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Lecture 17
Multivariate Time Series

VAR & SVAR

RS (for private use, not to be posted/shared online).

• A vector series consists of multiple single series. 

• We motivated time series models by saying simple univariate ARMA 
models do forecasting very well. Then, why we need multiple series?

- To be able to understand the relationship between several variables, 
allowing for dynamics. 

- To be able to get better forecasts

Example: Stock price surprises in one market (equity, NYSE) can 
spread easily to another market (options, Tokyo SE). Thus, a joint 
dynamic model may be needed to understand dynamic interrelations 
and may do a better forecasting job. 

Vector Time Series Models 
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Vector Time Series Models 

Vector Time Series Models 
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Vector Time Series Models 

• Consider an 𝑚-dimensional time series 𝒀௧ ൌ ሼ𝑌ଵ,𝑌ଶ, ,… 𝑌௠ሽ′

• The series 𝒀௧is weakly stationary if  its first two moments are time 
invariant and the cross covariance between 𝑌௜௧ and 𝑌௝௦ for all 𝑖 and 𝑗
are functions of  the time difference ሺ𝑠 െ 𝑡ሻ only.

• The mean vector: 𝐸 𝒀௧ ൌ 𝝁 ൌ ሼ𝜇ଵ, 𝜇ଶ, ,… 𝜇௠ሽ′

• The covariance matrix function
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• The correlation matrix function:

where D is a diagonal matrix in which the i-th diagonal element is the 
variance of  the i-th process, i.e.

• The covariance and correlation matrix functions are positive semi-
definite.

• ሼ𝒀௧ሽ ~ 𝑊𝑁ሺ𝟎,𝚺ሻ if  and only if  ሼ𝒀௧ሽ is stationary with mean 0
vector and

Vector Time Series Models 
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• ሼ𝒀௧ሽ is a linear process if it can be expressed as

𝒀௧ ൌ ∑ 𝜳௝
ஶ
௝ୀ଴ 𝜀௧ି௝ , ሼ𝜺௧ሽ ~ 𝑊𝑁ሺ𝟎,𝚺ሻ

where ሼ𝜳௝ሽ  is a sequence of 𝑚x𝑇 matrix whose entries are absolutely 
summable. That is,

∑ |𝜳௝ 𝑖, 𝑙 |ஶ
௝ୀିஶ ൏ ∞, for 𝑖, 𝑙 ൌ 1, 2, … ,𝑚

• For a linear process, 𝐸 𝒀௧ ൌ 𝟎 and 

Γ 𝑘 ൌ  ∑ 𝜳௝ା௞
ஶ
௝ୀିஶ ∑ 𝜳௝

ஶ
௝ୀିஶ ′, 𝑘 ൌ 0,േ1,േ2, …

Vector Time Series Models 

• Let ሼ𝒀௧ሽ be a linear process:

𝒀௧ ൌ 𝝁 ൅𝜳 𝐿  𝜺௧
where 𝜳 𝐿 ൌ ∑ 𝜳௦

ஶ
௦ୀ଴ 𝐿௦

• For the process to be stationary, 𝜳௦ should be square summable in 
the sense that each of the 𝑚x𝑚 sequence 𝛹௜௝,௦ is square summable.

• This is the Wold representation.

Example: VMA(2) with 𝑚 ൌ 1

𝑦௧
𝑥௧

ൌ
𝜇ଵ଴
𝜇ଶ଴

൅
𝛹ଵଵ 𝛹ଵଶ
𝛹ଶଵ 𝛹ଶଶ

𝜀௬௧ିଵ
𝜀௫௧ିଵ

൅
𝛹ଷଵ 0
𝛹ସଵ 𝛹ସଶ

𝜀௬௧ିଶ
𝜀௫௧ିଶ

൅
𝜀௬௧
𝜀௫௧

Vector Time Series Models: MA Representation
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• Let ሼ𝒀௧ሽ be a linear process:

𝜫 𝐿  ሺ𝒀௧ െ 𝝁ሻ ൌ 𝜺௧
where 𝜫 𝐿 ൌ 1 െ∑ 𝜫௦

ஶ
௦ୀ଴ 𝐿௦

• For the process to be invertible, 𝜫௦ should be absolute summable.

Example: VAR(1) with 𝑚 ൌ 1

𝑦௧
𝑥௧

ൌ
𝜇ଵ଴
𝜇ଶ଴

െ
𝛱 ଵ଴ 0

0 𝛱 ଶ଴

𝑥௧
𝑦௧

൅
𝛱 ଵଵ 𝛱 ଵଶ
𝛱 ଶଵ 𝛱 ଶଶ

𝑦௧ିଵ
𝑥௧ିଵ

൅
𝜀௬௧
𝜀௫௧

Vector Time Series Models: AR Representation

• Let ሼ𝒀௧ሽ follow a VARMAሺ𝑝, 𝑞ሻ linear process:

𝜱௣ 𝐿  ሺ𝒀௧ െ 𝝁ሻ ൌ 𝜣௤ 𝐿  𝜺௧
where

𝜱௣ 𝐿 ൌ 𝜱଴ െ𝜱ଵ L െ𝜱ଶ Lଶ െ 𝜱ଷ Lଷ െ …െ𝜱௣ L௣

𝜣௤ ൌ 𝜣଴ ൅ 𝜣ଵ L ൅𝜣ଶ Lଶ ൅ 𝜣ଶ Lଷ ൅ …൅𝜣௤  L௤

• Special cases:

𝑞 ൌ 0  𝜱௣ 𝐿  ሺ𝒀௧ െ 𝝁ሻ ൌ 𝜺௧ -i.e., VARሺ𝑝ሻ

𝑝 ൌ 0  ሺ𝒀௧ െ 𝝁ሻ ൌ 𝜣௤ 𝐿  𝜺௧ -i.e., VARሺ𝑞ሻ

• VARMA process is stationary if the zeros of |𝜱௣ 𝐿 | are outside 
the unit circle. That is, we can write: 

 ሺ𝒀௧ െ 𝝁ሻ  ൌ 𝜳 𝐿  𝜺௧ ൌ 𝜱௣ 𝐿 ିଵ𝜣௤ 𝐿  𝜺௧

VARMA: Representation & Stationarity
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•  VARMA process is stationary if the zeros of |𝜱௣ 𝐿 | are outside 
the unit circle. That is, we can write: 

 ሺ𝒀௧ െ 𝝁ሻ  ൌ 𝜳 𝐿  𝜺௧ ൌ 𝜱௣ 𝐿 ିଵ𝜣௤ 𝐿  𝜺௧

• VARMA process is invertible if the zeros of |𝜣௤ 𝐿 | are outside 
the unit circle. That is, we can write:

𝜫 𝐿  ሺ𝒀௧ െ 𝝁ሻ  ൌ 𝜺௧
𝜣௤ 𝐿 ିଵ𝜱௣ 𝐿 ሺ𝒀௧ െ  𝝁ሻ ൌ 𝜺௧

• Identification problem: Multiplying matrices by some arbitrary 
matrix polynomial may give us an identical covariance matrix. Then, 
the VARMAሺ𝑝, 𝑞ሻ model is not identifiable (not unique 𝑝 & 𝑞). 

VARMA: Representation & Invertibility

Example: VARMA(1,1) process
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VARMA: Identification Problem
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VARMA – Identification Problem

• To eliminate this problem, there are three methods suggested by 
Hannan (1969, 1970, 1976, 1979).

• From each of the equivalent models, choose the minimum MA 
order 𝑞 and AR order 𝑝. The resulting representation will be unique if 
Rankሺ𝜱௣ 𝐿 ሻ ൌ 𝑚.

• Represent 𝜱௣ 𝐿 in lower triangular form. If the order of ௜௝ሺ𝐿ሻ
for 𝑖, 𝑗 ൌ 1, 2, … ,𝑚, then the model is identifiable.

• Represent 𝜱௣ 𝐿 in a form 𝜱௣ 𝐿 ൌ ௣ሺ𝐿ሻ I, where ௣ሺ𝐿ሻ is a 
univariate AR(𝑝). The model is identifiable if ௣ሺ𝐿ሻ ് 0 .

14

VARMA: Identification Problem
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VAR(1) Process: Stationarity & Eigenvalues

• In a VAR process, 𝑌௜,௧ depends not only the lagged values of 𝑌௜,௧ but 
also the lagged values of the other variables. For the VAR(1):

ሺI െ𝜱ଵ𝐿ሻ ሺ𝒀௧ െ 𝝁ሻ ൌ 𝜺௧
- Always invertible.

- Stationary if  |I െ𝜱ଵ𝐿| outside the unit circle. Let 𝜆 = 𝐿-1.

|𝑰 െ 𝜱ଵ𝐿| ൌ 0   |𝜆 െ𝜱ଵ𝑰| ൌ 0

The zeros of ሾ𝑰 െ 𝜱ଵ𝐿| is related to the eigenvalues of 𝜱ଵ.

• Hence, VAR(1) process is stationary if the eigenvalues of 𝜱ଵ, 𝜆௜, 
𝑖 ൌ 1, 2, … ,𝑚, are all inside the unit circle.

15

Example: Check stationarity of the following VAR(1) process:

𝒀௧ ൌ
𝑦௧
𝑥௧

ൌ
𝛱 ଵଵ 𝛱 ଵଶ
𝛱 ଶଵ 𝛱 ଶଶ

𝑦௧ିଵ
𝑥௧ିଵ

൅
𝜀௬௧
𝜀௫௧

ൌ 1.1 െ0.3
0.6 0.2

𝒀௧ ൅  𝜺௧

We check roots of 𝑰 െ 𝜱ଵ𝐿 ൌ 0 

Or equivalently, we check eigenvalues of 𝜱ଵ: |𝜱ଵ െ 𝜆𝑰| ൌ 0 

 1.1 െ 𝜆 െ0.3
0.6 0.2 െ 𝜆

ൌ 0  𝜆ଵ ൌ 0.8; 𝜆ଶ ൌ 0.5. 

16

• The process is stationary.

VAR(1) Process
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• The autocovariance matrix:

17
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VAR(1) Process: Autocovariance Matrix
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VAR(1) Process: Autocovariance Matrix
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• In a VMA process, 𝑌௜,௧ depends not only the lagged values of 𝜀௜,௧ but 
also the lagged values of the errors of other variables. For the VMA(1):

 𝒀௧ ൌ 𝝁 ൅ 𝜀௧ ൅ 𝜣ଵ 𝜺௧ିଵ, ሼ𝜺௧ሽ ~ 𝑊𝑁ሺ𝟎,𝚺ሻ
- Always stationary.
- The autocovariance function:

Γ 0 ൌ 𝚺 ൅ 𝜣ଵ𝚺 𝜣ଵ′

Γ 𝑘 ൌ ൞
െ𝚺 𝜣ଵ

ᇱ      𝑘 ൌ 1

െ𝜣ଵ𝚺    𝑘 ൌ െ1
𝟎        otherwise

- The autocovariance matrix function cuts of after lag 1.

• Thus, VMA(1) process is invertible if the eigenvalues of ; 𝜆௜, 𝑖 ൌ
1, 2, … ,𝑚, are all inside the unit circle. 19

VAR(1) Process: Autocovariance Matrix – VMA

• Same idea as in univariate case. We define the Sample Correlation 
Matrix Function (SCMF): Given a vector 𝑚 series of 𝑇
observations, the sample correlation matrix function is

𝜌ො 𝑘 ൌ |𝜌ො௜௝ሺ𝑘ሻ|

where  𝜌ො௜௝ሺ𝑘ሻ’s are the crosscorrelation for the 𝑖-th and 𝑗-th
component series. 

• It is useful to identify VMA(𝑞). 

• Tiao and Box (1981) proposed to use +, and . signs to show the 
significance of the cross correlations:
+ (-) sign: the value is greater (less) than 2 times the estimated SE
. sign: the value is within the 2 times estimated SE

20

VARMA – Identification
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Partial Autoregression or Partial Lag 
Correlation Matrix Function

• They are useful to identify VAR order. The partial autoregression
matrix function is proposed by Tiao and Box (1981), but it is not a 
proper correlation coefficient. 

• Then, Heyse and Wei (1985) have proposed the partial lag 
correlation matrix function which is a proper correlation coefficient.

• Both of them can be used to identify the VARMAሺ𝑝, 𝑞ሻ.

21

Granger Causality

• In principle, the concept is as follows:

If 𝑋 causes 𝑌, then, changes of 𝑋 happened first then followed by 
changes of 𝑌.

• Then, if 𝑋 causes 𝑌, there are two conditions to be satisfied:

1. 𝑋 can help in predicting 𝑌. ( Regression of 𝑋 on 𝑌 has a big R2.)

2. 𝑌 can not help in predicting 𝑋. 

• In most regressions, it is hard to discuss causality. For instance, the 
significance of the coefficient 𝛽 in the regression

𝑦௧ ൌ 𝛽𝑥௧ ൅  𝜀௧ 𝛽
only tells there is a relationship between 𝑥௧ and 𝑦௧, not that 𝑥௧ causes 
𝑦௧. 

22
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Granger Causality

• Vector autoregression allows a test of ‘causality’ in the previous 
sense. This test is first proposed by Granger (1969) and later by Sims 
(1972) therefore we called it Granger (or Granger-Sims) causality. 

• We will restrict our discussion to a system of two variables, 𝑥௧ and 
𝑦௧: 𝑦௧ is said to Granger-cause 𝑥௧ if current or lagged values of 𝑦௧
helps to predict future values of 𝑥௧. 

-- On the other hand, y fails to Granger-cause 𝑥௧ if for all 𝑠 ൐ 0, the 
MSE of a forecast of 𝑥௧ା௦ based on (𝑥௧, 𝑥௧ିଵ, . . .) is the same as that 
is based on (𝑦௧, 𝑦௧ିଵ, … ሻ and ሺ𝑥௧, 𝑥௧ିଵ, … ሻ. 

• For linear functions, 𝑦௧ fails to Granger-cause 𝑥௧ if

23      ,,,,,ˆ,,ˆ
111   ttttstttst yyxxxEMSExxxEMSE

• Restricting ourselves to linear functions, 𝑦௧ fails to Granger-cause 
𝑥௧ if

MSE[Eሾ𝑥௧ା௦|𝑥௧ , 𝑥௧ିଵ, … ሿ = MSE[Eሾ𝑥௧ା௦|𝑥௧ , 𝑥௧ିଵ, … ,𝑦௧,𝑦௧ିଵ,…]

• Equivalently, we can say that 𝑥௧ is exogenous in the time series 
sense with respect to 𝑦௧, or 𝑦௧ is not linearly informative about future 
𝑥௧. 

• A variable X is said to Granger cause another variable Y, if Y can be 
better predicted from the past of X and Y together than the past of Y
alone, other relevant information being used in the prediction (Pierce, 
1977). 

24

Granger Causality
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• In the VAR equation, the example we proposed above (𝑥௧ Granger 
causes 𝑦௧) implies a lower triangular coefficient matrix:

• Or if we use MA representations,

𝒀௧ ൌ
𝑥௧
𝑦௧

ൌ
𝜇ଵ
𝜇ଶ

൅
Ψଵଵሺ𝐿ሻ 0
Ψଶଵሺ𝐿ሻ Ψଶଶሺ𝐿ሻ

𝑎ଵ௧
𝑎ଶ௧

where 

Ψଵଵ 𝐿 ൌ 𝜙௜௝
଴ ൅ 𝜙௜௝

ଵ 𝐿 ൅ 𝜙௜௝
ଶ 𝐿ଶ ൅⋯ ,

𝜙ଵଵ
଴ ൌ 𝜙ଶଶ

଴ ൌ 1, 𝜙ଶଵ
଴ ൌ 0

25



































































t

t

pt

pt

pp

p

t

t

t

t

a

a

y

x

y

x

c

c

y

x

2

1

2221

11

1

1

1
22

1
21

1
11

2

1 00









Granger Causality: VAR Formulation

• Consider a linear projection of 𝑦௧ on past, present and future 𝑥௧’s,

𝑦௧ ൌ c ൅ ∑ 𝑏௝
ஶ
௝ୀ଴ 𝑥௧ି௝ ൅∑ 𝑑௝

ஶ
௝ୀ଴ 𝑥௧ା௝ + 𝜀௧ ,

where E[𝜀௧𝑥ఛሿ ൌ 0 for all 𝑡 and 𝜏. Then, 𝑦௧ fails to Granger-cause 𝑥௧
iff 𝑑௝ ൌ 0 for 𝑗 ൌ 1, 2, … .

• Steps

1) Check that both series are stationary in mean, variance and 
covariance (if, not, transform data via differences, logs, etc.)

2) Estimate AR(𝑝) models for each series. Make sure residuals are 
white noise. F-tests and/or AIC, BIC can be used to determine 𝑝.

3) Re-estimate both models, with all the lags of the other variable.

4) Use F-tests to determine whether, after controlling for past Y, past 
values of X can improve forecasts Y (and vice versa).

26

Granger Causality: Test
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• Causality Model:

𝑥௧ ൌ 𝑐ଵ ൅ ∑ 𝛼௝
௣ೣ
௝ୀ଴ 𝑥௧ି௝ ൅∑ 𝛽௝

௣೤
௝ୀ଴ 𝑦௧ି௝ ൅ 𝜀௧ ,

H0 (𝑦௧ does not Granger cause 𝑥௧): 𝛽ଵ ൌ 𝛽ଶ ൌ ...ൌ 𝛽௣೤ ൌ 0.

• Steps in practice

1) Once the lag structures are determined, estimate the causality 
model. Keep 𝑅𝑆𝑆௎ .
2) Estimate a  restricted regression (without the 𝑦௧’s). Keep 𝑅𝑆𝑆ோ.

3) Construct F-test as usual:
F ൌ ሾሺ𝑇 െ 𝑘ሻ/𝑝௬ሿ ∗ [(𝑅𝑆𝑆ோ – 𝑅𝑆𝑆௎)/𝑅𝑆𝑆௎]

where 𝑘 ൌ ሺ1 ൅ 𝑝௫ ൅ 𝑝௬ሻ is the number of parameters from model 
𝑈, 𝑞 is the number of parameters from model 𝑅 ൌ ሺ1 ൅ 𝑝௫) and 
𝑝௬ ൌ ሺ𝑘 െ 𝑞ሻ. 27

Granger Causality: Setting up the F-Test

• There are 4 possible conclusions from test:

1. 𝑋 Granger causes Y, but Y does not Granger cause 𝑋
2. Y Granger causes X, but 𝑋 does not Granger cause Y

3. 𝑋 Granger causes Y and Y Granger causes 𝑋 --i.e., there is a 
feedback system or bidirectional causality.

4. 𝑋 does not Granger cause Y and Y does not Granger cause 𝑋

28

Granger Causality: Possible Outcomes
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• From Chuang and Susmel (2010): Bivariate analysis of relation 
between stock returns and Volume in Taiwan.

𝑉௜௝,௧: Detrended trading volume of portfolio 𝑖𝑗, 

𝑅௠,௧: Return on a value-weighted Taiwanese market index, 

𝑅௜௝,௧: Return of portfolio 𝑖𝑗, 

𝐷𝐴𝑉𝑅௠,௧: Detrended absolute value of market returns, and 

𝐷𝑀𝐴𝐷௜௝,௧: Detrended mean absolute portfolio return deviation. 

Portfolio 𝑖𝑗: Portfolio of size 𝑖 and institutional ownership 𝑗. 29

Granger Causality: Example

, ,1 ,11 , ,12 , ,13 ,
0 0 1

,11 , ,12 , ,1
1 1

,        

A B C

ij t ij ij a m t a ij b ij t b ij c ij t c
a b c

D D

ij d ij t d ij d m t d ij t
d d

V DAVR DMAD R

V R

   

  

  
  

 
 

   

  

  

 

, , 2 , 2 1 , , 2 2 , , 2
1 1

,
D D

m t ij i j d i j t d i j d m t d i j t
d d

R V R    
 

    

• Estimation SUR

• Granger causality tests (Wald tests) 𝛾௜௝,ଵଶௗ

- For any portfolio 𝑖𝑗 we test H0 : 𝛾௜௝,ଵଶௗ ൌ 0 for all 𝑑.

 Market returns do not Granger-cause portfolio volume. 

- Sign of causality. If the sum of the 𝛾௜௝,ଵଶௗ coefficients is significantly 
positive  Positive causality from market returns to trading volume

- For any portfolio 𝑖𝑗 we test H0: 𝛾௜௝,ଶଵௗ ൌ 0 for all 𝑑.

 Portfolio volume do not Granger-cause market returns. 

- W-D statistics: Granger causality test  --it follows a 𝜒஽
ଶ .

- W-1: Sum of the lagged coefficients is equal to zero (identify the 
sign of the causality) --it follows a 𝜒ଵ

ଶ 30

Granger Causality: Example
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31

Panel A: Size-institutional ownership portfolios

Pi

j

Hypothesis 1 Does causality exist? (W-
D statistic)

Sum of lagged 
coefficients

Hypothesis 2 Sign of causality (W-1 
statistic)

P

1l

1l,12d = 0 for all d Yes (19.4919***) 0.0382 Positive (19.4514***)

1l,21d = 0 for all d No (0.1566) 0.0466

P

1h

1h,12d = 0 for all d Yes (21.2543***) 0.0285 Positive (21.1123***)

1h,21d = 0 for all d No (0.0658) 0.0559

P

2l

2l,12d = 0 for all d Yes (15.8748***) 0.0446 Positive (15.7221***)

2l,21d = 0 for all d No (0.7614) 00.1864

P

2h

2h,12d = 0 for all d Yes (11.2518***) 0.0150 Positive (11.1957***)

2h,21d = 0 for all d No (1.9206) 0.2649

P

3l

3l,12d = 0 for all d Yes (39.4826***) 0.0569 Positive (35.7789***)

2

1 ,121
0

l dd





2

1 ,121
0h dd






2

2 ,121
0

l dd




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2 ,121
0

h dd




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3 ,121
0l dd






Granger Causality: Example

• H0: 𝛾௜௝,ଵଶௗ ൌ 0 for all 𝑑  rejected for all size-institutional 
ownership portfolios (shown in previous Table) and all volume-
institutional ownership portfolios (not shown), respectively. 

- The cumulative effect of lagged market returns on portfolio volume 
is positive –i.e., Σj 𝛾௜௝,ଵଶௗ,௧ି௝ ൐ 0- and significant.

• H0 : 𝛾௜௝,ଶଵௗ= 0 for all 𝑑.  cannot be rejected for any size-
institutional ownership portfolios (shown) and any volume-
institutional ownership portfolios (not shown), respectively. 

• No feedback relation between portfolio volume and market returns 
(consistent with the sequential information arrival orthe positive 
feedback trading hypotheses). 32

Granger Causality: Example
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Granger Causality: Chicken or Egg?

• This causality test is also can be used in explaining which comes 
first: chicken or egg. More specifically, the test can be used in testing 
whether the existence of egg causes the existence of chicken or vise 
versa. 

• Thurman and Fisher (1988) did this study using yearly data of 
chicken and egg productions in the US from 1930 to1983.

• The results:

1. Egg causes the chicken.

2. There is no evidence that chicken causes egg. 

33

• Granger causality does not equal to what we usually mean by 
causality. 

• Even if 𝑥ଵ does not cause 𝑥ଶ, it may still help to predict 𝑥ଶ, and 
thus Granger-causes 𝑥ଶ if changes in 𝑥ଵ precedes that of 𝑥ଶ for some 
reason (usually because of a third variable, missing in the model).

Example: A dragonfly flies much lower before a rain storm, due to 
the lower air pressure. We know that dragonflies do not cause a rain 
storm, but it does help to predict a rain storm, thus Granger-causes a 
rain storm.

34

Granger Causality: Remarks
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• When 𝑥ଵ does not cause 𝑥ଶ, we say that 𝑥ଶ is strongly exogenous 
and thus Granger-causes 𝑥ଵ if changes in 𝑥ଶ precedes that of 𝑥ଵ for 
some reason (usually because of a third variable, missing in the 
model).

Example: The dragonfly is strongly exogenous with respect to rain. 

35

Granger Causality: Exogeneity

• It is a simultaneous equations model. It is used to described dynamic 
effects in a multivariate system. For example,

𝑩𝒀௧ ൌ 𝚪𝟎 + 𝚪ଵ 𝒀௧ିଵ + 𝚪ଶ 𝒀௧ିଶ +... + 𝚪௣ 𝒀௧ି௣ +𝜀௧
where

𝜀௧ ~ 𝑖𝑖𝑑 𝐷 𝟎,𝚺  
• Note:

- 𝜀ଵ௧ , 𝜀ଶ௧,..., 𝜀௡௧ are called structural errors. 𝚺 is a diagonal matrix.

- In general, cov(𝑦௜௧, 𝜀௝௧ሻ ് 0 for all 𝑖, 𝑗.

- All variables are endogenous - OLS is not appropriate

• From this model, we can move to a reduced form, say

𝒀௧ = 𝚽𝟎 + 𝚽ଵ 𝒀௧ିଵ + 𝚽ଶ 𝒀௧ିଶ +... + 𝚽௣ 𝒀௧ି௣ + 𝑎௧

• The 𝑎௧’s are called reduced form errors, a linear combination of 𝜀௧’s.

Structural VAR (SVAR)
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• Like in SEM, we have identification issues. To recover the structural 
parameters (B, Γ, 𝚺) we need to impose restrictions. 

• Many applications in finance:

- The effect of financial news on stock prices (or returns): 

- [r, y, , d, c  P (or P)]     - see Chen et al (JB, 1986)

- Analysis of policy effects (𝑀௦, G) on stock market. 

- Relative importance of markets (stock vs. options markets).

• Long history in economics. Formalized by Sims (Econometrica, 1980), 
as a generalization of univariate analysis to an array of RV. Sims 
analyzed a 3x1 vector 𝒀௧ with elements, Money supply (𝑍௧), interest 
rates (𝑋௧) & income (𝑉௧), in reduced form:

𝒀௧ ൌ  𝒄 + 𝚽ଵ 𝒀௧ିଵ + 𝚽ଶ 𝒀௧ିଶ +... + 𝚽௣ 𝒀௧ି௣ + 𝑎௧  VAR(𝑝)

Structural VAR (SVAR)

• Sims analyzed: Money supply (𝑍௧), interest rates (𝑋௧) & income (𝑉௧) in 
reduced form:

𝒀௧ ൌ  
𝑍௧
𝑋௧
𝑉௧

= 𝒄 + 𝚽ଵ 𝒀௧ିଵ + 𝚽ଶ 𝒀௧ିଶ +... + 𝚽௣ 𝒀௧ି௣ + 𝑎௧  VAR(𝑝)

with
𝐸 𝑎௧ ൌ 0

𝐸 𝑎௧𝑎ఛ′ ൌ ቊ𝛀  𝑡 ൌ 𝜏
0   𝑡 ്  𝜏

𝚽௜ are matrices. For the 1st lag matrix 

• A typical equation of  the system is:

)1(

333231

232221

131211

1






















SVAR: Sims (1980) Formulation 
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Note: Each equation has the same regressors.
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• VARMAX Models, like a VAR, but allows exogenous variables,  𝑿௧:

Φ௉ 𝐿   𝒀௧ ൌ 𝐺௠ 𝐿  𝑿௧൅ Θ𝒒 𝐿  𝜀௧

• Structural VAR Models:

𝑩𝒀௧ ൌ 𝚪𝟎 + 𝚪ଵ 𝒀௧ିଵ + 𝚪ଶ 𝒀௧ିଶ +... + 𝚪௣ 𝒀௧ି௣ + 𝜀௧ SVAR(𝑝)

where 𝜀௧ ~ 𝑖𝑖𝑑 𝐷 𝟎,𝚺 , where 𝚺 is a diagonal matrix.

- Some theory to determine  𝒀௧, but all variables are endogenous.

• VAR Models (reduced form): 

𝒀௧ = 𝚽𝟎 + 𝚽ଵ 𝒀௧ିଵ + 𝚽ଶ 𝒀௧ିଶ +... + 𝚽௣ 𝒀௧ି௣ + 𝑎௧

where the error term is a WN vector: 𝐸 𝑎௧𝑎ఛ′ ൌ ቊ𝛀  𝑡 ൌ 𝜏
0   𝑡 ്  𝜏

SVAR: Multivariate Models

• VAR Models (reduced form): 

𝒀௧ = 𝚽𝟎 + 𝚽ଵ 𝒀௧ିଵ + 𝚽ଶ 𝒀௧ିଶ +... + 𝚽௣ 𝒀௧ି௣ + 𝑎௧

where the error term is a WN vector: 𝐸 𝑎௧𝑎ఛ′ ൌ ቊ𝛀  𝑡 ൌ 𝜏
0   𝑡 ്  𝜏

•  𝒀௧ is a function of  predetermined variables (𝒀௧ି𝒋’s) and errors are 
well behaved: OLS is possible. 

SVAR: Multivariate Models
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• Consider a bivariate 𝒀௧ = (𝑦௧, 𝑥௧),  first-order VAR model:

𝑦௧
𝑥௧

ൌ
𝑏ଵ଴
𝑏ଶ଴

െ
𝑏ଵଶ 0
0 𝑏ଶଵ

𝑥௧
𝑦௧

൅
𝛾ଵଵ 𝛾ଵଶ
𝛾ଶଵ 𝛾ଶଶ

𝑦௧ିଵ
𝑥௧ିଵ

൅
𝜀௬௧
𝜀௫௧

• The error terms (structural shocks) 𝜀௬௧  and 𝜀௫௧ are uncorrelated WN 
innovations with standard deviations y and x (& zero covariance).

• Note:

- 𝑦௧ & 𝑥௧ are endogenous. 𝜀௬௧ affects 𝑦௧ directly and 𝑥௧ indirectly.

- Many parameters to estimate: 10.

• The structural VAR is not a reduced form. In a reduced form 
representation 𝑦௧ and 𝑥௧ are just functions of  lagged 𝑦௧ and 𝑥௧.

SVAR: VAR(1)

• To get a reduced form write the structural VAR in matrix form as:

𝑏ଵଶ 1
1 𝑏ଶଵ

𝑦௧
𝑥௧

ൌ
𝑏ଵ଴
𝑏ଶ଴

൅
𝛾ଵଵ 𝛾ଵଶ
𝛾ଶଵ 𝛾ଶଶ

𝑦௧ିଵ
𝑥௧ିଵ

൅
𝜀௬௧
𝜀௫௧

𝑩 𝒀௧ ൌ ൌ 𝚪଴ + 𝚪ଵ 𝒀௧ିଵ ൅ 𝜺௧

• Premultipication by B-1 allow us to obtain a standard VAR(1):

𝒀௧ ൌ 𝑩ିଵ𝚪𝟎 + 𝑩ିଵ𝚪ଵ 𝒀௧ିଵ ൅ 𝑩ିଵ𝜺௧
𝒀௧ ൌ 𝚽଴ + 𝚽ଵ 𝒀௧ିଵ+  𝑎௧

• This is the reduced form to estimate (by OLS equation by 
equation). Now, we have only 9 (6 mean, 3 variance) parameters.

• From the a reduced form:   (𝑰 െ 𝚽ଵ 𝐿) 𝒀௧ ൌ 𝚽ሺ𝐿ሻ 𝒀௧ ൌ 𝚽଴ +  𝑎௧,
the stability depends on the roots of  (𝑰 െ 𝚽ଵ 𝐿).

SVAR: VAR(1) – Reduced Form
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SVAR: Stability Conditions

• From the a reduced form:
(𝑰 െ 𝚽ଵ 𝐿 െ𝚽ଶ  𝐿ଶെ ⋯െ𝚽௣  𝐿௣) 𝒀௧ ൌ 𝚽଴ +  𝑎௧

𝚽ሺ𝐿ሻ 𝒀௧ ൌ 𝚽଴ +  𝑎௧

𝚽ሺ𝐿ሻ is a 𝑛x𝑛 matrix polynomial in 𝐿, with the 𝑖𝑗 element

(𝛿௜௝ െ 𝜙௜௝
ሺଵሻ𝐿 െ 𝜙௜௝

ሺଶሻ  𝐿ଶെ ⋯െ 𝜙௜௝
ሺ௣ሻ 𝐿௣)     𝛿௜௝ ൌ ቊ

1  if 𝑖 ൌ 𝑗
0   if 𝑖 ് 𝑗

• A VAR(𝑝) for 𝒀௧ is stable if  the 𝑝x𝑛 roots of  the characteristic 
polynomial are outside the unit circle.
- The characteristic polynomial: 

|𝑰 െ 𝚽ଵ 𝐿 െ𝚽ଶ  𝐿ଶെ ⋯െ𝚽௣  𝐿௣|=0

• Then, we define the constant:
𝝁 ൌ ሺ𝑰 െ 𝚽ଵ െ𝚽ଶ െ⋯െ𝚽௣ ሻିଵ 𝚽଴ 

• If  the VAR is stable  then a  MA(∞) representation exists.

𝒀௧ ൌ 𝝁 ൅ 𝒂௧ ൅ 𝜳ଵ 𝒂௧ିଵ ൅ 𝜳ଶ  𝒂௧ି𝟐൅⋯ ൌ 𝝁 ൅𝜳 𝐿 𝒂௧

• This representation will be the “key” to study the impulse response 
function (IRF) of  a given shock.

Example: For the VAR(1), multiply both sides of  reduced form by 
ሺ𝑰 െ 𝚽ଵ𝐿ሻିଵ. Then, 

𝜳 𝐿 = ሺ𝑰 െ 𝚽ଵ𝐿ሻିଵ  𝜳଴ ൌ 𝑰
𝜳௞ ൌ  𝚽ଵ

𝒌

𝝁 ൌ 𝚽ሺ1ሻିଵ 𝚽଴ 

SVAR: Stability Conditions
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• The SMA of  𝒀௧ is based on an infinite moving average of  the 
structural innovations, 𝜺௧. Using 𝒂௧ = 𝑩ିଵ𝜺௧ in the Wold
representation gives

𝒀௧ ൌ 𝝁 ൅𝜳 𝐿 𝒂௧ ൌ 𝝁 ൅𝜳 𝐿 𝑩ିଵ𝜺௧
ൌ 𝝁 ൅ 𝜣 𝐿  𝜺௧

𝜣 𝐿 ൌ 𝜳 𝐿 𝑩ିଵ ൌ 𝑩ିଵ ൅𝜳ଵ 𝑩ିଵ ൅𝜳ଶ𝑩ିଵ ൅⋯

That is, 
𝜣଴ ൌ 𝑩ିଵ≠ I
𝜣ଵ = 𝜳ଵ 𝑩ିଵ = 𝚽ଵ 
....
𝜣௞= 𝜳௞ 𝑩ିଵ = 𝚽ଵ

𝒌

Structural MA (SMA) Representation

• Re-writing the system in deviations from its mean:
ሺ𝒀௧ െ 𝝁ሻ = 𝚽ଵ ሺ𝒀௧ିଵ െ 𝝁ሻ+ … + 𝚽௣ ሺ𝒀௧ି௣ െ𝝁ሻ + 𝑎௧

- Stack the vectors as


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


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
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
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

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





 





























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SVAR: VAR(p) to VAR(1)

- Write the VAR(1):
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• We assume normality for the errors. Then, we use the conditioning 
trick to write down the joint likelihood. That is,
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SVAR: Estimation – MLE
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• Under the previous assumptions, we get that OLS = MLE. That is,

• Proof: 

SVAR: Estimation – OLS = MLE
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• Then, the (reduced form) VAR can be estimated equation by 
equation by OLS.

SVAR: Estimation – OLS (univariate)

• Testing as usual. For example, the LR in a VAR. We need to 
estimate the restricted model (under H0) and unrestricted (under H1).
The likelihood is given by: 
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SVAR: Testing

• Suppose we want to test p1> p0: 
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• First, we estimate the model under H0, with 𝑝0 parameters. The 
estimation consists of  𝑛 OLS regression of  each variable on a 
constant and 𝑝0 lags:

• Second, we estimate the model under H1, with p1 parameters:

2
ˆlog

2
)2log(

2
)ˆ,ˆ( 1

1

TnTTn
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• Construct LR, as usual:

SVAR: Testing

Let ( )  denote the (nk 1) (with k=1+np number of parameters T

estimated per equation) vector of coef. resulting from OLS regressions of each 

of the elements of y  on x  for a sample of size T: 
t t

vec T   
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-1
1.T T T' . ,  where  = x x x y   t t t itT iT

t=1 t=1
n.T
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1
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• In general, linear hypotheses can be tested directly as usual and their 
asymptotic distribution follows from the next asymptotic result:

SVAR: Testing – Asymptotic Distribution
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
 





• In the same way as in the univariate AR(𝑝) models, Information 
Criteria (𝐼𝐶) can be used to choose the 𝑝 in a VAR:   

• Similar consistency and efficiency results to the ones obtained in the 
univariate world apply here. 

• The main difference is that as the number of  variables gets bigger, it is 
more unlikely that the A𝐼𝐶 ends up overparametrizing --see Gonzalo and 
Pitarakis (2002).

SVAR: Identification with IC

• After selecting the lag structure for the VAR(𝑝) –i.e., assuming a 
“correct” lag length 𝑝–, test for Granger causality, as usual.. Then,

𝑥௧ ൌ 𝜇 ൅ 𝛼ଵ 𝑥௧ିଵ ൅ 𝛼ଶ 𝑥௧ିଶ ൅ . . .൅ 𝛼௣ 𝑥௧ି௣ ൅ 
൅ 𝛽ଵ 𝑦௧ିଵ ൅ 𝛽ଶ 𝑦௧ିଶ ൅ . . .൅ 𝛽௣ 𝑦௧ି௣ ൅ 𝜀௧

• Estimate model by OLS and test for the following hypothesis
H0: 𝛽ଵ ൌ 𝛽ଶ ൌ ⋯ ൌ 𝛽௣ ൌ 0 (𝑦௧ does not Granger-cause 𝑥௧)
H1: any 𝛽௜ ് 0.

• Get RSS for the restricted and unrestricted model. Then, calculate 
the F-test: 

F = [(T-2p-1)/p] * [(RSSR – RSSU)/RSSU]

SVAR: Granger Causality – Testing
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• Goal: We want to study the reaction of  a VAR(𝑝) system to a shock. 
𝚽ሺ𝐿ሻ 𝒀௧ ൌ 𝚽଴ +  𝑎௧.

Assuming the system is stable, we move to an MA representation:, 
𝒀௧ ൌ 𝝁 ൅𝜳 𝐿  𝒂௧

where 
𝜳 𝐿 ൌ ሾ𝚽ሺ𝐿ሻሿି𝟏

Writing the system at time 𝑡 ൅ 𝑠:
𝒀௧ା௦ ൌ 𝝁 ൅ 𝒂௧ ൅ 𝜳ଵ 𝒂௧ା௦ିଵ ൅ 𝜳ଶ  𝒂௧ା௦ି𝟐൅ ⋯൅𝜳௦  𝒂௧൅ ⋯

Then,

 
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

𝑚 x 𝑚
Reaction of  the 𝑖-variable to a unit 
change in innovation 𝑗.

(multipliers)

SVAR: IRF

• Impulse-response function: The response of  𝑦௜,௧ା௦ to one-time 
impulse in 𝑦௝,௧, given by 𝑎௝,௧, with all other variables dated 𝑡 or earlier 
held constant. (Usually, the size of  the shock is in SD units, for 
example, 𝑎௝,௧ ൌ 𝑘𝜎௝ with 𝑘 ൐ 0.)  
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jt
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y
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ij

1 2 3

SVAR: IRF

where 
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Example: We have a stable VAR(1) model:

𝒀௧ ൌ
𝑦ଵ௧
𝑦ଶ௧

ൌ
𝜙ଵଵ 𝜙ଵଶ
𝜙ଶଵ 𝜙ଶଶ

𝑦ଵ௧ିଵ
𝑦ଶ௧ିଵ

൅
𝑎ଵ௧
𝑎ଶ௧

where 

𝜮௔ ൌ
𝜎ଵ
ଶ 𝜎ଵଶ

𝜎ଵଶ 𝜎ଶ
ଶ

• We start at a point of  equilibrium (𝑡 ൏ 0). Then, at 𝑡 ൌ 0 we shock 
one variable, 𝑦ଶ௧, in the VAR(1) system, by creating a 𝑎ଶ௧ୀ଴ ൌ 1. 

Assume there is no additional shock after 𝑡 ൌ 0.

In our example, 𝑡 ൏ 0  𝑦ଵ௧ ൌ 𝑦ଶ௧ ൌ 0
𝑡 ൌ 0  𝑎ଵ଴ ൌ 0, & 𝑎ଶ଴ ൌ 1 ሺ 𝑦ଶ଴ ൌ 1ሻ
𝑡 ൐ 0  𝑎ଵ௧ ൌ 0, & 𝑎ଶ௧ ൌ0

SVAR: IRF – Example
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        

       
         

     



(impulse)

Example (continuation): 
Shock dynamics, 𝑡 ൏ 0  𝑦ଵ௧ ൌ 𝑦ଶ௧ ൌ 0

𝑡 ൌ 0  𝑎ଵ଴ ൌ 0, & 𝑎ଶ଴ ൌ 1 ሺ 𝑦ଶ଴ ൌ 1ሻ
𝑡 ൐ 0  𝑎ଵ௧ ൌ 0, & 𝑎ଶ௧ ൌ 0

• Reaction of  the system

SVAR: IRF – Example
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• If  we work with the MA representation:
𝜳 𝐿 ൌ ሾ𝚽ሺ𝐿ሻሿି𝟏

with 𝜳ଵ ൌ 𝚽ଵ

𝜳ଶ ൌ 𝚽ଵ
ଶ

⋮
𝜳௦ ൌ 𝛷ଵ

௦

• In this example, the variance-covariance matrix of  the innovations
is not diagonal –i.e., 𝜎ଵଶ ≠ 0. There is contemporaneous correlation 
between shocks, then 

𝑦ଵ଴
𝑦ଶ଴

ൌ 0
1

 → Not very realistic

• To avoid this problem, the variance-covariance matrix has to be 
diagonalized (the shocks have to be orthogonal) and here is where 
the serious problems appear.

SVAR: IRF – Orthogonal shocks

• Reminder: A is a p.d. symmetric matrix. Then, Q A-1Q’ = I. 

• Then, the MA representation:
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• Orthogonalized IRF: 

Problem: Q is not unique. 

SVAR: IRF – Orthogonal shocks
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• Contribution of  the 𝑗-th orthogonalized innovation to the MSE of  
the 𝑠-period ahead forecast

1 1 1 1

1 1 1 1

1 1' 1 1'
1 1

1 1'
1 1

1 1'

ˆ ˆ ˆ( ( )) ( ( ))( ( )) '

ˆ( ) ( ) .....

[ ( ) ( ) '] ' .... '

( ) ' ' ' ....

' '

t t s t t s t

t t s t t s t s s t

t t a a s a s

a a

s a s

MSE Y s E Y Y s Y Y s

e s Y Y s a a a

E e s e s

MSE s Q Q Q Q Q Q Q Q

Q Q Q Q

Q Q

 

     

 

   

 
 

 

  

      
          

      

   

 1 1' 1 1'
1 1 1 1

0 0 1 1 1 1

' ....... '

' ' ......... '
s s

s s

Q Q Q Q

M M M M M M

   
 

 

      
   1

1
0 0

recall that  

and ,

i iM Q

M Q I





 

  

• Contribution of  the first orthogonalized innovation to the MSE. 
(Do this for a two variables VAR model!)

SVAR – Variance Decomposition

Example: Variance  decomposition in a two variables (𝑦௧, 𝑥௧) VAR
- The 𝑠-step ahead forecast error for variable 𝑦௧ is:

y E y M (1,1) M (1,1) ... M (1,1)t s t t s yt s0 1 yt s 1 s 1 yt 1

M (1, 2) M (1, 2) ... M (1, 2)xt s0 1 xt s 1 s 1 xt 1

              

         

SVAR: Variance Decomposition

- Denote the variance of  the s-step ahead forecast error variance of  
𝑦௧ା௦ as for ௬ሺ𝑠ሻଶ:

2 2 2 2 2
(s) [M (1,1) M (1,1) ... M (1,1) ]y y 0 1 s 1

2 2 2 2
[M (1, 2) M (1, 2) ... M (1, 2) ]x 0 1 s 1

      

    

- The forecast error variance decompositions are proportions of  
௬ሺ𝑠ሻଶ.
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SVAR: Relative Importance of  Variables

- The forecast error variance decompositions are proportions of  
௬ሺ𝑠ሻଶ.

Note: We can use these proportions to measure relative importance of  
a variable in the system. 

Q: Which markets have more relevance (shocks are more relevant to 
the system)? Are stock or options markets more important?

2
y

2
y

2 2 2 2
[M (1, 1) M (1, 1) ... M (1, 1) ]y 0 1 s 1

2 2 2 2
[M (1, 2) M (1, 2) ... M (1, 2) ]x 0 1 s 1

due to shocks to y / (s)

due to shocks to x / (s)

    

    

 

 

ytt 10 t 111 1212

t 20 21 22 t 1 xt

y b y1 b

x b x0 1




          
                        

• We started with a SVAR model, and transformed into the reduced 
form or standard VAR for estimation purposes.

• Q: Is it possible to recover the parameters in the SVAR from the 
estimated parameters in the standard VAR? No!!

• There are 10 parameters in the bivariate SVAR(1) and only 9
estimated parameters in the standard VAR(1). Thus, the VAR is 
underidentified. We need restrictions (exclusion, linear restrictions, etc.)

• If  one parameter in the bivariate SVAR above is restricted, say 
excluded, (order condition met!), the VAR is exactly identified. 

• Sims (1980) suggests a recursive system to identify the model letting 
b21 = 0.

SVAR: Identification in VAR(1)
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ytt 10 t 111 1212 12 12
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x b x0 1 0 1 0 1

y y e

x x e
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          
                    

• The recursive model imposes the restriction that the value 𝑦௧ does not 
have a contemporaneous effect on 𝑥௧.

• Now, the parameters of  the SVAR are identified -we have 9 equations.
2 2 2

10 10 12 20 20 20 1 y 12 x

2
11 11 12 21 21 21 2 x

2
12 12 12 22 22 22 1 2 12 x

b b b b var(e ) b

b var(e )

b co v(e ,e ) b

        

         

          

• b21 = 0 implies

SVAR: Identification in VAR(1)

• Note both structural shocks can now be identified from the 
residuals of  the standard VAR.

• b21 = 0 implies 𝒚௧ does not have a contemporaneous effect on 𝒙௧.

• This restriction manifests itself  such that both 𝜀௬௧ & 𝜀௫௧ affect 𝒚௧
contemporaneously but only 𝜀௫௧ affects 𝒙௧ contemporaneously.

• The residuals of  𝑒௫௧ are due to pure shocks to 𝒙௧.

• The SVAR representation based on a recursive causal ordering may 

be computed using the Choleski factorization of  .

• Other restriction could have been used. For example, b12 + b21= 1. 

• There are other methods used to identify models, like the Blanchard 
and Quah (1989) decomposition.

SVAR: Identification in VAR(1)
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• A VAR model can be a good forecasting model, but in a sense it is 
an atheoretical model (as all the reduced form models are).

• To calculate the IRF, the order matters: Q is not unique. The 
Cholesky decomposition (Q is lower triangular) imposes an order in 
the recursive causal structure of  the VAR. It is not a  trivial issue.

• Sensitive to the lag selection.

• Dimensionality problem.

SVAR: Criticisms

• Ordering of  the variables in 𝒀௧ determines the recursive causal 
structure of  the structural VAR.

• This identification assumption is not testable.

• Sensitivity analysis is performed to determine how the structural 
analysis based on the IRFs and FEVDs (forecast error variance 
decomposition) are influenced by the assumed causal ordering.

• This sensitivity analysis is based on estimating the structural VAR 
for different orderings of  the variables.

• If  the IRFs and FEVDs change considerably for different 
orderings of  the variables in 𝒀௧, then it is clear that the assumed 
recursive causal structure heavily influences the structural inference.

SVAR: Sensitive Analysis


