a vector

of covariates Xi, and the second, the selection equation, describing the relation between a

binary participation decision Di and another vector of covariates Zi. There are various forms

of these models. Here we consider a specific case, originally studied by Heckman (1979).

Yi = X ′
iβ + εi, (1)

Di = 1{Z ′
iγ + ηi > 0}. (2)

The parametric form of the model assumes that

(
εi

ηi

)∣∣∣Xi, Zi ∼ N
((

0
0

)
,

(
σ2

ε ρ · σε

ρ · σε 1

))
. (3)

The variance for ηi is normalized to one since we only observe the sign of X ′
iγ + ηi. For a

random sample from the population we observe Di, Zi, and Xi. Only for observations with

Di = 1 do we observe Yi.

This model is known as the Heckman selection model, or the type II Tobit model

(Amemiya), or the probit selection model (Wooldridge). Variations include the case where

Z ′
iγ + ηi is observed if Di = 1, so that the selection equation is not probit but tobit. That

case is referred to as type II tobit by Amemiya and the tobit selection model by Wooldridge.

The classic example is a wage equation, where we only observe the age if the individual

decided to work (Di = 1). Unlike in the Tobit case non participation does not imply that
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Yi is negative. In fact, the Tobit model is a special case of this model with εi = ηi, γ = β,

and thus Di = 1{Yi ≥ 0}. In the wage example we think that those who participate in the

labor market get relatively high wages compared to those who decided not to participate.

If the selection equation had hours worked, with the actual number of observed if hours is

positive, we would have the tobit selection model.

Another example is that of people buying life insurance (see Wooldridge). We are inter-

ested in the relation between the price people pay for life insurance and their characteristics.

However, we only observe the price of life insurance for those who purchase it. We do not

know what price people who choose not to purchase life insurance would have paid, had

they done so. The selection equation models the decision to purchase life insurance. Here

we may be concerned that those who did purchase the life insurance (and thus who had

relatively high values of η) paid different prices from those who did not. Specifically, those

who purchase life insurance may be less healthy, and that may imply they pay relatively

high prices for life insurance, conditional on covariates if these do not adequately control for

health status.

The first key issue is that the disturbances in the two equations are potentially correlated.

If they are known not to be correlated, (ρ = 0), then conditional on Zi and Di = 1 it would

still be the case that εi is independent of Xi, and so we could just do least squares on the

complete observations.

Second, is whether Zi and Xi are the same. If not, we have exclusion restrictions. In

particular it is important whether we have variables in Zi that are not in Xi. That is,

variables that affect participation but not the outcome directly.

2. Maximum Likelihood Estimation

The likelihood function is tricky to derive. First consider observations with Di = 0. For

these units we only know that Z ′
iγ + ηi < 0. Although we (possibly) observe Xi, we know

nothing about Yi. Hence the likelihood contribution for these units is just the probabilty
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that Di = 0:

Pr(Di = 0|Zi,Xi) = Pr(ηi < −Z ′
iγ) = Φ(−Z ′

iγ) = 1 − Φ(Z ′
iγ).

Next consider the observations with Di = 1. Rather than look at the probability that

Di = 1 times the conditional density of Yi given Di = 1, we look at the marginal density

of Yi (normal with mean X ′
iβ and variance σ2

ε , times the conditional probability of Di = 1

given Yi. So, the first factor is

1

σε
· φ((Yi − X ′

iβ)/σε).

The conditional distribution of ηi given Yi and Xi is normal with mean (ρ/σε) · (Yi − X ′
iβ),

and variance 1 − ρ2/σ2
ε . Thus the probability that Di = 1 given Yi, Xi, and Zi is

Pr(Di = 1|Xi, Zi, Yi) = Pr(Z ′
iγ + ηi > 0|Yi,Xi, Zi)

= Pr(ηi > −Z ′
iγ|Yi,Xi, Zi)

= Pr (ηi − (ρ/σε) · (Yi − X ′
iβ) > −Z ′

iγ − (ρ/σε) · (Yi − X ′
iβ)|Yi,Xi, Zi)

= Pr

(
ηi − (ρ/σε) · (Yi −X ′

iβ)√
1 − ρ2/σ2

ε

>
−Z ′

iγ − (ρ/σε) · (Yi −X ′
iβ)√

1 − ρ2/σ2
ε

∣∣∣∣∣Yi,Xi, Zi

)

= 1 − Φ

(
−Z ′

iγ − (ρ/σε) · (Yi − X ′
iβ)√

1 − ρ2/σ2
ε

)

= Φ

(
Z ′

iγ + (ρ/σε) · (Yi − X ′
iβ)√

1 − ρ2/σ2
ε

)
.

Combining all these parts leads to the following log likelihood function:

L(β, γ, σ2
ε, ρ) =

N∑

i=1

(1 − Di) · ln(1 − Φ(Z ′
iγ))
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+Di ·
(

lnΦ

((
Z ′

iγ +
ρ

σε
(Yi − X ′

iβ)

)
· (1 − ρ/σε)

−1/2

)
+ lnφ ((Yi −X ′

iβ) /σε) − lnσε

)
.

Maximizing this is messy, with the terms for observations with Di = 1 consisting of the

logarithm of a sum. It is possible, but in addition to the difficulty of calculating the deriva-

tives, the computational problem tends to be somewhat badly behaved, so that iterative

methods do not always converge to the maximum likelihood estimator.

3. Heckman Two-step Estimator

Heckman proposed a different estimator. First note that because of the normality as-

sumption we have

E[εi|η] = δ · ηi, (4)

where δ = ρ · σε. Thus we have

E[Yi|Xi, ηi] = X ′
iβ + δ · ηi.

In addition,

E[ηi|Xi, Zi,Di = 1] = E[ηi|Xi, Zi, Z
′
iγ + ηi > 0]

= E[ηi|ηi > −Z ′
iγ] = λ(Z ′

iγ),

where

λ(a) = φ(a)/Φ(a),

is the invese Mill’s ratio. Thus

E[Yi|Xi, ηi] = X ′
iβ + δ · λ(Z ′

iγ).
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Heckman’s idea is the following. First estimate γ by probit maximum likelihood. This

works well (much easier than doing the full selection model by maximum likelihood). Then

calculate for each unit with Di = 1 the inverse Mill’s ratio λ̂i = λ(Z ′
i γ̂), and regress Yi on

Xi and λ̂i.

This is a relatively straightforward way of getting a point estimate for β. However,

there are some disadvantages relatively to maximum likelihood. First, the estimator is not

necessarily efficient, whereas maximum likelihood is. Second, getting the variance is not

easy in general. You have to take account of the fact that γ̂ in the inverse Mill’s ratio is

estimated. In one simple case it is not so difficult. If we just want to test whether there is

a selection problem, and get the test statistic under the null of no selection (δ = 0), we do

not have to take account of the fact that γ is estimated, and we can simply use ols standard

errors.

4. The Case Without Exclusion Restrictions

Formally, we do not need exclusion restrictions, and Zi can be identical to Xi. In practice

you are likely to get close to perfect collinearity, and will end up with large standard errors.

The identification in this case comes purely from the functional form. That is, λi is a

nonlinear function of Xi, and the conditional expectation of Y given X ends up being

nonlinear in Xi, with the nonlinear part interpreted as selection bias. Typically we are not so

sure about the functional form that we would be comfortable just interpreting nonlinearities

as evidence for endogeneity of the covariates.

With exclusion restrictions (variables in Zi that are not in Xi), the sensitivity is much

less of an issue. In that case there is variation in λi conditional on Xi, so the selection

bias coefficient is separately identified. In fact for these cases there are identification results

that do not rely on normality. However, just as in instrumental variables settings exclusion

restrictions are often difficult to motivate. Why should a variable Zi affect the decision to

participate, if it is not related to the outcome of interest. Examples of exclusion restrictions

that have been used in the female wage equation are presence and age of children. However,
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without sufficient additional control variables, these may affect wages directly through human

capital accumulation arguments.

Even in this case identification is controversial though. See the paper by Little for a

skeptical view from a statistician on these models.
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