Lecture 19
Kalman Filter

RS 2024 (for private use, not to be posted/shared online).

Introduction
* We obsetrve (measure) economic data, {Z; }, over time; but these

measurements are noisy. There is an unobservable variable, y¢, that
drives the observations. We call y; the state variable.

* The Kalman filter (KF) uses the observed data to learn about the
unobservable state variables, which describe the state of the model.

* KF models dynamically what we measure, z¢, and the state, Y.

Ve = 9(Yt—1, U, W) (state or transition equation)

Ze = f(Ye, X¢, Vp) (measurement equation) ‘»

Uy, X¢: exogenous variables. ——

W¢, Vgt efror terms. g

Rudolf (Rudi) Emil Kalman (1930 — 2016, Hungary/USA)
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* The business cycle (the system state), V¢, cannot be measured directly
* We measure the system at time t: GDP (z;).

* Need to estimate “optimally” the business cycle from GDP.

How does the KF work?

* It is a recursive data processing algorithm. As new information
arrives, it updates predictions (it is a Bayesian algorithm).

* It generates optimal estimates of Y, given measurements {Z; }.

* Optimal?
— For linear system and white Gaussian errors, KF is “bes?” estimate

based on all previous measurements (MSE sense).

— For non-linear system optimality is ‘gualified. (say, “best linear”).

e Recursive?

— No need to store all previous measurements and re-estimate
system as new information arrives.




Notation

* For any vector S¢, we define the prediction of S; at time t as:
St|t-1= E(selle-1)

That is, it is the best guess of s; based on all the information available

at time t — 1, which we denote by I;_1 = {Z¢_1, ..., Z1; Ut—1, -, Uq;

xt_l, ceny xl; }

* As new information is released, we update our prediction:.
Stit = E[s¢|l¢]

* The Kalman filter predicts Z¢|¢—1, Y¢|t—1, and updates Yy ;.

At time t, we define a prediction error: e|t-1= Zt — Zt|t-1

The conditional variance of et|t_12 Ftlt—l = E[et|t_1 etlt—slll

Intuitive Example: Prediction and Updating
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V¢ (true value of a company)
* Distribution of true value, Y, is unobservable

¢ Assume Gaussian distributed measurements
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- Observed Measurement at t1: Mean = z; & Variance = 0,
- Optimal estimate of true value: (t1) = z;

- Variance of error in estimate: oy (t;) = 0221
- Predicted value at time t,, using t info: P |r, = 21




Intuitive Example: Prediction and Updating

* We have the prediction J¢,|¢, . At t3, we have a new measurement:

prediction ¥¢, ¢,

0.16

measurement Z(tp) |

* New t, measurement:
- Measurement at t5: Mean = z, & Variance = 0y,
- Update the prediction due to new measurement: ¥, ¢,

¢ Closer to more trusted measurement — linear interpolation?

Intuitive Example: Prediction and Updating

corrected optimal
prediction ytzltl estimate ytzltz

measurement Z(t;) :

50 60 70 80 90 100

¢ Corrected mean is the new optimal estimate of true value

or Optimal (updated) estimate: J¢|r = Ppje—1 + (Kalman Gain) * (2, — z)

* New variance is smaller than either of the previous two variances

. . . .. . 8
or Variance of estimate: Variance of prediction * (1 — Kalman Gain)




Intuitive Example: Prediction and Updating
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* At time t3, the true values changes at the rate d—J; =u

 Naive approach: Shift probability to the right to predict

* This would work if we knew the rate of change (perfect model).
But, this is unrealistic.
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Intuitive Example: Prediction and Updating
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* Then, we assume imperfect model by adding Gaussian noise, W.

d
. —y=u+w
dt 10

¢ Distribution for prediction moves and spreads out




Intuitive Example: Prediction and Updating
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* Now we take a measurement at t3
* Need to once again correct the prediction

¢ Same as before 1

Intuition: Prediction and Updating

* From the intuitive example, we see a simple process:

- Initial conditions (Y;_1 & G¢_1)

- Prediction (P¢(¢—1, O¢|t—1)

Use initial conditions and model (say, constant rate of change) to make
prediction

- Measurement (Z;)

Take measurement, z; and learn forecast errof, €¢e—1 =2 = Z¢|t-1

- Updating (}7t|t, Ot|t)
Use measurement to update prediction by ‘blending’ prediction and
residual — always a case of merging only two Gaussians

. . . . 12
Optimal estimate with smaller variance




Terminology: Filtering and Smoothing

* Prediction is an a priori form of estimation. It attempts to provide
information about what the quantity of interest will be at some time
t + 7 in the future by using data measured up to and including time
t — 1 (usually, KF refers to one-step ahead prediction —i.e., T = 1).

¢ Filtering is an operation that involves the extraction of information
about a quantity of interest at time t, by using data measured up to and
including t.

* Smoothing is an a posteriori form of estimation. Data measured after
the time of interest are used for the estimation. Specifically, the
smoothed estimate at time ¢ is obtained by using data measured over

the interval [0, T], where t < T.
13

Bayesian Optimal Filter

* A Bayesian optimal filter computes the distribution
P(yt |Zl'> Zf—la eeey le yts eees yl) = P(yt |Zt)

* Given the following:
1. Prior distribution: P(y,)
2. State space model:
Yejt-1 ~ POe | Ye-1)
Zejt—1 ~ P2 | Ye)

3. Measurement sequence: {y; } = {Zq, Z3, ..., Z¢ }

* Computation is based on recursion rule for incorporation of
the new measurement Yy, into the posterior:

P(Zt—l |yta ooy :V1) _>P(Zt |yt’ () yl) 14




Bayesian Optimal Filter: Prediction Step
* Assume we know the posterior distribution of previous time step,
t—1:

PWe-1|2e-1, - 21)

* The joint pdf P(yy, Y¢—1|{Z¢—1}) can be computed as (using the
Markov property):

PWe, Ye-1|12t-1}) = POVe| Ye-1,12e-1}) * POe—1|12t-1})
=PWelye-1) * P(e-11{2e-1})

* Integrating over Y;_; gives the Chapman-Kolmogorov equation:

P(yel{ze-1}) = f Pyelye-1) * PVe-1l12e-1}) dy:

* This is the prediction step of the optimal filter. 15

Bayesian Optimal Filter: Update Step

* Now we have:

1. Prior distribution from the Chapman-Kolmogorov equation
P(yel{ze-1})

2. Measurement likelithood:
P(z¢|y:)

* The posterior distribution (= Likelihood x Prior):
Py {ze-1}) € P(z¢|ye) * P(yel{ze—11)

(ignoring normalizing constant,

Pz [{Z¢-1}) :f P(z¢|ye) * P(yel{ze—1}) dyy).

¢ This is the update step of the optimal filter.
16




State Space Form

* Model to be estimated:
Ve=AYi_1 +Bup +wy Wy: state noise ~ WN(0, Q)
Ug: exogenous variable.
A: state transition matrix
B: coefficient matrix for uy.

zt =Hy, +v; Vy: measurement noise ~ WN(0, R)
H: nieasurement matrix
Initial conditions: yq, usually a RV.

We call both equations state space form. Many economic models can
be written in this form.

Note: The model is lineat, with constant coefficient matrices, 4, B, and
H. It can be generalized —see Harvey(1989). 7

State Space Form: Examples

Example: We can write a VAR(1) in state space form:

Y, = Y1,t] = [all a12] [yl't_l] + [g‘) (1)] [Wl't] Transition equation

W2l lazn azl Yz Wat
Yit-1 .
zZ; = [y ] + v, Measurement equation
2,t-1




State Space Form: Examples

Example: VAR(p) written in state-space form.

Yt — ¢1Yt—1 + ¢2Yt_2 + .+ (bpyt—p + Wt

D D, D, D
Y, a,
’ I, O, 0 .

no=l." | F=[0 L. 0 | w=
Yiopu 0 0 I 0 0

Then, let A = F, we write the fransition equation as:
Ne=ANeq +w

and letting H = I the measurement equation as:
ze =Hn,

State Space Form: Examples

Example: In a linear model, we allow for time-varying coefficients.
z,=a,+ fu, +v, ~N(0,V))
o =a,_,+ Weu ~ N(Oa Wa,t)
Bi=B+wp, ~N@O,W,,)
Define y; = (a¢, Bt)’ & Hy = [1, 1], then, measurement equation is:
zt =Hyy. +v,
and let A = I, then, transition equation is:
_[@1_ 1 01[%-1 1 0][Wat
ve=[al=ly Wel+lo lwel
Example: Stochastic volatility.

zt =Hh+Cx + 1y Ve ~ WN(O, R)  (Measurement equation)
hy =Ahi_1 +Bug +wpy wp ~WN(Q, Q) (Transition equation) 2°

10



State Space Form: Variations

* When {w,} is WN and independent of Y, {y;} is Markov.
- Linearity is not essential for this property.
- {z;} is usually not Markov. z; is conditionally independent given y;:

P(Zt |Zta Zt—15 5 Z15 Y5 ooos yl) = P( Ztl)/t)

* If, in addition, {w¢, V¢, Yo} are jointly normal, the model is called
Gauss-Markov Model.

* Usually, we assume that only the 1st and 2nd order statistics of {w;},
{v¢} are known. Under the following assumptions, we have the
Standard second-order model:

- {w¢} moments: E[w¢] = 0; Covwy w;] = Qk 6k,

- {v¢} moments: E[v] = 0; Cov[vy v;] = Ry 8,

- Cov[wy, 4] =0

- Yo independent of {w¢} & {v}; with E[y]= yo|0; & Cov(Vo)= Py,

Mean and Variance of State Vector y;

* V¢ is a random variable following: y; = Ay;_1 + Bu; + w,
- may be unobservable and, thus, we have no data for y;.
- it is normally distributed; a sum of normal variables, wy~ N(0, Q):

PWelle—1) = N(E[yelle-1], Var[y|Ie—1])

¢ Conditional Mean: E[ytllt—l] = yt|t—1 = Ayt—llt—l + But|t_1
In an AR(l) model: E[Ytllt—l] == ‘u. + (l) yt—1|t—1'

* Conditional Variance: Var[y¢|l;_1] = Prjg—1= A Pr_q)t-1 AT+ Q

Note: There are 2 source of noise:
1) we
2) Difference between Y1 & Y¢j¢—1 may not be zero.

* Cov(Ye—1, We) = 0. ”

11



Mean and Variance of z; & Joint (Y, Z;,)

* Z; is a random variable following: z; = H y; + vy.
- it is normally distributed; a sum of normal variables, v~ N(0, R):
P(z¢|lt—1) = N(E[z¢|[Ie-1], Var[z¢|[Ie-41])

¢ Conditional Mean: E[Ztllt—l] — Ztlt—l =H ytlt—l

* Conditional Variance: Vat[z¢|l—1] = H Py H" + R
Note: Cov(Ye—1, V¢)=0 (since E[wg, v¢]=0).

e Covariance between Zt & Vt: COV[Zt, ytllt—l] = Ptlt—lHT

'JOiﬂt pdf of P(Zt, ytllt—l) .

(y t | 1 tlj N |:Ayllt1 +B uttlj| { E|t—1 B|HH1 }
AV Hy,, ) B H HE, H+R|| »

Kalman Filter

* Given ygjo & Pg)o (initialization), the Kalman Filter solves the
following equations for t = 1, ..., T.

Prediction: Y¢|¢_q is estimate based on measurements at previous t:

Vtjt-1 = A Ye-1je-1 T B U
Pii—1= AP, 1A+ Q

Update: y; has additional information — the measurement at time ¢:

Yeie = Veje-1 + Ke (2 — H Yeje-1)
Ptlt: Ptlt—l —-K:H Pt|t—1 = —-K:H) Pt|t—1

Kt — Ptlt—l HT(H Pt|t—1 HT + R)-l (“Kalman gain”)
. The forecast error iS: et|t_1 — Zt - Ztlt—lz Zt - H ytlt—l
24
¢ The variance of et|t_1: Ftlt—lz H Ptlt—lHT + R

12



Kalman Filter

¢ Recall: et|t_1 =Zy — Ztlt—lz Zy — H ytlt—l (fOfCCQ.St error)
Ftlt—lz H Ptlt—lHT + R (Variance of et|t_1)

* The initial values, ¥g|9 & Py)o, are set to unconditional mean and
variance, and reflect prior beliefs about the distribution of Y.

* The update of the state variable, y|¢, and its variance, Py, are linear
combinations of previous guess and forecast error:
Yeie = Veje-1+ K (2e — H ytlt—l) = Veje-1 + Keege-1
Py =Pyiq — K HPypq (conditional variance)
K; =Py H'(H Pyy_1 H" + R)" = Covlzs, Ye|li—1] (Feje-1)"

Since we observe Z;, the uncertainty (measured by Py|¢) declines.

Note: The bigger Fy|¢_1, the smaller K¢ & less weight put to updating,

Kalman Gain

* K depends on the relationship between (z; & ¥¢) and Fep—1:
K; = Cov|zt, yel|lt-1] (Ft|t—1)'l

- The stronger Cov|Z¢, Y¢|l;—1], the more relevant K; in the update.

- If the relationship is weaker, we do not put much weight as it is likely
not driven by y;.

- If we are sure about measurements, R decreases to zero and, thus,
Fy|¢—1decreases. Then, K increases and we weight residuals more
heavily in the update than prediction.

* If the model is time-invariant (Q and R are, in fact, constant) the
Kalman gain quickly converges to a constant: K; = K. In this case, the
filter becomes stationary.

26
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Estimation: MLE

* Once we have e¢—1 & Fy)¢_1, under normality, we can do MLE:

T
(= —%”m(z;zﬂ% > In

t=p+l

ETE —
F 1‘_Eeth le, +In(f(z,,2,,,-2))

Note: Under normality, the KF is optimal in an MSE sense.

* Algorithm (after initialization & ignoring first observations)
for (iin 1:T) {

zhat = t(H) %*% state10

zvar = (t(H )%*% P10 %*% H + R

zvatinv = solve(zvar)

eps = t(z[i,]) - zhat

0 = 0 - log(det(zvar)) - t(eps) %*% zvarinv %*% eps

statel1 = state10 + P10 %*% H %*% zvarinv %*% eps

P11 = P10 - P10 %*% H %*% zvarinv %*% t(H) %*% P10

state10 = A %*% statell

P10 = A %*% P11 %*% t(A) + Q

H

f0 = -(T*n/2) * log(2*pi) + f0/2 27

Derivation of Update

* We wrote the joint of (Z¢, y¢)|I¢—1. But, we could have also written
the joint of (e, y¢)|l¢—1:

Y |1t—1 ~N |:yn—1:| B\t—l B\t—lH'
el 0 [ HPt\t—l F;\t—l
* Recall a property of the multivariate normal distribution:

If x, and x; are jointly normally distributed, the conditional
distribution of x4 |x; is also normal with mean piy, & variance Zy),-

-1
Hip = B + ZhE, (X —4y)
-1
Z1|2 =2, — X2y Xy
Then, Yere = Veje—1 + Peje—1 HY (Fe—1) 7" ege-1

P =Py — Pejeoy H'(Fype—1) " H Py 8

14



Feedback

a7

Correction (Measurement Update)

Prediction (Time Update)

(1) Compute the Kalman Gain

(1) Project the state ahead K. =Py H'(H Pyioy H™ + R)!
Veje—1 = A Ve1je—1 + B Ut

(2) Update y; |1 with measurement z,

(2) Project the error Cov ahead Vel = Veje-1 T K, (z,-H ytlt—l)
Py1= AP 1A"+Q

(3) Update Error Covariance

Ptlt =(U—-K:H) Ptlt—l

=,

Kalman Filter: Remarks

* I{F WOka by mlﬂllelng E[(yt_ ytlt—l), (yt_ ytlt—l)]‘ Under thls
metric, the expected value is the optimal estimator.

¢ Conditions for optimality (MSE) —Anderson and Moore (1979):
- The DGP (linear system & its state space model) is exactly known.
- Noise vector (W¢, V) is white noise.

- The noise covariances are known.

e KF is an MSE estimator among all linear estimators, but in the case
of a Gaussian model it is the MSE estimator among «// estimators.

¢ In practice, difficult to meet the three conditions. A lot of tuning by

ad-hoc methods, to get KI that work “sufficiently well.”
30
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Kalman Filter: Practical Considerations

* Estimating Q and R usually involves NW-style SE, based on
autocovariances. Estimating Q is, in general, complicated. Tuning Q
and R (sometimes called system identification) is usual to improve
performance.

* The inversion of Fy¢_1 can be difficult. Usually, the problem comes
from having Q singular. In practice, approximations (pseudo-
inversion) are used.

* When knowledge/confidence about Y is low, a diffuse prior for yq
would set Pg)o high.

* The noise vector (W, V) should be WN. Autocorrelograms and LB
tests can be used to check this.

31

Kalman Filter: Problems and Variations

* When the model —i.e., g(.) and f (. )— is non-linear, the extended
Kalman filter (EKF) works by linearizing the model (similar to NLLS;
A & H are Jacobian matrices of partial derivatives.).

Problem: The distributions of the RVs are no longer normal after
their respective nonlinear transformations. EKF is an ad-hoc method.

* When the model is highly non-linear, EKF will not work well. The
unscented Kalman filter (UKF), which uses MC method to calculate
the updates, works better.

¢ The KF struggles under non-normality and when the dimensions of
the state vector increase. Particle filters (sequential Monte Carlo),

which is another Bayesian filter, are very popular in these cases.
32

16



Kalman Filter: Smoothing

* We can use all the data to re-estimate our prediction. That is, Yy 7.
* Inputs: Initial distribution Y and data z;, Zy_q, ..., Z1

¢ Algorithm: Forward-backward pass (Rauch-Tung-Striebel
algorithm)

- Forward pass:
Kalman filter: Compute Y¢yq)¢ and Yeyqje4q for 0=t < T

- Backward pass:
Compute Yy for0 =t <T

Reverse process in our intuitive example.

33

Kalman Filter: Smoothing — Backward Pass
* Compute Yy 1 given Yer1)r ~ NOVey1i7> Pea1)r)
- Reverse movement from filter: X¢p — Xpyq)¢-

- Same as incorporating measurement in filter
].. Compute ]Olnt pdf Of (ytlt, yt+1|f)
2. Compute conditional distribution (V¢¢| Ye1)e = Ye+1)

- But: y¢41 is not “known”, we only know its distribution:

3. “Uncondition” on Y¢ 1 to compute Yg 7 using laws of total

expectation and variance

34
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Kalman Filter: Smoothing — Backward Pass

* Step 1. Compute joint pdf of (Ve|¢, Ye+1|t)
yz\t ~N yt\t Var(ytp) COV(yZ\MytH\t)
Ve Vv ’ COV(yt+l|t9yt\t) Var(yt+l|t)
- N [ym j’ })t|z })t\tAT
yt+1|t APt\t Pt+1\t
* Step 2. Compute conditional pdf of (V¢|¢| Yes1je = Ves1)

-1 -1
(yt\t | Yirtp = yt+l): N(yt\t +B\IATB+1|I (ym = Ve )aB\t _R|tATB+1|t APt\t

where we used the conditional result: £, = 4, + 21222271(x2 —1y)

-1
Z1\2 =2, - 2,2, Xy 3

Kalman Filter: Smoothing — Backward Pass

* Step 3. "Uncondition" on ¥¢41 to compute Y 7. We do not know its
value, but only its distribution: y;1q ~N().

* Uncondition on ;41 to compute Yy r using the Law of total
expectation and the Law of total variance:

Law of total expectation:
E[X] = EZ[E[X|Y = Z]]
E[ytlT] = Eyt+1|T[E[yt|t|yt+1|t = yt+1|T]]

Law of total variance:
Var(X) = Ez[Var(X|Y = Z)] + Varz(E[X|Y = Z])
Var(y,;) = Eyw [Var(y,, [y, = Vi)l +
Var (E[yt|z | yt+l|z = yt+1\T]) 36

Year
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Kalman Filter: Smoothing — Backward Pass
* Step 3 (continuation). From Step 2 we know:
EGy | Vi = Vi) = Y+ L0y = Vi)
Var(yy | Yo, = Yiar) = By = LPy Ly

ft Lt
Then,

E(yt\T) = EyH_”T (E(yt\t | yt+1\t = yt+1\T ))
yt|t + Lt (yt+l|T - yt+1\t)

Var(y,,) = EyH”T (Var( Vi | Viwry = ym\r))"'

Vary,w (E(ym | Yiene = Vinyr ))
= P,-L.P. L +LP, L

tt th o+t

= Pt\t + Lt(PH-I\T - Pt+l\t)Lf

Kalman Filter: Smoothing — Backward Pass

* Summary:

1
L = PAPR,

Yir = Vi +1, (ym\r Ve )
B|T = Pt\t +1, (BH\T _B+l|z )LrT

* Algorithm (after initialization):

for (it in 1:T-1) {
POT = Reshape(Psmo[T-it+1,],rx,rx)
state0T = statesmo[T-it+1,]
Pfilt = Reshape(P[T-it,],rx,rx) # this is P t given t
Pnext = A %*% Pfilt %*% t(A) + Q # thisis P t+1 given t
Lt = Pfilt %*% t(A) %*%inv(Pnext)
POT = Pfilt + Lt %*% (POT - Pnext) %*%t(Lt)
state0T = t(state[T-it,]) + Lt %*% (state0T - A %*% t(state[T-it,]))
statesmo|[T-it,] = t(state0T)

Psmo[T-it,] = t(vec(POT))

19



Kalman Filter: Smoothing — Algorithm

e fort=0;t<T;++ 1) (Kalman filter)

Yerp = Ayt\t

B = AP[\;AT +0

K. = Pt+1\tHT (HPmuHT + R)il
Vs = Ve T K, (Zm - Hyt+1\t)
Pz+1|t+1 = P~ K. HF,

t+1|t t+1 t+1t

e for(t=T—-1;t 20;,--t) (Backward pass)

-1

L = Pt|tATPt+1\t

yt\T = yt\t + Lt (yz+1|T - yt+1\t)
Pt\T = Pm + Lt(IJH—l\T - Pt+1\t)LtT

Kalman Filter: Smoothing - Remarks

¢ Kalman smoother is a post-processing method.

Use Y |7’s as optimal estimate of state at time t, and use Py as a
measure of uncertainty.

The smoothing recursion consists of the backward recursion that
uses the filtered values of y and P.

20



