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Lecture 18
Cointegration

(for private use, not to be posted/shared online).

• Suppose 𝑦௧ and 𝑥௧ are non-stationary, 𝐼ሺ1ሻ . That is, we differentiate 
them and the changes become stationary, or 𝐼ሺ0ሻ . We regress 𝑦௧
against 𝑥௧: What happens? 

• The usual t-tests on regression coefficients can show statistically 
significant coefficients, even if  in reality it is not so. 

• This the spurious regression problem (Granger and Newbold (1974)): We 
find a statistically significant relation between unrelated variables.

• In a Spurious Regression contexts, the regression errors would be 
highly correlated and the standard t-statistic will be wrongly calculated 
because the variance of  the errors is not consistently estimated.

Spurious Regression 
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Example: We simulate two independent RW (𝑅𝑊ଵ,௧, 𝑅𝑊ଶ,௧) and then 
regress one against the other: 

𝑅𝑊ଵ,௧ ൌ 𝜇  β 𝑅𝑊ଶ,௧  𝜀௧
With test the true H0: β = 0.

sim_rw1 <- arima.sim(list(order=c(0,1,0)), sd=.5, n=500) # simulate RW series 1
sim_rw2 <- arima.sim(list(order=c(0,1,0)), sd=.5, n=500) # simulate RW series 2

Spurious Regression: Simulated Example 

Example:

fit_sim_rw <- lm(sim_rw1 ~ sim_rw2) # Regression of  two RWs
res_sim_rw <- fit_sim_rw$residuals # Extract residuals
> summary(fit_sim_rw)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -4.61541 0.13188  -35.00   <2e-16 ***
sim_rw2     -0.47384 0.04076  -11.62   <2e-16 ***  Reject H0: β = 0.
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.356 on 499 degrees of  freedom
Multiple R-squared:  0.2131,    Adjusted R-squared:  0.2115 
F-statistic: 135.1 on 1 and 499 DF,  p-value: < 2.2e-16

Note: Very significant t-value (& F-goodness of  fit stat), and a good 
R2. But, the model makes no sense.

Spurious Regression: Simulated Example 
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Examples:
(1) Egyptian infant mortality rate (𝑌௧), 1971-1990, annual data, on 
Gross aggregate income of  American farmers (𝐼௧) and Total 
Honduran money supply (𝑀௧):
Yt
 = 179.9 - .2952 𝐼௧ െ .0439 𝑀௧, R2 = .918, DW = .4752, F = 95.17

(16.63) (-2.32) (-4.26) Corr(𝑌௧, 𝑋,௧) = .8858, -.9113, -.9445

(2). US Export Index (𝑌௧), 1960-1990, annual data, on Australian 
males’ life expectancy (𝑋௧):
Yt
 = -2943. + 45.7974 𝑋௧, R2 = .916, DW = .3599, F = 315.2

(-16.70) (17.76) Corr(𝑌௧, 𝑋௧) = .9570

(3) Total Crime Rates in the US (Y), 1971-1991, annual data, on Life 
expectancy of  South Africa (𝑋௧):
Yt
 = -24569 + 628.9 𝑋௧, R2 = .811, DW = .5061, F = 81.72

(-6.03) (9.04) Corr(𝑌௧, 𝑋௧) = .9008

Spurious Regression: Real Examples 

Examples (continuation):
(2). US Export Index (𝑌௧), 1960-1990, annual data, on Australian 
males’ life expectancy (𝑋௧):
Yt
 = -2943. + 45.7974 𝑋௧, R2 = .916, DW = .3599, F = 315.2

(-16.70) (17.76) Corr(𝑌௧, 𝑋௧) = .9570

Spurious Regression: Real Examples 

US ExportsAustralian males’ life expectancy

Note: It looks like the trend is the common element between 𝑌௧ & 𝑋௧.



RS – EC2 - Lecture 18

4For private use only - Not to share/post online

• Suppose 𝑦௧ & 𝑥௧ are unrelated 𝐼ሺ1ሻ variables. We run the regression:
𝑦௧ ൌ   𝑥௧  𝜀௧

• True value of  β=0. The above is a spurious regression and 𝜀௧∼ 𝐼ሺ1ሻ.

• Technical points: Phillips (1986) derived the following results:

- β

→ ് 0  &  β

ௗ
→ Non-normal RV not necessarily centered at 0. 

 This is the spurious regression phenomenon.

- The OLS t-statistics for testing H0: β=0 diverge to ±∞ as 𝑇→ ∞. 
Thus, with a large enough 𝑇 it will appear that β is significant. 

- The usual R2

→  1 as 𝑇→ ∞. The model appears to have good

fit well, even though it is a bad (nonsense) model.

Spurious Regression: Statistical Implications 

• Given the statistical implications, the typical symptoms are: 

- High R2, 𝑡-values, & 𝐹-values. 

- Low DW values.

• Q: How do we detect a spurious regression (between 𝐼ሺ1ሻ series)?
- Check  the correlogram of  the residuals. 

- Test for a unit root on the residuals. (This lecture.)

Spurious Regression: Detection and Solutions 
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• Statistical solution: 
When series (𝑦௧ & 𝒙௧) are 𝐼ሺ1ሻ, work with first differences, instead: 

∆𝑦௧ = 𝑦௧ െ 𝑦௧ିଵ &  ∆𝒙௧= 𝒙௧ െ 𝒙௧ିଵ

If  the relation between the series 𝑦௧ & 𝒙௧ exists,  should be the same 
in levels (𝑦௧, 𝒙௧) or first differences (∆𝑦௧, ∆𝒙௧). 

Levels: 𝑦௧ ൌ   𝑥௧  𝜀௧ (*)
Lagged Levels: 𝑦௧ିଵ ൌ   𝑥௧ିଵ  𝜀௧ିଵ (**)

Subtract (**) from (*): We have a regression with 1st differences:
First Differences: ∆𝑦௧ =  ∆𝒙௧+ 𝑢௧, where 𝑢௧ ൌ 𝜀௧ െ 𝜀௧ିଵ

Now, we have a valid regression, since both regressors are I(0). But, 
the economic interpretation of  the regression changes. 

Spurious Regression: Detection and Solutions 

Example: We regress the two RW in first differences:

diff_rw1 <- diff(sim_rw1) # First differences for RW 1
diff_rw2 <- diff(sim_rw2) # First differences for RW 2
fit_diff_rw <- lm(diff_rw1 ~ diff_rw2)
> summary(fit_diff_rw)

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

(Intercept) -0.003199   0.023481  -0.136   0.8917  
diff_rw2     0.106339 0.044773  2.375   0.0179 *  Reject H0: β = 0.
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.525 on 498 degrees of  freedom
Multiple R-squared:  0.0112,    Adjusted R-squared:  0.009215 
F-statistic: 5.641 on 1 and 498 DF,  p-value: 0.01792

Note: Still significant (by chance), but the  coefficient changes sign. 
Clear indication that something is wrong with regression. 

Spurious Regression: Simulated Example 
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• The message from spurious regression: Regression of  𝐼ሺ1ሻ variables 
can produce nonsense.

Q: Does it make sense a regression between two 𝐼ሺ1ሻ variables?
Yes, only if  the regression errors are 𝐼ሺ0ሻ. That is, when the variables 
are cointegrated.

In this cointegration case, there is a linear combination of  the 𝐼ሺ1ሻ
processes, 𝒀௧, such that 𝜶ᇱ𝒀௧ ~ 𝐼ሺ0ሻ.

We call 𝜶 the cointegrating vector or long-run parameter. 

Spurious Regression: Remarks

• Integration: In a univariate context, 𝑦௧ is 𝐼ሺ𝑑ሻ if  its ሺ𝑑 െ 1ሻ-th 
difference is 𝐼ሺ0ሻ That is, ∆ௗ𝑦௧ is stationary.

 𝑦௧ is 𝐼ሺ1ሻ if  ∆𝑦௧ is 𝐼ሺ0ሻ

• In many time series, integrated processes are considered together 
and they form equilibrium relationships:

- Short-term and long-term interest rates

- Inflation rates and interest rates.

- Income and consumption.

- Spot and Forward rates.

- Dividends and Earnings.

Idea:  Although a time series vector is integrated, certain linear 
transformations of  the time series may be stationary.

Cointegration 
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• An 𝑚x1 vector time series 𝒀௧ is said to be cointegrated of  order 
𝑑, 𝑏 , 𝐶𝐼 𝑑,𝑏 , where 0 ൏ 𝑏  𝑑, if  each of  its component series 
𝒀௧ is 𝐼ሺ𝑑ሻ but some linear combination 𝜶ᇱ𝒀௧ is 𝐼 𝑑 െ 𝑏 for some 
constant vector 𝜶 ≠ 0. (𝜶: cointegrating vector). 

•  The cointegrating vector is not unique. For any scalar 𝑐 
𝑐 𝜶ᇱ𝒀௧ ൌ 𝜶∗′𝒀௧ ~ 𝐼ሺ𝑑 െ 𝑏ሻ

• Some normalization assumption is required to uniquely identify 𝜶. 
Usually, 1 (=the coefficient of  the first variable) is normalized to 1. 
Look at the previous example, where the cointegrating vector is [1 -].

• The most common case is 𝑑 ൌ 𝑏 ൌ 1. 

Cointegration: Definition

• If  the 𝑚x1 vector time series 𝒀௧ contains more than 2 components, 
each being 𝐼ሺ1ሻ, then there may exist 𝑘 ሺ൏ 𝑚ሻ linearly independent 
1xm vectors 𝜶ଵ′, 𝜶ଶ′,…, 𝜶′, such that 𝜶ᇱ𝒀௧ ~ 𝐼ሺ0ሻ 𝑘x1 vector 
process, where 𝜶 = (𝜶ଵ, 𝜶ଶ,…, 𝜶) is a 𝑘x𝑚 cointegrating matrix.

• The number of  linearly independent cointegrating vectors is called 
the cointegrating rank: 𝒀௧ is cointegrated of  rank 𝑘.

If  the 𝑚x1 vector time series 𝒀௧ is CIሺ𝑘, 1ሻ with 0 ൏ 𝑘 ൏ 𝑚 CI 
vectors, then, we say that there are 𝑚െ 𝑘 common 𝐼ሺ1ሻ stochastic 
trends.

Cointegration: Definition
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Example: Consider the following system (𝑚 ൌ 3):

where the error terms are uncorrelated WN processes. Since 𝑥ଷ௧ is a 
RW –i.e., 𝐼ሺ1ሻ–, clearly, all the 3 processes are individually 𝐼ሺ1ሻ.

- One CI relationship: 𝑥ଵ௧ , 𝑥ଶ௧, & 𝑥ଷ௧.
Let 𝒀௧ = (𝑥ଵ௧ , 𝑥ଶ௧, 𝑥ଷ௧ሻ′ & 𝜶 =(1, ଵ, ଶ)’  𝜶′ 𝒀௧ = 𝜀ଵ௧  ~ 𝐼ሺ0ሻ

Note: The coefficient for 𝑥ଵ௧ (=1) is normalized to 1.

- A second CI relationship: 𝑥ଶ௧, & 𝑥ଷ௧
Let 𝜶∗ ൌ (0, 1, -ଷ)’  𝜶∗′ 𝒀௧ ൌ 𝜀ଶ௧ ~ 𝐼ሺ0ሻ.

Cointegration: Example

ttt

ttt

tttt

xx

xx

xxx

31,33

2332

132211








Example (continuation):

We have 2 C.I. vectors: 𝜶 & 𝜶∗. They are independent, that is, 

rank 
1 0
ଵ 1
ଶ −ଷ

ൌ 2 (This is the cointegrating rank.)

• Summary for the system (with three time series –i.e., 𝑚 ൌ 3):

We have: 𝑘 ൌ 2 independent C.I. vectors: 𝜶 & 
𝑚 െ 𝑘 ൌ 1 common stochastic trend (ST):  ∑ 𝜀ଷ௧்

௧ୀଵ .

Cointegration: Example
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• Intuition for 𝐼ሺ1ሻ case 

𝜶ᇱ𝒀௧ forms a long-run equilibrium. The system cannot deviate too 
far from the equilibrium, otherwise economic forces, say arbitrage or 
competition, will operate to restore the equilibrium. We think of  
cointegrated variables as variables that “move together.”

Example: In the previous example, we have two long-run 
relationships –i.e., two CI relationships:

1) 𝜀ଵ௧ ൌ 𝑥ଵ௧ െ 1 𝑥ଶ௧  2 𝑥ଷ௧.
2) 𝜀ଶ௧ ൌ 𝑥ଶ௧ െ 3 𝑥ଷ௧

Interpretation: Let’s look at CI relation 2). In the long-run, when 𝑥ଷ௧
changes by 1 unit, 𝑥ଶ௧ changes by 3 units. (This is why the CI vector 
is referred as long-run parameters.)

Cointegration: Long-Run Relation

VAR with Cointegration

• Let 𝒀௧ be 𝑚x1 . Suppose we estimate VAR(𝑝)

ሺ𝒀௧ െ 𝝁ሻ = 𝚽ଵ ሺ𝒀௧ିଵ െ 𝝁ሻ+ … + 𝚽 ሺ𝒀௧ି െ𝝁ሻ + 𝑎௧

or, setting 𝝁 ൌ 0,

𝒀௧ ൌ 𝚽 𝐿  𝒀௧ିଵ 𝒂௧

• Suppose we have a unit root. Then, we can write

𝚽 𝐿 ൌ 𝚽 1  ሺ1 െ 𝐿ሻ 𝚽∗ሺ𝐿ሻ

• This is like a multivariate version of the ADF test:

𝒀௧ ൌ 𝜌 𝒀௧ିଵ  ∑ 𝛹 ∆ 𝒀௧ିଵ

ୀଵ  𝒂௧

18
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VAR with Cointegration

• Rearranging the equation

∆𝒀௧ ൌ ሾ𝚽 1 െ 𝑰ሿ  𝒀௧ିଵ𝚽∗ሺ𝐿ሻ ∆𝒀௧ିଵ  𝒂௧

where 𝑅𝑎𝑛𝑘ሾ𝚽 1 െ 𝑰ሿ  𝑚. There are two cases:

1. No cointegration. 𝚽 1 ൌ 𝑰, then we have 𝑚 independent unit
roots, so there is no cointegration, and we should run the VAR in 
differences.

2. Cointegration. 0 ൏ 𝑅𝑎𝑛𝑘 𝚽 1 െ 𝑰 ൌ 𝑘 ൏ 𝑚, then we can write

𝚽 1 െ 𝑰 ൌ 𝜶′
where  and  are 𝑚x𝑘. The equation becomes:

∆𝒀௧ ൌ 𝜶′ 𝒀௧ିଵ  𝚽∗ሺ𝐿ሻ ∆𝒀௧ିଵ  𝒂௧

• This is called a vector error correction model (VECM). 19

VAR with Cointegration

• Note: If  we have cointegration, but we run OLS in differences, 
then the modeled is misspecified and the results will be biased. 

• Q: What can you do?

- If  you know the location of  the unit roots and cointegration
relations, then you can run the VECM by doing OLS of  ∆𝒀௧ on lags 
of  ∆𝒀௧ and 𝜶′𝒀௧ିଵ.

- If  you know nothing, then you can either  

(i) run OLS in levels, or 

(ii) test (many times) to estimate CI relations. Then, run VECM. 

• The problem with this approach is that you are testing many times 
and estimating cointegrating relationships. This leads to poor finite 
sample properties. 20
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Residual Based Tests of  the Null of  No CI

• Procedures designed to distinguish a system without cointegration
from a system with at least one cointegrating relationship; they do not 
estimate the number of  cointegrating vectors (the k). 

• Tests are conditional on pretesting (for unit roots in each variable).

• There are two cases to consider.

CASE 1 - CI vector is known (or pre-specified, say, from theory): 

Construct the hypothesized linear combination that is 𝐼ሺ0ሻ by theory; 
treat it as data. Apply a DF unit root test to that linear combination. 

• The null hypothesis is that there is a unit root, or no cointegration.

21

CASE 2 - CI vector is unknown. It should be estimated.

Thus, if  there exists a cointegrating relation, the coefficient on 𝑌ଶ௧ is 
nonzero, allowing us to express the “static” regression equation as

𝑌ଵ௧ ൌ 𝛽𝑌ଶ௧   𝑢௧

• Then, apply a unit root test to the estimated OLS residual from 
estimation of  the above equation, but
- Include a constant in the static regression if  the alternative allows 
for a nonzero mean in 𝑢௧
- Include a trend in the static regression if  the alternative is stochastic 
cointegration -i.e., a nonzero trend for 𝑨′𝒀௧.

Note: Tests for cointegration using a prespecified cointegrating

vector are generally more powerful than tests estimating the vector.
22

Residual Based Tests of  the Null of  No CI
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• Steps in cointegration test procedure:

Step 1. Test H0(unit root) in each component series 𝑌௧ individually, 
using the univariate unit root tests, say ADF, PP tests.

Step 2. If  the H0 (unit root) cannot be rejected, then the next step is 
to test cointegration among the components, i.e., to test whether 
𝜶ᇱ𝒀௧ is 𝐼ሺ0ሻ. 

• In practice, the cointegration vector is unknown. One way to test 
the existence of  cointegration is the regression method –see, Engle 
and Granger (1986) (EG).

• If  𝒀௧ ൌ ሺ𝑌ଵ௧, 𝑌ଶ௧,…, 𝑌௧ሻ is cointegrated, 𝜶ᇱ𝒀௧ is I(0) where 𝜶 ൌ
ሺ𝛼ଵ,𝛼ଵ, …, 𝛼ሻ. Then, ሺ1/𝛼ଵሻ𝜶 is also a cointegrated vector where 
𝛼ଵ  0. 23

Engle and Granger Cointegration

EG Cointegration: Step 2

• Step 2: EG consider the regression model for 𝑌ଵ௧ :
𝑌ଵ௧ ൌ 𝛿𝐷௧  𝜙ଵ𝑌ଶ௧  …  𝜙ିଵ𝑌௧  𝜀௧

where 𝐷௧ : deterministic terms.

• Check whether 𝜀௧ is 𝐼ሺ1ሻ or 𝐼ሺ0ሻ :  

- If  𝜀௧ ~ 𝐼ሺ1ሻ , then 𝒀௧ is not cointegrated.

- If  𝜀௧ ~ 𝐼ሺ0ሻ , then 𝒀௧ is cointegrated with a normalized 
cointegrating vector 𝜶ᇱ ൌ ሺ1,𝜙ଵ, … ,𝜙ିଵሻ .

• Steps:

1. Run OLS. Get estimate 𝜶ෝ ൌ ሺ1,𝜙ଵ, … ,𝜙ିଵሻ & residuals, 𝑒௧.
2. Use residuals 𝑒௧ for unit root testing using the ADF or PP tests 
without deterministic terms (constant or constant and trend).

24
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• Step 2: Use residuals 𝑒௧ for unit root test.

- Note: 𝜙ଵ
  ௗ   

t-distribution, if  𝜀௧ ~ 𝐼ሺ0ሻ
If  𝜀௧ ~ 𝐼ሺ1ሻ, t-test has a non-standard distribution.

- H0 (unit root in residuals): 𝜆 ൌ 0 vs H1: 𝜆 ൏ 1 for the model

∆𝑒௧ ൌ 𝜆𝑒௧ିଵ  ∑ 𝜙 ∆𝑒௧ିଵ
ିଵ
ୀଵ   𝑎௧

- t-statistic: 𝑡ఒ ൌ  ఒ


ௌഊ

- Critical values tabulated by simulation in EG. 

• We expect the usual ADF distribution would apply here. But, 
Phillips and Ouliaris (PO) (1990) show that is not the case. Again, we 
have a non-standard distribution (not the DF distribution). 25

EG Cointegration: Step 2 – Check residuals

• Phillips and Ouliaris (PO) (1990) show that the ADF and PP unit 
root tests applied to the estimated cointegrating residual do not have 
the usual DF distributions under H0 (no-cointegration).

• Due to the spurious regression phenomenon under H0, the 
distribution of  the ADF and PP unit root tests have asymptotic 
distributions that are functions of  Wiener processes that depends on:

- The deterministic terms, 𝐷௧ , in the regression used to estimate 
- The number of  variables, ሺ𝑚 െ 1ሻ, in 𝑌ଶ௧.

• PO tabulated these distributions. Hansen (1992) improved on these 
distributions, getting adjustments for different DGPs with trend 
and/or drift/no drift.

26

EG Cointegration: PO Distribution
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• EG propose LS to consistently estimate a normalized CI vector.
But, the asymptotic behavior of  the LS estimator is non-standard.

• Stock (1987) and Phillips (1991) get the following results: 

- 𝑇 𝜶ෝ െ 𝜶  
  ௗ   

non-normal RV not necessarily centered at 0.

- The LS estimate 𝜶ෝ
     

𝜶. Convergence is at rate 𝑇, not usual 𝑇1/2. 
 We say 𝜶ෝ is super consistent.

- 𝜶ෝ is consistent even if  the other ሺ𝑚 െ 1ሻ 𝒀௧’s are correlated with 𝜀௧.

 No asymptotic simultaneity bias.

- The OLS formula for computing aVar(𝜶ෝ) is incorrect

 usual OLS standard errors are not correct.

- Even though the asymptotic bias → 0, as 𝑇→ ∞, 𝜶ෝ can be 
substantially biased in small samples. LS is also not efficient. 27

EG Cointegration: Least Square Estimator

• The bias is caused by 𝜀௧. If  𝜀௧~𝑊𝑁, there is no asymptotic bias.

• The above results point out that the LS estimator of  the CI vector 
𝜶 could be improved upon. 

• Stock and Watson (1993) propose augmenting the CI regression of  
𝑌ଵ௧  against the rest ሺ𝑚 െ 1ሻ elements in 𝒀௧, say 𝒀௧* with appropriate 
deterministic terms 𝐷௧ , with 𝑝 leads and lags of  Δ𝒀௧*.

• Estimate the augmented regression by OLS. The resulting estimator 
of  𝜶 is called the dynamic OLS estimator or 𝜶ෝDOLS.

• It is consistent, asymptotically normally distributed and, under 
certain assumptions, efficient. 28

EG Cointegration: Least Square Estimator
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• Consider a bivariate 𝐼ሺ1ሻ vector 𝒀௧ ൌ (𝑌ଵ௧, 𝑌ଶ௧) .
- Assume that 𝒀௧ is cointegrated with CI 𝜶 ൌ ሺ1,െଶሻ. That is,

𝜶′𝒀௧= 𝑌ଵ௧ െ ଶ𝑌ଶ௧ ~ 𝐼ሺ0ሻ.

- Suppose we have a consistent estimate 𝜶ෝ (or 𝜶ෝDOLS) of  𝜶.

- We are interested in estimating the VECM for ∆𝑌ଵ௧ and ∆𝑌ଶ௧ using:

∆𝑌ଵ௧ ൌ 𝑐ଵ  βଵ 𝜶′𝒀௧ିଵ+ ∑ 𝜓ଵଵ,
ିଵ
ୀଵ ∆𝑌ଵ௧ି  ∑ 𝜓ଵଶ,

ିଵ
ୀଵ ∆𝑌ଶ௧ି  𝑢ଵ௧

∆ 𝑌ଶ௧ ൌ 𝑐ଶ  βଶ 𝜶′𝒀௧ିଵ+ ∑ 𝜓ଶଵ,
ିଵ
ୀଵ ∆𝑌ଵ௧ି  ∑ 𝜓ଶଶ,

ିଵ
ୀଵ ∆𝑌ଶ௧ି  𝑢ଶ௧

• 𝜶ෝ is super consistent. It can be treated as known in the ECM. The 
estimated disequilibrium error 𝜶′ 𝒀௧ ൌ 𝑌ଵ௧ െ 𝛼ොଶ 𝑌ଶ௧ may be treated 
like the known 𝜶′𝒀௧ .  

• All variables are 𝐼ሺ0ሻ, we can use OLS (or SUR to gain efficiency.)29

EG Cointegration: Estimating VECM with LS

• The EG procedure works well for a single equation, but it does not 
extend well to a multivariate VAR model. 

• Consider a levels VARሺ𝑝ሻ model: 
𝒀௧ ൌ 𝛿𝑫௧  𝜙ଵ𝒀௧ିଵ  …  𝜙𝒀௧ି  𝜀௧

where 𝒀௧ is a time series 𝑚x1 vector of  𝐼ሺ1ሻ variables.

• The VARሺ𝑝ሻ model is stable if   

detሺ𝐈 െ  𝜙ଵ𝑧 െ⋯െ 𝜙𝑧ሻ ൌ 0

has all roots outside the complex unit circle.

• If  there are roots on the unit circle then some or all of  the variables 
in 𝒀௧ are 𝐼ሺ1ሻ and they may also be cointegrated.

30
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• If  𝒀௧ is cointegrated, then the levels VAR representation is not the 
right one, since the cointegrating relations are not explicitly apparent.

• The CI relations appear if  the VAR is transformed to the VECM. 

• For these cases, Johansen (1988, 1991) proposed two tests: The 
trace test & the maximal eigenvalue test. They are based on 
Granger’s (1981) ECM representation. Tests are easy to implement.

Example: Trace test simple idea:
(1) Assume 𝜀௧ are multivariate 𝑁(0, 𝚺). Estimate the VECM by ML, 
under various assumptions:
- trend/no trend and/or drift/no drift
- the number k of  CI vectors, 
(2) Compare models using likelihood ratio tests.  31

Johansen Tests

• Consider the VECM
∆𝒀௧ ൌ 𝚪𝟎 𝑫௧  𝚷 𝑌௧ିଵ  𝚪ଵ ∆𝑌௧ିଵ + …  𝚪 ∆𝑌௧ିାଵ  𝜀௧

where 

- 𝑫௧: vector of  deterministic variables (constant, trends, and/or
seasonal dummy variables);

- 𝚪 ൌ െ𝑰  𝜱ଵ ⋯𝜱 , 𝑗 ൌ 1, 2, … ,𝑝 െ 1 are 𝑚×𝑚 matrices;

- 𝚷 ൌ 𝜸𝑨′ is the long-run impact matrix; 𝑨 & 𝜸 are 𝑚×𝑘 matrices;

- 𝜀௧ are i.i.d. 𝑁(0, 𝚺) errors;

- detሺ𝑰 െ ∑ 𝚪
ିଵ
ୀଵ 𝐿ሻ has all of  its roots outside the unit circle. 

• In this framework, CI happens when 𝚷 has reduced rank. This is 
the basis of  the test: By checking the rank of  𝚷, we can determine if  
the system is CI. 

32
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• We can also write the ECM using the alternative representation as

∆𝒀௧ ൌ 𝚪𝟎 𝑫௧  𝚷∗𝑌௧ି  ∑ 𝚪∗
ିଵ
ୀଵ  ∆𝑌௧ି  𝜀௧

where the ECM term is at lag 𝑡 െ 𝑝. Including a constant and or a 
deterministic trend in the ECM is also possible.

• Back to original VECM(𝑝).

- Let 𝑍௧ ൌ ∆𝒀௧ , 𝑍ଵ௧ ൌ 𝒀௧ିଵ and 𝑍ଶ௧ ൌ (∆𝒀௧ିଵ,..., ∆𝒀௧ିିଵ, 𝐷௧)’

• Now, we can write: 𝑍௧ ൌ 𝜸𝑨ᇱ𝑍ଵ௧ Ψ 𝑍ଶ௧  𝜺௧
where Ψ =(𝚪ଵ 𝚪ଶ... 𝚪 𝚪).

• If  we assume a distribution for 𝜀௧, we can write the likelihood.
33

Johansen Tests: Intuition

• Assume the VECM errors are independent 𝑁(0, 𝚺) distribution,. 
Then, given the CI restrictions on the trend and/or drift/no drift 
parameters, the likelihood 𝐿௫ሺ𝑘ሻ is a function of  the CI rank 𝑘.  

• The trace test is based on the log-likelihood ratio:

𝐿𝑅 ൌ 2 ∗ 𝑙𝑛ሾ𝐿௫ሺ𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑ሻ/𝐿௫ሺ𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑ሻሿ,
which is done sequentially for 𝑘 = 𝑚െ 1, … . , 1, 0.  

• The name comes from the fact that the test statistics involved are the 
trace (the sum of  the diagonal elements) of  a diagonal matrix of  
generalized eigenvalues.  

• The test examines the H0: CI rank ≤ 𝑘, vs. H1: CI rank > 𝑘.

- If  the 𝐿𝑅 > critical value for a certain rank,  reject H0. 34
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• Johansen concentrates all the parameter matrices in the likelihood 
function out, except for the matrix A.

• Then, he shows that the MLE of  A can be derived as the solution 
of  a generalized eigenvalue problem. 

• LR tests of  hypotheses about the number of  CI vectors can then be 
based on these eigenvalues.  Moreover, Johansen (1988) also proposes 
LR tests for linear restrictions on these CI vectors.

Note: The factorization 𝚷 = 𝜸𝑨′ is not unique since for any 𝑘x𝑘
nonsingular matrix F we have:

𝜸 𝑨′ = 𝜸 F F-1 𝑨′ =( 𝜸F) (F-1𝑨′) = 𝜸∗𝑨∗′

35
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Note: The factorization 𝚷 = 𝜸𝑨′ is not unique since for any 𝑘x𝑘
nonsingular matrix F we have:

𝜸 𝑨′ = 𝜸 F F-1 𝑨′ =( 𝜸F) (F-1𝑨′) = 𝜸∗𝑨∗′

 The factorization 𝚷 = 𝜸𝑨′ only identifies the space spanned by 
the CI relations. To get a unique 𝜸 and 𝑨′, we need more restrictions. 
Usually, we normalize. Finding a good way to do this is hard.

36
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• The Johansen tests examine H0: Rank(𝚷) ≤ 𝑘, where 𝑘 is less than 
𝑚. 

• The unrestricted CI VECM is denoted 𝐻ሺ𝑟ሻ. The 𝐼ሺ1ሻ model 𝐻ሺ𝑘ሻ
can be formulated as the condition that the rank of  𝚷 is less than or 
equal to 𝑘. This creates a nested set of  models

𝐻ሺ0ሻ ⊂…. ⊂ 𝐻ሺ𝑘ሻ ⊂ ….. ⊂  𝐻ሺ𝑚ሻ

- 𝐻ሺ𝑚ሻ is the unrestricted, stationary VAR model or 𝐼ሺ0ሻ model 
- 𝐻ሺ0ሻ non-CI VAR (restriction 𝚷 = 0)  VAR model for differences.  

• This nested formulation is convenient for developing a sequential 
procedure to test for the number 𝑘 of  CI relationships.

37

Johansen Tests: Sequential Tests

• Sequential tests:
i. H0: 𝑘 ൌ 0,   cannot be rejected →stop → 𝑘=0
(at most zero cointegration)      rejected →next test

ii. H0: 𝑘  1, cannot be rejected →stop → 𝑘=1
(at most one cointegration)     rejected →next test

iii. H0: 𝑘  2,   cannot be rejected →stop → 𝑘=2
(at most two cointegration)      rejected →next test

• Possible outcomes:
- Rank 𝑘 = 𝑚 All variables in 𝒀௧ are 𝐼ሺ0ሻ, not an interesting case.
- Rank 𝑘 = 0  No linear combinations of  𝒀௧ are 𝐼ሺ0ሻ. (𝚷 ൌ 0.) 

 Model on differenced series
- Rank 𝑘  ሺ𝑚 െ 1ሻ Up to ሺ𝑚 െ 1ሻ CI relationships 𝜶′𝒀௧

 VECM 38
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• The Johansen tests examine H0: Rank(𝚷ሻ  𝑘, where 𝑘 is less than 𝑚

Recall, Rank(𝚷) = number of  non-zero eigenvalues of  𝚷.

• Since 𝚷 = 𝜸𝑨′, it is equivalent to test that 𝑨 and 𝜸 are of  full column 
rank 𝑘, the number of  independent CI vectors that forms the matrix A.  

• It turns out the LR test statistic is the trace of  a diagonal matrix of  
generalized eigenvalues from 𝚷.  

• These eigenvalues also happen to equal the squared canonical 
correlations between Δ𝒀௧ and 𝒀௧ିଵ, corrected for lagged Δ𝒀௧ and 𝐷௧ .
They are between 0 and 1.

39
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• Back to the VECMሺ𝑝ሻ representation: 

∆𝒀௧ ൌ 𝚪𝟎 𝑫௧  𝚷𝑌௧ି  ∑ 𝚪
ିଵ
ୀଵ  ∆𝑌௧ି  𝜀௧

where 𝐷௧ may include a drift and a deterministic trend. Including a 
constant and or a deterministic trend in the ECM is also possible.

• Let 𝑍௧ ൌ ∆𝒀௧, 𝑍ଵ௧ ൌ 𝒀௧ିଵ & 𝑍ଶ௧ ൌ (∆𝒀௧ିଵ,..., ∆𝒀௧ିିଵ, 𝐷௧)’

Now, we can write: 𝑍௧ ൌ 𝜸𝑨ᇱ𝑍ଵ௧ + Ψ 𝑍ଶ௧  𝜺௧
where Ψ =(𝚪ଵ 𝚪ଶ... 𝚪 𝚪).

• Assuming normality for 𝜺 ~ N(0, Σ), we can write

40
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• Let residuals, 𝑅௧ and 𝑅ଵ௧, be obtained by regressing 𝑍௧ and 𝑍ଵ௧
on 𝑍ଶ௧ , respectively. The (FW) regression equation in residuals is: 

𝑅௧ ൌ 𝜸𝑨ᇱ𝑅ଵ௧  𝑒௧

• The calculations are based on the sample cross-products matrices: 

• Then, the MLE for A is obtained from the eigenvectors, V, 
corresponding to the 𝑘 largest eigenvalues of  the following equation 

|𝜆𝑆ଵଵ െ 𝑆ଵ 𝑆
ିଵ𝑆ଵ| ൌ 0.

• These 𝜆’s are squared canonical correlations between 𝑅௧ & 𝑅ଵ௧. 
The V’s corresponding to the 𝑘 largest 𝜆’s are 𝑘 linear combinations 
of  𝒀௧ିଵ. 41

Johansen Tests: Eigenvalues
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• The eigenvectors corresponding to the 𝑘 largest 𝜆’s are the 𝑘 linear 
combinations of  𝒀௧ିଵ, which have the largest squared partial 
correlations with the 𝐼ሺ0ሻ process,  after correcting for lags and 𝐷௧ . 

• Computations.

- 𝜆’s. Instead of  using |𝜆𝑆ଵଵ െ 𝑆ଵ 𝑆
ିଵ𝑆ଵ| ൌ 0, pre and post 

multiply the expression by 𝑆ଵଵ
ିଵ/ଶ (Cholesky decomposition of  𝑆ଵଵ). 

Then, we have a standard eigenvalue problem. 

 |𝜆𝑰 െ 𝑆ଵଵ
ିଵ/ଶ𝑆ଵ 𝑆

ିଵ𝑆ଵ𝑆ଵଵ
ିଵ/ଶ| ൌ 0.

- V. The eigenvectors (say, 𝒖) are usually reported normalized, such 
that 𝒖

ᇱ𝒖 ൌ 1. Then, in this case, we need to  use 𝑣ො ൌ 𝑆ଵଵ
ିଵ/ଶ 𝒖 . 

That is, we normalized the eigenvectors such that 𝑽 𝑆ଵଵ𝑽 ൌ 𝑰.
42
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• The tests are based on the 𝜆’s from 

|𝜆𝑰 െ 𝑆ଵଵ
ିଵ/ଶ𝑆ଵ 𝑆

ିଵ𝑆ଵ𝑆ଵଵ
ିଵ/ଶ| ൌ 0.

• Interpretation of  the eigenvalue equation.

Using F-W, we regress 𝑅௧ on 𝑅ଵ௧, to estimate 𝚷 ൌ 𝜸𝑨′. That is

𝚷 ൌ 𝑆ଵଵ
ିଵ𝑆ଵ 

Note that

𝑆ଵଵ
ିଵ/ଶ𝑆ଵ 𝑆

ିଵ𝑆ଵ𝑆ଵଵ
ିଵ/ଶ = 

= 𝑆ଵଵ
ଵ/ଶ𝑆ଵଵ

ିଵ𝑆ଵ 𝑆
ିଵ/ଶ𝑆

ିଵ/ଶ
𝑆ଵ𝑆ଵଵ

ିଵ𝑆ଵଵ
ଵ/ଶ

= 𝑆ଵଵ
ଵ/ଶ 𝚷  𝑆

ିଵ/ଶ𝑆
ିଵ/ଶ

𝚷  𝑆ଵଵ
ଵ/ଶ

The ’s produced look like eigenvalues of  [𝚷 𝚷 ] after pre-multiplying 
by 𝑆ଵଵ

ଵ/ଶ & post-multiplying by 𝑆
ିଵ/ଶ, a normalization. 43

Johansen Tests: Eigenvalues

The ’s produced look like eigenvalues of  [𝚷 𝚷 ] after pre-multiplying 
by 𝑆ଵଵ

ଵ/ଶ & post-multiplying by 𝑆
ିଵ/ଶ, a normalization.

𝑨 ൌ 𝑨ொ ൌ ሾ𝑣ଵ, 𝑣ଶ, … , , 𝑣ሿ

• Johansen also finds: 𝜸ෝ ൌ 𝜸ொ ൌ 𝑆ଵ𝑨.

• Johansen (1988) suggested two tests for H0: At most 𝑘 CI vectors:

- The trace test

- The maximal eigenvalue test.

• Both tests are based on the 𝜆’s from

|𝜆𝑰 െ 𝑆ଵଵ
ିଵ/ଶ𝑆ଵ 𝑆

ିଵ𝑆ଵ𝑆ଵଵ
ିଵ/ଶ| ൌ 0.

They are LR tests. They do not have the 𝜒ଶ asymptotic distribution. 44
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• The tests are LR tests with non-standard distributions. 

The trace test: 𝐿𝑅௧ 𝑘 ൌ െ2 lnΛ ൌ െ𝑇∑ ln ሺ1 െ 𝜆መሻ 

ୀାଵ

where 𝜆መ denotes the descending ordered eigenvalues 𝜆መ  ⋯ 
𝜆መ  0 of  |𝜆𝑆ଵଵ െ 𝑆ଵ 𝑆

ିଵ𝑆ଵ| ൌ 0.

Note: The 𝐿𝑅௧ statistic is expected to be close to zero if  there is 
at most 𝑘 (linearly independent) CI vectors.

• If  𝐿𝑅௧ 𝑘  CV (for rank 𝑘), then H0 (CI Rank= 𝑘) is rejected.

• If  Rank() ൌ 𝑘 then 𝜆መబାଵ, … , 𝜆መ should all be close to 0. The
𝐿𝑅௧ሺ𝑘ሻ should be small since ln 1 െ 𝜆መ ൎ 0 for 𝑖  𝑘. 45

Johansen Trace Test

• Under H0, the asymptotic distribution of  𝐿𝑅௧ሺ𝑘ሻ is not 𝜒ଶ. It 
is a multivariate version of  the DF unit root distribution, which 
depends on the dimension 𝑚 െ 𝑘 and the specification of  𝐷௧ .  

• The statistic lnΛ has a limiting distribution, which can be 
expressed in terms of  a 𝑚 െ 𝑘 dimensional Brownian motion 𝑾 as

𝑾෪ is the Brownian motion itself  (𝑾), or the demeaned or detrended
𝑾, according to the different specifications for Dt in the VECM 

• Using simulations, critical values are tabulated in Johansen (1988, 
Table 1) and in Osterwald-Lenum (1992) for 𝑚 െ 𝑘 = 1, . . . , 10.

46
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• An alternative LR statistic, given by

𝐿𝑅௫ 𝑘 ൌ െ2 lnΛ ൌ െ𝑇 ln ሺ1 െ 𝜆መାଵሻ

is called the maximal eigenvalue statistic. It  examines the null 
hypothesis of  𝑘 cointegrating vectors versus the alternative 𝑘  1 CI 
vectors.  That is, H0: CI rank = 𝑘, vs. H1: CI rank = 𝑘  1.

• Similar to the trace statistic, the asymptotic distribution of  this LR is 
not statistic the usual 𝜒ଶ. It is given by the maximum 𝜆 of  the 
stochastic matrix in 

which depends on the dimension 𝑚െ 𝑘 and the specification of  the 
deterministic terms, 𝐷௧ . See Osterwald-Lenum (1992) for CVs.

47

Johansen Maximal EigenvalueTest

Example: We test for units roots on the Schiller’s historical monthly 
data set  (1871 – 2024) for stock prices (SP), earnings (E) and 
dividends (D). We use the R package tseries.

Sh_da <- read.csv("https://www.bauer.uh.edu/rsusmel/4397/Shiller_data.csv", 
head=TRUE, sep=",")

SP <- Sh_da$P # Extract P = S&P500 series

D <- Sh_da$D # Extract D = Dividend S&P500 seriesE <-
Sh_da$E # Extract E = Earnings S&P500 series

i <- Sh_da$Long_i # Extract Long_i = 10-year interest rate series

T <- length(SP)

###  SP = SP500

t0 <-1 # t0=926 (1948:Jan)

x <- SP[t0:T]

adf.test(x, k=12)

pp.test(x,  type = c("Z(alpha)"))

pp.test(x,  type = c("Z(t_alpha)"))

kpss.test(x, null=c("Level", "Trend"))

Johansen CI Tests: Example
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Example (continuation):

Conclusion: Very strong evidence for the unit root hypothesis

Autoregressive Unit Root – Testing: Examples

ADF(12) ADF(8) PP-𝑍ఈబ PP-𝑍௧ KPSS

SP 5.1758
(0.99)

4.9134
(0.99)

18.229
(0.99)

7.458
(0.99)

9.2041
(0.01)

E 3.803
(0.99)

0.37927
(0.99)

4.1169
(0.99)

0.97931
(0.99)

10.123
(0.01)

D 8.1557
(0.99)

4.8629
(0.99)

9.6253
(0.99)

10.092
(0.99)

10.942
(0.01)

i -2.3349
(0.44)

0.4897
(0.49)

-8.6799
(0.63)

-2.1078
(0.53)

3.1092
(0.01)

Example: We test for cointegration among for 𝐼ሺ1ሻ series: 𝑆𝑃, 𝐸, 𝐷
and 10-year interest rates, 𝑖. All taken from Shiller’s historical data. We  
use the R package urca, function ca.jo.
> x_c <- data.frame(SP,D,E,i)
> co_jo <- ca.jo(x_c, ecdet = "const", type="trace", K=2)
> summary(co_jo)

Test type: trace statistic , without linear trend and constant in cointegration

Eigenvalues (lambda):
[1] 9.109170e-02 6.862034e-02 5.691714e-03 2.806550e-03 6.928071e-18

Values of  teststatistic and critical values of  test:

test 10pct 5pct 1pct
r <= 3 |   5.19 7.52 9.24 12.97
r <= 2 | 15.73 17.85 19.96 24.60  We cannot reject H0 (two or less CI relations)
r <= 1 | 146.95 32.00 34.91 41.07  We reject H0 (one or less CI relations)
r = 0  | 323.27 49.65 53.12 60.16  We reject H0 (no cointegration)

Note: Similar conclusion if  we use ecdet = “trend”.  Rank(𝚷) = 2. 50

Johansen CI Tests: Example
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Example (continuation): Now, we use the 𝐿𝑅௫ 𝑘 , using 
function ca.jo, with type= “eigen”. setup for a constant & trend.

> x_c <- data.frame(SP,D,E,i)
> co_eigen <- ca.jo(x_c, ecdet = “trend", type=“eigen", K=2)
> summary(co_eigen)

Test type: maximal eigenvalue statistic (lambda max), without linear trend in 
cointegration

Eigenvalues (lambda):
[1] 9.109170e-02 6.862034e-02 5.691714e-03 2.806550e-03 6.928071e-18

Values of  teststatistic and critical values of  test:

test 10pct 5pct 1pct
r <= 3 | 5.13 10.49 12.25 16.26
r <= 2 | 18.26 16.85 18.96 23.65  We cannot reject H0 (two or less CI relations)
r <= 1 | 127.55 23.11 25.54 30.34  We reject H0 (one or less CI relations)
r = 0  | 177.06 29.12 31.46 36.65  We reject H0 (no cointegration)

Note: Similar conclusion if  we use ecdet = “trend”. 51

Johansen CI Tests: Example

• Suppose we find Rank(𝚷) = 𝑘, 0 ൏ 𝑘 ൏ 𝑚. Then, the CI VECM:

∆𝒀௧ ൌ 𝚪𝟎 𝑫௧  𝜸𝑨′𝒀௧ିଵ  ∑ 𝚪
ିଵ
ୀଵ  ∆𝒀௧ି  𝜀௧

• This is a reduced rank multivariate regression. Johansen derived the 
ML estimation of  the parameters under the reduced rank restriction

Rank(𝚷) = 𝑘. 

Recall that 𝐀 ൌ 𝐀ொ is given by the eigenvectors associated with the 
’s.

• The MLEs of  the remaining parameters are obtained by OLS of

∆𝒀௧ ൌ 𝚪𝟎 𝑫௧  𝜸𝐀′𝒀௧ିଵ  ∑ 𝚪
ିଵ
ୀଵ  ∆𝒀௧ି  𝜀௧

52

ML Estimation of  the CI VECM 
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• Factorization 𝚷 = 𝜸𝑨′ is not unique. The columns of  𝐀ொ may be 
interpreted as linear combinations of  the underlying CI relations.

• For interpretation, it is convenient to normalize the CI vectors by
choosing a specific coordinate system in which to express the 
variables.

• Johansen suggestion: Solve for the triangular representation of  the

CI system. The resulting normalized CI vector is denoted 𝐀𝒄,ொ . 

• The normalization of 𝑨 affects the MLE of 𝜸 but not the MLEs of  
the other parameters in the VECM.

• Properties of  𝐀𝒄,ொ : asymptotically normal and super consistent. 53

ML Estimation of  the CI VECM 

Example (continuation): ca.jo reports the decomposition of  𝚷. 
> summary(co_eigen)

Eigenvectors, normalised to first column:
(These are the cointegration relations)

SP.l2         D.l2        E.l2       i.l2   trend.l2
SP.l2      1.0000000     1.000000   1.0000000   1.0000000   1.0000000
D.l2      50.7585632 -1053.464186 -54.0274352 -34.2698659 -29.1954350
E.l2     -54.1158522   181.277712  -5.1522761  -6.7771361  -4.4754885
i.l2      11.2117969    -5.069838 -25.9188786 206.0186272  30.4983441
trend.l2   0.0603914     2.995943   0.3712533  -0.1085308  -0.8544632

Weights W:
(This is the loading matrix)

SP.l2          D.l2          E.l2          i.l2      trend.l2
SP.d -8.125802e-03 -1.340277e-03 -6.858083e-03 -7.469823e-04  4.272233e-18
D.d -3.388041e-05  1.325556e-07  6.745596e-06  4.970874e-07 -1.577001e-20
E.d 4.305228e-04 -1.664109e-05  2.247754e-04  1.437162e-05 -3.286190e-19
i.d 2.059088e-06  2.840250e-07  3.218113e-05 -1.918360e-05 -2.697507e-20 54

Johansen CI Tests: Example
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• The Johansen MLE procedure only produces an estimate of  the 
basis for the space of  CI vectors.

• It is often of  interest to test if  some hypothesized CI vector lies in 
the space spanned by the estimated basis:

H0: 𝐀 = [𝐀 𝝓] Rank(𝚷) ≤ 𝑘 
𝐀: 𝑠 ×𝑚 matrix of  hypothesized CI vectors

𝝓 : ሺ𝑘 െ 𝑠ሻ×𝑚 matrix of  unspecified CI vectors

• Johansen shows that a LR test can be computed, which is 
asymptotically distributed as a 𝜒ଶ with 𝑠ሺ𝑚 െ 𝑘ሻ degrees of  
freedom.

55

ML Estimation of  the CI VECM: Testing 

• Following Johansen (1988, 1991) one can choose a set of  vectors 
𝐀┴ such that the matrix {𝐀, 𝐀┴} has full rank and 𝐀′𝐀┴ = 0. [𝐀┴
read “𝐀 perp”]

• That is, the 𝑚xሺ𝑚 െ 𝑘ሻ matrix 𝐀┴ is orthogonal to the matrix 𝐀
 columns of  𝐀┴ are orthogonal to the columns of  𝐀. 

• The vectors 𝐀┴ 𝒀௧ represents the non-CI part of  𝒀௧. We call A┴ 
the common trends loading matrix. 

• We refer to the space spanned by A┴ 𝒀௧ as the unit root space of  𝒀௧. 

• Reference: Stock and Watson (1988).
56

Common Trends 
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• The EG’s  two-step estimator is simple, but not asymptotically 
efficient. Several papers proposed improved, efficient methods.

- Phillips (1991): Regression in the spectral domain. 

- Phillips and Loretan (1991): Non-linear EC estimation. 

- Phillips and Hansen (1990): IV regression with a correction a la PP.

- Saikkonen (1991): Inclusion of  leads and lags in the lag-polynomials 
of  the ECM in order to achieve asymptotic efficiency

- Saikkonen (1992): Simple GLS type estimator 

- Park's (1991) CCR estimator transforms the data so that OLS 
afterwards gives asymptotically efficient estimators

- Engle and Yoo (1991): A 3-step estimator for the EG procedure. 

• From all of  these estimators, we can get a t-values for the EC term.
57

Asymptotic Efficient Single Equation Methods 

Example (Lütkepohl (1993)): m=4 U.S. quarterly macro variables: 
Log real M1, Log output, 91-day T-bill yield, 20-year T-bond yield.

Period: 1954 to 1987 

• Analysis:

1) Dickey-Fuller unit root test 

2) Johansen cointegration test integrated order 2, 

3) VECM(2) estimation. 

• SAS Code
proc varmax data=us_money; 

id date interval=qtr; 

model y1-y4 / p=2 lagmax=6 dftest print=(iarr(3)) 
cointtest=(johansen=(iorder=2)) ecm=(rank=1 normalize=y1); 

cointeg rank=1 normalize=y1 exogeneity; 

run; 58

Example: Cointegration - Lütkepohl (1993) - SAS
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• Dickey-Fuller Unit Root Tests
Variable Type Rho Pr < Rho Tau Pr < Tau

y1 Zero Mean 0.05 0.6934 1.14 0.9343

Single Mean -2.97 0.6572 -0.76 0.8260

Trend -5.91 0.7454 -1.34 0.8725

y2 Zero Mean 0.13 0.7124 5.14 0.9999

Single Mean -0.43 0.9309 -0.79 0.8176

Trend -9.21 0.4787 -2.16 0.5063

y3 Zero Mean -1.28 0.4255 -0.69 0.4182

Single Mean -8.86 0.1700 -2.27 0.1842

Trend -18.97 0.0742 -2.86 0.1803

y4 Zero Mean 0.40 0.7803 0.45 0.8100

Single Mean -2.79 0.6790 -1.29 0.6328

Trend -12.12 0.2923 -2.33 0.4170
59

Example: Lütkepohl (1993) – SAS: DF Tests

Note: In all series, 
we cannot reject H0

(unit root).  

60

• The fitted VECM(2) is given as 

Example: Lütkepohl (1993) – SAS: VECM(2)
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Cointegration Rank Test for I(2)

r\k-r-s 4 3 2 1
Trace
of  I(1)

5% CV of  
I(1)

0 384.60903 214.37904 107.93782 37.02523 55.9633 47.21

1 219.62395 89.21508 27.32609 20.6542 29.38

2 73.61779 22.13279 2.6477 15.34

3 38.29435 0.0149 3.84

5% CV I(2) 47.21000 29.38000 15.34000 3.84000

Example: Lütkepohl (1993) – SAS: VECM(2)

• Note: System is cointegrated in rank 1 with integrated order 1.

• The factorization 𝚷 = 𝜸𝑨′

62

Example: Lütkepohl (1993) – SAS: VECM(2)

A (Beta in SAS)

Variable 1 2 3 4

y1 1.00000 1.00000 1.00000 1.00000

y2 -0.46458 -0.63174 -0.69996 -0.16140

y3 14.51619 -1.29864 1.37007 -0.61806

y4 -9.35520 7.53672 2.47901 1.43731

 (Alpha in SAS)

Variable 1 2 3 4

y1 -0.01396 0.01396 -0.01119 0.00008

y2 -0.02811 -0.02739 -0.00032 0.00076

y3 -0.00215 -0.04967 -0.00183 -0.00072

y4 0.00510 -0.02514 -0.00220 0.00016

Normalization y1
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• The factorization 𝚷 = 𝜸𝑨′

63

Long-Run Parameter
Beta Estimates When

RANK=1

Variable 1

y1 1.00000

y2 -0.46458

y3 14.51619

y4 -9.35520

Adjustment Coefficient
Alpha Estimates When

RANK=1

Variable 1

y1 -0.01396

y2 -0.02811

y3 -0.00215

y4 0.00510

Example: Lütkepohl (1993) – SAS: VECM(2)

Covariances of  Innovations

Variable y1 y2 y3 y4

y1 0.00005 0.00001 -0.00001 -0.00000

y2 0.00001 0.00007 0.00002 0.00001

y3 -0.00001 0.00002 0.00007 0.00002

y4 -0.00000 0.00001 0.00002 0.00002

• Covariance Matrix

64

Schematic Representation of  Cross Correlations
of  Residuals

Variable/
Lag

0 1 2 3 4 5 6

y1 ++.. .... ++.. .... +... ..-- ....

y2 ++++ .... .... .... .... .... ....

y3 .+++ .... +.-. ..++ -... .... ....

y4 .+++ .... .... ..+. .... .... ....

+ is > 2*std error, - is < -2*std error, . is between

Portmanteau Test for Cross Correlations
of  Residuals

Up To Lag DF Chi-Square Pr > ChiSq

3 16 53.90 <.0001

4 32 74.03 <.0001

5 48 103.08 <.0001

6 64 116.94 <.0001

Example: Lütkepohl (1993) – SAS: Diagnostics
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• Note: Residuals 
for y3 & y4  are 
non-normal. 
Except the 
residuals for y4,  
no ARCH effects 
on other residuals. 

65

Univariate Model ANOVA Diagnostics

Variable R-Square
Standard
Deviation

F Value Pr > F

y1 0.6754 0.00712 32.51 <.0001

y2 0.3070 0.00843 6.92 <.0001

y3 0.1328 0.00807 2.39 0.0196

y4 0.0831 0.00403 1.42 0.1963

Univariate Model White Noise Diagnostics

Variable
Durbin
Watson

Normality ARCH

Chi-Square
Pr > ChiS

q
F Value Pr > F

y1 2.13418 7.19 0.0275 1.62 0.2053

y2 2.04003 1.20 0.5483 1.23 0.2697

y3 1.86892 253.76 <.0001 1.78 0.1847

y4 1.98440 105.21 <.0001 21.01 <.0001

Example: Lütkepohl (1993) – SAS: Diagnostics

66

Univariate Model AR Diagnostics

Variable

AR1 AR2 AR3 AR4

F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F

y1 0.68 0.4126 2.98 0.0542 2.01 0.1154 2.48 0.0473

y2 0.05 0.8185 0.12 0.8842 0.41 0.7453 0.30 0.8762

y3 0.56 0.4547 2.86 0.0610 4.83 0.0032 3.71 0.0069

y4 0.01 0.9340 0.16 0.8559 1.21 0.3103 0.95 0.4358

Example: Lütkepohl (1993) – SAS: Diagnostics

• Note: Except the residuals for y4,  no AR effects. 
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Testing Weak Exogeneity of
Each Variables

Variable DF Chi-Square Pr > ChiSq

y1 1 6.55 0.0105

y2 1 12.54 0.0004

y3 1 0.09 0.7695

y4 1 1.81 0.1786

• Note: Variable y1 is not weak exogeneous for the other variables, y2, 
y3, & y4; variable y2 is not weak exogeneous for variables, y1, y3, & y4. 

Weak exogeneity  Long-run non-causality

Example: Lütkepohl (1993) – SAS: Diagnostics

• If  a variable can be taken as "given" without losing information for 
statistical inference, it is called weak exogenous. In the CI model, a 
variable do not react to a disequilibrium –i.e., the EC term.


