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Lecture 19
Kalman Filter

RS 2024 (for private use, not to be posted/shared online).
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Introduction

• We observe (measure) economic data, {𝑧௧}, over time; but these 
measurements are noisy. There is an unobservable variable, 𝑦௧, that 
drives the observations. We call 𝑦௧ the state variable.

• The Kalman filter (KF) uses the observed data to learn about the 
unobservable state variables, which describe the state of the model. 

• KF models dynamically what we measure, 𝑧௧, and the state, 𝑦௧.
𝑦௧ = 𝑔ሺ𝑦௧ିଵ, 𝑢௧, 𝑤௧) (state or transition equation)

𝑧௧ = 𝑓ሺ 𝑦௧, 𝑥௧, 𝑣௧) (measurement equation)

𝑢௧, 𝑥௧: exogenous variables.

𝑤௧, 𝑣௧: error terms.

Rudolf  (Rudi) Emil Kalman (1930 – 2016, Hungary/USA) 
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• The business cycle (the system state), 𝑦௧, cannot be measured directly

• We measure the system at time 𝑡: GDP (𝑧௧).

• Need to estimate “optimally” the business cycle from GDP.

Measuring 
Devices (Fed) Estimator

Measurement
Error Sources

System State 
(desired, but 

unknown) {𝑦௧}

External 
Controls  

(Monetary 
Policy) {𝑢௧}

Observed 
Measurements
{𝑧௧ = GDPt}

Optimal 
Estimate of  
System State

𝑦ො௧

System
Error Sources

State of 
Economy

Black 
Box

Intuition: GDP and the State of the Economy
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• It is a recursive data processing algorithm. As new information 
arrives, it updates predictions (it is a Bayesian algorithm).

• It generates optimal estimates of 𝑦௧, given measurements {𝑧௧}. 

• Optimal?

– For linear system and white Gaussian errors, KF is “best” estimate 
based on all previous measurements (MSE sense).

– For non-linear system optimality is ‘qualified.’ (say, “best linear”).

• Recursive?

– No need to store all previous measurements and re-estimate 
system as new information arrives.

How does the KF work? 
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• For any vector 𝑠௧ , we define the prediction of 𝑠௧ at time 𝑡 as:
𝑠௧|௧ିଵ = E(𝑠௧|𝐼௧ିଵ )

That is, it is the best guess of 𝑠௧ based on all the information available 
at time 𝑡 െ 1, which we denote by 𝐼௧ିଵ = {𝑧௧ିଵ, ..., 𝑧ଵ; 𝑢௧ିଵ, ..., 𝑢ଵ; 
𝑥௧ିଵ, ..., 𝑥ଵ; ...}.

• As new information is released, we update our prediction:.

𝑠௧|௧ ൌ Eሾ𝑠௧|𝐼௧ሿ

• The Kalman filter predicts 𝑧௧|௧ିଵ, 𝑦௧|௧ିଵ, and updates 𝑦௧|௧. 

At time 𝑡, we define a prediction error:  𝑒௧|௧ିଵ= 𝑧௧ െ 𝑧௧|௧ିଵ

The conditional variance of 𝑒௧|௧ିଵ: 𝐹௧|௧ିଵ = E[𝑒௧|௧ିଵ 𝑒௧|௧ିଵ′] 

Notation
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Intuitive Example: Prediction and Updating

• Distribution of true value, 𝑦௧, is unobservable

• Assume Gaussian distributed measurements

- Observed Measurement at 𝑡ଵ: Mean = 𝑧ଵ &  Variance = 𝜎௭భ
- Optimal estimate of true value: 𝑦ො 𝑡ଵ ൌ 𝑧ଵ
- Variance of error in estimate: 𝜎௬ଶ 𝑡ଵ ൌ 𝜎௭భ

ଶ

- Predicted value at time 𝑡ଶ, using 𝑡ଵ info: 𝑦ො௧మ|௧భ ൌ 𝑧ଵ

𝑦௧ (true value of  a company)
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• New 𝑡ଶ measurement:

- Measurement at 𝑡ଶ: Mean = 𝑧ଶ &  Variance = 𝜎௭మ
- Update the prediction due to new measurement: 𝑦ො௧మ|௧మ

• Closer to more trusted measurement – linear interpolation?

prediction 𝑦ො௧మ|௧భ

measurement 𝑧ሺ𝑡ଶሻ

• We have the prediction 𝑦ො௧మ|௧భ . At 𝑡ଶ, we have a new measurement:

Intuitive Example: Prediction and Updating
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• Corrected mean is the new optimal estimate of  true value
or   Optimal (updated) estimate: 𝑦ො௧|௧ = 𝑦ො௧|௧ିଵ + (Kalman Gain) * (zt – zt|t-1)

• New variance is smaller than either of  the previous two variances
or Variance of  estimate: Variance of  prediction * (1  – Kalman Gain)

corrected optimal 
estimate 𝑦ො௧మ|௧మ

Intuitive Example: Prediction and Updating

prediction 𝑦ො௧మ|௧భ

measurement 𝑧ሺ𝑡ଶሻ
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• At time 𝑡ଷ, the true values changes at the rate 
ௗ௬

ௗ௧
ൌ 𝑢 

• Naïve approach: Shift probability to the right to predict

• This would work if  we knew the rate of  change (perfect model). 
But, this is unrealistic.

𝑦ො௧మ|௧మ Naïve Prediction 
𝑦ො௧య|௧మ

Intuitive Example: Prediction and Updating
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• Then, we assume imperfect model by adding Gaussian noise, 𝑤.

• ௗ௬

ௗ௧
ൌ 𝑢  𝑤

• Distribution for prediction moves and spreads out

Prediction 
𝑦ො௧య|௧మ

Intuitive Example: Prediction and Updating

𝑦ො௧మ|௧మ Naïve Prediction 
𝑦ො௧య|௧మ
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• Now we take a measurement at 𝑡ଷ
• Need to once again correct the prediction

• Same as before

Measurement 
z(t3)

Updated optimal 
estimate ŷt3|t3

Intuitive Example: Prediction and Updating

Prediction 
𝑦ො௧య|௧మ
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• From the intuitive example, we see a simple process:

- Initial conditions (𝑦ො௧ିଵ & ௧ିଵ)

- Prediction (𝑦ො௧|௧ିଵ, ௧|௧ିଵ) 
Use initial conditions and model (say, constant rate of change) to make 
prediction

- Measurement (𝑧௧)
Take measurement, 𝑧௧ and learn forecast error, 𝑒௧|௧ିଵ ൌ𝑧௧ െ 𝑧௧|௧ିଵ

- Updating (𝑦ො௧|௧, ௧|௧)
Use measurement to update prediction by ‘blending’ prediction and 
residual – always a case of merging only two Gaussians

Optimal estimate with smaller variance

Intuition: Prediction and Updating
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• Prediction is an a priori form of estimation. It attempts to provide  
information about what the quantity of interest will be at some time 
𝑡  𝜏 in the future by using data measured up to and including time 
𝑡 െ 1 (usually, KF refers to one-step ahead prediction –i.e., 𝜏 ൌ 1). 

• Filtering is an operation that involves the extraction of information 
about a quantity of interest at time 𝑡, by using data measured up to and 
including 𝑡. 

• Smoothing is an a posteriori form of estimation. Data measured after 
the time of interest are used for the estimation. Specifically, the 
smoothed estimate at time 𝑡 is obtained by using data measured over 
the interval ሾ0,𝑇ሿ, where 𝑡 ൏ 𝑇.

Terminology: Filtering and Smoothing
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• A Bayesian optimal filter computes the distribution
P(𝑦௧|𝑧௧, 𝑧௧ିଵ, ..., 𝑧ଵ, 𝑦௧, ..., 𝑦ଵ) = P(𝑦௧|𝑧௧) 

• Given the following: 

1. Prior distribution: P(𝑦)

2. State space model:

𝑦௧|௧ିଵ ~ P(𝑦௧|𝑦௧ିଵ)

𝑧௧|௧ିଵ ~ P(𝑧௧|𝑦௧)

3. Measurement sequence: {𝑦௧}= {𝑧ଵ, 𝑧ଶ, ..., 𝑧௧} 

• Computation is based on recursion rule for incorporation of

the new measurement 𝑦 into the posterior: 

P(𝑧௧ିଵ|𝑦௧, ..., 𝑦ଵ) → P(𝑧௧|𝑦௧, ..., 𝑦ଵ)

Bayesian Optimal Filter
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• Assume we know the posterior distribution of  previous time step, 
𝑡 െ 1 : 

P(𝑦௧ିଵ|𝑧௧ିଵ, ..., 𝑧ଵሻ

• The joint pdf  P(𝑦௧, 𝑦௧ିଵ|{𝑧௧ିଵ}) can be computed as (using the 
Markov property):

P(𝑦௧, 𝑦௧ିଵ|{𝑧௧ିଵ}) = P(𝑦௧| 𝑦௧ିଵ,{𝑧௧ିଵ}) * P(𝑦௧ିଵ|{𝑧௧ିଵ})

= Pሺ𝑦௧|𝑦௧ିଵሻ * Pሺ𝑦௧ିଵ|{𝑧௧ିଵሽሻ

• Integrating over 𝑦௧ିଵ gives the Chapman-Kolmogorov equation:
Pሺ𝑦௧| 𝑧௧ିଵ ሻ Pሺ𝑦௧|𝑦௧ିଵሻ  = * Pሺ𝑦௧ିଵ|{𝑧௧ିଵሽሻ 𝑑𝑦௧

• This is the prediction step of  the optimal filter.

Bayesian Optimal Filter: Prediction Step
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• Now we have:

1. Prior distribution from the Chapman-Kolmogorov equation 
Pሺ𝑦௧| 𝑧௧ିଵ ሻ

2. Measurement likelihood: 

Pሺ𝑧௧|𝑦௧ሻ

• The posterior distribution (= Likelihood x Prior):

P(𝑦௧|{𝑧௧ିଵ}) ∝ P 𝑧௧ 𝑦௧ ∗ Pሺ𝑦௧| 𝑧௧ିଵ ሻ
(ignoring normalizing constant,

P(𝑧௧|{𝑧௧ିଵ}) = P 𝑧௧ 𝑦௧ ∗ P 𝑦௧ 𝑧௧ିଵ  𝑑𝑦௧).

• This is the update step of  the optimal filter.

Bayesian Optimal Filter: Update Step
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• Model to be estimated:
𝑦௧ = 𝑨 𝑦௧ିଵ + B 𝑢௧ + 𝑤௧ 𝑤௧: state noise ~ WN(0, Q)

𝑢௧: exogenous variable.
𝑨: state transition matrix
B: coefficient matrix for 𝑢௧.

𝑧௧ ൌ 𝑯 𝑦௧ + 𝑣௧ 𝑣௧: measurement noise ~ WN(0, R)
𝑯: measurement matrix

Initial conditions: 𝑦, usually a RV.

We call both equations state space form. Many economic models can 
be written in this form.

Note: The model is linear, with constant coefficient matrices, 𝑨, B, and 
𝑯. It can be generalized –see Harvey(1989).

State Space Form
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Example: We can write a VAR(1) in state space form:

𝒀௧ = 𝑨𝒀௧ିଵ  𝒘௧

𝒀௧ ൌ  
𝑦ଵ,௧
𝑦ଶ,௧

ൌ
𝑎ଵଵ 𝑎ଵଶ
𝑎ଶଵ 𝑎ଶଵ

𝑦ଵ,௧ିଵ
𝑦ଶ,௧ିଵ

 1 0
0 1

𝑤ଵ,௧
𝑤ଶ,௧

𝒛௧ ൌ  
𝑦ଵ,௧ିଵ
𝑦ଶ,௧ିଵ

 𝝊௧

State Space Form: Examples

Transition equation

Measurement equation
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Example: VAR(𝑝) written in state-space form.

𝒀௧ = 𝜱ଵ𝒀௧ିଵ  𝜱ଶ𝒀௧ିଶ  ⋯𝜱𝒀௧ି  𝒘௧

State Space Form: Examples
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Then, let 𝑨 ൌ 𝑭, we write the transition equation as: 
𝜂௧ = 𝑨 𝜂௧ିଵ  𝑤௧

and letting 𝑯 ൌ 𝑰 the measurement equation as:
𝑧௧ ൌ 𝑯 𝜂௧
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Example: In a linear model, we allow for time-varying coefficients.

State Space Form: Examples
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Define 𝑦௧ = ሺ𝛼௧, 𝛽௧ሻ′ & 𝑯௧ ൌ ሾ1, 𝑢௧], then, measurement equation is: 
𝑧௧ ൌ 𝑯௧ 𝑦௧ + 𝑣௧

and let 𝑨 ൌ 𝐈, then, transition equation is:

𝑦௧ ൌ  
𝛼௧
𝛽௧

ൌ 1 0
0 1

𝛼௧ିଵ
𝛽௧ିଵ

 1 0
0 1

𝑤ఈ,௧
𝑤ఉ,௧

Example: Stochastic volatility.
𝑧௧ ൌ 𝑯 ℎ௧+ C 𝑥௧ + 𝑣௧ 𝑣௧ ~ WN(0, R)   (Measurement equation)
ℎ௧ ൌ 𝑨 ℎ௧ିଵ + B 𝑢௧ + 𝑤௧ 𝑤௧ ~ WN(0, Q)  (Transition equation)



11

21

• When {𝑤௧} is WN and independent of  𝑦, {𝑦௧} is Markov. 
- Linearity is not essential for this property.
- {𝑧௧} is usually not Markov. 𝑧௧ is conditionally independent given 𝑦௧: 

P(𝑧௧|𝑧௧, 𝑧௧ିଵ, ..., 𝑧ଵ, 𝑦௧, ..., 𝑦ଵ) = Pሺ 𝑧௧|𝑦௧ሻ

• If, in addition, {𝑤௧, 𝑣௧, 𝑦} are jointly normal, the model is called 
Gauss-Markov Model.

• Usually, we assume that only the 1st and 2nd order statistics of  {𝑤௧}, 
{𝑣௧} are known. Under the following assumptions, we have the 
Standard second-order model:
- {𝑤௧} moments: E[𝑤௧] = 0; Cov[𝑤 𝑤] = 𝑄 δ,
- {𝑣௧} moments: E[𝑣௧] = 0; Cov[𝑣 𝑣] = 𝑅 δ,
- Cov[𝑤௧, 𝑣௧] = 0 
- 𝑦 independent of  {𝑤௧} & {𝑣௧}; with E[𝑦]= 𝑦|; & Cov(𝑦)= P0|0.

State Space Form: Variations

22

• 𝑦௧ is a random variable following: 𝑦௧ = 𝑨𝑦௧ିଵ  B𝑢௧  𝑤௧
- may be unobservable and, thus, we have no data for 𝑦௧.
- it is normally distributed; a sum of  normal variables, 𝑤௧~ N(0, Q):

P(𝑦௧ 𝐼௧ିଵ ൌ 𝑁ሺ𝐸ሾ𝑦௧|𝐼௧ିଵሿ, Var[𝑦௧|𝐼௧ିଵሿሻ

• Conditional Mean: 𝐸 𝑦௧|𝐼௧ିଵ ൌ  𝑦௧|௧ିଵ ൌ 𝑨𝑦௧ିଵ|௧ିଵ  B𝑢௧|௧ିଵ

In an AR(1) model: 𝐸 𝑦௧|𝐼௧ିଵ ൌ 𝜇  ϕ 𝑦௧ିଵ|௧ିଵ.  

• Conditional Variance: Var[𝑦௧|𝐼௧ିଵ] = 𝑷௧|௧ିଵ = 𝑨 𝑷௧ିଵ|௧ିଵ𝑨T + Q

Note: There are 2 source of  noise: 
1) 𝑤௧
2) Difference between 𝑦௧ିଵ & 𝑦௧|௧ିଵ may not be zero. 

• Cov(𝑦௧ିଵ, 𝑤௧) = 0.

Mean and Variance of State Vector 𝒚𝒕
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• 𝑧௧ is a random variable following: 𝑧௧ ൌ 𝑯 𝑦௧  𝑣௧. 
- it is normally distributed; a sum of  normal variables, 𝑣௧~ N(0, R):

P(𝑧௧|𝐼௧ିଵ) = N(E[𝑧௧|𝐼௧ିଵ], Var[𝑧௧|𝐼௧ିଵ])

• Conditional Mean: E[𝑧௧|𝐼௧ିଵ] = 𝑧௧|௧ିଵ ൌ 𝑯 𝑦௧|௧ିଵ

• Conditional Variance: Var[𝑧௧|𝐼௧ିଵ] = 𝑯 𝑷௧|௧ିଵ𝑯T + R

Note: Cov(𝑦௧ିଵ, 𝑣௧)=0  (since E[𝑤௧, 𝑣௧]=0).

• Covariance between 𝑧௧ & 𝑦௧: Covሾ𝑧௧, 𝑦௧ 𝐼௧ିଵ ൌ 𝑷௧|௧ିଵ𝑯T

• Joint pdf  of  P(𝑧௧ ,𝑦௧|𝐼௧ିଵ) :

Mean and Variance of 𝒛𝒕 & Joint (𝒚𝒕, 𝒛𝒕t)
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• Given 𝑦| & 𝑷| (initialization), the Kalman Filter solves the 
following equations for 𝑡 ൌ 1, … , 𝑇.

Prediction: 𝑦௧|௧ିଵ is estimate based on measurements at previous 𝑡: 
𝑦௧|௧ିଵ ൌ 𝑨 𝑦௧ିଵ|௧ିଵ  B 𝑢௧
𝑷௧|௧ିଵ = 𝑨 𝑷௧ିଵ𝑨T + Q

Update: 𝑦௧ has additional information – the measurement at time 𝑡: 
𝑦௧|௧ = 𝑦௧|௧ିଵ + 𝑲௧ (𝑧௧ െ 𝑯 𝑦௧|௧ିଵ)
𝑷௧|௧= 𝑷௧|௧ିଵ െ 𝑲௧ H 𝑷௧|௧ିଵ = ሺ𝑰 െ 𝑲௧ 𝑯) 𝑷௧|௧ିଵ

𝑲௧ = 𝑷௧|௧ିଵ 𝑯T(𝑯 𝑷௧|௧ିଵ HT + R)-1 (“Kalman gain”)

• The forecast error is: 𝑒௧|௧ିଵ = 𝑧௧ െ 𝑧௧|௧ିଵ= 𝑧௧ െ 𝑯 𝑦௧|௧ିଵ

• The variance of  𝑒௧|௧ିଵ: 𝑭௧|௧ିଵ= 𝑯 𝑷௧|௧ିଵ𝑯T + R 

Kalman Filter
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• Recall: 𝑒௧|௧ିଵ = 𝑧௧ െ 𝑧௧|௧ିଵ= 𝑧௧ െ 𝑯 𝑦௧|௧ିଵ (forecast error)
𝑭௧|௧ିଵ= 𝑯 𝑷௧|௧ିଵ𝑯T + R (variance of  𝑒௧|௧ିଵሻ

• The initial values, 𝑦| & 𝑷|, are set to unconditional mean and 
variance, and reflect prior beliefs about the distribution of  𝑦௧.

• The update of  the state variable, 𝑦௧|௧, and its variance, 𝑷௧|௧, are linear 
combinations of  previous guess and forecast error:

𝑦௧|௧ = 𝑦௧|௧ିଵ + 𝑲௧ (𝑧௧ െ 𝑯 𝑦௧|௧ିଵሻ ൌ 𝑦௧|௧ିଵ  𝑲௧𝑒௧|௧ିଵ

𝑷௧|௧ = 𝑷௧|௧ିଵ െ 𝑲௧ 𝑯 𝑷௧|௧ିଵ (conditional variance)
𝑲௧ = 𝑷௧|௧ିଵ 𝑯T(𝑯 𝑷௧|௧ିଵ 𝑯T + R)-1 = Cov[𝑧௧, 𝑦௧|𝐼௧ିଵ] (𝑭௧|௧ିଵ)-1

Since we observe 𝑧௧, the uncertainty (measured by 𝑷௧|௧) declines.

Note: The bigger 𝑭௧|௧ିଵ, the smaller 𝑲௧ & less weight put to updating.

Kalman Filter
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• 𝑲௧ depends on the relationship between (𝑧௧ & 𝑦௧) and 𝑭௧|௧ିଵ: 
𝑲௧ ൌ Cov[𝑧௧, 𝑦௧|𝐼௧ିଵ] (𝑭௧|௧ିଵ)-1

- The stronger Cov[𝑧௧, 𝑦௧|𝐼௧ିଵ], the more relevant 𝑲௧ in the update.

- If  the relationship is weaker, we do not put much weight as it is likely 
not driven by 𝑦௧.

- If  we are sure about measurements, R decreases to zero and, thus, 
𝑭௧|௧ିଵdecreases. Then, 𝑲௧ increases and we weight residuals more 
heavily in the update than prediction.

• If  the model is time-invariant (Q and R are, in fact, constant) the 
Kalman gain quickly converges to a constant: 𝑲௧ → K. In this case, the 
filter becomes stationary.

Kalman Gain
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• Once we have 𝑒௧|௧ିଵ &  𝑭௧|௧ିଵ, under normality, we can do MLE: 

Estimation: MLE
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Note: Under normality, the KF is optimal in an MSE sense. 

• Algorithm (after initialization & ignoring first observations)
for (i in 1:T) {

zhat = t(H) %*% state10
zvar = (t(H )%*% P10 %*% H + R 
zvarinv = solve(zvar)
eps = t(z[i,]) - zhat
f0 = f0 - log(det(zvar)) - t(eps) %*% zvarinv %*% eps
state11 = state10 + P10 %*% H %*% zvarinv %*% eps
P11 = P10 - P10 %*% H %*% zvarinv %*% t(H) %*% P10
state10 = A %*% state11
P10 = A %*% P11 %*% t(A) + Q

}
f0 = -(T*n/2) * log(2*pi)  + f0/2

28

• We wrote the joint of  (𝑧௧, 𝑦௧ሻ|𝐼௧ିଵ. But, we could have also written 
the joint of  (𝑒௧, 𝑦௧ሻ|𝐼௧ିଵ:  

• Recall a property of  the multivariate normal distribution:
If  𝒙ଵ and 𝒙ଶ are jointly normally distributed, the conditional 
distribution of  𝒙ଵ|𝒙ଶ is also normal with mean 𝜇ଵ|ଶ & variance Σଵ|ଶ:

Then, 𝑦௧|௧ = 𝑦௧|௧ିଵ  𝑷௧|௧ିଵ HT (ሺ𝑭௧|௧ିଵሻିଵ 𝑒௧|௧ିଵ

𝑷௧|௧ = 𝑷௧|௧ିଵ െ 𝑷௧|௧ିଵ HTሺ𝑭௧|௧ିଵሻିଵ H 𝑷௧|௧ିଵ

Derivation of Update
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Feedback

𝑦௧|௧ିଵ ൌ 𝑨 𝑦௧ିଵ|௧ିଵ  B 𝑢௧|௧ିଵ

𝑷௧|௧ିଵ = 𝑨 𝑷௧ିଵ𝑨T + Q

Prediction (Time Update)

(1) Project the state ahead

(2) Project the error Cov ahead

Correction (Measurement Update)

(1) Compute the Kalman Gain

(2) Update 𝑦௧|௧ିଵ with measurement 𝑧௧

(3) Update Error Covariance

𝑦௧|௧ = 𝑦௧|௧ିଵ + 𝑲௧ (𝑧௧ - 𝑯 𝑦௧|௧ିଵ)

𝑲௧ = 𝑷௧|௧ିଵ 𝑯T(𝑯 𝑷௧|௧ିଵ 𝑯T + R)-1

𝑷௧|௧ = ሺ𝑰 െ 𝑲௧ 𝑯) 𝑷௧|௧ିଵ

30

• KF works by minimizing E[ሺ𝑦௧െ 𝑦௧|௧ିଵሻ′ ሺ𝑦௧െ 𝑦௧|௧ିଵሻሿ. Under this 
metric, the expected value is the optimal estimator.  

• Conditions for optimality (MSE) –Anderson and Moore (1979): 

- The DGP (linear system & its state space model) is exactly known.

- Noise vector (𝑤௧, 𝑣௧) is white noise.

- The noise covariances are known.

• KF is an MSE estimator among all linear estimators, but in the case 
of  a Gaussian model it is the MSE estimator among all estimators.

• In practice, difficult to meet the three conditions. A lot of  tuning by 
ad-hoc methods, to get KF that work “sufficiently well.”

Kalman Filter: Remarks
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• Estimating Q and R usually involves NW-style SE, based on 
autocovariances. Estimating Q is, in general, complicated. Tuning Q 
and R (sometimes called system identification) is usual to improve 
performance.

• The inversion of  𝑭௧|௧ିଵ can be difficult. Usually, the problem comes 
from having Q singular. In practice, approximations (pseudo-
inversion) are used.

• When knowledge/confidence about 𝑦 is low, a diffuse prior for 𝑦
would set 𝑷| high.

• The noise vector (𝑤௧, 𝑣௧) should be WN. Autocorrelograms and LB 
tests can be used to check this.

Kalman Filter: Practical Considerations

32

• When the model –i.e., 𝑔ሺ. ሻ and 𝑓ሺ. ሻ– is non-linear, the extended 
Kalman filter (EKF) works by linearizing the model (similar to NLLS, 
A & H are Jacobian matrices of  partial derivatives.).

Problem: The distributions of  the RVs are no longer normal after  
their respective nonlinear transformations. EKF is an ad-hoc method.

• When the model is highly non-linear, EKF will not work well. The 
unscented Kalman filter (UKF), which uses MC method to calculate 
the updates, works better.

• The KF struggles under non-normality and when the dimensions of  
the state vector increase. Particle filters (sequential Monte Carlo), 
which is another Bayesian filter, are very popular in these cases.

Kalman Filter: Problems and Variations
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• We can use all the data to re-estimate our prediction. That is, 𝑦௧|் .

• Inputs: Initial distribution 𝑦 and data 𝑧௧, 𝑧௧ିଵ, ..., 𝑧ଵ

• Algorithm: Forward-backward pass (Rauch-Tung-Striebel
algorithm)

- Forward pass: 
Kalman filter: Compute 𝑦௧ାଵ|௧ and 𝑦௧ାଵ|௧ାଵ for 0 ≤ 𝑡 ൏ 𝑇

- Backward pass:
Compute 𝑦௧|் for 0 ≤ 𝑡 ൏ 𝑇
Reverse process in our intuitive example.

Kalman Filter: Smoothing

34

• Compute 𝑦௧|் given 𝑦௧ାଵ|் ~ N(𝑦௧ାଵ|் , 𝑷௧ାଵ|்)

- Reverse movement from filter: 𝑋௧|௧ → 𝑋௧ାଵ|௧.

- Same as incorporating measurement in filter
1. Compute joint pdf  of  (𝑦௧|௧, 𝑦௧ାଵ|௧)
2. Compute conditional distribution (𝑦௧|௧| 𝑦௧ାଵ|௧ = 𝑦௧ାଵ)

- But: 𝑦௧ାଵ is not “known”, we only know its distribution: 
3. “Uncondition” on 𝑦௧ାଵ to compute 𝑦௧|் using laws of  total 
expectation and variance

Kalman Filter: Smoothing – Backward Pass
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• Step 1. Compute joint pdf  of  (𝑦௧|௧, 𝑦௧ାଵ|௧)

Kalman Filter: Smoothing – Backward Pass
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• Step 2. Compute conditional pdf  of  (𝑦௧|௧| 𝑦௧ାଵ|௧ = 𝑦௧ାଵ)

where we used the conditional result:
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• Step 3. "Uncondition" on 𝑦௧ାଵ to compute 𝑦௧|். We do not know its 
value, but only its distribution: 𝑦௧ାଵ ~𝑁ሺሻ.

• Uncondition on 𝑦௧ାଵ to compute 𝑦௧|் using the Law of  total 
expectation and the Law of  total variance:

Law of  total expectation:
𝐸 𝑋 ൌ 𝐸ሾ𝐸ሾ𝑋|𝑌 ൌ 𝑍ሿሿ
𝐸 𝑦௧|் ൌ 𝐸௬శభ|

ሾ𝐸ሾ𝑦௧|௧|𝑦௧ାଵ|௧ ൌ 𝑦௧ାଵ|்ሿሿ

Law of  total variance: 
Var(𝑋) = 𝐸ሾVarሺ𝑋|𝑌 ൌ 𝑍)] + Varሺ𝐸 𝑋 𝑌 ൌ 𝑍 ሻ

Kalman Filter: Smoothing – Backward Pass
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• Step 3 (continuation). From Step 2 we know:

Then,
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Kalman Filter: Smoothing – Backward Pass

• Summary:
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Kalman Filter: Smoothing – Backward Pass

• Algorithm (after initialization):
for (it in 1:T-1) {

P0T = Reshape(Psmo[T-it+1,],rx,rx)

state0T = statesmo[T-it+1,]

Pfilt = Reshape(P[T-it,],rx,rx)  # this is P t given t 

Pnext = A %*% Pfilt %*% t(A) + Q              # this is P t+1 given t

Lt = Pfilt %*% t(A) %*%inv(Pnext)

P0T = Pfilt + Lt %*% (P0T - Pnext) %*%t(Lt)

state0T = t(state[T-it,]) + Lt %*% (state0T - A %*% t(state[T-it,]))

statesmo[T-it,] = t(state0T)

Psmo[T-it,] = t(vec(P0T))

}
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• for (𝑡 ൌ 0; 𝑡 ൏ 𝑇; ++ 𝑡)        (Kalman filter)

• for (𝑡 ൌ 𝑇 െ 1; 𝑡 ≥ 0; -- 𝑡)     (Backward pass)
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Kalman Filter: Smoothing – Algorithm

• Kalman smoother is a post-processing method.

• Use 𝑦௧|்’s as optimal estimate of state at time 𝑡, and use 𝑷௧|் as a 
measure of uncertainty.

• The smoothing recursion consists of the backward recursion that 
uses the filtered values of 𝑦 and 𝑷. 

Kalman Filter: Smoothing - Remarks


