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Lecture 15
Forecasting

RS (for private use, not to be posted/shared online).

• A shock is often used to describe an unexpected change in a variable 
or in the value of the error terms at a particular time period.

• A shock is defined as the difference between expected (a forecast) 
and what actually happened. 

• One of the most important objectives in time series analysis is to 
forecast its future values. It is the primary objective of ARIMA 
modeling:

• Two types of forecasts.

- In sample (prediction): The expected value of the RV (in-sample), 
given the estimates of the parameters.

- Out of sample (forecasting): The value of a future RV that is not 
observed by the sample.

Forecasting
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• Forecasting is the primary objective of ARIMA modeling.

• Two types of forecasts.

- In sample (prediction): The expected value of the RV (in-sample), 
the “fitted values,” 𝑌෠௧.
- Out of sample (forecasting): The value of a future RV that is not 
observed by the sample, 𝑌෠் ାℓ. This is what we are going to do.

• Forecast: Conditional expectation of 𝑌 ାℓ, given 𝐼் :

𝑌෠் ାℓ ൌ 𝐸ሾ𝑌 ାℓ|𝐼் ൌ ሼ𝑌 ,𝑌 ିଵ, … ,𝑌ଵ, 𝜀ଵ, 𝜀ଶ, ..., 𝜀்ሽሿ

Notation: 
- Forecast for 𝑇 ൅ ℓ made at 𝑇: 𝑌෠் ାℓ, 𝑌෠் ାℓ|் , 𝑌෠் ሺℓሻ.

- 𝑇 ൅ ℓ forecast error: 𝑒்ାℓ ൌ 𝑒்ሺℓሻ ൌ 𝑌 ାℓ െ 𝑌෠் ାℓ

ARIMA: Forecasting

• The variable to forecast 𝑌 ାℓ is a RV. It can be fully characterized 
by a pdf. 

• In general, it is difficult to get the pdf for the forecast. In practice, 
we get a point estimate (the forecast) and a C.I. 

• To get a point estimate, 𝑌෠் ାℓ, we need a cost function to judge 
various alternatives. This cost function is call loss function. Since we are 
working with forecast, we work with a expected loss function.

• A popular loss functions is the Mean squared error (MSE), which 
is quadratic and symmetric. We can use asymmetric functions, for 
example, functions that penalize positive errors more than negative 
errors. 

ARIMA: Forecasting – Basic Concepts
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• We derive the optimal forecast by minimizing the mean squared 
error (MSE):

𝑀𝑆𝐸ሺ𝑒்ାℓሻ ൌ 𝐸ሾ𝑌 ାℓ െ 𝑌෠் ାℓ]
ଶ

f.o.c.:
ఋாሾ௒೅శℓି௒෠೅శℓ|ூ೅]మ

ఋ ௒෠೅శℓ
ൌ 𝐸ሾെ2𝑌 ାℓ ൅ 2𝑌෠் ାℓ|𝐼்] ൌ 0

 Optimal forecast: 𝐸 𝑌 ାℓ|𝐼் ൌ 𝑌෠் ାℓ

• Different loss functions lead to different optimal forecast. For 
example, for the MAE, the optimal point forecast is the median.

• The computation of 𝐸ሾ𝑌 ାℓ |𝐼்ሿ depends on the distribution of 
{𝜀௧}. Then, if 

{𝜀௧ሽ ~ WN  𝐸ሾ𝜀்ାℓ 𝐼் ൌ 0.

This assumption greatly simplifies computations.

ARIMA: Forecasting – Optimal Forecast

• If 
{𝜀௧ሽ ~ WN  𝐸ሾ𝜀்ାℓ 𝐼் ൌ 0.

This assumption greatly simplifies computations, especially in the 
linear model.

• Then, for ARMAሺ𝑝, 𝑞ሻ stationary process (with a Wold
representation), the minimum MSE linear forecast (best linear 
predictor) of 𝑌 ାℓ, conditioning on 𝐼் is:

𝑌 ାℓ ൌ  θ଴ ൅ Ψ௟ε்ାℓ ൅ Ψ௟ାଵε்ାℓିଵ ൅ ⋯

Forecasting – Basic Concepts
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• Data: 𝑌ଵ, 𝑌ଶ ,𝑌ଷ, ..., 𝑌

• Process: 
(1) Find ARIMA model
(Use ACF, PACF or Minic)

(2) Estimation
(& Evaluation in-sample)

(3) Diagnostic Testing
(Check residuals, 𝜀௧̂, are WN)

(4) Forecast
(& Evaluation out-of-sample)

Forecasting Steps for ARMA Models

𝑌௧ ൌ 𝜙 𝑌௧ିଵ ൅ 𝜀௧
⇓

𝜙෠ ሺEstimate of 𝜙ሻ
⇓

𝑌෠௧ ൌ 𝜙෠ 𝑌௧ିଵ Prediction

⇓
ACF & LB testing of  𝜀௧̂

⇓
Y෡்ାℓ  ൌ 𝜙෠ 𝑌෡்ାℓିଵሺForecastሻ

Example:

(1) Using AIC, we determine an AR(2) model.

𝑌 ൌ μ ൅ 𝜙ଵ𝑌 ିଵ ൅ 𝜙ଶ𝑌 ିଶ ൅ 𝜀்

(2) We use OLS to estimate μ, 𝜙ଵand 𝜙ଶ: μො , 𝜙෠ଵ & 𝜙෠ଶ.

(3) We find residuals are WN.

(4) Now, we forecast. The one-step ahead forecast at time 𝑇:

𝑌෠் ାଵ ൌ 𝐸ሾ𝑌 ାଵ|𝐼் ൌ ሼ𝑌 ,𝑌 ିଵ, … ,𝑌ଵሽሿ = μො ൅ 𝜙෠ଵ𝑌 ൅ 𝜙෠ଶ𝑌 ିଵ

At time 𝑇 ൅ 1, we compute the one-step ahead forecast error, 𝑒்ሺ1ሻ:

𝑒்ሺ1ሻ ൌ 𝑌 ାଵ െ 𝑌෠் ାଵ

Note: After Q periods, we compute Q one-step ahead forecast errors
and MSE. 8

Forecasting From ARMA Models
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• We observe the time series 𝐼் ൌ ሼ𝑌 ,𝑌 ିଵ, … ,𝑌ଵሽ .

- At time 𝑇, we want to forecast: 𝑌 ାଵ, 𝑌 ାଶ, …,𝑌 ାℓ.

- T: The forecast origin.

- ℓ: Forecast horizon

- 𝑌෠் ሺℓሻ: ℓ-step ahead forecast = Forecasted value 𝑌 ା௟

• Use the conditional expectation of 𝑌 ାℓ, given the observed sample.

𝑌෠் ାℓ ൌ 𝐸ሾ𝑌 ା௟|𝑌 ,𝑌 ିଵ, … ,𝑌ଵሿ

Example: One-step ahead forecast: 𝑌෠் ାଵ ൌ 𝐸ሾ𝑌 ାଵ|𝑌 ,𝑌 ିଵ, … ,𝑌ଵሿ

• Forecast accuracy to be measured by MSE

 conditional expectation, best forecast. 9

Forecasting From ARMA Models

• An ARMA forecasting is a combination of past 𝑌෠் ାℓି௜ forecasts and 
observed past 𝜀௧̂ାℓି௜ . 

Example: We fit an ARMA(1, 2) model 𝑌௧:
𝑌௧ ൌ 𝜇 ൅ 𝜙ଵ𝑌௧ିଵ ൅ 𝜀௧ ൅ 𝜃ଵ𝜀௧ିଵ ൅ 𝜃ଶ𝜀௧ିଶ

• We want to produce at time T the forecast 𝑌 ାℓ:

𝑌 ାℓ ൌ 𝜇 ൅ 𝜙ଵ𝑌 ାℓିଵ ൅ 𝜀்ାℓ ൅ 𝜃ଵ𝜀்ାℓିଵ ൅ 𝜃ଶ𝜀்ାℓିଶ

• Two-step ahead forecast (ℓ = 2): Conditional expectation.

𝑌෠் ାଶ ൌ 𝜇 ൅ 𝜙ଵ𝐸ሾ𝑌 ାଵ I𝑇ሿ ൅ 𝐸ሾ𝜀்ାଶ|I𝑇 ൅𝜃ଵ E 𝜀்ାଵ|I𝑇  +𝜃ଶE 𝜀்|I𝑇
ൌ 𝜇 ൅ 𝜙ଵ𝑌෠௧ାଵ ൅ 𝜃ଶ 𝜀்̂

Actual: 𝑌 ାଶ ൌ 𝜇 ൅ 𝜙ଵ𝑌 ାଵ ൅ 𝜀்ାଶ ൅ 𝜃ଵ𝜀்ାଵ ൅ 𝜃ଶ 𝜀்̂

𝑒் 2 ൌ 𝑌 ାଶ െ 𝑌෠் ାଶ ൌ 𝜙ଵሺ𝑌෠௧ାଵെ 𝑌 ାଵሻ  ൅ 𝜀்ାଶ ൅ 𝜃ଵ𝜀்ାଵ

Forecasting From ARMA Models
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• We use the pure MA (Wold) representation of an ARMA(𝑝, 𝑞):
ሺ𝐿ሻ 𝑦௧ െ 𝜇 ൌ 𝜃ሺ𝐿ሻ𝜀௧

which involves inverting ሺ𝐿ሻ. That is,
𝑦௧ െ 𝜇 ൌ Ψ 𝐿 𝜀௧ ⇒ Ψ 𝐿 ൌ ௣ 𝐿 ିଵ𝜃௤ 𝐿

• Then, the Wold representation:

𝑌 ାℓ ൌ 𝜇 ൅ 𝜀்ାℓ ൅ Ψଵ𝜀்ାℓିଵ ൅ Ψଶ𝜀்ାℓିଶ ൅ ⋯൅Ψℓ  𝜀்൅⋯

• The Wold representation depends on an infinite number of 
parameters, but, in practice, they decay rapidly.

• The forecast error is:
𝑒் ℓ ൌ ∑  Ψ௜ 𝜀்ାℓି௜

ℓିଵ
௜ୀ଴ (Ψ଴= 1)

Note: If E[𝑒் ℓ ] = 0, we say the forecast is unbiased.

Forecasting From ARMA Models

• The forecast error is:
𝑒் ℓ ൌ ∑ Ψ௜ 𝜀்ାℓି௜

ℓିଵ
௜ୀ଴ (Ψ଴= 1)

• The variance of the forecast error:
𝑉𝑎𝑟 𝑒் ℓ ൌ 𝑉𝑎𝑟 ∑ Ψ௜𝜀்ାℓି௜

ℓିଵ
௜ୀ଴ ൌ 𝜎ଶ ∑ Ψ௜

ଶℓିଵ
௜ୀ଴ (Ψ଴= 1)

Example: One-step ahead forecast (ℓ = 1).
𝑌 ାଵ ൌ 𝜇 ൅ 𝜀்ାଵ ൅ Ψଵ𝜀் ൅ Ψଶ𝜀்ିଵ ൅ Ψଷ𝜀்ିଶ ൅⋯

Forecast: 𝑌෠் ାଵ ൌ 𝜇 ൅ Ψଵ𝜀் ൅ Ψଶ𝜀்ିଵ ൅⋯

Forecast error: 𝑒் 1 ൌ 𝑌 ାଵ െ 𝑌෠் ାଵ ൌ 𝜀்ାଵ
Variance: 𝑉𝑎𝑟 𝑒் 1 ൌ 𝜎ଶ

For the two-step ahead forecast (ℓ = 2).
𝑒் 2 ൌ 𝑌 ାଶ െ 𝑌෠் ାଶ ൌ 𝜀்ାଶ ൅ Ψଵ𝜀்ାଵ
𝑉𝑎𝑟 𝑒் 2 ൌ 𝜎ଶ ∗ 1 ൅Ψଵ

ଶ

Forecasting From ARMA Models
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• In the Wold representation, in practice, the parameters, Ψ௜’s, decay 
rapidly. Then, as we forecast into the future, the forecasts tend to the 
unconditional forecasts, 𝜇 and 𝜎ଶ:

lim
ℓ→ஶ

𝑌෠் ℓ ൌ 𝜇

Not very interesting.  

• This is why ARIMA forecasting is useful only for short-term. 

Forecasting From ARMA Models

• A 100(1 - )% prediction interval for 𝑌 ାℓ (ℓ-steps ahead) is

𝑌෠் ℓ  േ  𝑧ఈ/ଶ 𝑉𝑎𝑟 𝑒் ℓ

or, 𝑌෠் ℓ  േ  𝑧ఈ/ଶ 𝜎 ∑ Ψ௜
ଶℓିଵ

௜ୀ଴

Example: 95% C.I. for the 2-step-ahead forecast:

𝑌෠் 2  േ  1.96 𝜎 1 ൅Ψଵ
ଶ

• When computing prediction intervals from data, we substitute 
estimates for parameters, giving approximate prediction intervals.

Note: MSE[𝜀்ାℓ] = MSE[𝑒்ାℓ] = 𝜎ଶ ∑ Ψ௜
ଶℓିଵ

௜ୀ଴

Forecasting From ARMA Models: C.I.
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• Suppose we have 𝑇 observations at time 𝑡 ൌ  𝑇. We have a good 
ARMA model for 𝑌 . We obtain the forecast for 𝑌 ାଵ, 𝑌 ାଶ, etc. 

• At 𝑡 ൌ 𝑇 ൅ 1, we observe 𝑌 ାଵ. Now, we update our forecasts 
using the original value of 𝑌 ାଵ and the forecasted value of it.

• The forecast error is: 
𝑒் ℓ ൌ 𝑌 ାℓ െ 𝑌෠் ℓ ൌ ∑ Ψ௜ 𝜀்ାℓି௜

ℓିଵ
௜ୀ଴

• We can also write this as
𝑒்ିଵ ℓ ൅ 1 ൌ 𝑌 ିଵାℓାଵ െ 𝑌෠் ିଵ ℓ ൅ 1

ൌ ∑ Ψ௜ 𝜀்ିଵାℓାଵି௜
ℓ
௜ୀ଴

ൌ ∑ Ψ௜ 𝜀்ାℓି௜
ℓ
௜ୀ଴

ൌ ∑ Ψ௜ 𝜀்ାℓି௜
ℓିଵ
௜ୀ଴ ൅ Ψℓ 𝜀்

ൌ 𝑒் ℓ ൅ Ψℓ 𝜀்

Forecasting From ARMA Model: Updating

• Then,

𝑌 ାℓ െ 𝑌෠் ିଵ ℓ ൅ 1 ൌ 𝑌 ାℓ െ 𝑌෠் ℓ ൅ Ψℓ 𝜀்
𝑌෠் ℓ ൌ 𝑌෠் ିଵ ℓ ൅ 1 ൅Ψℓ 𝜀்

ൌ 𝑌෠் ିଵ ℓ ൅ 1 ൅Ψℓሼ𝑌 െ 𝑌෠் ିଵ 1 ሽ

 𝑌෠் ାଵ ℓ ൌ 𝑌෠் ℓ ൅ 1 ൅ Ψℓሼ𝑌 ାଵ െ 𝑌෠் 1 ሽ

Example: ℓ ൌ 1, 𝑇 ൌ 100.

𝑌෠ଵ଴ଵ 1 ൌ 𝑌෠ଵ଴଴ 2 ൅ Ψଵሼ𝑌ଵ଴ଵ െ 𝑌෠ଵ଴଴ 1 ሽ

Forecasting From ARMA Model: Updating



RS – EC2 - Lecture 15

9
For private use only - Not to be shared/posted online without authorization.

• If we use variance stabilizing transformation, after the forecasting, 
we need to convert the forecasts for the original series.

• For example, if we use log-transformation, then, 

𝐸ሾ𝑌 ାℓ| 𝐼்ሿ ൒ exp ሼ𝐸ሾln ሺ𝑌 ାℓሻ| 𝐼்ሿሽ

• If 𝑋 ~ 𝑁ሺμ,σଶሻ, then, 𝐸 exp 𝑋 ൌ  𝑒ஜ ା 
ಚమ

మ

• The MSE forecast for the original series is:

Forecasting From ARMA Model: Transformations

        



  nn Yln Zwhere 

2

1ˆexp nn eVarZ

 nn Z,,ZZE  1  nn Z,,ZZVar  1
2



• In general, we need a large 𝑇. Better estimates and it is possible to 
check for model stability and check forecasting ability of model by 
withholding data.

• Seasonal patterns also need large 𝑇. Usually, you need 4 to 5 seasons 
to get reasonable estimates.

• Parsimonious models are very important. Easier to compute and 
interpret models and forecasts. Forecasts are less sensitive to 
deviations between parameters and estimates.

Forecasting From ARMA Model: Remarks
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• Industrial companies, with a lot of inputs and outputs, want quick 
and inexpensive forecasts. Easy to fully automate. In general, we use 
past 𝑌௧ to forecast future 𝑌௧’s, usually referred as the level’s forecasts.

• Exponential Smoothing Models (ES) fulfill these requirements.

• In general, these models are limited and not optimal, especially 
compared with Box-Jenkins methods.

• Goal of these models: Suppress the short-run fluctuation by 
smoothing the series. For this purpose, a weighted average of all 
previous values works well. 

• There are many ES models. We will go over the Simple Exponential 
Smoothing (SES) & Holt-Winter’s Exponential Smoothing (HW ES). 

Forecasting From Simple Models: ES

• From the updating equation 𝑆௧:

𝑆௧ ൌ 𝑆௧ିଵ ൅ 𝛼 𝑌௧ିଵ െ 𝑆௧ିଵ
we compute the forecast for next period (𝑡 ൅ 1): 

𝑆௧ାଵ ൌ  𝑆௧ ൅ 𝛼 𝑌௧ െ 𝑆௧ (𝑌෠௧ାଵ = 𝑆௧ାଵ)

That is, a simple updating forecast: last period forecast + adjustment.

• The forecast for the period 𝑡 ൅ 2, we have:

𝑆௧ାଶ ൌ 𝑆௧ାଵ ൅ 𝛼 𝑌௧ାଵ െ 𝑆௧ାଵ ൌ 𝑆௧ାଵ

• The ℓ-step ahead forecast is:

𝑆௧ାℓ ൌ 𝑆௧ାଵ  A naive forecast! 

Note: SES forecasts are not very interesting after ℓ > 1.

SES: Forecast and Updating
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• Q: Why Exponential? 
For the observed time series {𝑌ଵ, 𝑌ଶ, …, 𝑌௧, 𝑌௧ାଵ}, using backward 
substitution, 𝑆௧ାଵ ൌ 𝑌෠௧ 1 can be expressed as a weighted sum of 
previous observations:

𝑆௧ାଵ ൌ 𝛼𝑌௧ ൅ 1 െ 𝛼 𝑆௧ ൌ 𝛼𝑌௧ ൅ 1 െ 𝛼 𝛼𝑌௧ିଵ ൅ 1 െ 𝛼 𝑆௧ିଵ
ൌ 𝛼𝑌௧ ൅ 𝛼 1 െ 𝛼 𝑌௧ିଵ ൅ 1 െ 𝛼 ଶ𝑆௧ିଵ

⇒  𝑌෠௧ 1 ൌ 𝑆௧ାଵ ൌ 𝑐଴𝑌௧ ൅ 𝑐ଵ𝑌௧ିଵ ൅ 𝑐ଶ𝑌௧ିଶ ൅⋯

where 𝑐௜’s are the weights, with 
𝑐௜ ൌ 𝛼 1 െ 𝛼 ௜;  𝑖 ൌ 0, 1, . . . ;  0 ൑ 𝛼 ൑ 1.

• We have decreasing weights, by a constant ratio for every unit increase 
in lag.

21

SES: Exponential?

Example: An industrial firm uses SES to forecast sales:
𝑆௧ାଵ ൌ 𝑆௧ ൅ 𝛼 ∗  𝑌௧ െ 𝑆௧

The firm estimates 𝛼 = 0.25. The firm observes 𝑌௧ = 5 and, last 
period’s forecast, 𝑆௧ = 3. 

Then, the forecast for time 𝑡 ൅ 1 is:

𝑆௧ାଵ ൌ 3 + 0.25 * (5 – 3) = 3.50

The forecast for time 𝑡 ൅ 1 (& any period after time 𝑡 ൅ 1) is:

𝑆௧ାℓ ൌ 𝑆௧ାଵ ൌ 3.50 for ℓ > 1. 

Later, the firm observes: 𝑌௧ାଵ = 4.77, 𝑌௧ାଶ = 3.15, & 𝑌௧ାଷ = 1.85. 
Then, the MSE:

MSE = 
ଵ

ଷ
* [(4.77 – 3.50)2 + (3.15 - 3.50)2 + (1.85 - 3.50)2] = 1.486. 

SES: Forecast and Updating
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Example (continuation):

Note: If 𝛼 = 0.75, then 

𝑆௧ାଵ ൌ 3 + 0.75 * (5 – 3) = 4.50

A bigger 𝛼 gives more weight to the more recent observation –i.e., 𝑌௧.

Again, the forecast for time 𝑡 ൅ 1 (& any period after time 𝑡 ൅ 1) is: 
𝑆௧ାℓ ൌ 𝑆௧ାଵ ൌ 4.50 for ℓ > 1. 

SES: Forecast and Updating

• Choose  between 0 and 1.

- If  = 1, it becomes a naive model; if  ≈ 1, more weights are put 
on recent values.  The model fully utilizes forecast errors.

- If  is close to 0, distant values are given weights comparable to 
recent values. Set  ≈ 0 when there are big random variations in 𝑌௧. 
-  is often selected as to minimize the MSE.

• In empirical work, 0.05    0.3 are used ( ≈ 1 is used rarely).

Numerical Minimization Process: 

- Take different  values ranging between 0 and 1.

- Calculate 1-step-ahead forecast errors for each .

- Calculate MSE for each case.

Choose  which has the min MSE: 𝑒௧ ൌ 𝑌௧ െ 𝑆௧ ⇒ min ∑ 𝑒௧
ଶ௡

௧ୀଵ ⇒ 𝛼24

SES: Selecting 
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25

Time Yt St+1 (=0.10) (YtSt)2

1 5 - -

2 7 (0.1)5 +(0.9)5 = 5 4

3 6 (0.1)7 + (0.9)5 = 5.2 0.64

4 3 (0.1)6 + (0.9)5.2 = 5.28 5.1984

5 4 (0.1)3 + (0.9)5.28 = 5.052 1.107

TOTAL 10.945

𝑀𝑆𝐸 ൌ
𝑆𝑆𝐸
𝑛 െ 1

ൌ 2.74

• Calculate this for  = 0.2, 0.3,…, 0.9, 1 and compare the MSEs.
Choose  with minimum MSE.

Note: 𝑌௧ିଵ = 5 is set as the initial value for the recursive equation.

SES: Selecting  – MSE

𝑆௧ାଵ ൌ 𝛼𝑌௧ ൅ 1 െ 𝛼 𝑆௧

• We have a recursive equation, we need initial values, 𝑆ଵ (or 𝑌଴).

• Approaches:

– Set 𝑆ଵ equal to 𝑌ଵ. Then, S2 = 𝑌ଵ.

– Take the average of, say first 4 or 5 observations. Then, we start
forecasting at time 5 or 6, respectively.

– Estimate 𝑆ଵ (similar to the estimation of 𝛼.)

26

SES: Initial Values
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Example 1: We want to forecast log changes in U.S. monthly 
dividends (T=1796) using SES. First, we estimate the model using the 
R function HoltWinters(), which has as a special case SES: set 
beta=FALSE, gamma=FALSE. We use estimation period T=1750.
mod1 <- HoltWinters(lr_d[1:1750], beta=FALSE, gamma=FALSE)
> mod1
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = lr_d[1:1750], beta = FALSE, gamma = FALSE)

Smoothing parameters:
alpha: 0.289268  Estimated 
beta : FALSE
gamma: FALSE

Coefficients:
[,1]

a 0.004666795  Forecast

SES: Forecasting Examples

28

Example 1 (continuation): 

SES: Forecasting Examples
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29

Example 1 (continuation): 

SES: Forecasting Examples

30

Example 1 (continuation): Now, we do one-step ahead forecasts
T_last <- nrow(mod1$fitted) # number of  in-sample forecasts
h <- 25 # forecast horizon
ses_f  <- matrix(0,h,1) # Vector to collect forecasts
alpha <- 0.29
y <- lr_d
T <- length(lr_d)
sm <- matrix(0,T,1)
T1 <- T – h + 1 # Start of  forecasts
a <- T1 # index for while loop
sm[a-1] <- mod1$fitted[T_last] # last in-sample forecast
while (a <= T) {

sm[a] = alpha * y[a-1] +  (1-alpha) * sm[a-1]
a <- a + 1
} 

ses_f  <- sm[T1:T]
ses_f
f_error_ses <- sm[T1:T] - y[T1:T] # forecast errors
MSE_ses <- sum(f_error_ses^2)/h # MSE
plot(ses_f, type="l", main ="SES Forecasts: Changes in Dividends")

SES: Forecasting Examples
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31

Example 1 (continuation): 
> ses_f
f_error_ses <- sm[T1:T] - y[T1:T]
> plot(ses_f, type="l", main ="SES Forecasts: Changes in Dividends")

SES: Forecasting Examples

32

Example 1 (continuation): h-step-ahead forecasts
> forecast(mod1, h=25, level=.95)

Point Forecast       Lo 95      Hi 95
1751    0.004666795 -0.01739204 0.02672563
1752    0.004666795 -0.01829640 0.02762999
1753    0.004666795 -0.01916647 0.02850006
1754    0.004666795 -0.02000587 0.02933947
1755    0.004666795 -0.02081765 0.03015124
1756    0.004666795 -0.02160435 0.03093794
1757    0.004666795 -0.02236816 0.03170175
1758    0.004666795 -0.02311098 0.03244457
1759    0.004666795 -0.02383445 0.03316804
1760    0.004666795 -0.02454001 0.03387360
1761    0.004666795 -0.02522891 0.03456250
1762    0.004666795 -0.02590230 0.03523589
1763    0.004666795 -0.02656117 0.03589476
1764    0.004666795 -0.02720642 0.03654001
...

Note: Constant forecasts, but C.I. gets wider (as expected) with h.

SES: Forecasting U.S. Dividends
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33

Example 2: We want to forecast log monthly U.S. vehicles (1976-
2020, T=537) using SES. 
mod_car <- HoltWinters(l_car[1:512], beta=FALSE, gamma=FALSE)
> mod_car
Holt-Winters exponential smoothing without trend and without seasonal component.

Call:
HoltWinters(x = l_car[1:512], beta = FALSE, gamma = FALSE)

Smoothing parameters:
alpha: 0.4888382  Estimated 
beta : FALSE
gamma: FALSE

Coefficients:
[,1]

a 7.315328

SES: Forecasting Examples

34

Example 2 (continuation): Now, we do one-step ahead forecasting
ses_f_c <- sm_c[T1:T]
f_error_c_ses <- sm_c[T1:T] - y[T1:T]
> plot(ses_f_c, type="l", main ="SES Forecasts: Log Vehicle Sales")

> plot(f_error_c_ses, type="l", main ="SES Forecasts Errors: Log Vehicle Sales")

MSE_ses <- sum(f_error_c_ses^2)/h
> MSE_ses 
[1] 0.027889

SES: Forecasting Examples
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• Some computer programs automatically select the optimal , using 
a line search method or non-linear optimization techniques (R does 
this with function HoltWinters).

• We have a recursive equation, we need initial values for S1. Using an 
average of the first observations is common.

• This model ignores trends or seasonalities. Not very realistic,
especially for manufacturing facilities, retail sector, and warehouses.

• Deterministic components, Dt, can be easily incorporated.

• The model that incorporates both a trend and seasonal features is
called Holt-Winter’s ES.

35

SES: Remarks

• In the model for 𝑌௧, in addition to the level (𝑆௧), we introduce trend
(𝑇௧) & seasonality (𝐼௧) factors. Since we produce smooth forecasts 
for 𝑇௧ & 𝐼௧, this method is also called triple exponential smoothing. 

• The ℎ-step ahead forecast is a combination of the smooth forecasts 
of 𝑆௧ (Level), 𝑇௧ (Trend) & 𝐼௧ା௛ି௦ (Seasonal). 

• Both, 𝑇௧ & 𝐼௧, can be included as additively or multiplicatively factors. 
In this class, we consider an additive trend and the seasonal factor as 
additive or multiplicative. We produce h-step ahead forecasts:

- For the additive model: 𝑌෠௧ ℎ ൌ  𝑆௧ ൅ ℎ 𝑇௧ ൅ 𝐼௧ା௛ି௦
- For the multiplicative model: 𝑌෠௧ ℎ ൌ 𝑆௧ ൅ ℎ 𝑇௧ ∗ 𝐼௧ା௛ି௦

Note: Seasonal factor is multiplied in the ℎ-step ahead forecast.
36

Holt-Winters (HW) Exponential Smoothing
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1.  No trend and additive 
seasonal variability.

2. Additive seasonal variability with 
an additive trend.

3. Multiplicative seasonal variability 
with an additive trend.

4. Multiplicative seasonal variability 
with a multiplicative trend.

Holt-Winters (HW) ES: Trend & Seasonality

Note: We will use Model 2 (Additive) and Model 3 (Multiplicative).

• Additive model (additive trend & additive seasonality) forecast:

𝑌෠௧ ℎ ൌ  𝑆௧ ൅ ℎ 𝑇௧ ൅ 𝐼௧ା௛ି௦
where s is the number of periods in seasonal cycles (=4 for quarters).

• Components:

- The level, 𝑆௧: A weighted average of “seasonal adjusted” 𝑌௧ (=𝑌௧ െ
𝐼௧ି௦), and the non-seasonal forecast ሺ𝑆௧ିଵ൅ 𝑇௧ିଵሻ:

𝑆௧ ൌ 𝛼 𝑌௧ െ 𝐼௧ି௦ ൅ 1 െ 𝛼 𝑆௧ିଵ ൅ 𝑇௧ିଵ

- The trend, 𝑇௧: A weighted average of 𝑇௧ିଵ and the change in 𝑆௧. 
𝑇௧ ൌ 𝛽 𝑆௧ െ 𝑆௧ିଵ ൅ 1 െ 𝛽 𝑇௧ିଵ

- The seasonality, 𝐼௧: A weighted average of seasonal index of s last 
year,  𝐼௧ି௦, and the current seasonal index 𝑌௧ିଵ െ 𝑆௧ିଵ െ 𝑇௧ିଵ : 

𝐼௧ ൌ 𝛾 𝑌௧ െ 𝑆௧ିଵ െ 𝑇௧ିଵ ൅ 1 െ 𝛾 𝐼௧ି௦
38

Holt-Winters (HW) ES: Additive
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• Then, the model for the ℎ-step ahead forecast

𝑌෠௧ ℎ ൌ  𝑆௧ ൅ ℎ 𝑇௧ ൅ 𝐼௧ା௛ି௦

has three equations:

Level: 𝑆௧ ൌ 𝛼 𝑌௧ െ 𝐼௧ି௦ ൅ 1 െ 𝛼 𝑆௧ିଵ ൅ 𝑇௧ିଵ

Trend: 𝑇௧ ൌ β 𝑆௧ െ 𝑆௧ିଵ  ൅  1 െ β  𝑇௧ିଵ

Seasonal: 𝐼௧ ൌ 𝛾 𝑌௧ െ 𝑆௧ିଵ െ 𝑇௧ିଵ ൅ 1 െ 𝛾 𝐼௧ି௦

• We have only three smoothing parameters:

 = level coefficient

β = trend coefficient

 = seasonality coefficient 39

Holt-Winters (HW) ES: Additive

• In the multiplicative seasonal case (with an additive trend), we have 
the ℎ-step ahead forecast: 

𝑌෠௧ ℎ ൌ 𝑆௧ ൅ ℎ 𝑇௧ ∗ 𝐼௧ା௛ି௦

• Details for multiplicative seasonality –i.e., 𝑌௧/𝐼௧– and additive trend

- The forecast, 𝑆௧, now shows the average 𝑌௧ adjusted (
௒೟
ூ೟షೞ

). 

- The trend, 𝑇௧, is a weighted average of 𝑇௧ିଵ and the change in 𝑆௧. 
- The seasonality is also a weighted average of 𝐼௧ି௦ and the 𝑌௧/𝑆௧. 

• Then, the model has three equations:

𝑆௧ ൌ 𝛼 ௒೟
ூ೟షೞ

 ൅  1 െ 𝛼  𝑆௧ିଵ ൅ 𝑇௧ିଵ
𝑇௧ ൌ β 𝑆௧ െ 𝑆௧ିଵ  ൅  1 െ β  𝑇௧ିଵ
𝐼௧ ൌ 𝛾 ௒೟

ௌ೟
 ൅  1 െ 𝛾  𝐼௧ି௦ 40

Holt-Winters (HW) ES: Multiplicative
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• We think of (𝑌௧/𝑆௧) as capturing seasonal effects.

s = # of periods in the seasonal cycles

(s = 4, for quarterly data; s = 12, for monthly)

• Again, we have only three parameters:

 = smoothing parameter

β = trend coefficient

 = seasonality coefficient

• Q: How do we determine these 3 parameters?

- Ad-hoc method: α, β and  can be chosen as values between 

0.02 < , , β <0.2 

- Optimal method: Minimization of the MSE, as in SES. 41

Holt-Winters (HW) ES: Multiplicative

Example: An industrial firm uses HW ES to forecast sales next two 
quarters (ℎ = 1, 2, & 3; with 𝑠 = 4):

𝑌෠௧ ℎ ൌ 𝑌෠௧ା௛ ൌ 𝑆௧ ൅ ℎ 𝑇௧ ∗ 𝐼௧ା௛ି௦
with 𝑆௧, 𝑇௧, & 𝐼௧ factors given by:

𝑆௧ ൌ 𝛼 ௒೟
ூ೟షೞ

 ൅  1 െ 𝛼  𝑆௧ିଵ ൅ 𝑇௧ିଵ
𝑇௧ ൌ β 𝑆௧ െ 𝑆௧ିଵ  ൅  1 െ β  𝑇௧ିଵ
𝐼௧ ൌ 𝛾 ௒೟

ௌ೟
 ൅  1 െ 𝛾  𝐼௧ି௦

The firm estimates: 𝛼 = 0.25; β = 0.1; & 𝛾 = 0.4. It observes 𝑌௧ = 5; 
last quarter’s smoothed forecasts: 𝑆௧ିଵ = 3, 𝑇௧ିଵ = 1.2; & last year’s 
seasonal factors: 𝐼௧ିସ = 1.1, 𝐼௧ିଷ = 0.7, 𝐼௧ିଶ = 1.2, & 𝐼௧ିଵ = 0.8.

• Components forecasts: 

𝑆௧ ൌ 0.25 
5

1.1  ൅  1 െ 0.25  ∗ 3 ൅ 1.3 = 4.2864

Holt-Winters (HW) ES: Multiplicative
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Example (continuation): (𝛼 = 0.25; β = 0.1; & 𝛾 = 0.4. )

𝑆௧ ൌ 0.25 ∗  5
1.1  ൅  1 െ 0.25  ∗  3 ൅ 1.2 = 4.2864

𝑇௧ ൌ 0.1 ∗ 4.2864െ 3  ൅  1 െ 0.1  ∗ 1.2ൌ 1.2086

𝐼௧ ൌ 0.4 ∗  5
4.2864 

 ൅  1 െ 0.4  ∗  1.1 = 1.1266

The forecast for ℎ = 1 (next quarter) is:
𝑌෠௧ାଵ ൌ 4.2864൅ 1.2086 ∗ 0.𝟕 = 4.8125

The forecast for ℎ = 2 & 3 are: 
𝑌෠௧ାଶ ൌ 4.2864  ൅ 2 ∗ 1.2086 ∗ 1.2 = 7.8475. 

𝑌෠௧ାଷ ൌ 4.2864   ൅ 3 ∗ 1.2086 ∗ 0.8 = 6.1329. 

Holt-Winters (HW) ES: Multiplicative

• Initial values for algorithm

- We need at least one complete season of data to determine the 
initial estimates of  𝐼௧ି௦.
- Initial values for multiplicative model:

𝑆଴ ൌ ∑ 𝑌௧
௦
௧ୀଵ /𝑠

𝑇଴ ൌ
1
𝑠
𝑌௦ାଵ െ 𝑌ଵ

𝑠
൅
𝑌௦ାଶ െ 𝑌ଶ

𝑠
൅ ⋯൅

𝑌௦ା௦ െ 𝑌௦
𝑠

or T଴ ൌ ෍𝑌௧/𝑠

௦

௧ୀଵ

െ ෍ 𝑌௧/𝑠

ଶ௦

௧ୀ௦ାଵ

/𝑠

44

HW ES: Initial Values
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• Algorithm to compute initial values for seasonal component Is.

Assume we have T observation and quarterly seasonality (s=4):

(1) Compute the averages of each of T years.

𝐴௧ ൌ෍𝑌௧,௜/4

ସ

௜ୀଵ

,  𝑡 ൌ 1, 2,⋯ , 6 ሺyearly averagesሻ

(2) Divide the observations by the appropriate yearly mean: 𝑌௧,௜/𝐴௧.

(3) 𝐼௦ is formed by computing the average 𝑌௧,௜/𝐴௧ per year:

𝐼௦ ൌ ∑ 𝑌௧,௦/𝐴௧
்
௜ୀଵ  𝑠 ൌ 1, 2, 3, 4

45

HW ES: Initial Values

• We can damp the trend as the forecast horizon increases, using a 
parameter 𝜙. For the multiplicative model we have:

𝑆௧ ൌ 𝛼
𝑌௧
𝐼௧ି௦

൅ 1 െ 𝛼 𝑆௧ିଵ െ 𝜙 𝑇௧ିଵ

𝑇௧ ൌ β 𝑆௧ െ 𝑆௧ିଵ ൅ 1 െ β 𝑇௧ିଵ

𝐼௧ ൌ 𝛾
𝑌௧
𝑆௧
൅ 1 െ 𝛾 𝐼௧ି௦

• h-step ahead forecast: 
𝑌෠௧ ℎ ൌ  ሼ𝑆௧  ൅ 1 ൅ 𝜙 ൅ 𝜙ଶ ൅⋯൅ 𝜙ଶ௛ିଵ 𝑇௧ሽ ∗ 𝐼௧ା௛ି௦

• This model is based on practice: It seems to work well for industrial 
outputs. Not a lot of theory or clear justification behind the damped 
trend. 46

HW ES: Damped Model 
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• Overall, we have different models, incorporating different features:
- Trend:  Additive or multiplicative, dampened or not
- Seasonal variability: Additive or multiplicative 

• Q: With all these models, which one we should use?  It depends on 
the data at hand.

5. Dampened trend with additive 
seasonal variability.

6. Multiplicative seasonal variability 
and dampened trend.

ES Models: Damped Model – Types

48

Example: We want to forecast log U.S. monthly vehicle sales with 
HW. We use the R function HoltWinters(). 

l_car_18 <- l_car[1:512]
l_car_ts <- ts(l_car_18, start = c(1976, 1), frequency = 12) # convert lr_d in a ts object
hw_d_car <- HoltWinters(l_car_18, seasonal="additive")
> hw_d_car
Holt-Winters exponential smoothing with trend and additive seasonal component.

Call:
HoltWinters(x = lr_d_ts, seasonal = "additive")

Smoothing parameters:
alpha: 0.4355244  Estimated smoothing parameter
beta : 0.009373815  Estimated trend parameter ≈ 0 (no trend)
gamma:0.3446495  Estimated seasonal parameter

HW ES: Example – Log U.S. Vehicles Sales 
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49

Example (continuation): 
> hw_d_car

Coefficients:
[,1]

a    7.177857555  forecast for level
b    0.0001100345  forecast for trend
s1  -0.075314457  forecast for seasonal month 1
s2  -0.084468361  forecast for seasonal month 2
s3   0.049447067
s4  -0.273299309
s5  -0.138251757
s6  -0.026603921
s7  -0.144953062
s8   0.079214066
s9   0.037899454
s10  0.020477134
s11  0.089309775
s12 -0.012530316

HW ES: Example – Log U.S. Vehicles Sales 

50

Example (continuation):
plot(hw_d_car)

HW ES: Example – Log U.S. Vehicles Sales 
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51

Example (continuation): Now, we forecast one-step ahead forecasts
T_last <- nrow(hw_d_car$fitted)
h <- 25
ses_f_hw <- matrix(0,h,1)
alpha <- 0.4355244
beta <- 0.009373815
gamma <- 0.3446495
y <- l_car
T <- length(l_car)
sm <- matrix(0,T,1)
Tr <- matrix(0,T,1)
I <- matrix(0,T,1)
T1 <- T-h+1
a <- T1
sm[a-1] <- 7.177857555
Tr[a-1] <- -0.000309358
I[501:512] <- c(-0.075314457,-0.084468361,0.049447067,-0.273299309,-0.138251757, -
0.026603921, -0.144953062,0.079214066,0.037899454,0.020477134,0.089309775,-
0.012530316)

SES: Forecasting Log U.S. Vehicles Sales

52

Example (continuation):
while (a <= T) {

sm[a] = alpha * y[a-1] +  (1-alpha) * sm[a-1]
Tr[a] = beta * (sm[a] - sm[a-1]) + (1 - beta) * Tr[a-1]
I[a] = gamma * (y[a] - sm[a]) + (1 - gamma) * I[a - 12]

a <- a + 1
}
hh <- c(1:h)
car_f_hw <- sm[T1:T] + hh*Tr[T1:T] + I[T1:T]
car_f_hw
f_error_c_hw<- car_f_hw - y[T1:T]
plot(car_f_hw, type="l", main ="SES Forecasts: Log Vehicle Sales")

SES: Forecasting Log U.S. Vehicles Sales
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53

Example (continuation):
plot(f_error_c_hw, type="l", main ="SES Forecasts Errors: Log Vehicle Sales")

MSE_hw <- sum(f_error_c_hw^2)/h
> MSE_hw
[1] 0.01655964

SES: Forecasting Log U.S. Vehicles Sales

• Remarks

- If a computer program selects  = 0 = β, it has a lack of trend or 
seasonality. It implies a constant (deterministic) component. In this 
case, an ARIMA model with deterministic trend may be a more 
appropriate model. 

- For HW ES, a seasonal weight near one implies that a non-seasonal 
model may be more appropriate. 

- We can model seasonalities as multiplicative or additive:
 Multiplicative seasonality: Forecastt = St * It-s. 
 Additive seasonality: Forecastt = St + It-s.

54

HW ES: Remarks
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• The mean squared error (MSE) and mean absolute error (MAE) are 
the most popular accuracy measures:

MSE = 
ଵ

௠
∑ ሺ𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ ሻଶ ൌ ଵ

௠
∑ 𝑒௜ଶ
்ା௠
௜ୀ்ାଵ

MAE = 
ଵ

௠
∑ |𝑦ො௜ െ 𝑦௜
்ା௠
௜ୀ்ାଵ | ൌ ଵ

௠
∑ |𝑒௜|
்ା௠
௜ୀ்ାଵ

where 𝑚 is the number of  out-of-sample forecasts.

• But other measures are routinely used:

- Mean absolute percentage error (MAPE) = 
ଵ଴଴

்ିሺ௠ିଵሻ
∑ | ௬

ො೔ି௬೔
௬೔

்ା௠
௜ୀ்ାଵ |

- Absolute MAPE (AMAPE) = 
ଵ଴଴

்ିሺ௠ିଵሻ
∑ | ௬

ො೔ି௬೔
௬ො೔ା௬೔

்ା௠
௜ୀ்ାଵ |

Remark: There is an asymmetry in MAPE, the level 𝑦௜ matters.

Evaluation of  forecasts: Accuracy measures

- % correct sign predictions (PCSP) = 
ଵ

்ିሺ௠ିଵሻ
∑ 𝑧௜
்ା௠
௜ୀ்ାଵ

where 𝑧௜ = 1 if  ሺ𝑦ො௜ା௟ ∗ 𝑦௜ା௟) > 0 

= 0, otherwise.

- % correct direction change predictions (PCDP)= 
ଵ

்ିሺ௠ିଵሻ
∑ 𝑧௜
்ା௠
௜ୀ்ାଵ

where 𝑧௜ = 1 if  ሺ𝑦ො௜ା௟െ𝑦௜) * (𝑦௜ା௟ െ 𝑦௜) >0 

= 0, otherwise.

Remark: We value forecasts with the right direction (sign) or forecast 
that can predict turning points. For stock investors, the sign matters!

• MSE penalizes large errors more heavily than small errors, the sign 
prediction criterion, like MAE, does not penalize large errors more. 

Evaluation of  forecasts: Accuracy measures



RS – EC2 - Lecture 15

29
For private use only - Not to be shared/posted online without authorization.

Example: We compute MSE and the % of  correct direction change 
(PCDC) predictions for the one-step forecasts for U.S. monthly 
vehicles sales based on the SES and HW ES models.
> MSE_ses 

[1] 0.027889

> MSE_hw

[1] 0.01655964

• We calculate PCDC with following script for HW & SES:
bb_hw <- (car_f_hw - y[(T1-1):(T-1)]) * (y[T1:T] - y[(T1-1):(T-1)])

indicator_hw <- ifelse(bb_hw > 0,1,0) # ifelse (“if  else”) produces a 1 if  condition is true

pcdc_hw <- sum(indicator_hw)/h

> indicator_hw

[1] 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0

> pcdc_hw

[1] 0.76

Evaluation of  forecasts: Accuracy measures

Example (continuation):
bb_s <- (ses_f_c - y[(T1-1):(T-1)]) * (y[T1:T] - y[(T1-1):(T-1)])

indicator_s <- ifelse(bb_s > 0,1,0)

pcdc_s <- sum(indicator_s)/h

> indicator_s

[1] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0

> pcdc_s

[1] 0.76

Note: Same percentage of correct direction change (PCDC) 
predictions, but the sequence of  correct predictions is not the same. 

Evaluation of  forecasts: Accuracy measures
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• To determine if  one model predicts better than another, we define 
the loss differential between two forecasts: 

𝑑௧ = g(𝑒௧
ெଵ) – g(𝑒௧

ெଶ)

where g(.) is the forecasting loss function,  M1 and M2 are two 
competing sets of  forecasts –could be from models or something else.

• We only need {𝑒௧
ெଵ} & {𝑒௧

ெଶ}, not the structure of  M1 or M2. In 
this sense, this approach is “model-free.”

• Typical (symmetric) loss functions:  g(𝑒௧) = 𝑒௧
ଶ &  g(𝑒௧) =|𝑒௧|. 

• But other g(.)’s can be used: g(𝑒௧) = exp(λ 𝑒௧
ଶ ) – λ 𝑒௧

ଶ (λ>0).

Note: This is a more general test than MGN: It works for any loss 
function, not just MSE.

Evaluation of  forecasts: DM Test

• Then, we test the null hypotheses of  equal predictive accuracy: 
H0: E[𝑑௧] = 0
H1: E[𝑑௧] = μ ≠ 0.

- Diebold and Mariano (1995) assume {𝑒௧
ெଵ} & {𝑒௧

ெଶ} is covariance 
stationarity and other regularity conditions (finite Var[𝑑௧], 
independence of  forecasts after ℓ periods) needed to apply CLT. 
Then,

𝑑ሜ െ 𝜇

𝑉𝑎𝑟ሾ𝑑ሜሿ/𝑇
 
 ௗ 

 𝑁ሺ0,1ሻ,    𝑑ሜ ൌ
1
𝑚

෍ 𝑑௜

்ା௠

௜ୀ்ାଵ

• Then, under H0, the DM test is a simple z-test:

𝐷𝑀 ൌ
𝑑ሜ

𝑉෠𝑎𝑟ሾ𝑑ሜሿ/𝑇
 
 ௗ 

 𝑁ሺ0,1ሻ

Evaluation of  forecasts: DM Test
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where 𝑉෠𝑎𝑟ሾ𝑑ሜሿ is a consistent estimator of  the variance, usually based 
on sample autocovariances of  𝑑௧:

𝑉෠𝑎𝑟ሾ𝑑ሜሿ ൌ 𝛾ሺ0ሻ ൅ 2෍𝛾ሺ𝑗ሻ

ℓ

௝ୀ௞

• There are some suggestion to calculate small sample modification of  
the DM test. For example, :

DM* = DM/{[T + 1 – 2 ℓ + ℓ (ℓ – 1)/T]/T}1/2 ~ 𝑡்ିଵ.

where ℓ-step ahead forecast. If  time-varying volatility (ARCH) is 
suspected, replace ℓ with [0.5 √(T)] + ℓ.

Note:  If  {𝑒௧
ெଵ} & {𝑒௧

ெଶ} are perfectly correlated, the numerator and 
denominator of  the DM test are both converging to 0 as  T → ∞.  

 Avoid DM test when this situation is suspected (say, two 
nested models.) Though, in small samples, it is OK.

Evaluation of  forecasts: DM Test

Example: Code in R
dm.test <- function (e1, e2, h = 1, power = 2) {

d <- c(abs(e1))^power - c(abs(e2))^power
d.cov <- acf(d, na.action = na.omit, lag.max = h - 1, type = "covariance", plot = FALSE)$acf[, , 1]
d.var <- sum(c(d.cov[1], 2 * d.cov[-1]))/length(d)
dv <- d.var #max(1e-8,d.var)
if(dv > 0)
STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv)

else if(h==1)
stop("Variance of  DM statistic is zero")

else
{
warning("Variance is negative, using horizon h=1")
return(dm.test(e1,e2,alternative,h=1,power))

}
n <- length(d)

k <- ((n + 1 - 2*h + (h/n) * (h-1))/n)^(1/2)
STATISTIC <- STATISTIC * k
names(STATISTIC) <- "DM"

}

Evaluation of  forecasts: DM Test
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Example: We compare the SES and HW forecasts for the log of  U.S. 
monthly vehicle sales. We use the dm.test function, part of  the forecast 
package.

library(forecast)
> dm.test(f_error_c_ses, f_error_c_hw, power=2)

Diebold-Mariano Test

data:  f_error_c_sesf_error_c_hw
DM = 1.6756, Forecast horizon = 1, Loss function power = 2, p-value = 0.1068
alternative hypothesis: two.sided

> dm.test(f_error_c_ses,f_error_c_hw, power=1)

Diebold-Mariano Test

data:  f_error_c_sesf_error_c_hw
DM = 1.94, Forecast horizon = 1, Loss function power = 1, p-value = 0.064
alternative hypothesis: two.sided

Note: Cannot reject H0: MSESES = MSEHW at 5% level

Evaluation of  forecasts: DM Test

• The DM tests is routinely used. Its “model-free” approach has 
appeal.  There are model-dependent tests, see West (1996), Clark and 
McCracken (2001), and, more recent, Clark and McCracken (2011), 
with more complicated asymptotic distributions.

• The loss function does not need to be symmetric (like MSE).

• The DM test is based on the notion of  unconditional –i.e., on 
average over the whole sample- expected loss. 

• Following Morgan, Granger and Newbold (1977), the DM statistic 
can be calculated by regression of  dt, on an intercept, using NW SE. 
But, we can also condition on variables that may explain dt. We move 
from an unconditional to a conditional expected loss perspective.

Evaluation of  forecasts: DM Test – Remarks
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Evaluation of  forecasts – Conditional Test

• Giacomini and White (2006) present a general framework for out-of-
sample predictive ability testing, characterized by the formulation of  
tests (such as tests for equality of  forecasts) based on conditional 
expected loss. Now,

𝐸ሾ𝑑መ௧ 𝐼் ൌ 0  𝐸ሾℎ௧ିଵ𝑑መ௧ሿ ൌ 0.

where ℎ௧ିଵ is a 𝐼் , measurable function of  dimension 𝑞.

Note: G&W (2006) also differs from the standard approach to testing 
for predictive ability in that it compares forecasting methods

(estimation + model) rather than forecasting models.

• The test becomes a Wald test, with an asymptotic 𝜒௤ଶ distribution.

• Idea – from Bates & Granger (Operations Research Quarterly, 1969):

- We have different forecasts from 𝑅 models: 

𝑌෠்ெଵ ℓ ,𝑌෠்ெଶ ℓ , . . . ,𝑌෠்ெோ ℓ

• Instead of using the single “best model,” why not combine them?

• 𝑌෠்஼௢௠௕ ℓ is usually referred as “ensemble forecast” or 
“combination forecast.” 

• Very common practice in economics, finance and politics, reported 
by the press as “consensus forecast.” Usually, as a simple average.

• There is a strong evidence in favor of combination forecasts. 66

𝑌෠்஼௢௠௕ ℓ ൌ 𝜔ெଵ𝑌෠்
ெଵ ℓ ൅ 𝜔ெଶ𝑌෠்

ெଶ ℓ ൅. . . .൅𝜔ெோ𝑌෠்
ெோ ℓ

Combination of  Forecasts: Introduction
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• Forecasts combinations have appeared in diverse areas such as retail 
(Ma and Fildes (2021)), energy (Xie and Hong (2016)), economics 
(Aastveit et al. (2019)), epidemiology (Ray et al. (2022)), etc.

• Many explanations for this strong performance:

- Incomplete information. Combining forecasts expands the 
information set of the individual forecasts, which are each based on 
partial information sets (say, private information) or models. 

- Structural breaks and other instabilities. Combining forecasts from 
models with different degrees of misspecification and adaptability can 
mitigate the problem, -see Timmermann (2006) and Rossi (2021). 

- Shrinkage. The unknown future value, a “meta parameter,” can be 
improved as an average of individual estimates –see Hendry and 
Clements (2004).

67

Combination of  Forecasts: Introduction

• The gains from forecast combinations rely on not only the quality of 
the individual forecasts to be combined, but the estimation of the 
combination weights assigned to each forecast -Cang and Yu (2014).

• Thus, forecast combinations can be linear or nonlinear, static or 
time-varying, series-specific or cross-learning, and ignore or cover 
correlations among individual forecasts. 

• Mean or Median? (Or trimmed/winsorized means?) McNees (1992) 
found no big difference; Stock and Watson (2004) favor the mean; 
Jose and Winkler (2008) suggest the trimmed/winsorized means.

Note: In the 2020 M4 forecasting competition (100,000 times series 
& 61 methods), the simple average finished 3rd for annual time series 
and the median 5th for point forecasts. 68

Combination of  Forecasts: Introduction
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• We expect 𝑌෠்஼௢௠௕ ℓ to have a lower forecast variance. Why? 
Diversification argument. The variance of the ensemble forecast is:

𝑉𝑎𝑟 𝑌෠்஼௢௠௕ ℓ ൌ෍ሺ𝜔ெ௝ሻଶ𝑉𝑎𝑟ሾ𝑌෠்
ெ௝ ℓ ሿ

ோ

௝ୀଵ

൅

+ 2∑ ∑ 𝜔ெ௝𝜔ெ௜ Covarሾ 𝑌෠்ெ௝ ℓ 𝑌෠்ெ௜ ℓ ሿோ
௜ୀ௝ାଵ

ோ
௝ୀଵ

Note: Ideally, we would like to have negatively correlated forecasts.

• Assuming unbiased forecasts and uncorrelated errors,

𝑉𝑎𝑟ሾ𝑌෠்஼௢௠௕ ℓ ሿ ൌ ∑ ሺ𝜔ெ௝ሻଶ
ோ
௝ୀଵ 𝜎௝

ଶ

Example: Simple average: 𝜔௝ ൌ 1/𝑅. Then,

𝑉𝑎𝑟ሾ𝑌෠்஼௢௠௕ ℓ ሿ ൌ 1/𝑅ଶ ∑ 𝜎௝
ଶோ

௝ୀଵ .

Combination of  Forecasts: Optimal Weights 

Example: We combine the SES and HW forecast of log US vehicles 
sales:
f_comb <- (ses_f_c + car_f_hw)/2

f_error_comb <- f_comb - y[T1:T]

> var(f_comb)

[1] 0.0178981

> var(car_f_hw)

[1] 0.02042458

> var(ses_f_c)

[1] 0.01823237

Combination of  Forecasts: Optimal Weights 
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• We can derived optimal weights –i,e., 𝜔௝ ’s that minimize the 
variance of the forecast (MSE loss function). Under the uncorrelated 
assumption: 

𝜔ெ௝
∗ ൌ 𝜎௝

ିଶ ∑ 𝜎௝
ିଶோ

௝ୀଵൗ

The 𝜔௝∗’s are inversely proportional to their variances. 

• In general, forecasts are biased and correlated. The correlations will 
appear in the above formula for the optimal weights. For the two 
forecasts case:
𝜔ெ௝
∗ ൌ ሺ𝜎ଵ

ଶ െ 𝜎ଵଶሻ ሺ𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶ െ 2𝜎ଵଶሻ ൌ⁄ ሺ𝜎ଵ
ଶ െ 𝜌𝜎ଵ𝜎ଶሻ ሺ𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶ െ 2𝜌𝜎ଵ𝜎ଶሻ⁄

• Ideally, we would like to have negatively correlated forecasts.

Note: Different loss functions produce different “optimal weights.”

Combination of  Forecasts: Optimal Weights 

• Granger and Ramanathan (1984) used a regression method to 
combine 𝑅 forecasts. 

- Regress the actual value on the forecasts. The estimated 
coefficients are the weights.

𝑦்ାℓ ൌ 𝛽ଵ𝑌෠்ெଵ ℓ ൅ 𝛽ଶ𝑌෠்ெଶ ℓ  ൅. . . .൅ 𝛽ோ𝑌෠்ெோ ℓ ൅ 𝜀்ାℓ

• Should use a constrained regression

– Omit the constant

– Enforce non-negative coefficients.

– Constrain coefficients to sum to one.

Note: When 𝑅 ൐ 𝑇 other methods have to be used.

72

Combination of  Forecasts: Regression Weights 
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Example: We regress the SES and HW forecasts against the 
observed  car sales to obtain optimal weights. We omit the constant
> lm(y[T1:T] ~ ses_f_c + car_f_hw - 1)

Call:

lm(formula = y[T1:T] ~ ses_f_c + car_f_hw - 1)

Coefficients:

ses_f_c car_f_hw

-0.5426    1.5472 

Note: Coefficients (weights) add up to 1. But, we see negative 
weights... In general, we use a constrained regression, forcing 
parameters to be between 0 and 1 (& non-negative). But, h=25 
delivers not a lot of observations to do non-linear estimation.

Combination of  Forecasts: Regression Weights 

• Chan et al. (1999) show that OLS combinations have poor 
performance when 𝑅 is very large. Principal components regression 
(PCR) can be used, resulting in a two-step procedure:

(1) Extracts the principal components

(2) Use PC to forecast using OLS regression. 

• Rapach and Strauss (2008) and Poncela et al. (2011) find better PCR 
performance than OLS. 

• Q: Should we forecast with variables (competing point forecasts), 
factors (extracted from the 𝑅 competing forecasts), or both -see, 
Castle et al. (2013).

74

Combination of  Forecasts: Regression Weights 
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• Remarks:

- To get weights, do not include a constant. Here, we are assuming 
unbiased forecasts. If the forecasts are biased, we include a constant.

- To account for potential correlation of errors, we can allow for 
ARMA residuals or include 𝑦்ାℓାଵ in the regression.

- Time varying weights are also possible –see Deutsch et al. (1994).

• Many methods to get weights: Bayesian, IC, Historical, ML, etc.

• Should weights matter? Two views:

- Simple averages outperform more complicated combination 
techniques. Stock and Watson (2004), Chan and Pauwels (2018)

- Sampling variability may affect weight estimates to the extent that 
the combination has a larger MSE. 75

Combination of  Forecasts: Regression Weights 

• In  our  discussion  of  model  selection,  we  mentioned that the 
𝐵𝐼𝐶 is  consistent. That means, the probability that a model is true, 
given the data is proportional to 𝐵𝐼𝐶: 

P(𝑀௝|data) α expሺെ
஻ூ஼ೕ
ଶ
ሻ.

• Based on this, we use the 𝐵𝐼𝐶 of different models to derive weights. 

This is a simplified form of Bayesian  model  averaging  (BMA). 

• Easy calculation of weights. Let 𝐵𝐼𝐶*  be  the  smallest 𝐵𝐼𝐶 among 
the R models considered. Define  Δ𝐵𝐼𝐶ெೕ

= 𝐵𝐼𝐶ெೕ
െ 𝐵𝐼𝐶*. 

Then, 𝜔ெೕ
∗ ൌ expሺെ

∆஻ூ஼ಾೕ

ଶ
ሻ. 

𝜔ெೕ
ൌ

ఠಾೕ
∗

∑ ఠಾೕ
∗ೃ

ೕసభ
76

Combination of  Forecasts: Bayesian Weights 
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• Steps:

(1) Compute 𝐵𝐼𝐶 for the R different models.

(2) Find best-fitting 𝐵𝐼𝐶*.

(3) Compute ∆𝐵𝐼𝐶 & expሺെ ∆𝐵𝐼𝐶/2).

(4) Add  up  all  values  and  re-normalize.

• BMA puts the most weight on the model with the smallest 𝐵𝐼𝐶.

• Some  authors  have  suggested  replacing  𝐵𝐼𝐶 with  𝐴𝐼𝐶 in  the  

weight  formula –i.e., 𝜔௝ α expሺെ
஺ூ஼ೕ
ଶ
ሻ. 

- There  is  no clear theory  for  this formula. It  is  simple  and  works  
well  in  practice.

- This method is called weighted 𝑨𝑰𝑪 (𝑾𝑨𝑰𝑪). 77

Combination of  Forecasts: Bayesian Weights 

• Q: Does it make a difference the criteria used? Two situations:

(1) The selection criterion (𝐴𝐼𝐶 , 𝐵𝐼𝐶) are close for competing models. 
Then, it is difficult to select one over  the other. 

- 𝑊𝐴𝐼𝐶 and BMA will produce similar  weights.

(2) The selection criterion are different. 

- 𝑊𝐴𝐼𝐶 and BMA will produce different  weights.

- They will give zero weight if the difference is large, say, above 10.

Q: Which one to use? 

- Not clear. 𝑊𝐴𝐼𝐶 works well in practice. 

General finding: Simple averaging works well, but it is not optimal. A 
combination beats the lowest criteria used.

78

Combination of  Forecasts: Bayesian Weights 
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• A simple average, with equal weights, tends to do well (“forecast 
combination puzzle”.) However, there is a large “optimal weights” 
literature.

• Traditionally, optimal combination weights have generally been 
chosen to minimize a symmetric, squared-error loss function.  

• But, asymmetric loss functions can also be used. Elliot and 
Timmermann (2004) allow for general loss functions (and 
distributions). They find that the optimal weights depend on higher 
order moments, such a skewness.

• Ideally, an increase in diversity among forecasting models has the 
potential to improve the accuracy of their combination. We prefer 
forecasts with low correlation (higher diversity). 79

Combination of  Forecasts: Final Comments 

• Non-linear combinations are possible, for example, using ML -see
Krasnopolsky and Lin (2012) and Babikir and Mwambi (2016), used 
neural networks (ANNs).

• There is a literature developing a set of rules and features to be used 
to combine forecasts –Collopy and Armstrong (1992), Petropoulos et 
al. (2014). There is an R package (FFORMA) implementing some of 
the rules and features (it finished 2nd in the M4 competition).

• A big literature on combining probability forecasts. For example, 
forecast quantiles and combine them through averaging –see Busetti
(2017). Testing of quantile forecasts can  be based on the general 
approach of G&W (2006). Giacomini and Komunjer (2005) present 
an application. 

80

Combination of  Forecasts: Final Comments 


