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Lecture 13

Time Series:
Stationarity, AR(p) & MA(q)

Time Series: Introduction

* In the early 1970s, it was discovered that simple time series models
performed better than the complicated multivarate, then popular,
1960s macro models (FRB-MIT-Penn). See, Nelson (1972).

* The tools? Simple univariate (ARIMA) models, popularized by the
textbook of Box & Jenkins (1970).

Q: What is a time series? A time series y, is a process observed in
sequence over time, t = 1,..., T = Y ={V V25 V3 0 V1)

* Main Issue with Time Series: Dependence.

Given the sequential nature of Y,, we expect y, & y, ; to be dependent.
Depending on assumptions, classical results (based on LLN & CLT)
may not be valid.
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Time Series: Introduction

¢ Usually, time series models are separated into two categories:
— Univariate (y, € R, it is scalar)
=> primary model: Autoregressions (ARs).
— Multivariate (y, € R”, it vector-valued).

= primary model: Vectot autoregressions (VARs).

* In time series, {..., V1, V2, V3 - Yyt are jointly RV. We want to
model the conditional expectation:

E[Yt| Ft&]
where F, ;| = {y.4, V.0, Vi3 --) 18 the past history of the series.

Time Series: Introduction

* Two popular models for E[y, | F, ,]:

— An autoregressive (AR) process models Ely, | F, ;] with lagged
dependent variables.

* A moving average (MA) process models E[y, | F, ;] with lagged

Crrofrs.

e Usually, E[y,| F, ;] has been modeled as a linear process. But,

recently, non-linearities have become more common.

* In general, we assume the error term, e, is uncorrelated with

anything, with mean 0 and constant variance, 6>. We call a process
like this a white noise (WIN) process. We denote it as

e, ~ WN(0, 6?)
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Time Series: Introduction

* We want to select an appropriate time series model to forecast y,. In

this class, the choices are AR(p), MA(q) or ARMA(p, q).

e Steps for forecasting:

(1) Identify the appropriate model. That is, determine p, q.
(2) Estimate the model.

(3) Test the model.

(4) Forecast.

¢ In this lecture, we go over the statistical theory (stationarity,
ergodicity and MDS CLT), the main models (AR, MA & ARMA) and
tools that will help us describe and identify a proper model

CLM Revisited: Time Series

With autocorrelated data, we get dependent observations. Recall,

St = pgt»l + U,

The independence assumption (A2’) is violated. The LLLN and the
CLT cannot be easily applied, in this context. We need new tools
and definitions.

We will introduce the concepts of stationarity and ergodicity. The
ergodic theorem will give us a counterpart to the LLN.

To get asymptotic distributions, we also need a CLT for dependent
variables, using the concept of mixing and stationarity. Or we can
rely on the martingale CLT.
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Time Series — Stationarity

* Consider the joint probability distribution of the collection of RVs:

F(z,,z, ..., )=P(Z, =2,,Z, <2, ,.L, <1)

Then, we say that a process is

17 order stationary if F(z,)=F(z,.) foranyt,k
2" order stationary if F(z,,2,)=F(z,.2,) foranyt,t, k
Nth-order stationary if F(z ...z )=F(zy 2 ) foranyty,t, k

* Definition. A process is strongly (strictly) stationary if it is a Nth-order
stationary process for any IN.

Time Series — Moments

* The moments describe a distribution. We calculate the moments as
usual:
E(Zy)=p, = Jth(Zt)dZt
Var () =0 = E(Z,-n)’ = [(Z —n)? f (20,
Cov (Zy,Z2¢,)=EN(Zy —pe NZy, —ne))]l =7v(t —1y)
v —t)

p(t,ty) = W

Note: y(,-1,) is called the auto-covariance function —think of it as a
function of £ = #,— £, y(0) is the variance.

* Stationarity requires all these moments to be independent of time.

e If the moments are time dependent, we say the series is non-stationary.
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Time Series — Moments

. . 2 2
* For strictly stationary process: My = and o©f =0©

because F(Ztl) = F(Zt1+k) = My = =M
provided that E(|Z[) <o, E(Z%t)<oo
Then,  F(z,,2,)=F(Z,,,20.) =

cov( Z,,Z, ) =cov( Zy ,\,Z k)=

p(tlatz):p(t1+kat2+k)
let t =t—k and t, =1, then

p(t,t)=pt-k,t)=p(t,t+k)=p,

The correlation between any two RVs depends on the time difference.

Time Series — Weak Stationarity

* A process is said to be N-order weakly stationary if all its joint
moments up to order [N exist and are time invariant.

* A Covariance stationary process (or 2nd order weakly stationary) has:
- constant mean

- constant variance

- covariance function depends on time difference between R.V.

That is, Z, is covariance stationary if:

E(Z;) = constant
Var(Z,) = constant
Cov(Zy,,Zy,) = E[(Zy, —pe NZy, —pe )] =v(t —ty) = T(t; - 1y)
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Time Series — Weak Stationarity
Examples: For all assume ¢, ~ WN(0,0%)

1) Vi =0 Ve + &

Ely,]=0 (assuming ®F#1)

Vatly,] = 0%/ (1-®?)
E[yt thl] =o E[thlz]
=> stationary, not time dependent

(assuming | P |<11)

Z)Yt :H+Yt41+8t :>Yt :Ht+zj:0tot—1 St—j+y

Ely ] =pt+y,
— 2= 52
Varly ] = Xi_g 0= 07 t
=> non-stationary, time dependent

0

Stationary Series

Examples:
Y, =.08+¢& +.4 ¢ & ~WN
Y, =13y, , +¢&
% Changes in USD/GBP (1978:1-2011:IV)
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Non-Stationary Series

Examples:
Ye=ut+ay  +6,Y. ,+¢& & ~WN
Ve=U+Y, & RW with drift

US CPI Prices (1978:1-2011:1V)
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Time Series — Ergodicity
* We want to allow as much dependence as the LLN allows us to do it.

* But, stationarity is not enough, as the following example shows:

* Example: Let {U, } be a sequence of 7id. RVs uniformly distributed
on [0, 1] and let Z be N(0,1) independent of {U }.

Define Y, = Z+U, . Then Y, is stationary (why?), but

1l o 1
Y :—z Y, — SE,)=—
n ntzlt ) 5
— P 1

Yn—Z—>5

The problem is that there is too much dependence in the sequence {Y,}
(because of Z). In fact the correlation between Y, and Y, is always
positive for any value of 7
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Time Series — Ergodicity of the Mean

* We want to estimate the mean of the process {Z .}, u(Z,). But, we
need to distinguishing between ensemble average and time average:
m

= glzi

- Ensemble Average 7, _
m

n
2 Z
t=1
n

- Time Series Average z =

Q: Which estimator is the most appropriate?
A: Ensemble Average. But, it is impossible to calculate. We only observe

one Z,.

* QQ: Under which circumstances we can use the time average (only one
realization of {Z})? Is the time average an unbiased and consistent
estimator of the mean? The Ergodic Theorem gives us the answer.

Time Series — Ergodicity of the Mean

* Recall the sufficient conditions for consistency of an estimator: the
estimator is asymptotically unbiased and its variance asymptotically

collapses to zero.

1. Q: Is the time average is asymptotically unbiased? Yes.
| 1
E(z) = Fz E(Z)= Fz H=H
t t

2. Q: Is the variance going to zero as T grows? It depends.

_ 1 n n 'Y n n 'Y n
var@)=— 3 > eoVZuZe) = 5D > Prs= 3D (PritPiaPn) =
t=1

t=1 s=1 t=1 s=1
Y
zn_g[(Poerl+"'+Pn71)+(071+p0+p1+'”+p”*2)+

+ A+ (P_noty FP-n2) T +Po)]=
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Time Series — Ergodicity of the Mean

n-1

- k
T P
k

L —

lim var(z) = lim “/_oz a —M)Pk —50

n—o n—o N 4 n

e If the Z, were uncorrelated, the variance of the time average would
be O(nY). Since independent random variables are necessarily
uncorrelated (but not vice versa), we have just recovered a form of the
LLN for independent data.

Q: How can we make the remaining part, the sum over the upper
triangle of the covariance matrix, go to zero as well?

A: We need to impose conditions on p,. Conditions weaker than "they
are all zero;" but, strong enough to exclude the sequence of identical
copies.

Time Series — Ergodicity of the Mean

* We use two inequalities to put upper bounds on the variance of the
1 n

n-1 0
Pk = |Pk|SZ Z|Pk|
k=1

n i
1 t=1 k=l t=1

time average:

—

-1 n- t

=

—
I
=~
Il

1

Covariances can be negative, so we upper-bound the sum of the actual
covariances by the sum of their magnitudes. Then, we extend the inner
sum so it covers a//lags. This might of course be infinite (sequence-of-
identical-copies).

* Definition: A covariance-stationary process is ergodic for the mean if
plimz=E(Z,)=u

Ergodicity Theorem: Then, a sufficient condition for ergodicity for

the mean is
pk > 0 as k » o
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Time Series — Ergodicity of 2°¢ Moments

* A sufficient condition to ensure ergodicity for second moments is:

2 o<

k

A process which is ergodic in the first and second moments is usually
referred as ergodic in the wide sense .

* Ergodicity under Gaussian Distribution

If {Z }is a stationary Gaussian process, Z|,0k| <
K

is sufficient to ensure ergodicity for all moments.

Note: Recall that only the first two moments are needed to describe
the normal distribution.

Time Series — Ergodicity — Theorems

* We state two essential theorems to the analysis of stationary time
series. Difficult to prove in general.

Theorem I
If y, is strictly stationary and ergodic and x, = £(y,, V.15 Vs ---) 15 2 RV,
then x; is strictly stationary and ergodic.

Theorem II (Ergodic Theorem)
If y, is strictly stationary and ergodic and E[y,] <o; then as T— o0;

%Z Yt — Ely:]
t

* These results allow us to consistently estimate parameters using
time-series moments.

10
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Time Series - MDS

* Definition: ¢, is a martingale difference sequence (MDS) if
E[8t| Fpl]:o'

* Regression errors are naturally a MDS. Some time-series processes
may be a MDS as a consequence of optimizing behaviour. For
example, most asset pricing models imply that asset returns should be
the sum of a constant plus a MDS.

¢ Useful property: ¢, is uncorrelated with any function of the lagged
information F, ;. Then, for £> 0 = Ely..¢] = 0.

Time Series — MDS CLT

Theorem (MDS CLT)

If u, 1s a strictly stationary and ergodic MDS and E(u, u) = <
then as T— o0;

\/IT_ZUI ¢ 5 N(0,Q)
t

* Application: Let x, ={y, |, V.5, - }, a vector of lagged y,s.
Then (x,e,) is a MDS. We can apply the MDS CLT Theorem. Then,

%Z X,&p —2 N (0,Q), Q= E[XX, ', ”]
t

¢ Like in the derivation of asymptotic distribution of OLS, the above
result is the key to establish the asymptotic distribution in a time series

context.

11
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Autoregressive (AR) Process

* We want to model the conditional expectation of y,:

E[Yt | thl]

whete F, | = {y,4, Vo0, Vi3 -t is the past history of the series. We
assume the error term, e, = y,— E[y,| F, ], follows a WN(0,0?).

* An AR process models E[y, | F, ;] with lagged dependent variables.

¢ The most common models are AR models. An AR(1) model
involves a single lag, while an AR(p) model involves p lags.

Example: A linear AR(p) model (the most popular in practice):

Ye =+ 0 Yo +02Via +dpYip + &
with E[e, | F, ;]=0.

AR Process — Lag Operator

* Define the operator L as

k

e It is usually called Lag gperator. But it can produces lagged or forward

variables (for negative values of £). For example:

3.
L7z =245

¢ Also note that if ¢is a constant =Lc=u

* Sometimes the notation for I when working as a lag operator is B
(backshift operator), and when working as a forward operator is F.

* Important application: Differencing
Azy =(1-D)z; = 2, -2
Az, =(1-1)%z,

12
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Autoregressive (AR) Process
* Let’s work with the linear AR(p) model is:

P
Ye =R+ Vi 92y et O Yip + 8 =M+Z¢iyt—i +&;

i=1

p )
Y = u+z¢iL' Vi + & L : Lag operator
i1

* We can write this process as:
(L)Y, = p+g, where ¢(L) =1-¢,L' = L¢, —...— ¢, L°
@(L) is called the autoregressive polynomial of y,. Note that

Yi = (I)(L)_l (u+gp)

delivers an infinite sum on the e, s = an MA (%) process!

* Q: Can we do this inversion?

AR Process - Stationarity

* Let’s compute moments of y, using the infinite sum (assume p=0):

E[y,]1=¢(L)"E[&]=0 = ¢(L)#0

Var[y,]=¢(L)Var[e,] = ¢(L)?>0

E[ytyt—j] =y(t-])=El(¢ YeaYe; t ¢2yt—2yt—j"" + ¢pyt-pyt—j + gtyt—j)]
=dy(J-D+dy(i=2)+...+8,7(j - P)

where, abusing notation,
(L) 2 =1/(1-¢, 7L = L%, L> —.. = ¢ ,°LP)
Using the fundamental theorem of algebra, §(3) can be factored as
o) =1-r"D)1-1,""2)..(1-1, ')

where the 1y, ... 1, € C'are the roots of @(). If the ¢s coefficients are
all real, the roots are either real or come in complex conjugate pairs.

13
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AR Process — Stationarity

Theorem: The linear AR(p) process is strictly stationary and ergodic
if and only if |rj | >1 for all j, where [1;] is the modulus of the
complex number ;.

* We usually say “a// roots lie outside the unit circle.”

Note: If one of the ;s equals 1, #(L) (& y,) has a unit root —.e,
@(1)=0. This is a special case of non-stationarity.

* Recall ¢(I)"! produces an infinite sum on the ¢ ;5. If this sum does
not explode, we say the process is stabe.

* If the process is stable, we can calculate 8y,/8e, : How much y, is
affected today by an innovation (a shock) #— ;j periods ago. We call this
the impulse response function (IRF).

AR Process — Example: AR(1)

Example: AR(1) process

Ye =R+ O Y +g

E[u+e
Ely]1= [lu—(l)t]:lth)zu* =6#1 (np=#0)
2
Var[y,]= varted o since 62 >0 =[ ¢ |<1(r, > 1)

1-¢>) (1-¢%)
Note: 1/(1—¢‘):Z°° ¢ i=1.2

j=0

These infinite sums will not explode (szzble process) if
| &]<1 = stationarity condition.

Under this condition, we can calculate the impulse response function:
dy./ Oe ;= o7

14
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AR Process — Example: AR(1)

¢ The autocovariance function is:

Cov (Yt’Yt—k )= E [(Yt - ;u)(thk - /1)]

Y =
Yk = E[{¢(Yt—1 _:U)‘l' gt}(Yt—k —,u)]
7« = ¢E [(Yl—l - ;u)(thk - ,u)]+ E [gl(Yt—k - ,u)]

Ve =@Vt E[gt(Yt—k - ,U)]z 7«

* There is a recursive formula for y,:

71 :¢70
v, =0(br,)=97,
7k :¢k7o

* Again, when | @¢| <1, the autocovariance do not explode as £
increases. There is an exponential decay towards zero.

AR Process — Example: AR(1)

« Note: 7k = 8%,

—when 0<¢<1 = All autocovatiances are positive.

—when -1 < @¢<0 = Thesign of y, shows an alternating pattern
beginning a negative value.

* The AR(1) process has the Markov property: The distribution of Y,
given {Y,,, Y,, ...} is the same as the distribution of Y, given {Y,,}.

15
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AR Process — Example: AR(2)
Example: AR(2) process

Vo=@ Yo th Yo te S A-gLl-gL)y =pu+e
We can invert (1 — ¢, L — ¢,1.2) to get the MA() process.

e Stationarity Check
— Elyl = /(1 = ¢ — §)= p* = ¢+ ¢ 71
= Varly] = */(1 - ¢ - ¢,) = @7+ 97 <1
Stationarity condition: | @+ ¢, | <1

* The analysis can be simplified by rewriting the AR(2) in matrix form
as an AR(1):

FARANCKY Fr e

Note: Now, we check [ I - A’] (/=1,2) for stationarity conditions

AR Process — Stationarity

Vo=B+AVL+E = T=[-ALTTE

Note: Recall (1-F)! :ZFj =1+F+F%+..

j=0
Checking that [I — AL] is not singular, same as checking that Al does
not explode. The stability of the system can be determined by the
eigenvalues of A. That is, get the As and check if |A;|<1 forall 7

-
A{d)ll ¢g}=>|A—M|=de{¢ll fﬂ:—(q)l—x)x—%

1 £ /3 + 44
Ai = 3

* If |A;] <1 forall /=1,2,y, is stable (it does not explode) and
stationary. Then: 4 1, = ¢, = | A, 12| = |¢2| <1

A+2y =4 =4+, =|<2

16
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AR Process — Stationarity

* The autocovariance function is given by:
7o = E[(Y = )Yy - )]
=E [(¢1 (Yt—l - ﬂ)"‘ 9, (thz - ,U)"' & )(Yt—k - /U)]
=7+ horis + Ela (Y — )]

* Again a recursive formula. Let’s get the first autocovariances:

7/0:¢17/—1+¢27—2+E[‘9t(Yt_:u)]
:¢171+¢27/2+‘72

71=¢17/0+¢271+E[gt(Yt—l_/u)]
=970+ P27, :>7/1:¢17/0
1_¢2
]/2=¢1}/1+¢27/2+E[gt(thz—,u)]
2 42
:¢171+¢272 372:¢1 ¢2 270

AR Process — Stationarity
* The AR(2) in matrix AR(1) form is called Iector AR(1) or VAR(1).

Nice property: The VAR(1) is Markov -i.e., forecasts depend only on
today’s data.

* It is straightforward to apply the VAR formulation to any AR(p)
processes. We can also use the same eigenvalue conditions to check
the stationarity of AR(p) processes.

17
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AR Process — Causality

* The AR(p) model:
d(L)y, =p+g where ¢(L)=1_¢1|_1_|_2¢2_”_._¢pr
Then, Y, =¢(L)" (u+g,), = an MA() process!

* But, we need to make sure that we can invert the polynomial ¢(L).

* When @(L) #0, we say the process vy, is causal (strictly speaking, a
causal function of {&.}).
Definition: A linear process {y,} is causal if thete is a
y(L)=1+y,L+y,L? +..
with > ol VL)<
with  y; = y(L)e;.

AR Process — Causality

Example: AR(1) process:
L)Yy =p+e,,  where ¢(L)=1-¢,L

Then, y, is causal if and only if:
|1 <1

or

the root t; of the polynomial ¢(z) = 1 — @, z satisfies |t;|>1.

* Q: How do we calculate the W's coefficients for an AR(p)?
A: Matching coefficients:

[ }“

d

V=)= 5D ¢1L)

= (14 gL +g, L2+---)gt = o= gi>

18
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AR Process — Calculating the ’s

* Example: AR(2) - Calculating the ¢‘s by matching coefficients.
(-pL-p.L Ny —pu)=2c, = oL)W(L)=1

o (L)

v, =1

Y, =¢1

¥, =4+ ¢,
¥, = ¢ + 20,4,

lPj:¢1\Pj71+¢2l}]j72:j22

We can solve these /near difference equations in several ways:
- Numerically
- Guess the form of a solution and using an inductive proof
- Using the theory of linear difference equations.

AR Process — Estimation and Properties

* Define
Xe = (Yo YieaoYiop)

B=(d by dp)

Then the model can be written as  Y; = X;'B+&;

* The OLS estimator is b:Bi(X'X)_1X'y

* Recall that #,= xe is a MDS. It is also strictly stationary and ergodic.

1 1 P
— Xi€f = —= ) U ——> E[u;]1=0.
T

* The vector x; is strictly stationary and ergodic, and by Theorem I so
is x, x;”. Then, by the Ergodic Theorem

%Z XX '=—2—> E[x%']=Q
t

19
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AR Process — Estimation and Properties

* Consistency
Putting together the previous results, the OLS estimator can be
rewritten as:

-1
. _ 1 ]
b=B=(X'X) 1X'y=B+[?thtxt'] (?Zt:xt'st]

Xt

Then,
-1
1 1 .
b =B+(?Zt:xtxt'] [?th'stJ—MmQ '0=B

= the OLS estimator is consistent.

AR Process — Asymptotic Distribution

o Asymptotic Normality

We apply the MDS CLT to xg,. Then, it is straightforward to derive
the asymptotic distribution of the estimator (similar to the OLS case):

Theorem If the AR(p) process y, is strictly stationary and ergodic
and E[yY], then as T— o;

VT (- A)—2>N(0,Q7'QQ ™), Q=E[xXx'e’]

¢ Identical in form to the asymptotic distribution of OLS in cross-
section regression => asymptotic inference is the same.

¢ The asymptotic covariance matrix is estimated just as in the cross-
section case: The sandwich estimator.

20
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AR Process — Bootstrap

* So far, we constructed the bootstrap sample by randomly resampling
from the data values (y,x,). This created an zzd bootstrap sample.

¢ This is inappropriate for time-series, since we have dependence.
¢ There are two popular methods to bootstrap time series.

(1) Model-Based (Parametric) Bootstrap
(2) Block Resampling Bootstrap

AR Process — Bootstrap

(1) Model-Based (Parametric) Bootstrap

1. Estimate b and residuals e:

2. Fix an initial condition {y, 11, Virtas Virss o Yor

3. Simulate zzd. draws e* from the empirical distribution of the
residuals {e, e,, €5, ..., €1}.

4. Create the bootstrap series y, by the recursive formula

Ve =R+ Ve * oY F o+ b Yip Fe*

Pros: Simple. Similar to the usual bootstrap.

Cons: This construction imposes homoskedasticity on the errors e* ;
which may be different than the properties of the actual e. It also
imposes the AR(p) as the DGP.

21
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AR Process — Bootstrap

(2) Block Resampling
1. Divide the sample into T/ blocks of length 7.

2. Resample complete blocks. For each simulated sample, draw T/
blocks.

3. Paste the blocks together to create the bootstrap time-series y,*.

Pros: It allows for arbitrary stationary serial correlation,
heteroskedasticity, and for model misspecification.

Cons: It may be sensitive to the block length, and the way that the
data are partitioned into blocks. May not work well in small samples.

Moving Average Process

* An MA process models E[y, | F, ;] with lagged error terms. An
MA(g) model involves ¢ lags.

* We keep the white noise assumption for e,.
Example: A linear MA(g) model:

q
Yo=u+e—08 -0, ,—..— 05 4= 'u_zaigt‘i Té
o1

q )
Yo=p-Y Ol +e=pu+0(L)e  O(L)=1-6L-6,L°—..—6,L°

i=1

* Q: Is y, stationary? Check the moments.

22
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Moving Average Process — Stationarity

* Q: Is y, stationary? Check the moments. WLOG, assume u=0.

E[y,] =0
Var[y,] =(1+6] +6; +..+6])o’
y(t- D= ELY, yt—j] = E[(-6&., Yo _gzgtfzytfj _"”_qut—q Yioj + & yt—j)]

20-2[2?:1'9j9j+\k\] |k|I<Qg; otherwise y(t—j)=0.
e It is easy to verify that the sums are finite = MA(g) is stationary.

* Note that an MA(g) process can generate an AR process.
Yo=p+BLg, =8y, =p*e,

* We have an infinite sum polynomial on L. That is, an AR(®).

DMLY =nte

MA Process — Invertibility

* We need to make sure that (1) is defined: We require &(L) # 0.
When this condition is met, we can write €, as a causal function of y,.
We say the MA is znvertible. For this to hold, we require:

PRENIEE
Definition: A linear process {y,} is znwvertible strictly speaking, an
invertible function of {e.}, if there is a
n(L)y=1+mL+m,L% +..
with ol T <
with &, = n(L)Yy;.

23



RS —EC2 - Lecture 13

MA Process — Example: MA(1)

* Example: MA(1) process:
Y, =u+0(L)s, d(L)y=1+6,L

- Moments
E(Yt): u
Yo =Var(y,)=o" +6,’0”
Y = ElYe, Vil = 9102
Tie = EDVe Yia =0, [K[>1

Note: The autocovariance function is zero after lag 1.

— Invertibility: If | 6,]| <1, we can write (1+ 6, L)y, + p* = ¢,

B-0,L+0 L+ 40U+ )y +pF=p*+ ) m(L)y, =
i=1

MA Process — Example: MA(2)

* Example: MA(2) process:
Y, =u+0(L)s, O(L)=1-6,L-0,1°

- Moments
E(Y)=u
(1462 +62) k=0
-60°(1-6,), |K=1
T a0 K=2
0, |K>2

Note: the autocovariance function is zero after lag 2.
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MA Process — Example: MA(2)

- Inveritbility: The roots of 2’ =6 A—6, =0 all lie inside the unit
circle. It can be shown the invertibility condition for MA(2) process is:
0,+0, <1
-1<6, <1

MA Process — Estimation

* MA are more complicated to estimate. In particular, there are
nonlinearities. Consider an MA(1):
Ve =& +0 €1

The auto-correlation is p; = 6/(1+62). Then, MM estimate of 6

satisfies: R
0 ~ 1A f1-4r]
I’l = T = 0d=—"——
(1+60%) 2n,
¢ A nonlinear solution and difficult to solve.

e Alternatively, if || <1, we can try 2 €(-1; 1),

g@)=y +ay_ +a’y_,+..

and look (numerically) for the least-square estimator

0 =arg, min{S; (@)=Y &’ (a)}
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The Wold Decomposition

Theorem - Wold (1938).
Any covariance stationary {y,} has infinite order, moving-average

representation:
Yi ZZT:OWijgt_"Kt’ v, =1,
where &, : deterministic term (perfectly forecastable). Say, x, = u
Doy <
& ~WN(0,57)

* y,is a linear combination of innovations over time.

* A stationary process can be represented as an MA(®) plus a
deterministic “trend.”

The Wold Decomposition

Example:

Let x,= y,— K. Then, check moments:
ElX]=ElV—x]=2  vEle;1=0.

E[x’]= ZJ—:O\V%E[SE—J' 1= GZZJ—:O\V% <%

E[Xe, X_j1=El(er + Wiy +Wagip + )€ j + W & joy H W8 jp +.00)

2 00
= (W HY Y H VoY +) =0 ZkZO\Vk\Vk+2

X, is a covariance stationary process.
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ARMA Process

* A combination of AR(p) and MA(g) processes produces an
ARMA(p, g) process:

Ve = UYL+ DYt t B Y T —Os, — 0,6, ..~ 0,
p a
= ﬂ+z¢iyt—i _zeingt t &
o1 =
=> (L)Y, = u+0(L)s,
* Usually, we insist that ¢(L)70, 0(1.)#0 & that the polynomials ¢(L),

6(L) have no common factors. This implies it is not a lower order
ARMA model.

ARMA Process

Example: Common factors.
Suppose we have the following ARMA(2,3) model ¢(L)Yy; = 0(L)g;
with

d(L)=1-.6L+.3L2

O(L)=1-1.4L+.9L% - 3% =(1-.6L+.3L%)1-L)

This model simplifies to: Y; =(1-L)g; = an MA(1) process.

¢, L
* Pure AR Representation: H(L)(yt - ,U)z a = H(L)= HpELi

q

. L)

* Pure MA Representation: (y,—p)=P(L)a, = ¥(L)= 4. (0)

p

* Special ARMA(p,g) cases: —p=0:MA(g)
—g=0: AR(p).
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ARMA: Stationarity, Causality and Invertibility

Theorem: If @1) and §(I) have no common factors, a (unique)
stationary solution to (L)Y, =0(L)e, exists if and only if

1z=1=¢(2)=1-p2—-$, 2" —...— ¢, 2" # 0.
This ARMA(p, g) model is causal if and only if

lz<1=>¢(2)=1-gz2-¢,7° —...—¢, 2" 0.
This ARMA(p, g) model is invertible if and only if

12I<1=0(2)=1+6,2-6,2° +..+6,2° # 0.

* Note: Real data cannot be exact/y modeled using a finite number of
parameters. We choose p, g to create a good approximated model.

ARMA Process — SDE Representation

* Consider the ARMA (p,g) model:
P(L)(Y, — ) =0(L)g,
Let X, =Y, —u and W, = ¢(L)s,.
Then, X, =@ X, +PX _, +.... + ;zﬁpxt_p + W,
=> x,is a p-th-order linear stochastic difference equation
(SDE).

X, =P X + &
Example: 1st-order SDE (AR(1)):

Recursive selution lgtforrn: el -
thé X+ gt—i):¢+x—1+zl//igt—i
i=0 i=0

whete x. is an initial condition
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ARMA Process — Dynamic Multiplier

* The dynamic multiplier measurers the effect of e, on subsequent
values of x;: That is, the first derivative on the Wold representation:
8Xt+j/88t = 8Xj/880 = gbj

For an AR(1) process:
8x,,;/8e, = 8x;/8ey = ¢.

* That is, the dynamic multiplier for any linear SDE depends only on
the length of time j, not on time t.

ARMA Process — Impulse Response Function

* The impulse-response function (IRF) a sequence of dynamic multipliers
as a function of time from the one time change in the innovation, ..

¢ Usually, IRF are represented with a graph, that measures the effect
of the innovation, e, on y, over time:

> Cp

8Yt+j/88t+ 8Yt+j+1/88t + 8Yr+j+21/88t+'“: bt Dps T Dot

* Once we estimate the ARMA coefficients, it is easy to draw an IRE

o
o5

o H
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ARMA Process — Addition

* Q: We add two ARMA process, what order do we get?

* Adding MA processes
Xy = A(L)gl
z, =C(L)u,

Y, =X +2,=A(L)e, + C(L)u,
- Under independence:
7y (D) = ELY Y 1= E[(X + 2)(X_j + Z,_5)]
= El(xx_j+ 22 Dl = 7 (D +7.())
- Then, y(j) = 0 for ; > Max(q,, 7.,) =y, is ARMA(QO, max(q,, 4.))

- Implication: MA(2) + MA(1) = MA(2)

ARMA Process — Addition

* Q: We add two ARMA process, what order do we get?

* Adding AR processes
(I-A(L) X, = ¢,
(1-C(L)z, =u,

Yo =X +2Z,=7
- Rewrite system as:
A=CL)A-AL)X =1-C(L))e
(I-AL)A-C(L))z, =(1-AL)y,
(1=ALNA=CLYY; =(A=C(L)e + =AU, =& +U ~[C(L)&; + A(L)u]

- Then, Ye is ARMA@X-FP{’ maXCDX’ pg)
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