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Lecture 17

Multivariate Time Series
VAR & SVAR

Vector Time Series Models

* A vector series consists of multiple single series.

* We motivated time series models by saying simple univariate ARMA
models do forecasting very well. Then, why we need multiple series?
- To be able to understand the relationship between several variables,

allowing for dynamics.

- To be able to get better forecasts

Example: Stock price surprises in one market (equity, NYSE) can
spread easily to another market (options, Tokyo SE). Thus, a joint
dynamic model may be needed to understand dynamic interrelations
and may do a better forecasting job.
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Vector Time Series Models

GDP per capita (1960-2023)
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Vector Time Series Models
* Consider an m-dimensional time series ¥; = {3, Ys,,... Yy}’

* The series Y;is weakly stationary if its first twvo moments are time
invariant and the cross covariance between Y;; and Y} for all i and j
are functions of the time difference (s — t) only.

* The mean vector: E[Y ;] = u = {1q, a,,-.. thm}'

* The covariance matrix function

F(k)=Cov (¥, ¥,)= E|W,  — u)¥,- u) ]
rak) ypk) oy, (k)
721(k) 722(k) 72m(k)

o) 7r ) oy ()

Vector Time Series Models

¢ The correlation matrix function:

p(k)=D7T(k)D™""? =[p, (k)]

where Dis a diagonal matrix in which the i-th diagonal element is the
variance of the i-th process, i.e.

* The covariance and correlation matrix functions are positive semi-
definite.

D = diag (}’11(0),722 (0)’“"}/mm (O))

*{Y:} ~WN(O0,X) if and only if {V;} is stationary with mean 0
vector and
X, k=0

0, otherwise

F(k)={
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Vector Time Series Models

* {Y} is a linear process if it can be expressed as
Y =YW &) {ec} ~WN(O,Z)

where {¥}} is a sequence of mxT matrix whose entries are absolutely
summable. That is,

Yoo [P, D] < oo, fori,l =1,2,..,m

* For a linear process E[Y:] = 0 and
I-‘(k) - ]:—OO ]+k 2]:—00 k = 01 ilr izl e

Vector Time Series Models: MA Representation

* Let {Y¢} be a linear process:
where (L) = Y2 ¥, L°

* For the process to be stationary, ¥g should be square summable in
the sense that each of the mxm sequence ¥;; s is square summable.

* This is the Wold representation.
Example: VMA(2) withm =1

yt l‘lO] [9”11 lf’1z] [gyf—l + V31 “Eyt 2 Eyt]
:uZO '1U21 lluzz Ext-1 l1’41 qj42 Ext-2 gxt
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Vector Time Series Models: AR Representation

* Let {Y,} be a linear process:

o) Ye—pw =¢
where II(L) =1 =2 Il L*

* For the process to be invertible, ITg should be absolute summable.

Example: VAR(1) withm =1

}’t Po] [T O ] Xel , [ 11 1712] Ye-1] | [évt
xt :u'ZO] [ Il 20 [ + I1 21 I1 22 xt—l] + [Ext]

VARMA: Representation & Stationarity

* Let {Y,} follow a VARMA(p, q) linear process:
‘Dp(L) Ye—w) =0y (L) &
where
D,(L) = P, — D LD, P —D; [ — Dy IP
0,=0,+0,L+0,+0,+..+0,/

* Special cases:
q=0 =>@,(L) (Y, —p) =&  -ie, VAR(D)
p=0 =>Y¥—w)=0,0L)g  -ie,VAR(q)

* VARMA process is stationaty if the zeros of |®,,(L)| are outside
the unit circle. That is, we can write:

(Yt - ﬂ) = W(L) &= (pp(L)_l@q(L) &t
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VARMA: Representation & Invertibility

* VARMA process is stationary if the zeros of |@,(L)] are outside
the unit circle. That is, we can write:

Ye—pw) =P &= P,(L)710,(L) &

* VARMA process is invertible if the zeros of |@4(L)| are outside
the unit circle. That is, we can write:

niw Y.—w =¢
9q (L)_l(pp(l')(yt - M) =&

¢ Identification problem: Multiplying matrices by some arbitrary

matrix polynomial may give us an identical covariance matrix. Then,
the VARMA(p, q) model is not identifiable (not unique p & q).

VARMA: Identification Problem

Example: VARMA(1,1) process

Yl,t 0 a+m Yl,r—l _ a, 0 -m a4
Y, 0 0 Y - a, 0 0

I - (a + Wl)L Yl,t _ 1 mL ¥
O 1 Yz’[ - _0 1 a2,t
Yl,t 1 _(06+m)L B 1 mL__al,t 1 —al a,

0 1 0 1 a

o pd

MA (c0)=VMA(1
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VARMA - Identification Problem

VECTOR ARMA MODELS - VARMA

Here, one of the issues is the identifiability problem.
Examples:
VMA(1) = VAR(1):

-l -l ]l
ry axy | 00 || @251
[f'lr ] _ |:0 3] [ 7101 ] _ |:ﬂ’lri|
ry 0 0][r ay |
VARMA(L1):
| 0.8 =27[ ri,i-1 N O =050 apr-1
ra 0 Y Lru—r | L ax 0 0| az
Fir 0.8 -2+ fa-1 | | au 05 n ay g
i 0 o« r2r—1 N warp 0 [ azr—|

They are identical.

VARMA: Identification Problem

* To eliminate this problem, there are three methods suggested by
Hannan (1969, 1970, 1976, 1979).

* From each of the equivalent models, choose the minimum MA
order q and AR order p. The resulting representation will be unique if

Rank(®, (L)) = m.

* Represent @, (L) in lower triangular form. If the order of ¢;;(L)
for i,j = 1,2,...,m, then the model is identifiable.

* Represent @, (L) in a form @, (L) = ¢, (L) I, whete ¢, (L) is a
univariate AR(p). The model is identifiable if ¢, (L) # 0.
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VAR(1) Process: Stationarity & Eigenvalues

* In a VAR process, Y; ; depends not only the lagged values of ¥; ; but
also the lagged values of the other variables. For the VAR(1):

(=P L)(Ye—p) =&
- Always invertible.
- Stationary if |/ — @L| outside the unit circle. Let A = L1,
[[—®L|=0 = [A—PI| =0

The zeros of [I — @4 L] is related to the eigenvalues of @;.

* Hence, VAR(1) process is stationary if the eigenvalues of @4, 4;,
i=1,2,..,m,are all inside the unit circle.

VAR(1) Process

Example: Check stationarity of the following VAR(1) process:
P I 12] Vt-1 Eyt

Yt - [xt] - [H 21 H 22 xt—l] + [Sxt]

_ 11

—03
~los o.z]Y'fJr &

We check roots of |I - <D1L| =0

Or equivalently, we check eigenvalues of @: |®@; — AI| =0

1.1-14 -03

0.6 0.2 — /1| =0=41, =08; 1, =0.5.

* The process is stationary.
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VAR(1) Process: Autocovariance Matrix

* The autocovariance mattix:
F(k)=E[Y, 7] =B Yo (0%, ) |
= E[Y, Y0+ Y, e
Fr-1)®' +Z,k=0
(k)= , "
F(k-1)@' =TO)D') [k|>1
*Fork=1, T(1)=T(0)®')= @ =T"(1)r'(0)

Z=T(0)- r(—l)rfl(o)r(l)
r)

=T ()-T'Or  ©)r©)Xr " ©)r )

=T(0)- @ (0)D’

VAR(1) Process: Autocovariance Matrix

* Then,
r0)==+or(0)’
vec(T(0))=[I-Dd @ D] vec(2)
where ® = Kronecker product
vec(ABC)=(C'® A)vec(B)

a,B - a,B
eg. AQB= '

3 2
egX =4 6|=vec(X)=
a

1 7

ml mn

~N N D =W
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VAR(1) Process: Autocovariance Matrix — VMA

* In a VMA process, Y; ; depends not only the lagged values of €; ; but
also the lagged values of the errors of other variables. For the VMA(1):

Yi=pte+0;& 4, {g:} ~WN(0,X)
- Always stationary.

- The autocovariance function:

r)=X+6,x0,
-30, k=1

Fk)=1-0,2 k=-1
0 otherwise

- The autocovariance matrix function cuts of after lag 1.

* Thus, VMA(1) process is invertible if the eigenvalues of @; 4;, i =
1,2, ...,m, are all inside the unit circle. v

VARMA - Identification

* Same idea as in univariate case. We define the Sample Correlation
Matrix Function (SCMF): Given a vector m series of T
observations, the sample correlation matrix function is

p(k) = |pij (k)|
where P;;(k)’s are the crosscorrelation for the i-th and j-th
component series.

* It is useful to identifty VMA(Q).

* Tiao and Box (1981) proposed to use +,— and . signs to show the
significance of the cross correlations:

+ (-) sign: the value is greater (less) than 2 times the estimated SE
. sign: the value is within the 2 times estimated SE
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Partial Autoregression or Partial Lag
Correlation Matrix Function

* They are useful to identify VAR order. The partial autoregression

matrix function is proposed by Tiao and Box (1981), but it is not a
proper correlation coefficient.

* Then, Heyse and Wei (1985) have proposed the partial lag
correlation matrix function which is a proper correlation coefficient.

* Both of them can be used to identify the VARMA(p, q).

Granger Causality

* In principle, the concept is as follows:

If X causes Y, then, changes of X happened first then followed by
changes of Y.

* Then, if X causes Y, there are two conditions to be satisfied:
1. X can help in predicting Y. ( Regression of X on Y has a big R?.)
2.Y can not help in predicting X.

* In most regressions, it is hard to discuss causality. For instance, the
significance of the coefficient f in the regression

Ye =PBxe + & B
only tells there is a relationship between x; and Yy, not that X causes
Yt
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Granger Causality

* Vector autoregression allows a test of ‘causality’ in the previous
sense. This test is first proposed by Granger (1969) and later by Sims
(1972) therefore we called it Granger (or Granger-Sims) causality.

* We will restrict our discussion to a system of two variables, x; and
Yei Ve 1s said to Granger-cause X, if current or lagged values of y,
helps to predict future values of x;.

-- On the other hand, y fails to Granger-cause X if for all s > 0, the
MSE of a forecast of Xy based on (X¢, X¢_q, . . .) is the same as that
is based on (yt, yt—l’ ) and (xt, xt_l, )

* For linear functions, Y, fails to Granger-cause X if

MSE[E(X,+S|)C, X1 a"')Jz MSElE(xt+s|xtﬂxt—lﬂ BTN T )J 3

Granger Causality

* Restricting ourselves to linear functions, y; fails to Granger-cause
X if
MSE[E[X¢4s|Xt, Xe—1, .. ] = MSE[E[X¢45]Xe, Xe—1, o) Yoo Ve-15-- ]

* Equivalently, we can say that X; is exogenous in the time series
sense with respect to Y¢, or Y is not linearly informative about future
X¢.

* A variable X is said to Granger cause another variable Y, if ¥ can be
better predicted from the past of X and Y together than the past of Y’
alone, other relevant information being used in the prediction (Pierce,
1977).
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Granger Causality: VAR Formulation

* In the VAR equation, the example we proposed above (x; Granger
canses Yy ) implies a lower triangular coefficient matrix:

|:‘xtj| :|:Cl }+|:¢111 0 }{xt—l}+‘.'+|:¢1€ 0 _{xt—p]i_[an}
yt CZ ¢211 ¢212 yt—l ¢2}; ¢2!;_ yt—p azt

* Or if we use MA representations,

W, (L 0 :
Y= [;t] = [Zﬂ‘*[tpi&% W, (L) [ZZ

where
¢?1 = ¢(2)2 = 1»‘/—"31 =0

Granger Causality: Test

* Consider a linear projection of y; on past, present and future X;’s,

Ve =C+ Xitobjxe_j + 25204 Xy + &
where E[e;x;] = 0 for all £ and 7. Then, y, fails to Granger-cause x;
iffdj = 0 forj = 1,2, ....

* Steps
1) Check that both series are stationary in mean, variance and

covariance (if, not, transform data via differences, logs, etc.)

2) Estimate AR(p) models for each series. Make sure residuals are
white noise. F-tests and/or AIC, BIC can be used to determine p.

3) Re-estimate both models, with all the lags of the other variable.

4) Use F-tests to determine whether, after controlling for past ¥, past
values of X can improve forecasts Y (and vice versa).
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Granger Causality: Setting up the F-Test

* Causality Model:
D 14
xe=c1+XZoaxe—j + X208 ye-j + e,

H, (¥ does not Granger cause X¢): f; = fp = ...= ﬁpy = 0.

e Steps in practice
1) Once the lag structures are determined, estimate the causality
model. Keep RSSy.
2) Estimate a restricted regression (without the y;’s). Keep RSSkg.
3) Construct F-test as usual:

F=[(T = k)/py] * [(RSS — RSSy)/RSSy]
where k = (1 + py + py) is the number of parameters from model
U, q is the number of parameters from model R = (1 + p,) and

py = (k—q).

Granger Causality: Possible Outcomes

¢ There are 4 possible conclusions from test:
1. X Granger causes Y, but ¥ does not Granger cause X
2. Y Granger causes X, but X does not Granger cause Y

3. X Granger causes Y and Y Granger causes X --i.e., there is a
feedback system or bidirectional causality.

4. X does not Granger cause Y and Y does not Granger cause X

For private use - do not post/share online without written authotization.
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Granger Causality: Example

* From Chuang and Susmel (2010): Bivariate analysis of relation
between stock returns and Volume in Taiwan.

A B C
I/ij,l‘ = aij,l + ZIglj,llaDA VRm,t—a + Zﬁij,leDMADl]t b + Zﬁij,BCRij,l—c
c=1
+Z7/y114 yzd"'z}/ylzd mi—d T €

m,t: 112+Z7/1121dV111d+z7/1122dRmtd+8112t’

Vij ¢ Detrended tradmg volume of portfoho ij,

R

Ry, ¢ Return on a value-weighted Taiwanese market index,
R;j ¢ Return of portfolio ij,
DAVR,, +: Detrended absolute value of market returns, and

DMAD;j ¢+ Detrended mean absolute portfolio return deviation.

Portfolio ij: Portfolio of size i and institutional ownership j.

Granger Causality: Example

* Estimation SUR
* Granger causality tests (Wald tests) ¥;j 124
- For any portfolio ij we test Hy : yjj124 = 0 for all d.
= Market returns do not Granger-cause portfolio volume.

- Sign of causality. If the sum of the ¥;j 124 coetficients is significantly
positive = Positive causality from market returns to trading volume

- For any portfolio ij we test Hy: Y5214 = 0 forall d.

= Portfolio volume do not Granger-cause market returns.

- W-D statistics: Granger causality test --it follows a x3.

- W-1: Sum of the lagged coefficients is equal to zero (identify the
sign of the causality) it follows a y?
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Granger Causality: Example

Panel A: Size-institutional ownership portfolios

P, Hypothesis 1 Does causality exist? (W- Sum of lagged Hypothesis 2 Sign of causality (#-1
; D statistic) coefficients statistic)

P %1a=0 for all d Yes (19.4919%*%*) 0.0382 3 e =0 Positive (19.4514%*x*)
' Nyag=0foralld No (0.1566) 0.0466

P =0 foralld Yes (21.2543***) 0.0285 Y Finisa =0 Positive (21.1123%%%)
" Npara= 0 forall d No (0.0658) 0.0559

P 10, =0foralld Yes (15.8748%***) 0.0446 Yt =0 Positive (15.7221%%%)
2 pyymg=0foralld No (0.7614) 00.1864

P 0= 0 foralld Yes (11.2518%*%*) 0.0150 3 Fan =0 Positive (11.1957%*%*)
2 Yapaig= 0 forall d No (1.9206) 0.2649

P 7414=0 for all d Yes (39.4826%**) 0.0569 > P =0 Positive (35.7789%**)

Granger Causality: Example

*Hy: Vij124 = 0 forall d = rejected for all size-institutional
ownership portfolios (shown in previous Table) and all volume-
institutional ownership portfolios (not shown), respectively.

- The cumulative effect of lagged market returns on portfolio volume
is positive —i.e., X; ¥jj,124,t—j > 0- and significant.

* Hy:¥ij214= 0 forall d. => cannot be rejected for any size-
institutional ownership portfolios (shown) and any volume-
institutional ownership portfolios (not shown), respectively.

* No feedback relation between portfolio volume and market returns
(consistent with the sequential information arrival orthe positive
feedback trading hypotheses).

For private use - do not post/share online without written authotization.
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Granger Causality: Chicken or Egg?

¢ This causality test is also can be used in explaining which comes
first: chicken or egg. More specifically, the test can be used in testing
whether the existence of egg causes the existence of chicken or vise
versa.

* Thurman and Fisher (1988) did this study using yearly data of
chicken and egg productions in the US from 1930 to1983.

* The results:
1. Egg causes the chicken.

2. There is no evidence that chicken causes egg.

Granger Causality: Remarks

* Granger causality does not equal to what we usually mean by
causality.

* Even if x; does not cause X5, it may still help to predict x5, and
thus Granger-causes X, if changes in x; precedes that of x, for some
reason (usually because of a third variable, missing in the model).

Example: A dragonfly flies much lower before a rain storm, due to
the lower air pressure. We know that dragonflies do not cause a rain
storm, but it does help to predict a rain storm, thus Granger-causes a
rain storm.

For private use - do not post/share online without written authotization.
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Granger Causality: Exogeneity

* When x; does not cause X5, we say that X, is strongly exogenous
and thus Granger-causes X, if changes in X, precedes that of x; for
some reason (usually because of a third variable, missing in the
model).

Example: The dragonfly is strongly exogenous with respect to rain.

Structural VAR (SVAR)

e It is a simultaneous equations model. It is used to described dynamic
effects in a multivariate system. For example,

BY, =T+ Y, 1 + LY, , +. .+, Y, +&
where
& ~iid D(0,X)
* Note:

- E1t5 Eatsees Ent are called structural errors. X is a diagonal matrix.
- In general, cov(y;, &j¢) # 0 forall i, J.

- All variables are endogenous - OLS is not appropriate

* From this model, we can move to a reduced form, say
Yt = (DO + (Dl Yt—l + q)z Yt_z +..+ (Dp Yt—p + ag

* The a;’s are called reduced form errors, a linear combination of &’s.

For private use - do not post/share online without written authotization.
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Structural VAR (SVAR)

* Like in SEM, we have identification issues. To recover the structural
parameters (B, I', X) we need to impose restrictions.

* Many applications in finance:
- The effect of financial news on stock prices (or returns):

- [Ar, Ay, Art, Ad, Ac = P (or AP)] - see Chen et al (JB, 19806)
- Analysis of policy effects (AM®, AG) on stock market.

- Relative importance of markets (stock vs. options markets).

* Long history in economics. Formalized by Sims (Econometrica, 1980),
as a generalization of univariate analysis to an array of RV. Sims
analyzed a 3x1 vector ¥ with elements, Money supply (Z;), interest
rates (X;) & income (V3), in reduced form:

Yi=c+®, Y, 1 +P, YV, 5, +..+®, Y, +a, = VAR(p)

SVAR: Sims (1980) Formulation

* Sims analyzed: Money supply (Z;), interest rates (X¢) & income (V) in
reduced form:

Zy
Yt = Xt =c+ (Dl Yt—l + ¢2 yt—Z +... + (Dp Yt—p + a; = VAR(p)
Vi
with
E[at] =0

1 Qt=r1
E = (€8
laza.’] {0 t+ 1 P, 9, s

®; are matrices. For the 1st lag matrix > @, =| ¢, ¢,, ¢,

¢3l ¢32 ¢33

* A typical equation of the system is:

_ ) 0 (1) » » »
Z=c+¢"nZ_ +¢ X, +¢" 6V +... 44, Z,_p+¢12 X[_p+¢13 V., ta,

Note: Fach equation has the same regressors.
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SVAR: Multivariate Models

* VARMAX Models, like a VAR, but allows exogenous variables, X:
Dp(L) Y = Gpr(L) Xe+ 04(L) &

* Structural VAR Models:
where & ~ iid D(0,X), where X is a diagonal matrix.

- Some theory to determine ¥, but all variables are endogenous.

* VAR Models (reduced form):
Yi=®g+ P Y, 1 +D, YV, , +..+ P, Y, , +a,

Qt=r1

where the error term is a WN vector: E[aza;'] = { 0 t=
T

SVAR: Multivariate Models

* VAR Models (reduced form):
Yt = (DO + (Dl Yt—l + q)z Yt_z +... + ‘Dp Yt—p + a;

Qt=r1

where the error term is a WN vector: E[aya;'] = { 0 t=
T

* Y, is a function of predetermined vatiables (¥;_;’) and etrors are
well behaved: OLS is possible.

For private use - do not post/share online without written authotization.
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SVAR: VAR(1)

* Consider a bivariate ¥ = (y¢, X¢), first-order VAR model:

Vel _ bm] [b12 0 ] Xe] | [Yir o Va2 [YVe-1] , [Ext

xt] B [bzo 0 by [Yt] + Y21 Yzz] xt—l] + [fxt]
* The error terms (structural shocks) &y and &y are uncorrelated WN
innovations with standard deviations 6, and 6, (& gero covariance).

* Note:
- Yt & x¢ are endogenous. &y affects y; directly and x; indirectly.

- Many parameters to estimate: 10.

* The structural VAR is not a reduced form. In a reduced form
representation Y, and X; are just functions of lagged y; and x;.

SVAR: VAR(1) — Reduced Form

* To get a reduced form write the structural VAR in matrix form as:
b, 1 ] Vel blo] Y11 V12l [Ve-1 Eyt
1 by xt] "~ by + Y21 sz] ] + [Sxt]

BYt ==F0+F1Yt_1+£t

Xt—1

* Premultipication by B! allow us to obtain a standard VAR(1):
Yt = B_lro + B_1F1 Yt—l + B_lé't
Yt = q)o + q)l Yt—1+ at

* This is the reduced form to estimate (by OLS equation by
equation). Now, we have only 9 (6 mean, 3 variance) parameters.

* From the a reduced form: I —® L)Y, = ®P(L) Y, = ®y+ a,
the stability depends on the roots of (I — @ L).

For private use - do not post/share online without written authotization.
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SVAR: Stability Conditions

¢ From the a reduced form:
I—®,L—P, LZ—---—Cl)p L)Y, =dy+ a;
(D(L) Yf = q)o + at

® (L) is a nxn matrix polynomial in L, with the j element

1ifi=j
€ @) 2 ® — J
Gij = pij L= iy L5 ==y LP) by = {0 i %
* A VAR(p) for Y, is stable if the pxn roots of the characteristic
polynomial are outside the unit circle.

- The characteristic polynomial:
|1 —®,L— P, LZ—---—d)p LP|=0

* Then, we define the constant:

p=I-® —®, — - —®,)" 1 @

SVAR: Stability Conditions

* If the VAR is stable then a MA(®) representation exists.
Yt = u + a; + qll a;_q + q’z at_2+ = U + 'P(L)at

¢ This representation will be the “key” to study the impulse response
function (IRF) of a given shock.

Example: For the VAR(1), multiply both sides of reduced form by
(I — ®,L)~ . Then,

Y(L)= (- ®,L)? Sy, =1
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Structural MA (SMA) Representation

* The SMA of Y, is based on an infinite moving average of the
structural innovations, &. Using a; = B ~1g, in the Wold
representation gives
Y,=pu+%L)a,=u+%¥Y(L)B g,
=pu+0(L) &,

O(L)=¥Y(L)B'=B'+¥, B +¥,B71 4+
That is,

00 = B_l;é I

01 = q‘ll B_1 - q)l

0,=¥,B1=d,k

SVAR: VAR(p) to VAR(1)
* Re-writing the system in deviations from its mean:
Ye—m)=®, Yoy —p+ .. + @, (Y —p) +a;
- Stack the vectors as .
D Dy, D
Yl —H a,
S I, O 0 )
no=[."" # F=|0 I s 0 =1,
Yt—p+l - /’l : 0
0 0. 1.0
(xpsl C (psialp) © (P
- Write the VAR(1): n,=Fn,, +v, E(y,")= { i
0 t#7
Q0....0
00.....0
where H =|.
) nxp)x(nx
00...... (xp)x(xp)

For private use - do not post/share online without written authotization.

23



RS —EC2 - Lecture 17

SVAR: Estimation — MLE

* We assume normality for the errors. Then, we use the conditioning
trick to write down the joint likelihood. That is,

S Y XYY Y ) = 11! SENY LY Y, 05v)
Y |Y Y . N(c+®Y,_ + ....CI)[pI/FP,Q)
M'=[c® ®,..0,]
X, =[1Y Y .Y ] nx (np+1)
Y, =1'X, +a, (np+1) x 1
) = Y log (1| pastiv) -

Tn 1<

— _710g(27z)+§log‘Q'l‘—EZ[(Y, ~1'X,)'Q" (Y,-1T'X,) ]

t=1

SVAR: Estimation — OLS = MLE

* Under the previous assumptions, we get that OLS = MLE. That is,

N R . T T -1
Hmle:Hals H'ols:|:ZYtX't:||:thX't:|
* Proof: - -
T
2 -mx, )y (v, -1x,)=

t=1

(Yt _ﬁulstt +ﬁuls'Xt _H'Xt)Qil(Yt _ﬁo/s'Xt +ﬁ'als Xt _H'Xt):

[
M-

~
I

(6, +@1,, -1y x, Jo' (4, + (1, — 11y X, )=

t

[
M-

ols
1

~
I

a, Q% +> X', (I, —-IHQ™" (1, —M)X,+2> &', Q"' (11, —-T1) X,

ols ols

-

t

* >a,Q'(, -0yx,= r{z a Q' - H)'X,} =

= ll’|:z Qil(ﬁols - H)'X,HA',:| = tr|:Ql(l£[0[s - H)z ervr:| =0
‘ i

t
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SVAR: Estimation — OLS (univariate)

T
min 3 (Y, ~T1', )2 (Y,~11'X,)-
t=1
=min Y @', Q"4+ X' (11, -1, -I)X
t t
because Qis p.d. matrix — Q™ is p.d., the smallest v alue is achieved

when f[ols =TI

* Then, the (reduced form) VAR can be estimated equation by
equation by OLS.

SVAR: Testing

* Testing as usual. For example, the LR in a VAR. We need to

estimate the restricted model (under H) and unrestricted (under H,).

The likelihood is given by:

* Suppose we want to test p;> py:  H, :VAR(p,)
H,: VAR (p,)
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SVAR: Testing

* First, we estimate the model under H,, with p,, parameters. The
estimation consists of 1 OLS regression of each variable on a
constant and p,, lags:

(O, 1) = —TTnlog( 27)+ glog ‘Qo‘l‘— In

* Second, we estimate the model under H,, with p, parameters:

N Tn T A Tn
((€.11) = - —log( 27) + log ‘Ql 1‘—7
* Construct LR, as usual:
LR=2("=1,) = T{log‘flfl - log‘fl(f1 }z T{log‘f)o - log‘le‘}
LR — ;(mz m = number of restrictions = n°(p, — p,)

each equation has p, — p, restriction on each variable —

n(p, — p,) in each equation

SVAR: Testing — Asymptotic Distribution

* In general, linear hypotheses can be tested directly as usual and their
asymptotic distribution follows from the next asymptotic result:

Let 71 = vec(ﬁT) denote the (nk x 1) (with k=1-+np number of parameters
estimated per equation) vector of coef. resulting from OLS regressions of each

of the elements ofyt on x, for a sample of size T:

T

1.T T L'
T = . ., where 7 p=| X XX ¢ 2 XtYit

= t=1 t=1
”n.T

Asymptotic distribution of IT is
-1
\/;(z?T -7)—> N(0,(Q® M )), and the coef of regression i

. 2. -1 A . ,
\/;(ﬁiT—iri)aN(O,aiM ) W1thM=pllm(1/T)§XtXt
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SVAR: Identification with IC

* In the same way as in the univariate AR(p) models, Information
Criteria (IC) can be used to choose the p in a VAR:

2
AIC=1n|Q|+2(%+n)

2
SBC:]H|Q|+M

e Similar consistency and efficiency results to the ones obtained in the
univariate world apply here.

* The main difference is that as the number of variables gets bigger, it is

more unlikely that the AIC ends up overparametrizing --see Gonzalo and
Pitarakis (2002).

SVAR: Granger Causality — Testing

* After selecting the lag structure for the VAR(p) —i.e., assuming a
“correct” lag length p—, test for Granger causality, as usual.. Then,
Xt =U+ A X1 T Ay Xep+ oot Oy Xpp +
+B1 Y1+ B2 Yi—2t -+ BpVip T &

* Estimate model by OLS and test for the following hypothesis

Hy: 1 = B2 =+ =B, =0 (y; does not Granger-cause X)

H,:any B; # 0.

* Get RSS for the restricted and unrestricted model. Then, calculate
the F-test:
F=[(T"2p-1)/p] * [(RSS; — RSS)/RSS})]
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SVAR: IRF

* Goal: We want to study the reaction of a VAR(p) system to a shock.
q)(L) Yt = q)o + at.

Assuming the system is stable, we move to an MA representation:,
where

Y(L) = [®W)]?

Writing the system at time t + S:
Yios=puta+¥ia 1 +¥; apys 2+ + ¥ ar+ -

Then,
% =¥ = I:W‘/‘(S):I (multipliers)
' s i
Oa t mxm
ay itts o (s) Reaction of the i-variable to a unit
da., IR change in innovation j.
J
SVAR: IRF

* Impulse-response function: The response of y; +1¢ to one-time
impulse in Y ¢, given by @; ¢, with all other variables dated t or earlier
held constant. (Usually, the size of the shock is in SD units, for
example, a;; = koj with k > 0.)

A

Vi

where 1 2 3
ayi,t+s —

Jt
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SVAR: IRF — Example

Example: We have a stable VAR(1) model:

Y1t] [¢11 ¢12 ylt—l]
t Vot ¢21 ¢22 th—l

2
_ 101 012
X, = )
012 03

where

In our example,

Assume there is no additional shock after t = 0.

t<0 Y=y =0
t=0 a10—0, &a20=1(:>y20=1)
t>0 A = 0, & as¢ =0

+ (o]

* We start at a point of equilibrium (¢ < 0). Then, at t = 0 we shock
one variable, Y, in the VAR(1) system, by creating a ai—¢ = 1.

SVAR: IRF — Example

Example (continuation):

Shock dynamics, t<0 Yi=y=0
t:0 a10=0, &a20=1(:>y20=1)
t>0 a1t=0, &a2t=0

[1-
o

* Reaction of the system [y, ] [0
vl |1 (impulse)
_yn_ _ _¢11 &,
| Vo1 | _¢21 b,
_)’12_ _ _¢n P
| Voo | _¢21 ¢22
_)71s_ _ _¢11 ¢12—
| Vas | _¢21 ¢22_

|:¢12j|

8

2 1T
¢21 ¢22 1
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SVAR: IRF - Orthogonal shocks

* If we work with the MA representation:

Y(L) = [®(L)]™?
with ¥, = ®,

S
V=0
* In this example, the variance-covariance matrix of the innovations

is not diagonal —i.e., gy, # 0. There is contemporaneous correlation
between shocks, then

[3’10

3’20] - [(1)] — Not very realistic

* To avoid this problem, the variance-covariance matrix has to be
diagonalized (the shocks have to be orthogonal) and here is where
the serious problems appeatr.

SVAR: IRF - Orthogonal shocks
* Reminder: A is a p.d. symmetric matrix. Then, Q A1Q’ = 1.

* Then, the MA representation:
Y =pu+ Z\Piat—i Y, =1,

i=0

Y= pu+) ¥0'0a,,
i=0

Letuscall M, =W,0™"; w,=Qa, >Y,=u+Y Mw,_
i=0

Elww' 1= E[Qaa', Q']=QFE[a,a"]0'=020"= 1,

w, has components that are all uncorrelated and unit variance

* Orthogonalized IRF: N M,=¥ Q"'

ow,

Problem: Q1is not unique.
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SVAR - Variance Decomposition

* Contribution of the j-# orthogonalized innovation to the MSE of
the s-period ahead forecast

MSE(Y,(s)) = E(Y,,, = Y,()(Y,,, = Y,(5))'
e (s)=7,

t+s

~Y(s)=a,, +¥Ya,  +...VY, a,
Ele,(s)e,(s)'1=Q, +¥Y Q¥ '+...+¥ QY '
MSE(s)=07'0Q,0'07"+¥,07'0Q,0'07"¥,'+....
+¥,,070Q,0'07Y, "=

=070 +¥Y 00T, "+ Y o'o'y, "=

recall that M, =¥, Q"'
| and M, =0\ ¥, =1

¢ Contribution of the first orthogonalized innovation to the MSE.
(Do this for a two variables VAR model!)

SVAR: Variance Decomposition

Example: Variance decomposition in a two variables (y¢, X¢) VAR
- The s-step ahead forecast error for variable y; is:

yt+s — Etyt+s = Mo(l, l)gyt+s + Ml(l, l)Syt+S_1 +..+ MS—l(l’ l)gyt"rl +

Mo(l, 2)8 + Ml (1, 2)8Xt+s_1 + ...+ Ms_l (1, 2)8

xt+s xt+1

- Denote the variance of the s-step ahead forecast error variance of
2,
Vi+s as for 65, ()%

2 2 2 2 2
oy (9)" = oy [Mg(L D™ + M (LD +..+ Mg (LD ]+
ci[MO(l, 2 4 M, (1, e+ MS_1(1,2)2]

- The forecast error variance decompositions are proportions of
2
Gy (s)”.
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SVAR: Relative Importance of Variables

- The forecast error variance decompositions are proportions of
2
Gy (s)°.
due to shocks to y = c?,[MO(l,l)2 MDY+t 1\/[8_1(1,1)2]/c$y(s)2

2 2 2 2
due to shocks to X =6 [M((1.2)" + M, (1.2)" + ...+ M_;(1,2) ]/csy(s)2

Note: We can use these proportions to measure relative importance of
a variable in the system.

Q: Which markets have more relevance (shocks are more relevant to
the system)? Are stock or options markets more important?

SVAR: Identification in VAR(1)

* We started with a SVAR model, and transformed into the reduced
form or standard VAR for estimation purposes.

* Q: Is it possible to recover the parameters in the SVAR from the
estimated parameters in the standard VAR? Nol!

* There are 10 parameters in the bivariate SVAR(1) and only 9
estimated parameters in the standard VAR(1). Thus, the VAR is
underidentified. We need restrictions (exclusion, linear restrictions, etc.)

* If one parameter in the bivariate SVAR above is restricted, say
excluded, (order condition met!), the VAR is exactly identified.

* Sims (1980) suggests a recursive system to identify the model letting

F bl2:||:Yt:|:|:b10:|+|:YIl y12:||:y“}+{8yt}
0 1 X, b, Yoo Vool Xea €yt
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SVAR: Identification in VAR(1)

* b,; = 0 implies
o 54 P ol O
= + +
X4 01 by, 01 Yoo Yool X 0 1 €yt
|:Yt:| _ |:¢10:| |:¢11 by :||:Yt—l:| |:en :|
+ +
Xy by by 0y || Xy Syt

* The recursive model imposes the restriction that the value y; does not

have a contemporaneous effect on X;.

* Now, the parameters of the SVAR are identified -we have 9 equations.
¢10 = b10 - blzbzo (I)zo = bzo Var(el) = Gi + blzzgi
Oy =Y —bpYy 0y =7y, var(e,)= Gi

b =Y—buYn 0p=7vy cov(e,e,)= _bIZG)Z(

SVAR: Identification in VAR(1)

¢ Note both structural shocks can now be identified from the
residuals of the standard VAR.

* b,, = 0 implies y; does not have a contemporaneous effect on Xy.

* This restriction manifests itself such that both &,y & &y affect y;

contemporaneously but only &, affects X; contemporaneously.
* The residuals of e, are due to pure shocks to X;.

* The SVAR representation based on a recursive causal ordering may

be computed using the Choleski factorization of Q.

* Other restriction could have been used. For example, by, + b,;= 1.

* There are other methods used to identify models, like the Blanchard
and Quah (1989) decomposition.
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SVAR: Criticisms

* A VAR model can be a good forecasting model, but in a sense it is
an atheoretical model (as all the reduced form models are).

* To calculate the IRF, the order matters: Q is not unique. The
Cholesky decomposition (Q is lower triangular) imposes an order in
the recursive causal structure of the VAR. It is not a trivial issue.

* Sensitive to the lag selection.

* Dimensionality problem.

SVAR: Sensitive Analysis

* Ordering of the variables in ¥, determines the recursive causal
structure of the structural VAR.

* This identification assumption is not testable.

* Sensitivity analysis is performed to determine how the structural
analysis based on the IRFs and FEVDs (forecast error variance
decomposition) are influenced by the assumed causal ordering,

¢ This sensitivity analysis is based on estimating the structural VAR
for different orderings of the variables.

¢ If the IRFs and FEVDs change considerably for different
orderings of the variables in ¥, then it is clear that the assumed
recursive causal structure heavily influences the structural inference.
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