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Lecture 15
Forecasting

• A shock is often used to describe an unexpected change in a variable 
or in the value of the error terms at a particular time period.

• A shock is defined as the difference between expected (a forecast) 
and what actually happened. 

• One of the most important objectives in time series analysis is to 
forecast its future values. It is the primary objective of ARIMA 
modeling:

• Two types of forecasts.

- In sample (prediction): The expected value of the RV (in-sample), 
given the estimates of the parameters.

- Out of sample (forecasting): The value of a future RV that is not 
observed by the sample.

Forecasting
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• Any forecasts needs an information set, IT. This includes data, 
models and/or assumptions available at time T. The forecasts will be 
conditional on IT.

• The variable to forecast YT+l is a RV. It can be fully characterized by 
a pdf. 

• In general, it is difficult to get the pdf for the forecast. In practice, 
we get a point estimate (the forecast) and a C.I. 

• Notation: 
- Forecast for T+l made at T: 𝑌෠் ା௟ , 𝑌෠் ା௟|் , 𝑌෠் ሺ𝑙ሻ.

- T+l forecast error: 𝑒்ା௟ ൌ 𝑌 ା௟ െ 𝑌෠் ା௟

- Mean squared error (MSE): 𝑀𝑆𝐸ሺ𝑒்ା௟ሻ ൌ 𝐸ሾ𝑌 ା௟ െ 𝑌෠் ା௟]2

Forecasting – Basic Concepts

• To get a point estimate,         , we need a cost function to judge 
various alternatives. This cost function is call loss function. Since we are 
working with forecast, we work with a expected loss function.

• A popular loss functions is the MSE, which is quadratic and 
symmetric. We can use asymmetric functions, for example, functions 
that penalize positive errors more than negative errors. 

• If we use the MSE as the cost function, we look for  𝑌෠் ା௟ , which 
minimizes it. That is 

Then, f.o.c. implies:

Forecasting – Basic Concepts
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• The optimal point forecast under MSE is the (conditional) mean:

𝑌෠் ା௟ ൌ 𝐸ሾ𝑌 ା௟|𝐼்ሿ

• Different loss functions lead to different optimal forecast. For 
example, for the MAE, the optimal point forecast is the median.

• The computation of E[YT+l|IT] depends on the distribution of {εt}. 
If {εt} ~ WN, then E[εT+l|IT] = 0, which greatly simplifies 
computations, especially in the linear model.

• Then, for ARMA(p, q) stationary process (with a Wold
representation), the minimum MSE linear forecast (best linear 
predictor) of YT+l, conditioning on IT is:

𝑌 ା௟ ൌ θ଴ ൅ Ψ௟ε்ା௟ ൅ Ψ௟ାଵε்ା௟ିଵ ൅ ⋯

Forecasting – Basic Concepts

• Process: 
- ARIMA model

- Estimation
(Evaluation in-sample)

- Forecast
(Evaluation out-of-sample)

Forecasting Steps for ARMA Models
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• We observe the time series: IT = {Y1, Y2,…,YT}.

- At time T, we want to forecast: YT+1, YT+2,…,YT+l.

- T: The forecast origin.

- l: Forecast horizon

- 𝑌෠் ሺ𝑙ሻ: l-step ahead forecast = Forecasted value YT+l

• Use the conditional expectation of YT+l, given the observed sample.

Example: One-step ahead forecast: 𝑌෠் ାଵ ൌ 𝐸ሾ𝑌 ାଵ|𝑌 , 𝑌 ିଵ, … , 𝑌ଵሿ

• Forecast accuracy to be measured by MSE

 conditional expectation, best forecast. 7

Forecasting From ARMA Models
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• The stationary ARMA model for Yt is

or

• Assume that we have data Y1, Y2, ... , YT . We want to forecast YT+l. 
Then, 

• Considering the Wold representation:
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Forecasting From ARMA Models
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• Taking the expectation of YT+l, we have

where

• Then, we define the forecast error:

• The expectation of the forecast error:

Forecasting From ARMA Models
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• The expectation of the forecast error:
 the forecast in unbiased.

• The variance of the forecast error:

• Example 1: One-step ahead forecast (l = 1).

Forecasting From ARMA Models
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• Example 2: One-step ahead forecast (l = 2). 

• Note:

• As we forecast into the future, the forecasts are not very interesting 
(unconditional forecasts!). That is why ARMA (or ARIMA) 
forecasting is useful only for short-term forecasting.

Forecasting From ARMA Models
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• A 100(1- )% prediction interval for YT+l (l-steps ahead) is

• Example: 95% C.I. for the 2 step-ahead forecast

• When computing prediction intervals from data, we substitute 
estimates for parameters, giving approximate prediction intervals.

Note: Since    ’s are RV, MSE[εT+l]=MSE[eT+l]=

Forecasting From ARMA Model: C.I.

    

  











1

0

2
2/

2/

ˆ

ˆ







i
iT

TT

zY

eVarzY

  2
1196.12ˆ TY

i̂ 





1

0

22


i
i



RS – EC2 - Lecture 15

7

• Suppose we have T observations at time t=T. We have a good 
ARMA model for Yt. We obtain the forecast for YT+1, YT+2, etc. 

• At t = T + 1, we observe YT+1. Now, we update our forecasts using 
the original value of YT+1 and the forecasted value of it.

• The forecast error is:

We can also write this as

Forecasting From ARMA Model: Updating
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• Then,

• Example: l = 1, T = 100. 
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Forecasting From ARMA Model: Updating
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• If we use variance stabilizing transformation, after the forecasting, 
we need to convert the forecasts for the original series.

• For example, if we use log-transformation, then,  

• If X ~ N(, 2), then, 

• The MSE forecast for the original series is:

Forecasting From ARMA Model: Transformations
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• In general, we need a large T. Better estimates and it is possible to 
check for model stability and check forecasting ability of model by 
withholding data.

• Seasonal patterns also need large T. Usually, you need 4 to 5 seasons 
to get reasonable estimates.

• Parsimonious models are very important. Easier to compute and 
interpret models and forecasts. Forecasts are less sensitive to 
deviations between parameters and estimates.

Forecasting From ARMA Model: Remarks
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• Industrial companies, with a lot of inputs and outputs, want quick 
and inexpensive forecasts. Easy to fully automate.

• Exponential Smoothing Models (ES) fulfill these requirements.

• In general, these models are limited and not optimal, especially 
compared with Box-Jenkins methods.

• Goal of these models: Suppress the short-run fluctuation by 
smoothing the series. For this purpose, a weighted average of all 
previous values works well. 

• There are many ES models. We will go over the Simple Exponential 
Smoothing (SES) and Holt-Winter’s Exponential Smoothing (HW 
ES). 

Forecasting From Simple Models: ES

• Observed time series: Y1, Y2, …, YT

• The equation for the model is 

where 

- : the smoothing parameter, 0    1

- Yt: the value of the observation at time t

- St: the value of the smoothed observation at time t.

• The equation can also be written as

• Then, the forecast is:

That is, a simple updating equation.

Forecasting From Simple Models: ES
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• Q: Why Exponential? 
For the observed time series Y1,Y2,…,Yn, Yn+1 can be expressed as a 
weighted sum of previous observations.

where ci’s are the weights.

• Giving more weights to the recent observations,  we can use the 
geometric weights (decreasing by a constant ratio for every unit 
increase in lag):

• Then,

19
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Forecasting From Simple Models: ES
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• Choose  between 0 and 1.

- If  = 1, it becomes a naive model; if  is close to 1, more weights 
are put on recent values.  The model fully utilizes forecast errors.

- If  is close to 0, distant values are given weights comparable to 
recent values. Set  ≈ 0 when there are big random variations in Yt. 

-  is often selected as to minimize the MSE.

• In empirical work, 0.05    0.3 are used ( ≈ 1 is used rarely).

Numerical Minimization Process: 

- Take different  values ranging between 0 and 1.

- Calculate 1-step-ahead forecast errors for each .

- Calculate MSE for each case.

Choose  which has the min MSE: 20

Forecasting From Simple Models: Selecting 
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Time Yt St+1 (=0.10) (YtSt)2

1 5 - -

2 7 (0.1)5+(0.9)5=5 4

3 6 (0.1)7+(0.9)5=5.2 0.64

4 3 (0.1)6+(0.9)5.2=5.28 5.1984

5 4 (0.1)3+(0.9)5.28=5.052 1.107

TOTAL 10.945

74.2
1





n
SSE

MSE

• Calculate this for =0.2, 0.3,…, 0.9, 1 and compare the MSEs. 
Choose  with minimum MSE

Forecasting From Simple Models: Example

• Some computer programs automatically chooses the optimal 
using the search method or non-linear optimization techniques.

• Initial Value Problem

– Set S2 to Y1 is one method of initialization.

– Also, take the average of, say first 4 or 5 observations. Use this
average as an initial value.

• This model ignores trends or seasonalities. Not very realistic. But,
deterministic components, Dt, can be easily incorporated. The model
that incorporates both features is called Holt-Winter’s ES.

22

Forecasting From Simple Models: Remarks
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• Now, we introduce trend (Tt) and seasonality (It) factors. Both can  
can be included as additively or multiplicatively factors.

• Details

- We use multiplicative seasonalities –i.e., Yt/It– and additive trend.

- The forecast, St, is adjusted by the deterministic trend: St + Tt. 

- The trend, Tt, is a weighted average of Tt-1 and the change in St. 

- The seasonality is also a weighted average of It-S and the Yt/St

• Then, the model has three equations:

23

  

   

  st
t

t
t

tttt

tt
st

t
t

I
S
Y

I

TSST

TS
I
Y

S






















1

1

1

11

11
1

Forecasting From Simple Models: HW ES

• We think of (Yt /St) as capturing seasonal effects.

s = # of periods in the seasonal cycles

(s = 4, for quarterly data)

• We have only three parameters :

 = smoothing parameter

 = trend coefficient

 = seasonality coefficient

• Q: How do we determine these 3 parameters?

- Ad-hoc method: α , and  can be chosen as value between 0.02< , 
, <0.2 

- Minimization of the MSE, as in SES. 24

Forecasting From Simple Models: HW ES
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• h-step ahead forecast

Note: Seasonal factor is multiplied in the h-step ahead forecast

• Initial values for algorithm

- We need at least one complete season of data to determine the 
initial estimates of It-s.

- Initial values:

25
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Forecasting From Simple Models: HW ES
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• Algorithm to compute initial values for seasonal component Is.

Assume we have T observation and quarterly seasonality (s=4):

(1) Compute the averages of each of T years.

(2) Divide the observations by the appropriate yearly mean: Yt,i/At.

(3) Is is formed by computing the average Yt,i/At per year:

26

Forecasting From Simple Models: HW ES
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• Remarks

- Note that, if a computer program selects = 0= , this does not a 
lack of trend or seasonality. It implies a constant (deterministic) 
component.

- In this case, an ARIMA model with deterministic trend may be a 
more appropriate model. 
- For HW ES, a seasonal weight near one implies that a non-seasonal 
model may be more appropriate. 
- We modeled seasonalities as multplicative:

=> Multiplicative seasonality: Forecastt = St * It-s. 
- But, seasonal components can also be additive. For example, during 
the month of December sales at a particular store increase by $X 
every year. In this case, we just $X to the December forecast. 

=> Additive seasonality: Forecastt = St + It-s.

27

Forecasting From Simple Models: HW ES

1.  No trend and additive 
seasonal variability (1,0)

2. Additive seasonal variability with 
an additive trend (1,1)

3. Multiplicative seasonal variability 
with an additive trend (2,1)

4. Multiplicative seasonal variability 
with a multiplicative trend (2,2)

ES Models – Different Types
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• Select the type of model to fit based on the presence of  
- Trend – additive or multiplicative, dampened or not
- Seasonal variability – additive or multiplicative 

5. Dampened trend with additive 
seasonal variability (1,1)

6. Multiplicative seasonal variability 
and dampened trend (2,2)

ES Models – Different Types

Evaluation of forecasts

• Summary of  loss functions of  out-of-sample forecast accuracy:
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Mean Error =  

Mean Absolute Error (MAE) = 

Root Mean Square Error (RMSE)= 
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• To determine if  one model predicts better than another, we define 
the loss differential between two forecasts: 

dt = g(et
M1) – g(et

M2). 
where g(.) is the forecasting loss function. M1 and M2 are two 
competing sets of  forecasts –could be from models or something else.

• We only need {et
M1} & {et

M2}, not the structure of  M1 or M2. In 
this sense, this approach is “model-free.”

• Typical (symmetric) loss functions:  g(et) = et
2 &  g(et) =|et|. 

• But other g(.)’s can be used: g(et) = exp(λet
2 ) – λet

2 (λ>0).

Evaluation of  forecasts – DM Test

• Then, we test the null hypotheses of  equal predictive accuracy: 
H0: E[dt] = 0   vs.  
H1: E[dt] = μ ≠ 0.

- Diebold and Mariano (1995) assume {et
M1} & {et

M2} is covariance 
stationarity and other regularity conditions (finite Var[dt ], 
independence of  forecasts after l periods) needed to apply CLT. Then,







 mT

Ti
i

d d
m

dN
TdVar

d

1

1
),1,0(

/][



Evaluation of  forecasts – DM Test
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• Then, the DM test is a simple z-test:
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where            is a consistent estimator of  the variance, usually based 
on sample autocovariances of  dt:

• Assume the l-step ahead forecast errors have zero autocorrelations at 
order l.  Harvey et al. (1998) propose a small-sample modification of  
the DM test:

DM* = DM/{[T + 1 – 2l + l (l – 1)/T]/T}1/2 ~tT-1.

• If  ARCH is suspected, replace l with [0.5 √(T)]+l.  ([.]=integer part).

•Note:  If  {et
M1} & {et

M2} are perfectly correlated, the numerator and 
denominator of  the DM test are both converging to 0 as  T → ∞.  

 Avoid DM test when this situation is suspected (say, two 
nested models.) Though, in small samples, it is OK.
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Evaluation of  forecasts – DM Test

Example: Code in R
dm.test <- function (e1, e2, h = 1, power = 2) {

d <- c(abs(e1))^power - c(abs(e2))^power
d.cov <- acf(d, na.action = na.omit, lag.max = h - 1, type = "covariance", plot = FALSE)$acf[, , 1]
d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d)
dv <- d.var#max(1e-8,d.var)
if(dv > 0)
STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv)

else if(h==1)
stop("Variance of  DM statistic is zero")

else
{
warning("Variance is negative, using horizon h=1")
return(dm.test(e1,e2,alternative,h=1,power))

}
n <- length(d)

k <- ((n + 1 - 2*h + (h/n) * (h-1))/n)^(1/2)
STATISTIC <- STATISTIC * k
names(STATISTIC) <- "DM"

}

Evaluation of  forecasts – DM Test
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• The DM tests is routinely used. Its “model-free” approach has 
appeal.  There are model-dependent tests, see West (1996), Clark and 
McCracken (2001), and, more recent, Clark and McCracken (2011), 
with more complicated asymptotic distributions.

• The loss function does not need to be symmetric (like MSE).

• The DM test is based on the notion of  unconditional –i.e., on 
average over the whole sample- expected loss. 

• Following Morgan, Granger and Newbold (1977), the DM statistic 
can be calculated by regression of  dt, on an intercept, using NW SE. 
But, we can also condition on variables that may explain dt. We move 
from an unconditional to a conditional expected loss perspective.

Evaluation of  forecasts – DM Test: Remarks

Evaluation of  forecasts – Conditional Test
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• Idea – from Bates & Granger (Operations Research Quarterly, 1969):

- We have different forecasts from R models: 

• Q: Why not combine them?

• Very common practice in economics, finance and politics, reported 
by the press as “consensus forecast.” Usually, as a simple average.

• Q: Advantage? Lower forecast variance. Diversification argument.

Intuition: Individual forecasts are each based on partial information 
sets (say, private information) or models. 37

Combination of  Forecasts 
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• The variance of the forecasts is:

Note: Ideally, we would like to have negatively correlated forecasts.

• Assuming unbiased forecasts and uncorrelated errors,

Example: Simple average: ωj=1/R. Then,

• We can derived optimal weights –i,e., ωj’s that minimize the variance 
of the forecast. Under the uncorrelated assumption: 

Combination of  Forecasts – Optimal Weights 
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• Under the uncorrelated assumption: 

• The ωj*’s are inversely proportional to their variances. 

• In general, forecasts are biased and correlated. The correlations will 
appear in the above formula for the optimal weights. For the two 
forecasts case:

• We do not observe the forecast variances and covariances, nor the 
biases. We need a history of forecasts to estimate the optimal weights.

Combination of  Forecasts – Optimal Weights 
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• In general, forecasts are biased and correlated. The correlations will 
appear in the above formula for the optimal weights. Ideally, we 
would like to have negatively correlated forecasts.

• Granger and Ramanathan(1984) used a regression method to 
combine forecasts. 

- Regress the actual value on the forecasts. The estimated 
coefficients are the weights.

• Should use a constrained regression

– Omit the constant

– Enforce non-negative coefficients.

– Constrain coefficients to sum to one 40

Combination of  Forecasts: Regression Weights 
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• Remarks:

- To get weights, we do not include a constant. Here, we are assuming 
unbiased forecasts. If the forecasts are biased, we include a constant.

- To account for potential correlation of errors, Coulson and Robbins 
(1993) suggests allowing for ARMA residuals or include yT+l-1 in the 
regression.

- Time varying weights are also possible.

• Should weights matter? Two views:

- Simple averages outperform more complicated combination 
techniques --Stock and Watson (1999) and Fildes and Ord (2002).

- Sampling variability may affect weight estimates to the extent that 
the combination has a larger MSFE --Harvey and Newbold (2005). 

- Bayesian techniques, using priors, may help in the latter situation.41

Combination of  Forecasts: Regression Weights 

• In  our  discussion  of  model  selection,  we  mentioned that the 
BIC is  consistent. That means, the probability that a model is true, 
given the data is proportional to BIC: 

P(Mj |data) α exp(-BICj/2).

• Based on this, we use the BIC of different models to derive weights. 

This is a simplified form of Bayesian  model  averaging (BMA). 

• Easy calculation of weights. Let  BIC*  be  the  smallest  BIC among 
the R models considered. Define  ΔBICMj = BICMj ‐ BIC*. 

Then,

42

Combination of  Forecasts: Bayesian Weights 
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• Steps:

(1) Compute BIC for the R different models.

(2) Find best-fitting  BIC*.

(3) Compute ΔBIC & exp(‐ΔBIC/2).

(4) Add  up  all  values  and  re-normalize.

• BMA puts the most weight on the model with the smallest  BIC.

• Some  authors  have  suggested  replacing  BIC  with  AIC  in  the  
weight  formula –i.e.,  ωj α exp(-AICj/2).

- There  is  no clear theory  for  this formula. It  is  simple  and  works  
well  in  practice.

- This method is called weighted AIC (WAIC).
43

Combination of  Forecasts: Bayesian Weights 

• Q: Does it make a difference the criteria used? Two situations:

(1) The selection criterion (AIC, BIC) are close for competing models. 
Then, it is difficult to select one over  the other. 

- WAIC and BMA will produce similar  weights.

(2) The selection criterion are different. 

- WAIC and BMA will produce different  weights.

- They will give zero weight if the difference is large, say, above 10.

Q: Which one to use? 

- Not clear. WAIC works well in practice. 

General finding: Simple averaging works well, but it is not optimal. A 
combination beats the lowest criteria used.

44

Combination of  Forecasts: Bayesian Weights 
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• Since Bates and Granger (1969) and Granger and Ramanathan 
(1984), combination weights have generally been chosen to minimize 
a symmetric, squared-error loss function.  

• But, asymmetric loss functions can also be used. Elliot and 
Timmermann (2004) allow for general loss functions (and 
distributions). They find that the optimal weights depend on higher 
order moments, such a skewness.

• It is also possible to forecast quantiles and combine them. Testing 
of quantile forecasts can  be based on the general approach of G&W 
(2006). Giacomini and Komunjer (2005) present an application. 

45

Forecasting: Final Comments 


