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Lecture 14
ARIMA – Identification, 

Estimation & Seasonalities

• We defined the ARMA(p, q) model:

Let

Then,

 xt is a demeaned ARMA process. 

• In this lecture, we will study:
- Identification of   p, q.
- Estimation of  ARMA(p,q)
- Non-stationarity of  xt.
- Differentiation issues – ARIMA(p,d,q)
- Seasonal behavior  – SARIMA(p,d,q)S

ARMA Process
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• We define the autocovariance function, γ(t-j) as:

• For an AR(p) process, WLOG with μ=0 (or demeaned yt), we get:

Notation: γ(k) or γk are commonly used. Sometimes, γ(k) is referred as 
“covariance at lag k.

• The γ(t-j) determine a system of  equations:

Autocovariance Function  
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• These are the Yule-Walker equations, can be solved numerically. MM 
can be used (replace population moments with sample moments).

• Properties for a stationary time series
1. γ(0) ≥ 0 (from definition of  variance)
2. γ(k) ≤ γ(0) (from Cauchy-Schwarz)
3. γ(k) = γ(-k) (from stationarity)
4. Γ, the auto-correlation matrix, is psd (a’ Γ a ≥ 0)

Moreover, any function γ: Z →R that satisfies (3) and (4) is the
autocovariance of  some stationary time series.

Autocovariance Function
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• For an ARMA(1,1) we have:.

Autocovariance Function – Example: ARMA(1,1)
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• Similarly:

Autocovariance Function – Example: ARMA(1,1)
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• Two equations for γ0 and γ1:

• In general:
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• Now, we define the autocorrelation function (ACF):

The ACF lies between -1 and +1, with ρ(0)=1.

• Dividing the autocovariance system by γ(0), we get: 

• These are “Yule-Walker” equations, which can be solved numerically.

Autocorrelation Function (ACF)
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• Easy estimation:  Use sample moments to estimate γ(k) and plug in 
formula:

• Distribution: For a linear, stationary,  yt = μ+Σi ψj εt-j, with E[εt
4]<∞:

r Nρ, V/T), V is the covariance matrix with elements:

If  ρk = 0, for all k≠0, V = I  Var[r(k)] = 1/T.

• The standard errors under H0, 1/sqrt(T), are sometimes referred as  
Bartlett’s SE. 

Autocorrelation Function (ACF)
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• Example: Sample ACF for an MA(1) process.
ρ(0) = 1, 
ρ(k) = θ/(1+θ2), for k = 1,-1
ρ(k) = 0 for |k|>1.

Autocorrelation Function (ACF)

• Example: Sample ACF for an MA(q) process:

γ(0) = E[yt yt ] = σ2 (1 + θ1
2 + θ2

2 +...+ θq
2) 

γ(1) = E[yt yt-1 ] = σ2 (θ1 + θ2 θ3 +...+ θq θq-1) 
γ(2) = E[yt yt-2 ] = σ2 (θ2 + θ3 θ1 +...+ θq θq-1) 
γ(q) = θq

In general,

Then,

Autocorrelation Function (ACF)
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• Example: US Monthly Returns (1800 – 2013, T=2534)

Autocorrelations and Ljung Box Tests (SAS: Check for White Noise)

To        Chi- Pr >
Lag      Square     DF  ChiSq --------------------Autocorrelations--------------------

6       38.29      6    <.0001     0.096 -0.017    -0.044 0.012     0.054 -0.025
12       46.89     12    <.0001     0.013     0.032     0.033     0.032     0.000     0.006
18       75.07     18    <.0001    -0.042    -0.084 -0.009    -0.024     0.030     0.028
24       89.77     24    <.0001    -0.009    -0.054 -0.036    -0.020    -0.027     0.017

SE(rk) = 1/sqrt(T) = 1/sqrt(2534)≈.02.

• Note: Small correlations, but because T is large, many of  them 
significant (even at k=20 months). Joint significant too!

Autocorrelation Function - Example

• The sample correlogram is the plot of  the ACF against k.

As the ACF lies between -1 and +1, the correlogram also lies between 
these values.

• Example: Correlogram for US Monthly Returns (1800 – 2013)

ACF: Correlogram
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• Recall the Q statistic as:

It  can be used to determine if  the first m sample ACFs are jointly 
equal to zero. Under H0: ρ1= ρ2=...= ρm= 0, then Q converges in 
distribution to a χ2(m).

• The Ljung-Box statistic is similar, with the same asymptotic 
distribution, but with better small sample properties:

ACF: Joint Significance Tests
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• The Partial Autocorrelation Function (PACF) is similar to the ACF. 
It measures correlation between observations that are k time periods 
apart, after controlling for correlations at intermediate lags.

Definition: The PACF of   a stationary time series {yt} is
𝜙11 = Corr(yt, yt-1) = ρ(1)
𝜙hh = Corr(yt – E[yt|Ft-1], yt-h – E[yt-h-1|Ft-1]) for h = 2, 3, ....

This removes the linear effects of  yt-1, yt--2 , .... yt-h .

• The PACF Φhh is also the last coefficient in the best linear prediction 
of  yt given yt-1, yt--2, ..., yt-h : Γh 𝜙h = γ(k)

where 𝜙h = (𝜙h1, 𝜙h2 , ..., 𝜙hh).

Partial ACF



RS – EC2 - Lecture 14

8

Example: AR(p) process:

Then, 𝜙hh = 𝜙h if  1≤ h ≤ p
= 0 otherwise

• Estimation: 𝜙෠௛ ൌ ሾ𝜞෡ሿିଵ𝜸ෝሺ𝑘ሻ  a recursive system.

A recursive algorithm, Durbin-Levinson, can be used. 

• We can also produce a partial correlogram, which is used in Box-Jenkins 
methodology (covered later).

Partial ACF
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• The IACF of  the ARMA(p,q) model

is defined to be (assuming invertibility) the ACF of  the inverse (or dual) 
process 

• The IACF has the same property as the PACF: AR(p) is
characterized by an IACF that is nonzero at lag p but zero
for larger lags. 

• The IACF can also be used to detect over-differencing. If  the data 
come from a nonstationary or nearly nonstationary model, the IACF 
has the characteristics of  a noninvertible moving-average.

Inverse ACF (IACF)
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Example: Monthly USD/GBP 1st differences (1800-2013)

ACF, Partial ACF & IACF: Example

• The ACF is as a rough indicator of  whether a trend is present in a 
series. A slow decay in ACF is indicative of  a large characteristic root; 
a true unit root process, or a trend stationary process.

• Formal tests can help to determine whether a system contains a 
trend and whether the trend is deterministic or stochastic.

• We will analyze two situations faced in ARMA models: 
(1) Deterministic trend  – Simple model: yt = α + β t + εt.
– Solution: Detrending –i.e., regress yt on t. Then, keep residuals for 
further modeling.

(2) Stochastic trend  – Simple model:  yt = c + yt−1 + εt.
– Solution: Differencing –i.e., apply ∆ = (1 – L) operator to yt . Then, 
use ∆yt for further modeling.

Non-Stationary Time Series Models
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• Suppose we have the following model: 
yt = α + β t + εt.  Δyt = yt – yt-1 

= β t – β (t – 1) + εt – εt-1
= β + εt – εt-1

 E[Δyt ] = β

• {yt} will show only temporary departures from the trend line +t. 
This type of  model is called a trend stationary (TS) model.

• If  a series has a deterministic time trend, then we simply regress yt

on an intercept and a time trend (t = 1, 2, …, T) and save the residuals. 
The residuals are the detrended yt series.

• If  yt is stochastic, we do not necessarily get stationary series.

Non-Stationary Models: Deterministic Trend

• Many economic series exhibit “exponential trend/growth”. They 
grow over time like an exponential function over time instead of  a 
linear function. In this cases, it is common to work with logs

ln(yt)= α + β t + εt.

 The average growth rate is: E[Δln(yt )] = β

• We can have a more general model:

• Estimation: 
- OLS. 
- Frish-Waugh method:

(1) Detrend yt, get the residuals; 
(2) Use residuals to estimate the AR(p) model.  

Non-Stationary Models: Deterministic Trend
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• This model has a short memory. 

• If  a shock (big εt) hits yt, it goes back to trend level in a short time. 
Thus, the best forecasts are not affected.

• In practice, it is not a popular model. A more realistic model involves 
stochastic (local) trend.

Non-Stationary Models: Deterministic Trend

• The more modern approach is to consider trends in time series as a 
variable. 

• A variable trend exists when a trend changes in an unpredictable way. 
Therefore, it is considered as stochastic.

• Recall the AR(1) model: yt = c +  yt−1 + εt.

• As long as || < 1, everything is fine: OLS is consistent, t-stats are 
asymptotically normal, etc.

• Now consider the extreme case where  = 1,  yt = c + yt−1 + εt.

• Where is the (stochastic) trend? No t term.

Non-Stationary Models: Stochastic Trend
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• Let us replace recursively the lag of  yt on the right-hand side:
yt = μ + yt-1 + εt

= μ + (μ + yt-2 + εt-1) + εt
...
= y0 + t μ + Σi=0 to t εt-i

• This is what we call a “random walk with drift”. The series grows with t.

• Each εt shock represents a shift in the intercept. All values of  {εt} 
have a 1 as coefficient  each shock never vanishes (permanent).

Non-Stationary Models: Stochastic Trend

Deterministic trend

• yt is said to have a stochastic trend (ST), since each εt shock gives a 
permanent and random change in the conditional mean of  the series. 

• For these situations, we use Autoregressive Integrated Moving Average 
(ARIMA) models. 

• Q: Deterministic or Stochastic Trend?
They appear similar: Both lead to growth over time. The difference is 
how we think of  εt. Should a shock today affect yt+1?

– TS:   yt+1 = c + (t+1) + εt+1  εt does not affect yt+1. 

– ST: yt+1 = c + yt + εt+1 = c + [c + yt−1 + εt] + εt+1  εt affects yt+1. 

(In fact, the shock will have a permanent impact.) 

Non-Stationary Models: Stochastic Trend
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• For p, d, q ≥ 0, we say that a time series {yt} is an ARIMA (p,d,q) 
process if  wt = Δdyt = (1 − L)d yt is ARMA(p,q). That is,

• Applying the (1 − L) operator to a time series is called differencing.

• Notation: If yt is non-stationary, but Δdyt is stationary, then yt is 
integrated of  order d, or I(d). A time series with unit root is I(1). A 
stationary time series is I(0). 

• Examples:
Example 1: RW:  yt = yt-1 + εt. 
yt is non-stationary, but (1 − L) yt = εt  white noise!
Now, yt ~ ARIMA(0,1,0).

ARIMA(p,d,q) Models

  )()1)(( tt
d LyLL  

Example 2: AR(1) with time trend:  yt = μ + δ t +  yt-1 + εt. 
yt is non-stationary, but  wt = (1 − L) yt = δ +  wt-1 + εt – εt-1

Now, yt ~  ARIMA(1,1,1).

• We call both process first difference stationary.

• Note: 
− Example 1: Differencing a series with a unit root in the AR part of  
the model reduces the AR order.

− Example 2: Differencing can introduce an extra MA structure. We 
introduced non-invertibility. This happens when we difference a TS 
series. Detrending should be used in these cases. 

ARIMA(p,d,q) Models
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• In practice: 
A root near 1 of  the AR polynomial  differencing
A root near 1 of  the MA polynomial  over-differencing

• In general, we have the following results: 
- Too little differencing: not stationary.
- Too much differencing: extra dependence introduced. 

• Finding the right d is crucial. For identifying preliminary values of  d:
- Use a time plot.
- Check for slowly decaying (persistent) ACF/PACF.

ARIMA(p,d,q) Models

Example: Monthly USD/GBP levels (1800-2013)

Autocorrelation Check for White Noise

To        Chi- Pr >
Lag      Square     DF     ChiSq    --------------------Autocorrelations--------------------

6     9999.99      6    <.0001      0.995     0.989     0.984     0.979     0.974     0.969
12     9999.99     12    <.0001     0.963     0.957     0.952     0.947     0.943     0.940
18     9999.99     18    <.0001     0.937     0.934     0.931     0.929     0.927     0.924
24     9999.99     24    <.0001     0.920     0.917     0.914     0.911     0.907     0.903

Example: ACF & Partial ACF
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Example: Monthly USD/GBP levels (1800-2013)

Example: ACF & Partial ACF

• A random walk (RW) is defined as a process where the current value 
of  a variable is composed of  the past value plus an error term defined 
as a white noise (a normal variable with zero mean and variance one).

• RW is an ARIMA(0,1,0) process 

• Popular model. Used to explain the behavior of  financial assets, 
unpredictable movements (Brownian motions, drunk persons). 

• It is a special case (limiting) of  an AR(1) process.

• Implication:  E[yt+1|Ft] = yt  ∆yt is absolutely random.

• Thus, a RW is nonstationary, and its variance increases with t.

ARIMA(p,d,q) Models – Random Walk
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• Examples:

ARIMA(p,d,q) Models – Random Walk

• Change in Yt is partially deterministic and partially stochastic.

• It can also be written as
yt = y0 + t μ + Σi=0 εt-i

 εt has a permanent effect on the mean of  yt .

• E[yt ] = y0 + t μ (Unconditional forecast)
E[yt+s |yt ] = yt + s μ (Conditional forecast)

tttt yyy  1

ARIMA(p,d,q) Models – RW with Drift

Deterministic part (trend) Accumulation of errors (shocks) – stochastic part 
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• Two series: 1) True JPY/USD 1997-2000 series; 2) A simulated RW 
(same drift and variance). Can you pick the true series? 

ARIMA(p,d,q) Models – RW with Drift

• An effective procedure for building empirical time series models is 
the Box-Jenkins approach, which consists of  three stages: 
(1) Model specification or identification (of  ARIMA order), 
(2) Estimation 
(3) Diagnostics testing.

• Two main approaches to (1) Identification. 
- Correlation approach, mainly based on ACF & PACF.

- Information criteria, based on the maximized likelihood (x2) plus a penalty 
function. For example, model selection based on the AIC.

ARIMA Models: Box-Jenkins
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•  We have a family of  ARIMA models, indexed by p, q, and d. 
Q: How do we select one?

• Box-Jenkins Approach
1) Make sure data is stationary –check a time plot. If  not, differentiate.
2) Using ACF & PACF, guess small values for p & q.
3) Estimate order p, q.
4) Run diagnostic tests on residuals.

Q: Are they white noise?  If  not, add lags (p or q, or both).

• If  order choice not clear, use AIC, AIC Corrected (AICc), BIC, or 
HQC (Hannan and Quinn (1979)).

• Value parsimony. When in doubt, keep it simple (KISS).

ARIMA Models: Box-Jenkins

• Correlation approach.
Basic tools: sample ACF and sample PACF.

- ACF identifies order of  MA: Non-zero at lag q; zero for lags > q.
- PACF identifies order of  AR: Non-zero at lag p; zero for lags  >p.
- All other cases, try ARMA(p,q) with p > 0 and q > 0.

ARIMA Models: Identification - Correlations
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ARIMA Models: Identification – AR(1)

38

ARIMA Models: Identification – AR(2)
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39

ARIMA Models: Identification – MA(1)

40

ARIMA Models: Identification – MA(2)
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41

ARIMA Models: Identification – ARMA(1,1)

42

ARIMA Models: Identification – ARMA(1,1)
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43

ARIMA Models: Identification – ARMA(1,1)

• Note: Identification is not clear.

• Example: Monthly US Returns (1800 - 2013).

•  Popular information criteria

• AIC = -2 ln(L=likelihood) + 2 M, M: fitted model’s parameters

• 

•

ARIMA Model: Identification - IC
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• There is an AIC corrected statistic, that corrects AIC for finite 
sample sizes:

Burnham & Anderson (2002) recommend using AICc, rather than 
AIC, if  T is small or M is large. Since AICc converges to AIC as T gets 
large, B&A advocate the AICc.

• For AR(p), other criteria are possible: Akaike’s final prediction error 
(FPE), Akaike’s BIC, Parzen’s CAT.

• Hannan and Rissannen’s (1982) minic: Calculate the BIC for different 
p’s (estimated first) and different q’s. Select the best model.

Note: Box, Jenkins, and Reinsel (1994) proposed using the AIC above.

ARIMA Model: Identification - IC

1

)1(2
ˆln 2





MT

MM
TAICc 

• Example: Monthly US Returns (1800 - 2013) Hannan and Rissannen 
(1982)’s minic.

ARIMA Model: Identification - IC

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 -6.1889 -6.19573 -6.19273 -6.19177 -6.18872 -6.18886

AR 1 -6.19511 -6.193 -6.19001 -6.18929 -6.18632 -6.18678

AR 2 -6.19271 -6.18993 -6.1911 -6.18802 -6.18536 -6.1839

AR 3 -6.19121 -6.18916 -6.18801 -6.18562 -6.18256 -6.18082

AR 4 -6.18853 -6.18609 -6.18523 -6.18254 -6.17983 -6.17774

AR 5 -6.18794 -6.18671 -6.18408 -6.18099 -6.1779 -6.17564

• Note: Best Model is ARMA(0,1).
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• There is no agreement on which criteria is best. The AIC is the most 
popular, but others are also used. (Diebold, for instance, recommends 
the BIC.)

• Asymptotically, the BIC is consistent –i.e., it selects the true model if, 
among other assumptions, the true model is among the candidate 
models considered. For example, Hannan (1980) shows that in the 
case of  common roots in the AR and MA polynomials, the BIC (& 
HQC) still select the correct orders p and q consistently. But, it is not 
efficient. 

• The AIC is not consistent, generally producing too large a model, 
but is more efficient –i.e., when the true model is not in the candidate 
model set the AIC asymptotically chooses whichever model minimizes 
the MSE/MSPE.

ARIMA Model: Identification - IC

• We assume:
- The model order (d, p and q) is known. Make sure yt is I(0).
- The data has zero mean (μ=0). If  this is not reasonable, demean y .

Fit a zero-mean ARMA model to the demeaned yt:

• Several ways to estimate an ARMA(p, q) model:

1) MLE. Assume a distribution, usually normal, and do ML. 
2) Yule-Walker for ARMA(p,q). Method of  moments. Not efficient.
3) Innovations algorithm for MA(q).
4) Hannan-Rissanen algorithm for ARMA(p, q).

ARIMA Process – Estimation

  )())(( tt LyyL  
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• Steps:
1) Assume a distribution for the errors. Typically, .i.i.d. normal, say:

εt ~ i.i.d. N(0,σ2)

2) Write down the joint pdf  for εt: f(ε1 , ..., εT) = f(ε1) ... f(εT)

Note: we are not writing the joint pdf  in terms of  the yt’s, as a 
multiplication of  the marginal pdfs because of  the dependency in yt. 

3) Get εt. For the general stationary ARMA(p,q) model:

(if  μ≠0, demean yt.)

4) The joint pdf  for {ε1. ..., εT) is:

ARIMA Process – MLE
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• Steps:
5) Let Y = (y1, …,yT) and assume that initial conditions Y* = (y1-p,…,y0)’

and ε* = (ε1-q, …, ε0)’ are known.

6) The conditional log-likelihood function is given by

Note: Usual Initial conditions:

• Numerical optimization problem. Initial values (y*) matter.

ARIMA Process – MLE
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• Example: AR(1)

- Write down joint for εt

- Solve for εt:

ARIMA Process – MLE: AR(1)
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• Example: 
- To change the joint from εt to yt, we need the Jacobian yt-2

- Then, the likelihood function can be written as

ARIMA Process – MLE: AR(1)
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• Example: 
- Then,

- Then, the log likelihood function:

- S*() is the conditional SS and S() is the unconditional SS.

ARIMA Process – MLE: AR(1)

       























 




2
1

2

2

2
122/2

2
2 1

2

1
exp

2

1
, YYYL

n

t
ttn 






   

 

 

 

 
  

  



































S

S

n

t
tt YYY

nn
L

2
1

2

2

2
12

222

1
2

1

1ln
2

1
ln

2
2ln

2
,ln

*

• Example: 
- F.o.c.’s:

Note: If  we neglect ln(12), then MLE = Conditional LSE.

If  we neglect both ln(12) and                     , then

ARIMA Process – MLE: AR(1)
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2) Yule-Walker for AR(p): Regress yt against yt-1, yt-2 ,. . . , yt-p

- Yule-Walker for ARMA(p,q): Method of  moments. Not efficient.

Example: For an AR(p), we the Yule-Walker equations are  

• MM Estimation: Equate sample moments to population moments, 
and solve the equation. In this case, we use:

ARIMA Process – Yule-Walker
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• Then, the Yule-Walker estimator for 𝜙 is given by solving:
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• Thus, we can use the sample PACF to test for AR order, and we can 
calculate approximated C.I. for 𝜙.

ARIMA Process – Yule-Walker
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• Distribution:

If  yt is an AR(p) process, and T is large,

•100(1)% approximate C.I. for j is

• Note: The Yule-Walker algorithm requires Γ-1. 

• For AR(p).  The Levinson-Durbin (LD) algorithm avoids Γ-1. It is a 
recursive linear algebra prediction algorithm. It takes advantage that Γ
is a symmetric matrix, with a constant diagonal (Toeplitz matrix). Use 
LD replacing γ with 𝛾ො.

• Side effect of  LD: automatic calculation of  PACF and MSPE.
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ARIMA Process – Yule-Walker

Example: AR(1) (MM) estimation:  

It is known that 1 = . Then, the MME of   is 

• Also, σ2 is unknown: 
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ARIMA Process – Yule-Walker: AR(1)



RS – EC2 - Lecture 14

30

Example: MA(1) (MM) estimation:  

Again using the autocorrelation of  the series at lag 1,

• Choose the root satisfying the invertibility condition. For real roots:

If                   , unique real roots but non-invertible.

If                  , unique real roots and invertible.
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ARIMA Process – Yule-Walker: MA(1)

• Remarks
- The MMEs for MA and ARMA models are complicated. 

- In general, regardless of  AR, MA or ARMA models, the MMEs are 
sensitive to rounding errors. They are usually used to provide initial 
estimates needed for a more efficient nonlinear estimation method. 

- The moment estimators are not recommended for final estimation 
results and should not be used if  the process is close to being 
nonstationary or noninvertible. 

ARIMA Process – Yule-Walker
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4) Hannan-Rissanen algorithm for ARMA(p,q)

Steps:
1. Estimate high-order AR.
2. Use Step (1) to estimate (unobserved) noise εt

3. Regress yt against yt-1, yt-2, ..., yt-p, 𝜀௧̂ିଵ, ... ,  𝜀௧̂ି௤
4. Get new estimates of  εt. Repeat Step (3).  

ARIMA Process – Estimation Hannan-Rissanen 

•  Consider a simple ARIMA model:

• We went over two cases for d =0 & 1. Granger and Joyeaux (1980) 
consider the model where 0 ≤ d ≤ 1.

• Using the binomial series expansion of   (1 – L)d:

• We can invert (1 – L)d 

• In the ARIMA(0,d,1):

ARFIMA Process: Fractional Integration  
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• In the ARIMA(0, d, 1):

• The above MA can be approximated by:

where β0 = 1.  Convergence depends on d.

• The series is covariance stationary if  d < 1/2.

• ARFIMA models have slow (hyperbolic) decay patterns in the ACF. 
This type of  slow decay patterns also show long memory for shocks.

ARFIMA Process: Fractional Integration  
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• Estimation is complicated. Many methods have been proposed. The 
majority of  them are two-steps procedures. First, we estimate d. Then, 
we fit a traditional ARMA process to the transformed.

Popular estimation methods:
– Based on the log periodogram regressions, due to Geweke and 
Porter-Hudak (1983), GPH. 
– Rescaled range (RR), due to Hurst (1951) & modified by Lo (1991).
– Approximated ML (AML), due to Beran (1995). In this case, all 
parameters are estimated simulateneously.

ARFIMA Process: Estimation  
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• In a general review paper, Granger (1999) concludes that ARFIMA
processes may fall into the empty box category – i.e., models with  
stochastic properties that do not mimic the properties of  the data.

• Leybourne, Harris, and McCabe (2003) find some forecasting power 
for long series. Bhardwaj and Swanson (2004) find ARFIMA useful at 
longer forecast horizons.

ARFIMA Process: Remarks  

• From Bhardwaj and Swanson (2004)

ARFIMA Process: Example  
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• A time series repeats itself  after a regular period of  time.

• “Business cycle effects” in macroeconomics “time of  the day” in 
trading patterns, “Monday effect” for stock returns, “9 to 5 effect” for 
electricity demand, etc. 

• The smallest time period for this repetitive phenomenon is called a 
seasonal period, s.

SARIMA Process: Seasonal Time Series

• Two types of  seasonal behavior:
- Deterministic – Usual treatment: Build a deterministic function,

We can include seasonal (means) dummies. Instead of  dummies, 
trigonometric functions (sum of  cosine curves) can be used. A linear 
time trend is often included in both cases.

-Stochastic – Usual treatment: SARIMA model. For example:

where s the seasonal periodicity or frequency of  yt.

Seasonal Time Series
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• For stochastic seasonality, we use the Seasonal ARIMA model. In 
general, we have the SARIMA(P, D, Q)s

where 0 is constant and

Example 1: SARIMA(0,0,1)12= SMA(1)12

- Invertibility Condition: ||< 1.

- E(yt) = 0.

Seasonal Time Series - SARIMA
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Example 1: SARIMA(1,0,0)12= AR(1)12

- This is a simple seasonal AR model.

- Stationarity Condition: ||<1.

• When  = 1, the series is non-stationary. To test for a unit root, 
consider seasonal unit root tests. 

Seasonal Time Series - SARIMA
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• A special, parsimonious class of seasonal time series models that is 
commonly used in practice is the multiplicative seasonal model 
ARIMA(p, d, q)(P,D,Q)s.

where all zeros of (L); (Ls); (L) and (Ls) lie outside the unit 
circle. Of course, there are no common factors between (L)(Ls) 
and (L)(Ls).

• When  = 1, the series is non-stationary. To test for a unit root, 
consider seasonal unit root tests. 

Seasonal Time Series – Multiplicative SARIMA
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• The ACF and PACF can be used to discover seasonal patterns. 

Seasonal Time Series – Multiplicative SARIMA
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• The ACF and PACF can be used to discover seasonal patterns. 

Seasonal Time Series – Multiplicative SARIMA

• The ACF and PACF can be used to discover seasonal patterns. 

Seasonal Time Series – Multiplicative SARIMA
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• We usually work with the RHS variable, Wt = (1  B)(1  B12)yt

Seasonal Time Series – Multiplicative SARIMA
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• Most used seasonal model in practice: SARIMA(0,1,1)(0,1,1)12

where ||<1 and ||<1.

• This model is the most used seasonal model in practice. It was used 
by Box and Jenkins (1976) for modeling the well-known monthly 
series of airline passengers. It is called the airline model.

• We usually work with the RHS variable, Wt = (1  L)(1  L12)yt.

(1  L): “regular" difference

(1  L12): “seasonal" difference. 

Seasonal Time Series – Multiplicative SARIMA
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• If a series has seasonal unit roots, then standard ADF test statistic 
do not have the same distribution as for non-seasonal series. 

• Furthermore, seasonally adjusting series which contain seasonal unit 
roots can alias the seasonal roots to the zero frequency, so there is a 
number of reasons why economists are interested in seasonal unit 
roots.

• See Hylleberg, S., Engle, R.F., Granger, C. W. J., and Yoo, B. S., 
Seasonal integration and cointegration,(1990, Journal of Econometrics).

Seasonal Time Series – Seasonal Unit Roots

• Stationarity in mean does not imply stationarity in variance

• Non-stationarity in mean implies non-stationarity in variance.

• If the mean function is time dependent:
1. The variance, Var(yt) is time dependent.
2. Var[yt] is unbounded as t.
3. Autocovariance functions and ACFs are also time dependent.
4. If t is large wrt y0, then k  1.

• It is common to use variance stabilizing transformations: Find a 
function G(.) so that the transformed series G(yt) has a constant 
variance. For example, the Box-Cox transformation:

Non-Stationarity in Variance
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• Variance stabilizing transformation is only for positive series. If a 
series has negative values, then we need to add each value with a 
positive number so that all the values in the series are positive. 

• Then, we can search for any need for transformation.

• It should be performed before any other analysis, such as 
differencing.

• Not only stabilize the variance, but we tend to find that it also 
improves the approximation of the distribution by Normal 
distribution.

Variance Stabilizing Transformation - Remarks


