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All estimation methods rely on assumptions for their validity. We say that an estimator or
statistical procedure is robust if it provides useful information even if some of the assumptions
used to justify the estimation method are not applicable. Most of this appendix concerns robust
regression, estimation methods typically for the linear regression model that are insensitive to
outliers and possibly high leverage points. Other types of robustness, for example to model
misspecification, are not discussed here. These methods were developed beginning in the mid-
1960s. With the exception of the L; methods described in Section 5, the are not widely used
today. A recent mathematical treatment is given by 7.

1 Breakdown and Robustness

The finite sample breakdown of an estimator/procedure is the smallest fraction « of data points
such that if [na] points — oo then the estimator/procuedure also becomes infinite.
The sample mean of z1,...,z, is
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and so if x, is large enough then Z, can be made as large as desired regardless of the other
n — 1 values.

Unlike the mean, the sample median, as an estimate of a population median, can tolerate
up to 50% bad values. In general, breakdown cannot exceed 50%. (Why is that?)

2 M-Estimation

Linear least-squares estimates can behave badly when the error distribution is not normal,
particularly when the errors are heavy-tailed. One remedy is to remove influential observations
from the least-squares fit. Another approach, termed robust regression, is to use a fitting criterion
that is not as vulnerable as least squares to unusual data.

The most common general method of robust regression is M-estimation, introduced by 7.
This class of estimators can be regarded as a generalization of maximum-likelihood estimation,
hence the term “M”-estimation.

*An appendix to 7.



We consider only the linear model
yi = a+pizi+ Perio + -+ Brrik &
= X/Z- B+ei
for the ith of n observations. Given an estimator b for 3, the fitted model is
Ui = a4 biwit 4 baip + - - - + b + e = x;b
and the residuals are given by
€ =Yi — Ui
With M-estimation, the estimates b are determined by minimizing a particular objective func-

tion over all b,
n
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where the function p gives the contribution of each residual to the objective function. A rea-
sonable p should have the following properties:

e Always nonnegative, p(e) > 0

e Equal to zero when its argument is zero, p(0) =0
e Symmetric, p(e) = p(—e)

e Monotone in |e;|, p(e;) > p(ey) for |e;] > |es|

For example, the least-squares p-function p(e;) = e? satisfies these requirements, as do many
other functions.

Let ¢» = p’ be the derivative of p. 1 is called the influence curve. Differentiating the objective
function with respect to the coefficients b and setting the partial derivatives to 0, produces a
system of k 4 1 estimating equations for the coefficients:

Define the weight function w(e) = 1(e)/e, and let w; = w(e;).

2.1 Computing

The estimating equations may be written as
n
Zwi(yi —x/b)x; =0
i=1

Solving these estimating equations is equivalent to a weighted least-squares problem, minimizing
Zw?e?. The weights, however, depend upon the residuals, the residuals depend upon the
estimated coefficients, and the estimated coefficients depend upon the weights. An iterative
solution (called iteratively reweighted least-squares, IRLS) is therefore required:

1. Select initial estimates b(®), such as the least-squares estimates.
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and associated weights w i

2. At each iteration t, calculate residuals e
from the previous iteration.

3. Solve for new weighted-least-squares estimates
-1
b(t) — [Xlw(t—l)X:| X/W(t—l)y

where X is the model matrix, with x| as its ith row, and w1 — diag{wgtfl)} is the
current weight matrix.

Steps 2 and 3 are repeated until the estimated coeflicients converge.
The asymptotic covariance matrix of b is
E(Y?) igy-1
V(b) = XX
®)= @ X

Using 3 [¢0(e;)] to estimate E(¢?), and [/ (e;)/n)” to estimate [E(¢')]2 produces the esti-
mated asymptotic covariance matrix, V(b) (which is not reliable in small samples).

2.2 Objective Functions

Figure 1 compares the objective functions, and the corresponding ¥ and weight functions for
three M-estimators: the familiar least-squares estimator; the Huber estimator; and the Tukey
bisquare (or biweight) estimator. The objective and weight functions for the three estimators
are also given in Table 1.

Both the least-squares and Huber objective functions increase without bound as the residual
e departs from 0, but the least-squares objective function increases more rapidly. In contrast,
the bisquare objective function levels eventually levels off (for |e| > k). Least-squares assigns
equal weight to each observation; the weights for the Huber estimator decline when |e| > k; and
the weights for the bisquare decline as soon as e departs from 0, and are 0 for |e| > k.

The value k for the Huber and bisquare estimators is called a tuning constant; smaller
values of k produce more resistance to outliers, but at the expense of lower efficiency when the
errors are normally distributed. The tuning constant is generally picked to give reasonably high
efficiency in the normal case; in particular, k = 1.3450 for the Huber and k = 4.685¢0 for the
bisquare (where o is the standard deviation of the errors) produce 95-percent efficiency when
the errors are normal, and still offer protection against outliers.

In an application, we need an estimate of the standard deviation of the errors to use these
results. Usually a robust measure of spread is used in preference to the standard deviation of
the residuals. For example, a common approach is to take & = MAR/0.6745, where MAR is
the median absolute residual.

Method Objective Function Weight Function
Least-Squares | ppg(e) = e wpgle) =1
12 f

_ € or le] <k B 1 forle] <k

Huber PH(e) = kle| — 1k* for e >k wile) = k/le| forle| >k
B EEGE _ 212
Bisquare pgle) = 6 {1 {1 (%) } } for le| <k wg(e) = { {1 —(£) ] for le] <k
k2 /6 for le] >k 0 for [e| >k

Table 1: Objective function and weight function for least-squares, Huber, and bisquare estima-
tors.
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Figure 1: Objective, 1, and weight functions for the least-squares (top), Huber (middle), and
bisquare (bottom) estimators. The tuning constants for these graphs are k = 1.345 for the
Huber estimator and k = 4.685 for the bisquare. (One way to think about this scaling is that
the standard deviation of the errors, o, is taken as 1.)



3 Bounded-Influence Regression

Under certain circumstances, M-estimators can be vulnerable to high-leverage observations.
A key concept in assessing influence is the breakdown point of an estimator: The breakdown
point is the fraction of ‘bad’ data that the estimator can tolerate without being affected to an
arbitrarily large extent. For example, in the context of estimating the center of a distribution,
the mean has a breakdown point of 0, because even one bad observation can change the mean
by an arbitrary amount; in contrast the median has a breakdown point of 50 percent. Very high
breakdown estimators for regression have been proposed and R functions for them are presented
here. However, very high breakdown estimates should be avoided unless you have faith that the
model you are fitting is correct, as the very high breakdown estimates do not allow for diagnosis
of model misspecification, 7.

One bounded-influence estimator is least-trimmed squares (LTS) regression. Order the
squared residuals from smallest to largest:

€y, (€)@, -5 (€ w)

The LTS estimator chooses the regression coefficients b to minimize the sum of the smallest m

of the squared residuals,
m

LTS(b) = (¢*))
i=1
where, typically, m = |n/2| + | (k + 2)/2], a little more than half of the observations, and the
“floor” brackets, | |, denote rounding down to the next smallest integer.
While the LTS criterion is easily described, the mechanics of fitting the LTS estimator are
complicated (7). Moreover, bounded-influence estimators can produce unreasonable results in
certain circumstances, 7, and there is no simple formula for coefficient standard errors.!

4 An Illustration: Duncan’s Occupational-Prestige Regression

Duncan’s occupational-prestige regression was introduced in Chapter 1 of 7. The least-squares
regression of prestige on income and education produces the following results:

> library(car)
> mod.ls <- lm(prestige ~ income + education, data=Duncan)
> summary (mod.1s)

Call:
Im(formula = prestige ~ income + education, data = Duncan)

Residuals:
Min 1Q Median 3Q Max
-29.54 -6.42 0.65 6.61 34.64

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.0647 4.2719 -1.42 0.16
income 0.5987 0.1197 5.00 1.1e-05

!Statistical inference for the LTS estimator can be performed by bootstrapping, however. See the Appendix
on bootstrapping for an example.



education 0.5458 0.0983 5.56 1.7e-06

Residual standard error: 13.4 on 42 degrees of freedom
Multiple R-squared: 0.828, Adjusted R-squared: 0.82
F-statistic: 101 on 2 and 42 DF, p-value: <2e-16

Recall from the discussion of Duncan’s data in ? that two observations, ministers and
railroad conductors, serve to decrease the income coefficient substantially and to increase the
education coefficient, as we may verify by omitting these two observations from the regression:

> mod.ls.2 <- update(mod.ls, subset=-c(6,16))
> summary (mod.ls.2)

Call:
Im(formula = prestige ~ income + education, data = Duncan, subset = -c(6,
16))
Residuals:
Min 1Q Median 3Q Max

-28.61 -5.90 1.94 5.62 21.55

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -6.4090 3.6526 -1.75 0.0870
income 0.8674 0.1220 7.11 1.3e-08
education 0.3322 0.0987 3.36 0.0017

Residual standard error: 11.4 on 40 degrees of freedom
Multiple R-squared: 0.876, Adjusted R-squared: 0.87
F-statistic: 141 on 2 and 40 DF, p-value: <2e-16

Alternatively, let us compute the Huber M-estimator for Duncan’s regression model, using the
rlm (robust linear model) function in the MASS library:

> library (MASS)
> mod.huber <- rlm(prestige
> summary (mod.huber)

income + education, data=Duncan)

Call: rlm(formula = prestige ~ income + education, data = Duncan)
Residuals:

Min 1Q Median 3Q Max
-30.12 -6.89 1.29 4.59 38.60

Coefficients:

Value Std. Error t value
(Intercept) -7.111 3.881 -1.832
income 0.701 0.109 6.452
education 0.485 0.089 5.438

Residual standard error: 9.89 on 42 degrees of freedom
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Figure 2: Weights from the robust Huber estimator for the regression of prestige on income
and education.)

The summary method for rlm objects prints the correlations among the coefficients; to sup-
press this output, specify correlation=FALSE. The Huber regression coefficients are between
those produced by the least-squares fit to the full data set and by the least-squares fit eliminating
the occupations minister and conductor.

It is instructive to extract and plot (in Figure 2) the final weights used in the robust fit.
The showLabels function from car is used to label all observations with weights less than 0.9.

> plot(mod.huber$w, ylab="Huber Weight")
> bigweights <- which(mod.huber$w < 0.9)
> showLabels(1:45, mod.huber$w, rownames(Duncan), id.method=bigweights, cex.=.6)

minister reporter conductor contractor
6 9 16 17
factory.owner mail.carrier insurance.agent store.clerk
18 22 23 24

machinist streetcar.motorman

28 33

Ministers and conductors are among the observations that receive the smallest weight.

The function rlm can also fit the bisquare estimator for Duncan’s regression. Starting values
for the IRLS procedure are potentially more critical for the bisquare estimator; specifying the
argument method="MM’ to rlm requests bisquare estimates with start values determined by a
preliminary bounded-influence regression.

> mod.bisq <- rim(prestige ~ income + education, data=Duncan, method='MM')

> summary (mod.bisq, cor=F)

Call: rlm(formula = prestige ~ income + education, data = Duncan, method = "MM")
Residuals:
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Figure 3: Weights from the robust bisquare estimator for the regression of prestige on income
and education.)

Min 1Q Median 3Q Max
-29.87 -6.63 1.44 4.47 42.40

Coefficients:

Value Std. Error t value
(Intercept) -7.389 3.908 -1.891
income 0.783 0.109 7.149
education 0.423 0.090 4.710

Residual standard error: 9.79 on 42 degrees of freedom

Compared to the Huber estimates, the bisquare estimate of the income coefficient is larger, and
the estimate of the education coefficient is smaller. Figure 3 shows a graph of the weights from
the bisquare fit, interactively identifying the observations with the smallest weights:

> plot(mod.bisq$w, ylab="Bisquare Weight")
> showLabels(1:45, mod.bisq$w, rownames(Duncan),

+ id.method= which(mod.bisq$w < 0.9), cex.=0.6)

chemist minister professor reporter
5 6 7 9
conductor contractor factory.owner mail.carrier
16 17 18 22
insurance.agent store.clerk carpenter machinist
23 24 25 28

coal.miner streetcar.motorman

32 33



Finally, the 1tsreg function in the 1gs library is used to fit Duncan’s model by LTS regres-

sion:2

> (mod.lts <- ltsreg(prestige ~ income + education, data=Duncan))

Call:
1gs.formula(formula = prestige
method = "1lts")

income + education, data = Duncan,

Coefficients:
(Intercept) income education
-5.13 0.80 0.40

Scale estimates 7.75 6.95

In this case, the results are similar to those produced by the M-estimators. The print method
for bounded-influence regression gives the regression coefficients and two estimates of the vari-
ation or scale of the errors. There is no summary method for this class of models.

5 L; and Quantile Regression

This section follows 7 and the vignette for quantile regression in the quantreg package in R on

the class website.

5.1 Sample and population quantiles

Given an distribution F', for any 0 < 7 < 1 we define the 7-th quantile to be the solution to
&(x) = F7l(r) = inf{z: F(z) > 7}

Sample quantiles éT(a;) are similarly defined, with the sample CDF 2 replacing F'.

5.2 L, Regression
We start by assuming a model like this:
yi =78+ ei (1)

where the e are random variables. We will estimate 8 by soling the minimization problem
~ 1 & 1 &
B=argmin 3 |y —2iB] =~ > ps(yi - 2ip) (2)
i=1 i=1

where the objective function p;(u) is called in this instance a check function,
prlu) = ux (1 — I(u < 0)) (3)

where I is the indicator function (more on check functions later). If the e are iid from a double
exponential distribution, then 3 will be the corresponding mle for 5. In general, however, we
will be estimating the median at z/3, so one can think of this as median regression.

Example We begin with a simple simulated example with n; “good” observations and ng
“bad” ones.

2LTS regression is also the default method for the 1gs function, which additionally can fit other bounded-
influence estimators.



set.seed(10131986)
library (MASS)
library(quantreg)
l1.data <- function(n1=100,n2=20){
data <- mvrnorm(n=nl,mu=c(0, 0),
Sigma=matrix(c(1, .9, .9, 1), ncol=2))
# generate 20 'bad' observations
data <- rbind(data, mvrnorm(n=n2,
mu=c (1.5, -1.5), Sigma=.2*diag(c(1, 1))))
data <- data.frame(data)
names (data) <- c("X", "Y")
ind <- c(rep(1, n1),rep(2, n2))
plot(Y = X, data, pch=c("x", "o")[ind],

col=c("black", "red")[ind], main=paste("N1 =",n1," N2 =", n2))
summary (r1 <-rq(Y ~ X, data=data, tau=0.5))
abline(ri1)

abline(1m(Y ~ X, data),lty=2, col="red")
abline(1m(Y ~ X, data, subset=1:n1), lty=1, col="blue")
legend ("topleft", c("L1","ols","ols on good"),
inset=0.02, 1lty=c(1, 2, 1), col=c("black", "red", "blue"),
cex=.9)}
par (mfrow=c(2, 2))
11.data(100, 20)
11.data(100, 30)
11.data(100, 75)
11.data (100, 100)

VVVVYV 4+ 4+ ++4+++++++++++++VVVYV
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5.3 Comparing L; and L,

L1 minimizes the sum of the absolute errors while Lo minimizes squared errors. L1 gives much

N1 =100 N2 =30

— L1
--- ols X
—— ols on good

N1 =100 N2 =100

1| — L1
--- ols
—— ols on good

less weight to large deviations. Here are the p-functions for L; and Ls.

abline (h=0)
abline (v=0)

vV V. Vv Vv

11

curve(abs(x),-2,2,ylab="L1 or L2 or Huber M evaluated at x" )
curve(x~2,-3,3,add=T,col="red")
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L, facts

The L estimator is the mle if the errors are independent with a double-exponential dis-
tribution.

In (1) if = consists only of a “1”, then the L; estimator is the median.

. Computations are not nearly as easy as for ls, as a linear programming solution is required.

CIEX = (2f,...,2]) the n x p design matrix is of full rank p, then if h is a set at indexes

exactly p of the rows of X, there is always an h such that the L; estimate B fits these
p points exactly, so 8 = (X}'LXh)*lX,'lyh = Xh_lyh. Of course the number of potential
subsets is large, so this may not help much in the computations.

. Ly is equivariant, meaning that replacing Y by a +bY and X by A+ B~'X will leave the

solution essentially unchanged.

. The breakdown points of the L; estimate can be shown to be 1 — 1/v/2 ~ 0.29, so about

29% “bad” data can be tolerated.
In general we are estimating the median of y|z, not the mean.

Suppose we have (1) with the errors iid from a distribution F' with density f. The
population median is ¢, = F~!(7) with 7 = 0.5, and the sample median is E5 = Fﬁl(T).
We assume a standardized version of f so f(u) = (1/0)fo(u/o). Write Q, = n=t 3z},
and suppose that in large samples @), — Qg, a fixed matrix. We will then have:

V(B — B) ~N(0,wQq ")

12



where w = 027 (1—7)/[fo(Fy *(7))]? and 7 = 0.50. For example, if f is the standard normal
density, f(Fy (1)) = 1/v2r = .399, and /w = .50/.399 = 1.260, so in the normal case
the standard deviations of the Ly estimators are 26% larger than the standard deviations
of the ols estimators.

9. If f were known, asymptotic Wald inference/confidence statements can be based on per-
centiles of the normal distribution. In practice, f(F~!(7)) must be estimated. One stan-
dard method due to Siddiqui is to estimate

—

fEN(r) = [F7Y(r 4+ h) = BN (7 = )] /2h

for some bandwidth parameter h. This is closely related to density estimation, and so the
value of h used in practice is selected using a method appropriate for density estimation.

Alternatively, f(F~!(7)) can be estimated using a bootstrap procedure.

10. For non-iid errors, suppose that & (7) is the 7-quantile for the distribution of the i-th error.
One can show that

V(B —B) ~N(0,7(1 —7)H 'QoH 1)

where the matrix H is given by

N
=

a sandwich type estimator is used for estimating the variance of B. The rq function in

quantreg uses a sandwich formula by default.

6 Quantile regression

L1 is a special case of quantile regression in which we minimize the 7 = .50-quantile, but a
similar calculation can be done for any 0 < 7 < 1. Here is what the check function (2) looks
like for 7 € {.25,.5,.9}.

> rho <- function(u) {

+ u * (tau - ifelse(u < 0,1,0) )}

> tau <- .25; curve(rho,-2,2,1ty=1)

> tau <- .50; curve(rho, -2,2,1ty=2,col="blue",add=T,lwd=2)

> tau <- .90; curve(rho, -2,2,1ty=3,col="red",add=T, lwd=3)

> abline(v=0,1ty=5,col="gray")

> legend("bottomleft",c(".25",".5",".9"),1ty=1:3,col=c("black", "blue", "red"), cex=.6)

13
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Quantile regression is just like Ly regression with p; replacing p 5 in (2), and with 7 replacing
0.5 in the asymptotics.

Example. This example shows expenditures on food as a function of income for nineteenth-
century Belgian households.

> data(engel)

> plot(foodexp~income,engel,cex=.5,xlab="Household Income", ylab="Food Expenditure")
> abline(rq(foodexp~income,data=engel, tau=.5),col="blue")

> taus <- ¢(.1,.25,.75,.90)

> for( i in 1:length(taus)){

+ abline(rq(foodexp~income,data=engel,tau=taus[i]),col="gray")

+

}

14
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> plot (summary (rq(foodexp~income,data=engel,tau=2:98/100)))
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(The horizontal line is the ols estimate, with the dashed lines for confidence interval for it.)

Second Example This example examines salary as a function of job difficulty for job classes
in a large governmental unit. Points are marked according to whether or not the fraction of
female employees in the class exceeds 80%.
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library(alr3)

par (mfrow=c(1,2))

mdom <- with(salarygov, NW/NE < .8)

taus <- c¢(.1, .5, .9)

cols <- c("blue", "red", "blue")

x <- 100:900

plot(MaxSalary ~ Score, salarygov, x1lim=c(100, 1000), ylim=c (1000, 10000),
cex=0.75, pch=mdom + 1)

for( i in 1:length(taus)){

lines(x, predict(rq(MaxSalary ~ bs(Score,5), data=salarygov[mdom, ], tau=taus[i]),
newdata=data.frame (Score=x)), col=cols[i],lwd=2)

}

legend("topleft",paste("Quantile", taus),lty=1,col=cols,inset=.01, cex=.8)

legend("bottomright",c("Female", "Male"),pch=c(1, 2),inset=.01, cex=.8)

plot (MaxSalary ~ Score, salarygov[!mdom, ], xlim=c (100, 1000), ylim=c (1000, 10000),
cex=0.75, pch=1)

for( i in 1:length(taus)){

lines(x, predict(rq(MaxSalary ~ bs(Score,5), data=salarygov[mdom, ], tau=taus[i]),
newdata=data.frame (Score=x)), col=cols[i],1wd=2)

}

legend("topleft",paste("Quantile", taus),lty=1,col=cols,inset=.01, cex=.8)

legend("bottomright",c("Female") ,pch=c(1),inset=.01, cex=.8)
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