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Lecture 13
Time Series: 

Stationarity, AR(p) & MA(q)

Time Series: Introduction

• In the early 1970’s, it was discovered that simple time series models 
performed better than the complicated multivarate, then popular, 
1960s macro models (FRB-MIT-Penn). See, Nelson (1972).

• The tools? Simple univariate (ARIMA) models, popularized by the 
textbook of Box & Jenkins (1970).

Q: What is a time series? A time series yt is a process observed in 
sequence over time, t = 1,...., T  Yt={y1, y2 , y3, ..., yT}

• Main Issue with Time Series: Dependence.

Given the sequential nature of Yt, we expect yt & yt-1 to be dependent. 
Depending on assumptions, classical results (based on LLN & CLT) 
may not be valid.
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• Usually, time series models are separated into two categories:   

– Univariate (yt ∊ R, it is scalar)

 primary model: Autoregressions (ARs).

– Multivariate (yt ∊ Rm, it vector-valued). 

 primary model: Vectot autoregressions (VARs). 

• In time series, {..., y1, y2 , y3, ..., yT} are jointly RV. We  want to 
model the conditional expectation: 

E[yt| Ft-1]

where Ft-1 = {yt-1, yt-2 , yt-3, ...} is the past history of the series.

Time Series: Introduction

• Two popular models for E[yt|Ft-1]:

– An autoregressive (AR) process models E[yt|Ft-1] with lagged 
dependent variables. 

• A moving average (MA) process models E[yt|Ft-1] with lagged 
errors.

• Usually, E[yt|Ft-1] has been modeled as a linear process. But, 
recently, non-linearities have become more common.

• In general, we assume the error term, εt, is uncorrelated with 
anything, with mean 0 and constant variance, σ2. We call a process 
like this a white noise (WN) process. We denote it as

εt ~ WN(0, σ2)

Time Series: Introduction
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• We want to select an appropriate time series model to forecast yt. In 
this class, the choices are AR(p), MA(q) or ARMA(p, q). 

• Steps for forecasting:

(1) Identify the appropriate model. That is, determine p, q.

(2) Estimate the model.

(3) Test the model.

(4) Forecast.

• In this lecture, we go over the statistical theory (stationarity, 
ergodicity and MDS CLT), the main models (AR, MA & ARMA) and 
tools that will help us describe and identify a proper model

Time Series: Introduction

CLM Revisited: Time Series 

With autocorrelated data, we get dependent observations. Recall, 

t =  t-1 +  ut

The independence assumption (A2’) is violated. The LLN and the 
CLT cannot be easily applied, in this context. We need new tools 
and definitions.

We will introduce the concepts of stationarity and ergodicity. The 
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent 
variables, using the concept of mixing and stationarity. Or we can 
rely on the martingale CLT. 
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• Consider the joint probability distribution of  the collection of  RVs:

Then, we say that a process is  

),...,(),.....,(
221121 nnn ttttttttt zZzZzZPzzzF 

1st order stationary if  ktanyforzFzF ktt ,)()( 111 

Nth-order stationary if

kttanyforzzFzzF ktkttt ,,),(),( 212121 

kttanyforzzFzzF nktkttt nn
,,).....().....( 111 

• Definition. A process is strongly (strictly) stationary if  it is a Nth-order 
stationary process for any N.

2nd order stationary if

Time Series – Stationarity 
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Time Series – Moments 

• The moments describe a distribution. We calculate the moments as 
usual:   

Note: γ(t1-t2) is called the auto-covariance function –think of  it as a 
function of  k = t1 – t2. γ(0) is the variance.

• Stationarity requires all these moments to be independent of  time. 

• If  the moments are time dependent, we say the series is non-stationary.
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• For strictly stationary process: 22and  tt
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The correlation between any two RVs depends on the time difference.
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Time Series – Moments 

• A process is said to be N-order weakly stationary if  all its joint 
moments up to order N exist and are time invariant.

• A Covariance stationary process (or 2nd  order weakly stationary) has:
- constant mean
- constant variance
- covariance function depends on time difference between R.V.

That is, Zt is covariance stationary if:

Time Series – Weak Stationarity 
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Examples: For all assume εt ~ WN(0,σ2)

1) yt = Φ yt-1 + εt

E[yt ] = 0 (assuming Φ≠1)
Var[yt] = σ2/(1-Φ2) (assuming |Φ|<11)
E[yt yt-1] = Φ E[yt-1

2]
 stationary, not time dependent

2) yt = μ + yt-1 + εt  yt = μ t + Σj=0 to t-1 εt-j + y0

E[yt ] = μ t + y0

Var[yt] = Σj=0 to t-1 σ2 = σ2 t
 non-stationary, time dependent

Time Series – Weak Stationarity 

Stationary Series
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Non-Stationary Series

Examples:

driftRW with  
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• We want to allow as much dependence as the LLN allows us to do it.

• But, stationarity is not enough, as the following example shows:

• Example: Let {Ut} be a sequence of  i.i.d. RVs uniformly distributed 
on [0, 1] and let Z be N(0,1) independent of  {Ut}.

Define Yt= Z+Ut . Then Yt is stationary (why?), but

The problem is that there is too much dependence in the sequence {Yt} 
(because of  Z). In fact the correlation between Y1 and Yt is always 
positive for any value of  t.
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Time Series – Ergodicity 
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• We want to estimate the mean of  the process {Zt}, μ(Zt). But, we 
need to distinguishing between ensemble average and time average:

- Ensemble Average

- Time Series Average

Q: Which estimator is the most appropriate? 
A: Ensemble Average. But, it is impossible to calculate. We only observe 
one Zt. 

• Q: Under which circumstances we can use the time average (only one 
realization of  {Zt})? Is the time average an unbiased and consistent 
estimator of  the mean? The Ergodic Theorem gives us the answer.
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Time Series – Ergodicity of  the Mean 

• Recall the sufficient conditions for consistency of  an estimator: the 
estimator is asymptotically unbiased and its variance asymptotically 
collapses to zero.

1. Q: Is the time average is asymptotically unbiased? Yes.
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2. Q: Is the variance going to zero as T grows? It depends. 
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Time Series – Ergodicity of  the Mean 
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• If  the Zt were uncorrelated, the variance of  the time average would 
be O(n-1). Since independent random variables are necessarily 
uncorrelated (but not vice versa), we have just recovered a form of  the 
LLN for independent data. 

Q: How can we make the remaining part, the sum over the upper 
triangle of  the covariance matrix, go to zero as well? 
A: We need to impose conditions on ρk. Conditions weaker than "they 
are all zero;" but, strong enough to exclude the sequence of  identical 
copies. 

Time Series – Ergodicity of  the Mean 

• Definition: A covariance-stationary process is ergodic for the mean if
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Ergodicity Theorem: Then, a sufficient condition for ergodicity for 
the mean is 
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• We use two inequalities to put upper bounds on the variance of  the 
time average: 

Covariances can be negative, so we upper-bound the sum of  the actual 
covariances by the sum of  their magnitudes. Then, we extend the inner 
sum so it covers all lags. This might of  course be infinite (sequence-of-
identical-copies). 

Time Series – Ergodicity of  the Mean 
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• Ergodicity under Gaussian Distribution
If {Zt}is a stationary Gaussian process,

is sufficient to ensure ergodicity for all moments.

Note: Recall that only the first two moments are needed to describe 
the normal distribution.
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• A sufficient condition to ensure ergodicity for second moments is:

A process which is ergodic in the first and second moments is usually 
referred as ergodic in the wide sense .
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Time Series – Ergodicity of  2nd Moments 

• We state two essential theorems to the analysis of   stationary time 
series. Difficult to prove in general. 

Theorem I
If  yt is strictly stationary and ergodic and xt = f(yt, yt-1, yt-2 , ...) is a RV, 
then xt is strictly stationary and ergodic.

Theorem II (Ergodic Theorem)
If  yt is strictly stationary and ergodic and E[yt] <∞; then as T→ ∞;

• These results allow us to consistently estimate parameters using 
time-series moments.

Time Series – Ergodicity – Theorems  
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• Definition: εt is a martingale difference sequence (MDS) if

E[εt| Ft-1]=0.

• Regression errors are naturally a MDS. Some time-series processes 
may be a MDS as a consequence of optimizing behaviour. For 
example, most asset pricing models imply that asset returns should be 
the sum of a constant plus a MDS.

• Useful property:  εt is uncorrelated with any function of the lagged 
information Ft-1. Then, for k > 0  E[yt-k εt] = 0.

Time Series - MDS

Theorem (MDS CLT)

If ut is a strictly stationary and ergodic MDS and E(ut ut’) = Ω < ∞; 
then as T→ ∞;

• Application: Let xt ={yt-1, yt-2 , ... }, a vector of lagged yt’s.

Then (xt εt) is a MDS. We can apply the MDS CLT Theorem. Then,

• Like in the derivation of asymptotic distribution of OLS, the above 
result is the key to establish the asymptotic distribution in a time series 
context.  

Time Series – MDS CLT
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Autoregressive (AR) Process

• We want to model the conditional expectation of yt: 

E[yt|Ft-1]

where Ft-1 = {yt-1, yt-2 , yt-3, ...} is the past history of the series. We 
assume the error term, εt = yt – E[yt|Ft-1], follows a WN(0,σ2).

• An AR process models E[yt|Ft-1] with lagged dependent variables.

• The most common models are AR models. An AR(1) model 
involves a single lag, while an AR(p) model involves p lags.

Example: A linear AR(p) model (the most popular in practice): 

with E[εt|Ft-1]=0.
tptpttt yyyy   ....2211

• Define the operator L as

• It is usually called Lag operator. But it can produces lagged or forward 
variables (for negative values of  k). For example:

• Also note that if  c is a constant  L c = c.

• Sometimes the notation for L when working as a lag operator is B 
(backshift operator), and when working as a forward operator is F.

• Important application: Differencing
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AR Process – Lag Operator
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• Let’s work with the linear AR(p) model is:

• We can write this process as: 

(L) is called the autoregressive polynomial of  yt. Note that 

delivers an infinite sum on the εt-j’s  an MA(∞) process!

• Q: Can we do this inversion? 
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Autoregressive (AR) Process

• Let’s compute moments of  yt using the infinite sum (assume μ=0):

where, abusing notation, 

Using the fundamental theorem of  algebra, (z) can be factored as 

where the r1, .... rk ∈C are the roots of (z). If  the j’s coefficients are 
all real, the roots are either real or come in complex conjugate pairs.

AR Process - Stationarity
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Theorem: The linear AR(p) process is strictly stationary and ergodic 
if  and only if  |rj|>1 for all j, where |rj| is the modulus of  the 
complex number rj.

• We usually say “all roots lie outside the unit circle.”

Note: If  one of  the rj’s equals 1, (L) (& yt) has a unit root –i.e., 
Φ(1)=0. This is a special case of  non-stationarity.

• Recall (L)-1 produces an infinite sum on the εt-j’s. If  this sum does 
not explode, we say the process is stable. 

• If  the process is stable, we can calculate δyt/δεt-j: How much yt is 
affected today by an innovation (a shock) t  j periods ago. We call this 
the impulse response function (IRF).

AR Process – Stationarity

Example: AR(1) process

Note: 

These infinite sums will not explode (stable process) if  
|φ|<1  stationarity condition.

Under this condition, we can calculate the impulse response function:
δyt/δεt-j = φj

AR Process – Example: AR(1)
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• The autocovariance function is:

• There is a recursive formula for γk:

• Again, when ||<1, the autocovariance do not explode as k 
increases. There is an exponential decay towards zero.

AR Process – Example: AR(1)
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• Note:
– when    0 <  < 1  All autocovariances are positive.
– when  1 <  < 0  The sign of  γk shows an alternating pattern 

beginning a negative value.

• The AR(1) process has the Markov property: The distribution of  Yt

given {Yt-1, Yt-2, …} is the same as the distribution of  Yt given {Yt-1}.

AR Process – Example: AR(1)
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Example: AR(2) process

We can invert (1 – 1 L – 2L2) to get the MA(∞) process.

• Stationarity Check
– E[yt] = μ/(1 – 1 – 2)= μ*     1 + 2 ≠1.
– Var[yt] = σ2/(1 – 1

2 – 2
2)  1

2 + 2
2 < 1 

Stationarity condition: |1+ 2 |<1 

• The analysis can be simplified by rewriting the AR(2) in matrix form 
as an AR(1):

Note: Now, we check [ I – Ai ] (i=1,2) for stationarity conditions

AR Process – Example: AR(2)
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Note: Recall

Checking that [I – AL] is not singular, same as checking that Aj does 
not explode. The stability of  the system can be determined by the  
eigenvalues of  A. That is, get the λi’s and check if  |λi|<1 for all i.

• If  |λi| <1 for all i=1,2, yt is stable (it does not explode) and 
stationary. Then:

AR Process – Stationarity
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• The autocovariance function is given by:

• Again a recursive formula.  Let’s get the first autocovariances:

AR Process – Stationarity
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• The AR(2) in matrix AR(1) form is called Vector AR(1) or VAR(1). 

Nice  property: The VAR(1) is Markov -i.e., forecasts depend only on 
today’s data. 

• It is straightforward to apply the VAR formulation to any AR(p) 
processes. We can also use the same eigenvalue conditions to check 
the stationarity of  AR(p) processes.

AR Process – Stationarity



RS – EC2 - Lecture 13

18

• The AR(p) model:

Then,  an MA(∞) process!

• But, we need to make sure that we can invert the polynomial (L). 

• When (L) ≠0, we say the process yt is causal (strictly speaking, a 
causal function of {εt}).

Definition: A linear process {yt} is causal if  there is a 

AR Process – Causality

.)(with

|)(|with

...1)(

0

2
21

tt

j j

Ly

L

LLL











p
ptt LLLLyL  ....1)(  where  )( 2

21
1

),()( 1
tt Ly  

Example: AR(1) process:

Then, yt is causal if  and only if: 
|1| <1 

or
the root r1 of  the polynomial (z) = 1 − 1 z satisfies |r1|>1.

• Q: How do we calculate the Ψ‘s coefficients for an AR(p)? 
A: Matching coefficients:

AR Process – Causality
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• Example: AR(2) - Calculating the ψ‘s by matching coefficients.

AR Process – Calculating the ψ’s 

We can solve these linear difference equations in several ways:
- Numerically
- Guess the form of  a solution and using an inductive proof
- Using the theory of  linear difference equations.
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• Define

Then the model can be written as

• The OLS estimator is

• Recall that ut= xtεt is a MDS. It is also strictly stationary and ergodic.

• The vector xt is strictly stationary and ergodic, and by Theorem I so 
is xt xt’. Then, by the Ergodic Theorem

AR Process – Estimation and Properties
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• Consistency

Putting together the previous results, the OLS estimator can be 
rewritten as: 

Then,

 the OLS estimator is consistent.

AR Process – Estimation and Properties
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• Asymptotic Normality

We apply the MDS CLT to xtεt. Then, it is straightforward to derive 
the asymptotic distribution of the estimator (similar to the OLS case):

Theorem If the AR(p) process yt is strictly stationary and ergodic

and E[yt
4], then as T→ ∞;

• Identical in form to the asymptotic distribution of OLS in cross-
section regression  asymptotic inference is the same. 

• The asymptotic covariance matrix is estimated just as in the cross-
section case: The sandwich estimator.

AR Process – Asymptotic Distribution
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• So far, we constructed the bootstrap sample by randomly resampling 
from the data values (yt,xt). This created an i.i.d bootstrap sample.

• This is inappropriate for time-series, since we have dependence. 

• There are two popular methods to bootstrap time series.

(1) Model-Based (Parametric) Bootstrap

(2) Block Resampling Bootstrap

AR Process – Bootstrap

(1) Model-Based (Parametric) Bootstrap

1. Estimate b and residuals e:  

2. Fix an initial condition {yt-k+1, yt-k+2 , yt-k+3, ..., y0} 

3. Simulate i.i.d. draws e* from the empirical distribution of the 
residuals {e1, e2 , e3, ..., eT}.

4. Create the bootstrap series yt by the recursive formula

Pros: Simple. Similar to the usual bootstrap. 

Cons: This construction imposes homoskedasticity on the errors e* ; 
which may be different than the properties of the actual e. It also 
imposes the AR(p) as the DGP.

AR Process – Bootstrap
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(2) Block Resampling

1. Divide the sample into T/m blocks of length m.

2. Resample complete blocks. For each simulated sample, draw T/m
blocks. 

3. Paste the blocks together to create the bootstrap time-series yt*.

Pros: It allows for arbitrary stationary serial correlation, 
heteroskedasticity, and for model misspecification.

Cons: It may be sensitive to the block length, and the way that the 
data are partitioned into blocks. May not work well in small samples.

AR Process – Bootstrap

• An MA process models E[yt|Ft-1] with lagged error terms. An 
MA(q) model involves q lags. 

• We keep the white noise assumption for εt. 

Example: A linear MA(q) model: 

• Q: Is yt stationary? Check the moments.

Moving Average Process  
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• Q: Is yt stationary? Check the moments. WLOG, assume μ=0.

• It is easy to verify that the sums are finite  MA(q) is stationary.

• Note that an MA(q) process can generate an AR process.

• We have an infinite sum polynomial on θL. That is, an AR(∞).

Moving Average Process – Stationarity  
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• We need to make sure that θ(L)-1 is defined: We require θ(L) ≠ 0. 
When this condition is met, we can write εt as a causal function of  yt. 
We say the MA is invertible. For this to hold, we require:

Definition: A linear process {yt} is invertible strictly speaking, an 
invertible function of {εt}, if  there is a 

MA Process – Invertibility  
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• Example: MA(1) process:

- Moments

Note: The autocovariance function is zero after lag 1.

– Invertibility: If  |θ1|<1, we can write  (1+ θ1 L)-1 yt + μ* = εt



MA Process – Example: MA(1)
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• Example: MA(2) process:

- Moments

Note: the autocovariance function is zero after lag 2.

MA Process – Example: MA(2)
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- Inveritbility: The roots of                             all lie inside the unit 
circle. It can be shown the invertibility condition for MA(2) process is: 

MA Process – Example: MA(2)
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• MA are more complicated to estimate. In particular, there are 
nonlinearities. Consider an MA(1): 

yt = εt + θ εt-1

The auto-correlation is ρ1 = θ/(1+θ2). Then, MM estimate of  θ
satisfies:

• A nonlinear solution and difficult to solve.

• Alternatively, if  |θ|< 1, we can try a ∈(-1; 1),

and look (numerically) for the least-square estimator

MA Process – Estimation 
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Theorem - Wold (1938).
Any covariance stationary {yt} has infinite order, moving-average 
representation:

where

• yt is a linear combination of  innovations over time.

• A stationary process can be represented as an MA(∞) plus a 
deterministic “trend.”

The Wold Decomposition 
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Example:
Let xt= yt – κt. Then, check moments:

Xt is a covariance stationary process.

The Wold Decomposition 
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• A combination of  AR(p) and MA(q) processes produces an 
ARMA(p, q) process:

• Usually, we insist that (L)≠0, θ(L)≠0 & that the polynomials (L),
θ(L) have no common factors. This implies it is not a lower order 
ARMA model.

ARMA Process
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Example: Common factors. 
Suppose we have the following ARMA(2,3) model
with

This model simplifies to:  an MA(1) process.

• Pure AR Representation:

• Pure MA Representation:

• Special ARMA(p,q) cases: – p = 0: MA(q)
– q = 0: AR(p).
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Theorem: If  (L) and θ(L) have no common factors, a (unique) 
stationary solution to                            exists if  and only if

This ARMA(p, q) model is causal if  and only if  

This ARMA(p, q) model is invertible if  and only if

• Note: Real data cannot be exactly modeled using a finite number of  
parameters. We choose p, q to create a good approximated model.
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ARMA: Stationarity, Causality and Invertibility
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• Consider the ARMA(p,q) model:

Let

Then,

 xt is a p-th-order linear stochastic difference equation 
(SDE).

Example: 1st-order SDE (AR(1)):

Recursive solution (Wold form):

where x 1 is an initial condition.

ARMA Process – SDE Representation
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• The dynamic multiplier measurers the effect of  εt on subsequent 
values of  xt: That is, the first derivative on the Wold representation:

δxt+j/δεt = δxj/δε0 = ψj.

For an AR(1) process: 
δxt+j/δεt = δxj/δε0 =  j.

• That is, the dynamic multiplier for any linear SDE depends only on 
the length of  time j, not on time t. 

ARMA Process – Dynamic Multiplier

• The impulse-response function (IRF) a sequence of  dynamic multipliers 
as a function of  time from the one time change in the innovation, εt. 

• Usually, IRF are represented with a graph, that measures the effect 
of  the innovation, εt, on yt over time:

δyt+j/δεt+ δyt+j+1/δεt + δyt+j+21/δεt+...= ψj + ψj+1+ ψj+2+...

• Once we estimate the ARMA coefficients, it is easy to draw an IRF.

ARMA Process – Impulse Response Function
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• Q: We add two ARMA process, what order do we get?

• Adding MA processes

- Under independence: 

- Then, γ(j) = 0 for j > Max(qx, qz,)  yt is ARMA(0, max(qx, qz))

- Implication: MA(2) + MA(1) = MA(2)

ARMA Process – Addition
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• Q: We add two ARMA process, what order do we get? 

• Adding AR processes

- Rewrite system as: 

- Then, yt is ARMA(px+pz , max(px, pz))

ARMA Process – Addition
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